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 2 

ABSTRACT  34 

 35 

The rapid spread of multi-drug resistant strains has created a pressing need for new drug 36 

regimens to treat tuberculosis (TB), which kills 1.8 million people each year. Identifying new 37 

regimens has been challenging due to the slow growth of the pathogen M. tuberculosis (MTB), 38 

coupled with large number of possible drug combinations. Here we present a computational 39 

model (INDIGO-MTB) that identified synergistic regimens featuring existing and emerging anti-40 

TB drugs after screening in silico over 1 million potential drug combinations using MTB drug 41 

transcriptomic profiles. INDIGO-MTB further predicted the gene Rv1353c as a key 42 

transcriptional regulator of multiple drug interactions, and we confirmed experimentally that 43 

Rv1353c up-regulation reduces the antagonism of the bedaquiline-streptomycin combination. 44 

Retrospective analysis of 57 clinical trials of TB regimens using INDIGO-MTB revealed that 45 

synergistic combinations were significantly more efficacious than antagonistic combinations (p-46 

value = 1 x 10-4) based on the percentage of patients with negative sputum cultures after 8 47 

weeks of treatment. Our study establishes a framework for rapid assessment of TB drug 48 

combinations and is also applicable to other bacterial pathogens. 49 

 50 

IMPORTANCE 51 

 52 

Multi-drug combination therapy is an important strategy for treating tuberculosis, the world’s 53 

deadliest bacterial infection. Long treatment durations and growing rates of drug resistance 54 

have created an urgent need for new approaches to prioritize effective drug regimens. Hence, 55 

we developed a computational model called INDIGO-MTB, which identifies synergistic drug 56 

regimens from an immense set of possible drug combinations using pathogen response 57 

transcriptome elicited by individual drugs. Although the underlying input data for INDIGO-MTB 58 

was generated under in vitro broth culture conditions, the predictions from INDIGO-MTB 59 

correlated significantly with in vivo drug regimen efficacy from clinical trials. INDIGO-MTB also 60 

identified the transcription factor Rv1353c as a regulator of multiple drug interaction outcomes, 61 

which could be targeted for rationally enhancing drug synergy. 62 

 63 
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INTRODUCTION 72 

Tuberculosis (TB) is a global health threat of staggering proportions, taking a human life every 73 
30 seconds (1). To ensure adequate treatment and combat onset of resistance, TB patients 74 
receive multidrug therapy. However, the frontline regimen of four drugs and six months 75 
treatment has not changed in 50 years, and resistance is spreading. In response, experts have 76 
called for entirely new regimens to combat the TB pandemic (2). While some new anti-TB 77 
agents are beginning to emerge (3), optimizing individual agents into effective regimens remains 78 
a significant challenge.  79 

At present, combinations are designed and tested empirically, driven in part by clinical intuition. 80 
A standard approach to evaluate drug interactions experimentally utilizes checkerboard assays, 81 
which involves exposing the pathogen to different dose combinations of constituent drugs in a 82 
regimen. New approaches have been developed to increase throughput of checkerboard 83 
assays, either by reducing the number of doses required or by using computational optimization 84 
to find optimal doses (4-6).  85 

Even with these developments, the enormous and expanding number of potential drug 86 
combinations renders regimen optimization by comprehensive experimental testing infeasible. 87 
The 28 drugs used to treat TB (7-10) could be assembled into nearly 24,000 different 3- or 4-88 
drug combinations. Adding just two new agents to that list increases the number of different 89 
combinations to almost 32,000. Thus, there is a need for high-throughput approaches that can 90 
prioritize new drug combinations based on data generated from individual drugs. For example, a 91 
feedback-based approach was recently used to determine the optimal dosing of multi-drug 92 
regimens (4, 5). However, this approach still requires hundreds of dose-specific measurements 93 
for training the algorithm, all of which must be re-done whenever a new agent is under 94 
consideration. Computational tools such as metabolic modeling, kinetic modeling, and statistical 95 
modeling (11-13) have limited power in this context because direct targets are not known for 96 
many compounds. Existing approaches are also limited in the scale at which potential 97 
combinations could be evaluated computationally — currently around hundreds. Furthermore, 98 
empirical approaches based on drug similarity (or dissimilarity) are less effective in predicting 99 
interaction outcomes for new drugs classes, and they also lack a model for antagonism (14). 100 
Drugs with similar targets can have both synergistic and antagonistic outcomes (14). 101 

To address this challenge, here we extend an in silico tool that we recently created —Inferring 102 
Drug Interactions using chemo-Genomics and Orthology, (INDIGO) (14)— to predict 103 
synergy/antagonism in combinations of two or more drugs. The original INDIGO model used 104 
chemogenomic profiling data under exposure to individual drugs (15, 16) as input data to 105 
identify drug-response genes (14). The scientific premise underlying INDIGO is that drug 106 
synergy and antagonism arise because of coordinated, systems-level molecular changes 107 
involving multiple cellular processes. Importantly, INDIGO can learn patterns from known drug 108 
interactions, which can then be used to forecast outcomes for new drugs and conditions. 109 
INDIGO can thus provide insights on underlying mechanism of drug interactions in an unbiased 110 
fashion. INDIGO can assess millions of combination regimens without requiring information 111 
about the drug target or mode of action. Once an optimal drug regimen can be determined using 112 
INDIGO, the dose regimes could be further optimized using feedback-based dose optimization 113 
techniques (4, 5).  114 

The goal of this study is to identify antibiotic combinations that are most promising for TB drug 115 
development. We have adapted INDIGO to make use of transcriptomics data to identify drug-116 
response genes, which are more widely available than chemogenomics data for most non-117 
model organisms, including Mycobacterium tuberculosis (MTB) (Figure 1). We then harness a 118 
large compendium of publicly available and in-house generated transcriptomics data to show 119 
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that INDIGO can successfully estimate drug interactions in MTB. We further integrate INDIGO 120 
with known MTB gene regulatory networks to identify transcription factors (TFs) that influence 121 
the extent of synergy between drugs. False positives and outliers from our model represent 122 
existing knowledge gaps and can inform future drug interaction experiments. The significant 123 
correlation of INDIGO-MTB predictions with both in vitro validations of novel predictions and in 124 
vivo efficacy metrics from clinical trials indicate that the INDIGO-MTB model has great promise 125 
for selecting novel TB drug regimens. INDIGO-MTB further provides unbiased insights on 126 
underlying cellular processes that influence drug interactions.  127 

 128 

Figure 1. Schematic of INDIGO-MTB. INDIGO uses drug-gene associations inferred from transcriptomic 129 
data and experimentally measured drug-drug interactions as inputs to train a computational model that 130 
can infer interactions between new combinations of drugs. It does this by learning patterns in the drug-131 
gene associations that are correlated with synergy and antagonism. In the example above, MTB 132 
upregulation of both gene 1 and gene 3 in response to the drugs measured in monotherapy is predictive 133 
of antagonism when the drugs are combined. By perturbing individual genes and known targets of 134 
Transcription Factors (TFs) in the model, we can infer the impact of individual gene and TF activity 135 
respectively on drug interactions and subsequently engineer interaction outcomes.  136 

 137 

 138 
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RESULTS 139 

Construction of INDIGO-MTB model from drug response transcriptomes 140 

The INDIGO approach requires a list of drug-gene associations and known drug-drug 141 
interaction data as input for building a chemical-genetic model of drug interactions. A gene is 142 
assumed to have a chemical-genetic association with a drug if a change in its expression leads 143 
to a statistically significant alteration in sensitivity to the drug of interest. A drug-gene 144 
association network is created by integrating chemogenomic profiling data from hundreds of 145 
drugs. This static network is then converted into a predictive model by leveraging the powerful 146 
statistical learning tool, Random Forest (17). This algorithm builds decision-trees using genes in 147 
the drug-gene association network and identifies those that are predictive of drug interaction 148 
outcomes using a training data set. The training data comprises known drug interactions. This 149 
trained network model can be used to forecast interactions for novel drug combinations (Figure 150 
1, Figure S1).  151 

While in the prior study, drug-gene associations were obtained from chemogenomic profiles of 152 
E. coli, these comprehensive gene deletion/drug response data are difficult to generate 153 
experimentally for most pathogens. We hence hypothesized that transcriptomics data, which 154 
quantifies the responses of every gene to a given perturbation, could provide a readily available 155 
alternate resource for analysis. This solution could circumvent the limitation that chemogenomic 156 
data are not available for most pathogens, including MTB. Generating gene expression data for 157 
response to monotherapy drug exposure is straightforward, and there are already publicly 158 
available transcriptomic profiles for many anti-TB agents. 159 

We compiled transcriptome data profiling MTB response to different compounds and metabolic 160 
perturbations from the literature. We augmented this compendium by generating MTB 161 
transcriptomic response profiles for emerging TB agents (Methods, Table S1A). In addition to 162 
these transcriptomic data, we also used chemogenomics data from Escherichia coli (16), with E. 163 
coli genes matched to corresponding orthologous genes in the MTB genome. Our prior study 164 
showed that INDIGO can infer interactions in MTB with significant accuracy using orthologous 165 
gene mapping (correlation R = 0.54; p-value = 0.006). This was based on the observation that 166 
genes predictive of drug-drug interactions were surprisingly conserved between E. coli and 167 
MTB. In cases where multiple datasets profiled the same compound, we prioritized data from 168 
MTB profiled with the latest transcriptomics technology whenever possible. We normalized this 169 
drug response compendium using the ComBat algorithm (18) to account for inter-study and 170 
technology-specific (i.e. microarray, RNAseq) variation in transcriptomics data (Methods). 171 
Overall, this compendium contains data for 164 compounds and 65 metabolic perturbations 172 
(see Table S1A for full list)(12, 19, 20). 173 

To train INDIGO-MTB, we compiled drug interaction values in MTB for 202 drug combination 174 
regimens from the literature, featuring compounds with available chemogenomic or 175 
transcriptomic profiles (Table S1B). The drugs in the training set consist of well-established 176 
anti-TB drugs, including rifampicin (RIF), isoniazid (INH), streptomycin (STM), several 177 
fluoroquinolones, as well as new drugs such as bedaquiline (BDQ). The extent of interaction 178 
between drugs was quantified in these studies by the standard Fractional Inhibitory 179 
Concentration (FIC) index (21), or the DiaMOND interaction score (6). In both of these metrics, 180 
synergy implies that the same amount of growth inhibition is achieved with a lower dose when 181 
both drugs are combined. We used statistical data normalization to combine these datasets, 182 
similar to our approach for combining transcriptomics data from various studies and platforms 183 
(Methods). This allowed us to account for the new technology-specific variation in drug 184 
interaction score distribution. If separate studies in literature provided conflicting interaction 185 
scores for a drug combination, we included both values to incorporate this experimental 186 
uncertainty into the model. 187 
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Experimental validation of INDIGO-MTB model 188 

The INDIGO-MTB model trained on these drug interaction data was used to infer interaction 189 
outcomes for new drugs and regimens. Given that our compendium has 164 compounds and 65 190 
perturbations, INDIGO-MTB estimated all 26,106 potential pairwise interactions and all 191 
1,975,354 potential three-way interactions. Table S1C shows the entire list of pairwise 192 
combinations and interaction scores.   193 

We observed striking associations between specific compounds and interactions that were 194 
highly synergistic or antagonistic. In particular, combinations containing the drugs 195 
chlorpromazine and verapamil were highly enriched for synergistic interactions; 77% of 196 
chlorpromazine-containing combinations and 80% of verapamil-containing combinations were 197 
found to interact synergistically (FIC < 0.9) (Figure S2). Verapamil is an efflux pump inhibitor 198 
that influences membrane potential (22) and has been previously been shown to potentiate the 199 
activity of several anti-TB drugs (23-25). In contrast, all pairwise combinations featuring 200 
sutezolid were found to be antagonistic. 201 

Previous work had found combinations of bacteriostatic drugs paired with bactericidal drugs 202 
were likely to be antagonistic against E. coli (26). INDIGO-MTB uncovered a similar trend in the 203 
MTB drug interactions; combinations featuring a bacteriostatic drug and a bactericidal drug had 204 
significantly more antagonistic interaction scores than combinations featuring only bacteriostatic 205 
drugs (p < 10-12). Interestingly, combinations featuring only bactericidal drugs also had 206 
significantly more antagonistic interaction scores than combinations featuring only bacteriostatic 207 
drugs (p < 10-12) (Figure S2). 208 

To evaluate the accuracy of INDIGO-MTB, we experimentally measured interactions between a 209 
set of two-drug and three-drug combinations, and we compared these measurements against 210 
the interaction scores from INDIGO-MTB. The compounds featured in the tested combinations 211 
are all FDA-approved agents that have diverse mechanisms of action, and are either part of 212 
current first- and second-line TB therapy, or have been previously studied for their anti-213 
tubercular activity. The interaction outcomes for the test set combinations spanned the entire 214 
range of INDIGO-MTB predicted interaction scores, enabling a rigorous assessment of INDIGO-215 
MTB (Figure 2A, Figure S3). We quantified the interaction outcome either by traditional 216 
checkerboard assays or the high-throughput DiaMOND method for three-way combinations 217 
(Methods). Given the diverse methodologies used in literature for measuring drug interactions, 218 
we included combinations frequently measured in prior literature involving INH, RIF and STM as 219 
reference combinations in our test set. In addition, among the test set combinations, 10 220 
combinations involved pairwise subsets of three-way combinations that were measured using 221 
DiaMOND methodology to infer 3-way interactions. Overall, among the 36 combinations in the 222 
experimental validation set, 24 combinations were completely “novel”, i.e. never seen by 223 
INDIGO. The sample size (N = 24 combinations) for the test set chosen for experimental 224 
validation is sufficiently powered to significantly assess the accuracy of INDIGO’s correlation 225 
with the experimental data (Methods).   226 

We first classified experimentally measured combinations as synergistic, additive, or 227 
antagonistic. INDIGO-MTB predicted interaction scores were significantly different between 228 
these three classes (p-value = 0.0064, Kruskal-Wallis Rank Sum Test, Figure 2C). In addition, 229 
there was a significant difference between INDIGO-MTB predictions for synergistic and 230 
antagonistic combinations (p-value = 0.0009, non-parametric Komolgorov-Smirnov test). 231 
Receiver Operating Curve (ROC) analysis of INDIGO-MTB predictive performance yielded an 232 
area under the curve (AUC) of 0.89 (p = 1.2 x 10-3) and 0.91 (p = 6.7 x 10-4) for detecting 233 
synergy and antagonism in the validation set, respectively (Figure 2D). These results are robust 234 
to the choice of thresholds used for classifying interactions as synergistic or antagonistic 235 
(Figure S4). We next performed a quantitative comparison between INDIGO-MTB interaction 236 
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scores and the corresponding in vitro experimentally measured FIC indices using the scale 237 
invariant metric, spearman's rank correlation (R) (Figure 2B). We observed a high degree of 238 
correlation between model prediction and experimental measurements for all combinations (R = 239 
0.63, p = 9.5 x 10-4), and also after separating pairwise (R=0.62 ± 0.03, p = 9 x 10-3) and three-240 
way interactions (R=0.64 ± 0.1, p = 8 x 10-2). The correlation with INDIGO-MTB predictions is 241 
identical for both the novel set (rank correlation R = 0.63) and for the total validation set, (R = 242 
0.64 for all 36 combinations). Thus, not only can INDIGO qualitatively differentiate synergy and 243 
antagonism, but it can also quantitatively separate regimens based on their extent of synergy. 244 

Of note, we validated the INDIGO-MTB prediction that the combination of moxifloxacin (MXF) 245 
and spectinomycin (SPC) are pairwise-antagonistic (DiaMOND FIC = 1.50) but could be made 246 
more synergistic with the addition of clofazimine (CFZ) (DiaMOND FIC = 0.14). The synergy 247 
identified between capreomycin (CAP) and CFZ (DiaMOND FIC = 0.70) and strong antagonism 248 
between STM and moxifloxacin (MXF) (FIC = 3.68) were also experimentally confirmed. These 249 
results, along with tenfold cross validation analysis of the training data (Figure S4), show that 250 
INDIGO-MTB can successfully infer novel interactions among drugs with known transcriptome 251 
profiles.  252 

 253 

Figure 2. INDIGO- MTB accurately predicts novel drug interactions. (A) Drug combinations chosen 254 
for experimental testing span the entire range of drug interaction predictions by INDIGO. The histogram 255 
and box plot above it show the distribution of pairwise drug interaction scores for the 35 high interest TB 256 
agents (the edges of the box plot demarcate the 25

th
 and 75

th
 percentile, and the dashed lines extend 257 

between the 1
st
 and 99

th
 percentile). The interaction scores of the combinations chosen for testing are 258 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/800334doi: bioRxiv preprint 

https://doi.org/10.1101/800334
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

shown as red dots. The 35 high interest agents contain drugs either currently used to treat TB or have 259 
been used in the past to treat TB (27). (B) Comparison of INDIGO-MTB interaction scores with 260 
experimental in vitro interaction scores. Each dot indicates a specific drug combination. Dark red dots 261 
mark two-drug regimens (R = 0.62, p = 9.3*10

-3
), and blue dots mark three-drug regimens (R = 0.64, p = 262 

8.81*10
-2

). The specific combinations mentioned in the text are highlighted in the plot. For both 263 
experimental and INDIGO-MTB scores, values less than 0.9 indicate synergy, values between 0.9 and 264 
1.1 denote additivity, and values greater than 1.1 indicate antagonism. (C) Dot plot of experimentally 265 
measured drug interaction scores versus the INDIGO-MTB predicted drug interaction type. The dots 266 
labeled in red font denote outlier combinations that were misclassified by INDIGO-MTB. The interaction 267 
scores were significantly different between predicted synergistic and antagonistic combinations (p = 268 
0.0009, KS test). The horizontal lines in the box plot represent the median and the first and third quartiles. 269 
(D) ROC curves plotting sensitivity vs specificity for INDIGO-MTB predictions of synergy and antagonism 270 
for both 2-drug and 3-drug combinations in the validation set. Sensitivity measures the true positive rate, 271 
which is the fraction of true positive interactions correctly identified; specificity measures the true negative 272 
rate. The area under the ROC (AUC) values provides an estimate of the sensitivity and specificity of 273 
model predictions over a range of thresholds. The AUC values are 0.89 and 0.91 for synergy and 274 
antagonism respectively. (Sensitivity = 90.9% and Specificity = 84.6% for synergy, Sensitivity = 66.6%, 275 
Specificity = 91.7% for predicting antagonism). 276 

 277 

While most predictions were confirmed experimentally, there were systematic inconsistencies 278 
between the model and experiment for some individual drugs. For example, half of the 279 
inconsistencies arose in combinations featuring spectinomycin (SPC). Although SPC has been 280 
found to synergize with several anti-TB drugs with multiple modes of action (28, 29), the model 281 
tends to overpredict synergy for combinations that include SPC. This may be in part because 282 
SPC predictions were based on chemogenomic data from E. coli rather than MTB response 283 
transcriptomes. 284 

Given the high accuracy of our model for both pairwise and multi-drug combinations, we inferred 285 
interactions for 35 promising TB drugs using INDIGO-MTB. The resulting compendium of 6545 286 
three-way, 52,360 four-way, and the top 100 synergistic and antagonistic combinations from 287 
324,632 five-way combinations is provided as a supplement to serve as a resource for guiding 288 
future drug combination screens (Table S2, Table S3). 289 

In vitro drug synergy is correlated with a surrogate marker of clinical efficacy  290 

We next tested if in vitro drug interaction outcomes would be predictive of clinical efficacy. A 291 
systematic evaluation of the clinical relevance of in vitro drug interactions on treatment efficacy 292 
is lacking (30). We therefore compared INDIGO-MTB in vitro drug interaction predictions with a 293 
meta-analysis of data assembled from 57 phase 2 clinical trials (31). These trials reported 294 
regimen efficacy outcomes by sputum culture conversion rates of TB patients at two months. If 295 
separate clinical studies reported conflicting efficacy scores for a drug regimen, we used both 296 
values for comparison with INDIGO-MTB to incorporate this uncertainty.  297 

We found a highly significant degree of correlation between the INDIGO-MTB interaction scores 298 
and the sputum culture conversion rates for the corresponding combinations (R = -0.55 ± 0.04, 299 
p ~ 10-5, see Figure 3A, Table S1D). The results show that regimens predicted to have greater 300 
synergy performed better in the clinical trials. For example, the INH-RIF-STM regimen (green) 301 
was predicted to be synergistic in vitro, and this combination conferred high patient culture 302 
negativity (~94%) at two months (Figure 3A). In contrast, the pairwise combinations of INH-303 
STM (yellow) and INH-RIF (pink) were identified as antagonistic, and both drug pairs resulted in 304 
low sputum conversion rates. There was a highly significant difference in sputum conversion 305 
between synergistic and antagonistic combinations (p ~ 10-4, Figure 3B), the difference in 306 
clinical outcome for synergistic-additive (p = 0.038) and additive-antagonism (p = 0.016) 307 
interactions were significant as well.  308 
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Among the combinations assessed clinically, only four two-way and two three-way drug 309 
combinations had experimental in vitro drug interaction data. We next compared the correlation 310 
of in vitro experimentally measured drug interaction with the corresponding sputum conversion 311 
rates. We found that in vitro experimental drug interaction scores also correlated significantly (R 312 
= -0.52 ± 0.1, p = 0.01) with clinical sputum conversion by sampling analysis (Figure S5). This 313 
correlation is comparable to the value observed with INDIGO-MTB across all 57 clinical trials.  314 

 315 

Figure 3. INDIGO-MTB drug interaction scores correlate with sputum culture negativity at 2 316 
months. (A) Comparison of model predictions with sputum conversion rates in human patients after 8 317 
weeks of treatment in clinical trials (R = -0.55, p ~ 10

-5
). Higher patient negative percentages indicate 318 

more effective regimens. Each dot indicates a specific drug combination reported from a specific clinical 319 
trial. Dots highlighted in the legend are drug combinations of interest mentioned in the text. (B) Dot plot of 320 
sputum conversion rates against the INDIGO-MTB predicted drug interaction type. The dots labeled in 321 
red font denote outlier combinations that were misclassified by INDIGO-MTB. The horizontal lines 322 
represent the 1st quartile, 3rd quartile, and median (the widest horizontal line). The colored dots 323 
correspond to combinations highlighted in the legend. 324 

 325 

Despite the strong overall concordance between in vitro synergy and in vivo sputum culture 326 
conversion rates, we found some outlier combinations that were inferred to be synergistic but 327 
had poor clinical outcomes. All the outlier regimens contained pyrazinamide (PZA), whose 328 
interaction scores were estimated based on transcriptomes that were generated under acidic 329 
conditions, which were unlike the conditions of the other drug profiles. Furthermore, the RIF-330 
MXF combination was identified to be antagonistic by both our model and experiments but has 331 
good in vivo efficacy. It is hypothesized to be effective because of its ability to suppress 332 
resistance despite being antagonistic (32). Hence, synergy alone does not always imply clinical 333 
efficacy. Numerous other factors can impact treatment outcome. Combinations can perform well 334 
despite being antagonistic. Overall, our results suggest that drug synergy is significantly 335 
correlated with treatment efficacy at 8 weeks, and identifying synergistic drug interactions is a 336 
promising strategy to prioritize combination regimens. 337 

Inferring molecular mediators of drug synergy 338 

To interrogate what molecular processes underlie INDIGO-MTB’s predictive ability, we identified 339 
genes in the INDIGO-MTB model that most strongly influenced drug interaction scores. Genes 340 
were in silico “deleted” from the INDIGO-MTB model (i.e., excluded from the model prediction) 341 
and assigned an importance score by INDIGO-MTB proportional to their relative contribution in 342 
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calculating drug interaction scores. The top 500 genes sorted based on their importance score 343 
accounted for 97% of INDIGO-MTB’s predictive ability. We performed pathway enrichment 344 
analysis using literature-curated pathways from the KEGG database (33, 34) to determine over-345 
represented pathways among the top 500 informative genes (Table S1E). Metabolic pathways 346 
were highly enriched overall, and the most overrepresented pathway was oxidative 347 
phosphorylation, which is targeted by BDQ. The model thus suggests that targeting this 348 
pathway might have an impact on drug interaction outcomes. 349 

We hypothesized that we could gain further insights into the genetic regulation of drug 350 
interaction outcomes. To do this, we analyzed the INDIGO-MTB model in the context of the 351 
MTB transcriptional regulatory network (TRN). The TRN was reconstructed by transcriptome 352 
profiling of a comprehensive library of transcription factor induction strains (TFI)(35, 36). The 353 
regulon (i.e., set of functional targets) for each transcription factor (TF) was defined as those 354 
genes that significantly changed expression upon chemical induction of the TF expression. 355 

To assess the systems-level impact of each TF on drug interactions, we performed in silico 356 
deletions of entire regulon-defined gene sets and assessed the effect on the INDIGO-MTB 357 
interaction scores. We identified regulon deletions that disrupt a specific drug interaction and 358 
those that influence multiple drug interaction outcomes. For this analysis, we considered all 36 359 
pairwise combinations comprising the drugs: INH, RIF, STM, MXF, CFZ, BDQ, capreomycin 360 
(CAP), ethionamide, and pretomanid (PA824). The drugs tested are all current first- and 361 
second-line TB agents that can be prescribed together as part of therapy and have differing 362 
mechanisms of action. From this analysis, INDIGO-MTB identified the transcription factor 363 
Rv1353c as having the highest impact on drug interactions among all the TFs (Figure S6A). 364 
INDIGO-MTB estimated that Rv1353c would shift the interaction scores for almost every 365 
pairwise interaction toward synergy upon induction (Δscore = -0.6±0.1). The exception was the 366 
combination CFZ-STM, for which INDIGO-MTB predicted minimal interaction shift associated 367 
with TF induction (Δscore = -0.2) (Figure S6B). 368 

We tested these model predictions by comparing the interactions of three representative drug 369 
combinations with the following three genetic perturbations: (1) TF induction, measured in the 370 
TFI strain with the presence of chemical induction; (2) TF disruption, measured in a knockout 371 
strain (see Methods); and (3) baseline TF levels, measured in the genetic wildtype strain, 372 
H37Rv and the TFI strain in the absence of chemical induction. We selected two drug 373 
combinations for which strong interaction shifts were inferred upon TF induction (BDQ-STM, 374 
Δscore = -0.7; CAP-STM; Δscore = -0.7), as well as the CFZ-STM combination for which the 375 
model estimated minimal interaction shift. The baseline interactions between the drug 376 
combinations differ substantially (BDQ-STM is additive, whereas CAP-STM and CFZ-STM are 377 
both antagonistic, Figure S6C). Figure 4 shows the difference in experimentally measured 378 
interaction scores of each drug combination for the genetic perturbation conditions, relative to 379 
the wildtype (Methods). The results show that when Rv1353c is induced, interactions for both 380 
BDQ-STM and CAP-STM shift toward synergy (ΔFIC = -0.2 ± 0.1, p = 0.03 for BDQ-STM; ΔFIC 381 
= -0.5 ± 0.2, p = 0.01 for CAP-STM), and when Rv1353c is disrupted, interactions for both BDQ-382 
STM and CAP-STM shift toward antagonism (ΔFIC = 0.3 ± 0.2, p = 0.001 for BDQ-STM; ΔFIC= 383 
0.2 ± 0.2, p = 0.04 for CAP-STM). In contrast, there appears to be no significant shifts in 384 
interaction for CFZ-STM with either induction or disruption of Rv1353c (ΔFIC = -0.0004 ± 0.3, p 385 
= 0.5 for disruption; ΔFIC= -0.03 ± 0.1, p = 0.03 for induction). Collectively, these results confirm 386 
the INDIGO-MTB predictions.  387 
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 388 

Figure 4. Rv1353c influences interactions between drug combinations. The in vitro experimentally 389 
measured drug interaction scores are quantified for the three selected drug interactions, plotted as the 390 
difference in FIC score of the gene perturbation relative to the wildtype (H37Rv). The red bars denote 391 
values for the knockout strain, and the blue bars show values for the strain with Rv1353c induced. 392 
Negative values indicate shifts toward synergy, and positive values indicate shifts toward antagonism. 393 
The (*) and (†) indicate that differences are significantly greater or less than zero, respectively (p < 0.05, 394 
one-tailed one-sample t-test). The error bars represent the standard deviation between replicates. 395 

DISCUSSION 396 

Here, we constructed an INDIGO-MTB model to predict in vitro synergy and antagonism of anti-397 
tuberculosis drug combinations using transcriptomics data. Our model complements existing 398 
experimental strategies by increasing throughput and by identifying potential drug interaction 399 
mechanisms. Our analysis using INDIGO-MTB revealed novel synergy between clinically 400 
promising drug combinations, uncovered the role of the TF Rv1353c in influencing drug 401 
interaction outcomes, and found a significant association between in vitro drug interaction 402 
outcomes and clinical efficacy. These results suggest that using INDIGO-MTB to identify 403 
synergistic regimens is a promising strategy for prioritizing combination therapies. While 404 
significant challenges exist, constructing a high-quality model of drug interactions in vitro is the 405 
first step towards inferring in vivo efficacy. No theoretical method currently exists that can 406 
comprehensively screen thousands of combinations even in vitro. The significant correlation 407 
between INDIGO interaction scores with both in vitro data and clinical efficacy data supports the 408 
utility of our approach.  409 

INDIGO-MTB outperforms existing strategies in terms of throughput. The largest studies in MTB 410 
have so far analyzed up to two hundred unique drug combinations (37). Here, we have 411 
estimated outcomes for 13,366 pairwise and 721,764 three-way combinations of 164 drugs with 412 
significant accuracy based on our prospective validation. While many of the drugs might have 413 
poor anti-TB activity on their own, they may greatly enhance synergy when added to existing 414 
regimens. For example, we found chlorpromazine, originally used for treating psychiatric 415 
disorders, synergizes with BDQ, resulting in four-fold reductions in inhibitory concentrations 416 
(Figure S7A). Thus, INDIGO can facilitate repurposing of drugs to treat TB. 417 

INDIGO complements other preclinical methods such as mouse models in prioritizing regimens 418 
for clinical evaluation. A systematic comparison across multiple mouse studies is challenging 419 
due to the lack of quantitative raw data and variation in metrics reported in the literature. 420 
Nevertheless, combinations identified by INDIGO to be highly synergistic (top 0.01%, Table S2, 421 
Table S3) were also found to be highly efficacious in recent mouse studies. Combinations 422 
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involving BDQ and CFZ alone or in a three-drug combination with PZA, Ethambutol (EMB), RIF, 423 
or INH were all found to be synergistic by INDIGO and showed high bactericidal activity in 424 
mouse models (5, 38-40). Four-way drug combinations involving BDQ, CFZ and PZA with EMB 425 
or SQ109 were also synergistic in mouse studies (5, 38-40). In addition to these combinations 426 
studied in mouse models, INDIGO-MTB also uncovered highly synergistic novel 4-drug and 5-427 
drug combinations that are promising candidates for pre-clinical evaluation, such as the 428 
combination with BDQ, CFZ, RIF, CLA and the anti-malarial antifolate compound P218, and a 4-429 
drug combination involving BDQ, RIF, PA824, and the anti-psychotic drug thioridazine (Table 430 
S3).  431 

Since numerous factors could impact in vivo efficacy that are not considered during in vitro 432 
studies, it is not a priori clear if there should be a significant correlation between in vitro synergy 433 
and in vivo efficacy. Thus, we performed a systematic comparison of in vitro drug interaction 434 
scores with clinical efficacy of drug combination regimens. Notably, here we observed a 435 
statistically significant correlation between in vitro drug interaction scores and the percentage of 436 
TB patients showing negative sputum culture after 2 months treatment in clinical trials, with 437 
synergistic drug combinations showing greater clinical efficacy. Negative sputum culture at eight 438 
weeks is a useful early measure of TB treatment efficacy that correlates well with relapse rates 439 
(41, 42). The correlation that we observed between in vitro INDIGO-MTB predictions and 440 
sputum conversion rates is notable, given the huge variability between clinical studies.  441 

While existing high-throughput approaches are strictly non-mechanistic, INDIGO can reveal the 442 
relative contribution of underlying cellular pathways on drug interaction outcomes. Our analysis 443 
suggests that drug transporters and central metabolic pathways may play a role in influencing 444 
drug interaction outcomes. This is consistent with recent studies on the role of bacterial 445 
metabolic state in impacting drug interaction outcomes (43, 44). Contextualizing INDIGO-MTB 446 
with the MTB transcriptional regulatory network revealed genetic regulators of drug interaction 447 
response. This analysis uncovered the role of the transcription factor, Rv1353c as a broad 448 
regulator of drug interaction outcomes. Rv1353c is an uncharacterized nonessential helix-turn-449 
helix type transcriptional regulator (45-49) that has previously been found to be deleted in 450 
several clinical isolates (50). When induced under log-phase growth, Rv1353c activates 44 451 
genes enriched for fatty acid biosynthesis and represses 50 genes, including two of the top five 452 
most informative INDIGO-MTB predictor genes (Rv1857 and Rv1856c)(35). Interestingly, 453 
INDIGO-MTB simulations suggest minimal shifts in drug interaction scores upon perturbing 454 
either Rv1857 or Rv1856 individually, suggesting that the underlying molecular mechanisms 455 
mediating drug interactions may be partially epistatic in nature. Collectively, this suggests that 456 
knowledge of the underlying mechanism of drug interaction can be used to engineer synergy 457 
between combination regimens. Our approach provides a rational strategy to identify genetic 458 
targets that enhance synergy between existing regimens and introduces a potentially new way 459 
to engineer effective regimens by modifying the interactions between the constituent drugs.  460 

While the INDIGO approach has demonstrated significant utility in predicting synergy and 461 
antagonism of drug combinations, it nevertheless has several key limitations. First, INDIGO-462 
MTB requires as input transcriptome data profiling of MTB response to each drug for which drug 463 
interaction predictions are necessary. Transcriptomes are significantly faster and cheaper to 464 
generate than the chemogenomic profiles used to power the original INDIGO models. This has 465 
enabled us to use species-specific data to build INDIGO-MTB. Among the 35 TB drugs of 466 
interest, the input data for only 10 drugs (28%) are derived from E. coli chemogenomics data. 467 
The correlation observed in the current study, wherein the model was constructed using MTB 468 
response transcriptomes elicited by drug exposure, is higher than the correlation observed in 469 
our prior study, which used chemogenomic data to infer interactions (R = 0.62 for pairwise and 470 
0.64 for three-way interactions for the current study, versus R = 0.52 for pairwise and 0.56 for 471 
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three-way interactions in the E. coli chemogenomic study (14, 51)). Notably, while predictions 472 
using E. coli data were statistically significant, many of the incorrect predictions from our model, 473 
such as drug combinations involving spectinomycin, might be attributed to challenges of 474 
extrapolating predictions from E. coli using gene orthology information alone. Our results 475 
suggest that gene expression changes encapsulate molecular response information that is as 476 
informative of drug interaction phenotypes as gene deletion studies. The updated INDIGO 477 
approach can hence be applied to other pathogens that lack chemogenomic data. With reduced 478 
sequencing costs, transcriptomics data is unlikely to be a substantial limitation in the future. 479 
Further, while the number of possible combinations increases exponentially with the number of 480 
drugs, the number of transcriptomes required only increases linearly. Hence, INDIGO-MTB and 481 
other methods that use responses elicited by individual drugs will be more cost and time 482 
effective.  483 

A second limitation stems from the fact that INDIGO-MTB predictions are currently based on 484 
data gathered from log-phase in vitro broth culture conditions, which are markedly different from 485 
the in vivo microenvironments. Outliers from our experimental validation involving PZA (which is 486 
relatively more active under low pH conditions) substantiate the notion that the underlying 487 
environmental context can influence the model accuracy. The INDIGO algorithm is currently 488 
blind to MTB molecular responses to drugs in the host context. Training our model using MTB 489 
transcriptome profiling data generated using an appropriate environmental condition (e.g., MTB 490 
in a macrophage or mouse infection model) might address this limitation in the future. A recent 491 
study has expanded the INDIGO model to enable in silico prediction of the impact of different 492 
microenvironments in E. coli (51). Hence building an accurate INDIGO model for MTB can 493 
provide a foundation for addressing this in vivo complexity. 494 

Finally, while synergy is associated with a better treatment outcome on average, other factors 495 
such as resistance evolution, toxicity, and drug pharmacokinetics will also influence treatment 496 
success. In addition, there is considerable heterogeneity in clinical trial efficacy based on patient 497 
population, dose and location. The curation of numerous clinical studies and ability to predict 498 
interactions in high throughput provided us with sufficient statistical power to test the association 499 
between synergy and in vivo efficacy despite this heterogeneity. In the future, incorporating 500 
additional factors associated with drug behavior in the host may further improve the correlation 501 
between model predictions and clinical outcomes. 502 

 503 

METHODS 504 

Culture conditions 505 
MTB strains were cultured in Middlebrook 7H9 with the oleic acid, bovine albumin, dextrose and 506 
catalase (OADC) supplement (Difco), and 0.05% Tween80 at 37 °C under aerobic conditions 507 
with constant agitation to mid-log phase, as described previously (35, 52). Strains containing the 508 
anhydrotetracycline (ATc)-inducible expression vector were grown with the addition of 50 μg/mL 509 
hygromycin B to maintain the plasmid. To induce expression of the transcription factor Rv1353c, 510 
20ng/uL of ATc was added to the culture media. Growth was monitored by the optical density at 511 
600 nm (OD600).  512 

The Rv1353c overexpression strain was generated previously (35, 36). Briefly, the Rv1353c 513 
gene was cloned into a tagged, inducible vector that placed the gene under control of a 514 
tetracycline-inducible promoter (53) and added a C-terminal FLAG epitope tag. This construct 515 
was transformed into MTB H37Rv using standard methods. The strain is available from the BEI 516 
strain repository at ATCC ((54), NR-46512).  517 
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Phage Knockout Strain Generation 518 

The H37Rv ΔRv1353c strain was constructed by a specialized transduction method(55) using a 519 
gene-specific specialized transducing phage phasmid DNA provided by the Jacobs lab and the 520 
previously described protocol (55). Briefly, high-titer phage stocks were generated by 521 
transfecting the phasmid DNA into Mycobacterium smegmatis mc2155 at 30°C, and growing the 522 
resulting phage plaques on an agar pad with a lawn of mc2155. Transduction-competent H37Rv 523 
was incubated with high-titer phage stock for 24 hours at 37°C, and the transduced bacteria 524 
were plated on 7H10 supplemented with 50 μg/mL hygromycin B to select for deletion-525 
substitution mutants. 526 
 527 
Drug susceptibility and checkerboard drug-drug interaction experiments 528 
Strains were grown to log phase (OD600 ≈ 0.3), diluted to a final OD600 ≈ 0.005 (equivalent to 529 
106 (CFU)/mL), and dispensed into 96-well flat-bottom plates (Corning, Acton, MA) at a final 530 
volume of 200µL, containing 1% DMSO and varying concentrations of drugs in the different 531 
wells. On each plate, control wells for each of the strains studied were included, containing: 1) 532 
no drug and 1% DMSO vehicle; and 2) 1% culture and no drug with 1% DMSO vehicle, to 533 
measure viability in the absence of drug exposure.  534 

For drug susceptibility assays to measure the MIC, serial 2-fold dilutions of an individual drug 535 
were arrayed in the different columns. For checkerboard drug interaction assays, 2-fold dilutions 536 
of the first drug were arrayed in the columns and 2-fold dilutions of a second drug were arrayed 537 
in the rows. 538 

Plates were incubated at 37°C for 7 days. Cellular viability was assayed on day 7 by the 539 
BacTiter Glo (Promega, Madison, WI) and Alamar Blue cell proliferation assays (Bio-Rad, 540 
Hercules, CA) according to manufacturer recommendations. Briefly, we added 20µL of culture 541 
from each well to 20µL of BacTiter-Glo Microbial Cell Viability Assay Reagent, incubated at 542 
room temperature protected from direct light for 20 minutes, and read luminescence intensity 543 
using a FluoStar Omega plate reader (BMG Lab Tech, Cary, NC). For Alamar Blue, we added 544 
20µL of Alamar Blue reagent to 180µL of culture, incubated for 12 hours protected from direct 545 
light, and read fluorescence intensity at emission wavelength 590nm after excitation at 544nm. 546 
Figure S7B shows the strong concordance between the two methods - BacTiter-Glo and 547 
Alamar Blue.  548 

For drug susceptibility assays, the MIC was determined as the lowest drug concentration that 549 
resulted in MTB viability comparable to the 1% culture control. For checkerboard assays, the 550 
drug interaction was quantified by the Fractional Inhibitory Concentration (FIC) index, equal to: 551 

, where CA is the concentration of drug A when combined with drug B yielding 552 
an iso-effective inhibition comparable to the MIC, and CB is the concentration of drug B when 553 
combined with drug A yielding an iso-effective inhibition. The value for FIC can be extended to 554 
any arbitrary number of drug combinations as follows  555 

∑ 𝐹𝐼𝐶𝑁 = 𝐹𝐼𝐶1 + 𝐹𝐼𝐶2 + ⋯ + 𝐹𝐼𝐶𝑛 

∑ 𝐹𝐼𝐶𝑁 =
𝑀𝐼𝐶1(𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝑀𝐼𝐶1(𝑎𝑙𝑜𝑛𝑒)
+

𝑀𝐼𝐶2(𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝑀𝐼𝐶2(𝑎𝑙𝑜𝑛𝑒)
+ ⋯ +

𝑀𝐼𝐶𝑛(𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝑀𝐼𝐶𝑛(𝑎𝑙𝑜𝑛𝑒)
 

 556 

Each MIC and checkerboard experiment was performed 2 times, with 2 biological replicates per 557 
experiment. The mean FIC index across all iso-effective concentrations was calculated for each 558 
biological replicate to determine reproducibility, and data across biological replicates were 559 

FIC =
CA

MICA
+
CB

MICB
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summarized by averaging (Figure S1). 560 

DiaMOND drug-drug interaction experiments 561 
DiaMOND drug interaction experiments were performed in biological triplicate as previous 562 
described (6). Rather than sampling the entire set of dose combinations used in a traditional 563 
checkerboard assay, DiaMOND samples a subset of dose responses and approximates the 564 
shape of the contour of the chosen phenotype (e.g. where 50% growth inhibition is observed, 565 
IC50). For example, a two-drug combination requires three dose responses (each individual 566 
drug dose response and an equipotent drug combination dose response) rather than the entire 567 
set of possible dose combinations. 568 

Individual drug dose response ranges were chosen for each drug such that the IC50 dose was 569 
close to the center and doses were linearly spaced to provide high resolution IC50 570 
determination. Drug combination dose response ranges contained equipotent mixtures of two or 571 
three drugs (e.g. a two-drug combination would contain ½ of the IC50 dose for each drug and a 572 
three-drug combination would contain ⅓ of the IC50 of each drug).  573 

Briefly, MTB strain H37Rv cultures were grown to mid-log phase (OD600 ≈ 0.6), diluted to 574 
OD600 ≈ 0.05 and added to drug containing plates. Drugs were dispensed into 384-well plates 575 
using a digital drug dispenser (D300e Digital Dispenser, HP) and 50 μL diluted MTB cultures 576 
were overlaid. Drug treatment plates were incubated in humidified containers for 5 days at 37 °C 577 
without agitation. Growth was measured by OD600 using a plate reader (Synergy Neo2, 578 
Biotek). Two technical replicates were performed, and the average of each technical replicate 579 
was used to calculate FIC scores.  580 

The FIC for a drug combination was calculated as the ratio between the observed and expected 581 
IC50 dose of the drug combination as previously described (6). FICs from each of three 582 
biological replicates were calculated to determine reproducibility, and data across biological 583 
replicates were summarized by averaging. Briefly, the growth measurements were normalized 584 
(background subtracted, normalized to untreated) and the observed IC50 doses were calculated 585 
for each individual and combination drug dose response. The expected IC50 dose for the drug 586 
combination was then calculated using the IC50 of the individual drugs, based on the null 587 
hypothesis that the interaction is additive. For two-drug combinations the expected IC50 dose is 588 
defined as the intersection of the line (additivity line) drawn between the IC50 doses for each 589 
individual drug. For three-drug combinations, the expected IC50 dose is defined as the 590 
intersection of the drug combination dose response and the plane (additivity plane) created by 591 
connecting the IC50 doses for each individual drug (Figure S1). 592 

RNA-seq transcriptome profile data generation 593 
To profile the MTB transcriptome response to exposure of individual drugs, cultures were diluted 594 
to OD600 ~ 0.2 (equivalent to 108 colony-forming units (CFU)/mL) and exposed to a minimum 595 
inhibitory concentration (MIC)-equivalent dose of drug for approximately 16 hours.  596 

RNA was isolated from these cultures as described previously (35, 52). Briefly, cell pellets in 597 
Trizol were transferred to a tube containing Lysing Matrix B (QBiogene) and vigorously shaken 598 
at maximum speed for 30 s in a FastPrep 120 homogenizer (QBiogene) three times, with 599 
cooling on ice between shakes. This mixture was centrifuged at maximum speed for 1 min and 600 
the supernatant was transferred to a tube containing 300 μL chloroform and Heavy Phase Lock 601 
Gel (Eppendorf), inverted for 2 minutes and centrifuged at maximum speed for 5 minutes. RNA 602 
in the aqueous phase was then precipitated with 300 μL isopropanol and 300 μL high salt 603 
solution (0.8 M Na citrate, 1.2 M NaCl). RNA was purified using a RNeasy kit following the 604 
manufacturer’s recommendations (Qiagen) with one on-column DNase treatment (Qiagen). 605 
Total RNA yield was quantified using a Nanodrop (Thermo Scientific). 606 
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To enrich the mRNA, ribosomal RNA was depleted from samples using the RiboZero rRNA 607 
removal (bacteria) magnetic kit (Illumina Inc, San Diego, CA). The products of this reaction were 608 
prepared for Illumina sequencing using the NEBNext Ultra RNA Library Prep Kit for Illumina 609 
(New England Biolabs, Ipswich, MA) according to manufacturer’s instructions, and using the 610 
AMPure XP reagent (Agencourt Bioscience Corporation, Beverly, MA) for size selection and 611 
cleanup of adaptor-ligated DNA. We used the NEBNext Multiplex Oligos for Illumina (Dual Index 612 
Primers Set 1) to barcode the DNA libraries associated with each replicate and enable 613 
multiplexing of 96 libraries per sequencing run. The prepared libraries were quantified using the 614 
Kapa qPCR quantification kit, and were sequenced at the University of Washington Northwest 615 
Genomics Center with the Illumina NextSeq 500 High Output v2 Kit (Illumina Inc, San Diego, 616 
CA). The sequencing generated an average of 75 million base-pair paired-end raw read counts 617 
per library.  618 

Read alignment was carried out using a custom processing pipeline that harnesses the Bowtie 2 619 
utilities(56, 57), which is available at https://github.com/sturkarslan/DuffyNGS, and 620 
https://github.com/sturkarslan/DuffyTools. The RNA-seq data profiling response to drug 621 
exposure generated for this study are publicly available at the Gene Expression Omnibus 622 
(GEO) at GSE119585. 623 

Gene expression data analysis 624 
The RNA-seq transcriptome profiling data that we generated were supplemented with 625 
microarray and RNA-seq transcriptome profiling datasets from literature that were downloaded 626 
from GEO, along with associated gene accession identifiers. The log2-transformed fold change 627 
values of average gene expression in each treatment group were determined for all studies, 628 
relative to the experiment’s negative control. All genes that significantly change by more than 2-629 
fold (up or down) after each drug treatment were used as input features for INDIGO-MTB. The 630 
results are robust to the thresholds chosen for finding differentially expressed genes (Table 631 
S1G). 632 

ComBat (18) normalization was used to minimize batch effects in the data, which uses empirical 633 
Bayes approach to estimate each batch’s corrected mean and variance. The effectiveness of 634 
normalization was checked using principal component analysis. This version of the 635 
transcriptomic/chemogenomic matrix represented the drug-gene network that was required to 636 
build the INDIGO-MTB model. 637 

The drug-gene interaction profiles for each drug are then used by INDIGO to create a “joint” 638 
interaction profile for a drug combination (Figure S1). INDIGO assumes that cellular response 639 
to drug combinations is a linear function of the cellular response to individual drugs. This 640 
assumption is based on prior experimental studies that found that a linear model best explained 641 
transcriptional response of cells treated with drug combinations (58, 59). Further, in our prior 642 
study in E. coli, we found that other models of profile integration, such as correlation or profile 643 
overlap performed poorly in predicting drug interactions compared to the linear integration 644 
model (14). 645 

 646 

Quantifying drug-drug interaction scores for model training 647 
To train INDIGO-MTB, checkerboard FIC indices of drug combinations were collected after 648 
conducting literature search (n=140). We also included FIC50 indices that were calculated using 649 
the DiaMOND approach (n=62)(6). Since the DiaMOND study had a distinct distribution from 650 
other checkerboard studies from literature (Mean = 1.05 and 0.99, Standard deviation = 0.32 651 
and 0.81 for DiaMOND and checkerboard respectively), we statistically transformed the 652 
DiaMOND scores so that the overall distribution of the DiaMOND-measured scores had the 653 
same mean and standard deviation as the remaining checkerboard datasets. The normalized 654 
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scores were used for training INDIGO-MTB (Table S1F). Similarly, the DiaMOND data 655 
generated in this study for validation was normalized using the same approach prior to 656 
comparison with INDIGO-MTB predictions. The average interaction score in the final training set 657 
was 1.01, suggesting that the training data set is not significantly biased towards synergy or 658 
antagonism. 659 

Statistical Analyses 660 
Our experimental test set is sufficiently powered statistically to significantly assess the accuracy 661 
of INDIGO’s correlation with the experimental data. For example, the probability of getting a 662 
correlation of 0.62 achieved by INDIGO by random chance is less than 1 in 103.  We statistically 663 
estimated that we only need 14 samples to detect a correlation of 0.6 (R>=0.6) with a p-value of 664 
0.01. Our test set sample size is significantly larger than this number.  665 

Spearman rank correlations were computed using the statistical software R. Differences 666 
between the means of each group in box plots were compared using two-sample one-tailed K-S 667 
tests in R. To further assess the robustness of our results to variation in clinical trials, we 668 
performed sampling analysis by choosing one representative clinical trial randomly for each 669 
regimen. We observed a significant correlation between predicted interaction scores and the 670 
sputum culture conversion rates (mean rank correlation R = -0.38 average of 100 random 671 
sampling trials) (Figure S7B). 672 

The significance of the AUC values from the ROC analysis was calculated by randomly 673 
permuting the class labels (synergy or antagonism) of the test data 1000 times. The difference 674 
in accuracy of the actual model with the random permuted models was compared using a t-test. 675 

We used the RandomForest algorithm that is part of the Machine learning toolbox in MATLAB. 676 
The regression random forest algorithm was used with default parameters for the number of 677 
predictors sampled (default value – N/3, where N is the number of variables). Hyperparameter 678 
tuning of parameters in the training set instead of using default parameters also resulted in a 679 
similar accuracy in the test set (Table S1H). Random forests are perfectly suited for our 680 
analysis as they can achieve high accuracy even with small sample sizes and can be easily 681 
interpreted.  The training set used here is relatively small for deep neural networks which 682 
require thousands of samples. On the other hand, SVM and decision trees can be built with 683 
small sample sizes but do not achieve high accuracy as Random Forests. The accuracy using 684 
these approaches with default parameters is lower than Random Forests with default 685 
parameters (Table S1H).  686 

The INDIGO-MTB model and associated data sets are available from the Synapse 687 
bioinformatics repository (Synapse ID: syn18824984) (https://www.synapse.org/INDIGO_MTB) 688 
(DOI: 10.7303/syn18824984).  689 
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 888 

SUPPLEMENTAL MATERIALS 889 

 890 

Figure S1: Schematic of INDIGO-MTB modeling workflow (A-C) and the experimental 891 
assays to measure drug interaction (D-F). (A)The input datasets for training the INDIGO 892 
algorithm are: [1] the transcriptomic profiles of drugs, and [2] the corresponding FIC scores of 893 
known drug-drug interactions. From each transcriptome profile of MTB response to an individual 894 
drug, we defined a corresponding drug-gene interaction matrix by assigning a value of 1 to 895 
genes that changed in expression by more than 2-fold (up or down) after exposure to drug, and 896 
setting all other genes to a value of 0. Only genes that are up-regulated are shown in the 897 
remaining panels for simplicity. (B) For each drug combination, INDIGO calculates a “joint” 898 
drug-gene interaction matrix using a linear combination of the drug-gene interaction matrices of 899 
each constituent individual drug. The joint profile captures both the similarity and uniqueness in 900 
the transcriptome response profiles of the individual drugs in each combination. The INDIGO 901 
algorithm then uses a machine learning approach called Random Forest to create a 902 
mathematical model that associates the FIC score of each drug combination to its 903 
corresponding joint drug-gene interaction matrix. Random Forest builds a series of decision 904 
trees to identify specific patterns in the drug-gene interaction matrices that significantly 905 
associate with the value of the corresponding drug-drug interaction FIC scores. (C) Once built, 906 
the INDIGO-MTB model requires only the transcriptomic response profile elicited by a new 907 
compound of interest as input to predict FIC scores of combinations featuring the compound of 908 
interest. (D) Representative checkerboard assay experiments of a synergistic and antagonistic 909 
drug pair. Cultures were exposed to serial dilutions of drugs (designated in the rows and 910 
columns) for 7 days, and bacterial viability was quantified by measuring ATP levels with the 911 
BacTiter Glo reagent. The thick black boxes denote the individual drug MIC wells, and the 912 
boxes with numbers denote concentrations that yielded iso-equivalent inhibition (each of the 913 
numbers represent the FIC score calculated based on the drug concentrations associated with 914 
corresponding well). (E-F) Representative DiaMOND assay experiments of a synergistic and 915 
antagonistic drug pair (E) or triplet (F). Cultures were exposed to drugs in 384-well plates and 916 
growth was measured by OD600. The FIC for a drug combination was calculated as the ratio 917 
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between the observed and expected IC50 dose of the drug combination. For two-drug 918 
combinations the expected IC50 dose is defined as the intersection of the line (additivity line) 919 
drawn between the IC50 doses for each individual drug. For three-drug combinations, the 920 
expected IC50 dose is defined as the intersection of the drug combination dose response and 921 
the plane (additivity plane) created by connecting the IC50 doses for each individual drug. 922 

 923 

Figure S2. Distributions of INDIGO-MTB interaction scores for combinations featuring 924 
different drugs. (A) Box plots of interaction scores of combinations featuring only bacteriostatic 925 
drugs (blue) is shifted toward synergy (interaction score = 1.03±0.2), relative to combinations 926 
featuring bactericidal drugs (red) (interaction score = 1.25±0.3). Combinations featuring 927 
bactericidal drugs appear to have the most antagonistic INDIGO-MTB interaction scores. (B) 928 
Distribution of INDIGO-MTB interaction scores for combinations involving Verapamil (VER) or 929 
Chlorpromazine (CPZ). The distribution of interaction scores for these drugs is significantly 930 
lower than the interaction score distribution for combinations featuring other drugs (p-value < 1 x 931 
10-16, non-parametric Kolmogorov-Smirnov test), suggesting that combinations featuring these 932 
drugs are enriched for synergy. The box plots display the first quartile (1Q), median, and the 933 
third quartile (3Q) of the distribution of INDIGO-MTB scores for pairs of drugs, at least one of 934 
which are VER or CPZ compared against all possible combinations excluding these two 935 
antibiotics. 936 

 937 

Figure S3: INDIGO accurately forecasts interactions among the 36 test-set drug 938 
combinations against MTB. This figure shows the comparison between INDIGO-MTB 939 
interaction scores and experiments for all 36 combinations in the validation set. This figure 940 
complements Figure 2 which compares INDIGO predictions with the 24 novel combinations 941 
(subset of 36 test combinations). (A) Drug combinations chosen for experimental testing span 942 
the entire range of drug interaction predictions by INDIGO. The histogram and box plot above it 943 
show the distribution of pairwise drug interaction scores for the 35 high interest TB agents (the 944 
boundaries of the box plot denote the 25th and 75th percentiles of the distribution, and the 945 
dashed lines extend between 1st and 99th percentiles). The red dots denote the combinations 946 
selected for experimental validation. (B) Comparison of INDIGO-MTB interaction scores with in 947 
vitro interaction scores. For both experimental and model-predicted scores, values less than 0.9 948 
indicate synergy, values between 0.9 and 1.1 denote additivity, and values greater than 1.1 949 
indicate antagonism. Each dot indicates a specific drug combination. Dark red dots mark two-950 
drug regimens (R = 0.63, p ~ 10-4), and blue dots mark three-drug regimens (R = 0.68, p ~ 10-2). 951 
The specific combinations mentioned in the text are highlighted in the plot. (C) Dot plot of 952 
experimentally measured drug interaction scores versus the INDIGO-MTB predicted drug 953 
interaction type. The dots labeled in red font denote outlier combinations that were misclassified 954 
by INDIGO-MTB. The interaction scores were significantly different between predicted 955 
synergistic and antagonistic combinations (p = 6 x 10-5). The horizontal lines in the box plot 956 
represent the median and the first and third quartiles. (D) Sensitivity vs specificity curves for 957 
INDIGO-MTB predictions of synergy and antagonism for both 2-drug and 3-drug combinations 958 
in the validation set. The AUC values are 0.89 (p = 4 x 10-5) and 0.91 (p = 4.1 x 10-5) for synergy 959 
and antagonism respectively. (Sensitivity = 88.4% and Specificity = 86.5% for synergy, 960 
Sensitivity = 79.4%, Specificity = 90% for predicting antagonism). 961 

 962 
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Figure S4: Receiver operating curves (ROC) for INDIGO-MTB predictions of synergy and 963 
antagonism for various thresholds of synergy and antagonism. (A-D) ROC curves 964 
generated from the independent test data. Sensitivity measures the true positive rate, which is 965 
the fraction of true positive interactions correctly identified; specificity measures the true 966 
negative rate. The area under the ROC curve (AUC) values provides an estimate of the 967 
sensitivity and specificity of model predictions over a range of thresholds. At the highest 968 
threshold for synergy (i.e. FIC < 0.5), the accuracy of the model is reduced likely due to majority 969 
of the interactions in the test set being classified as neutral. (E-H) ROC curves INDIGO-MTB 970 
tested using ten-fold cross validation analysis. In cross validation analysis, 10% of the training 971 
dataset is blinded and predictions are made using an INDIGO-MTB model trained using the 972 
remaining 90% of the training data. Performance metrics are then calculated based on 973 
prediction on the withheld data. This analysis is repeated 10 times to cover the entire training 974 
dataset. The plots show the sensitivity vs specificity curves for INDIGO-MTB predictions of 975 
synergy and antagonism for various thresholds of synergy and antagonism. The cross-validation 976 
accuracy is surprisingly lower than the test set accuracy as the training set comprises data from 977 
15 different studies that were done in diverse labs and batches with different drugs and 978 
methodologies. In our prior study (14), the training and test data were obtained from a single 979 
source, and consequently the cross-validation accuracy matched the test set accuracy. 980 

 981 

Figure S5. Impact of variation between clinical trials and experimental drug interaction 982 
studies on correlation between drug synergy and clinical efficacy. Since multiple clinical 983 
trials and experimental studies had measured the clinical efficacy outcome (sputum conversion 984 
rates) and in vitro FIC scores for drug combinations, we assessed the robustness of correlations 985 
between clinical efficacy data and both experimentally measured (A-B) and model-predicted (C-986 
D) interaction scores by performing sampling analysis. (A). Distribution of the correlation 987 
between in vitro experimentally measured drug interaction scores with corresponding sputum 988 
conversion rates. Since multiple experimental studies had measured the in vitro interaction 989 
outcome for these combinations, we performed sampling analysis by randomly choosing one 990 
representative study for each combination to determine the average correlation. We found that 991 
the in vitro experimental drug interaction scores correlated significantly (mean R = -0.52, p ~ 992 
0.01, average of 100 trials) with clinical sputum conversion by this sampling analysis. Panel (B) 993 
shows one representative trial with R = -0.52. For comparison, INDIGO-MTB achieved a similar 994 
correlation across all 57 clinical trials (R = -0.55, p ~ 10-5). (B) Comparison of experimental FIC 995 
scores with sputum conversion rates in human patients after 8 weeks of treatment in clinical 996 
trials, with each regimen represented by FIC data from a single experimental study (R = -0.52, p 997 
= 0.01). Data shown for four two-way and two three-way drug combinations that had both 998 
experimental in vitro drug interaction data and sputum conversion rates. Each dot indicates a 999 
specific drug combination reported from a specific clinical trial. The combinations corresponding 1000 
to each dot is provided in the legend. (C) Histogram visualizing the distribution of the 1001 
correlations between INDIGO-MTB predictions and clinical efficacy, based on sampling 1002 
analysis. We performed sampling analysis by randomly choosing one representative clinical trial 1003 
for each combination to determine the average correlation with INDIGO-MTB predicted 1004 
interaction scores. We observed a significant correlation between interaction scores and the 1005 
sputum culture conversion rates (mean R = -0.38 average of 100 random sampling trials, p-1006 
value = 0.001). (D) shows data from one representative trial with R = -0.37. 1007 

 1008 

Figure S6: Impact of Transcription Factor (TF) deletion on drug interaction scores. (A) 1009 
The average predicted impact of deleting each of the 206 TFs on all 36 pairwise combinations 1010 
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comprising INH, RIF, STM, MXF, CFZ, BDQ, CAP, ETA, and PA824 is shown. Rv1353c had the 1011 
biggest average impact on all the combinations and was chosen for experimental validation. (B) 1012 
Predicted impact of Rv1353c deletion on drug interaction scores. The plot shows the relative 1013 
absolute difference in FIC scores on all 36 pairwise combinations comprising INH, RIF, STM, 1014 
MXF, CFZ, BDQ, CAP, ETA, and PA824. Interestingly, combinations with STM showed both the 1015 
highest and lowest change in interaction score. The interactions in bold were chosen for 1016 
experimental testing. All the chosen combinations were also antagonistic or additive, thus 1017 
changing the activity of Rv1353c could be used to make these combinations more synergistic. 1018 
(C) in vitro experimentally measured drug interaction scores for Rv1353c genetic perturbation 1019 
strains exposed to drug combinations. The error bars represent the standard deviation between 1020 
replicates. 1021 

Figure S7. (A) in vitro experimentally measured interaction score measured between 1022 
bedaquiline (BDQ) and chlorpromazine (CPZ). The heatmap shows a representative 1023 
checkerboard assay experiment, in which interaction MTB H37Rv cultures were exposed to 1024 
different pairwise concentrations of BDQ and CPZ in 96-well plate format, designated in the 1025 
columns and rows, respectively. Cultures were exposed to drugs for 7 days, and bacterial 1026 
viability was quantified by measuring ATP levels with the BacTiter Glo reagent. The thick black 1027 
boxes denote the individual drug MIC wells, and the boxes with numbers denote concentrations 1028 
that yielded iso-equivalent inhibition (each of the numbers represent the FIC score calculated 1029 
based on the drug concentrations associated with corresponding well). (B) Correlation analysis 1030 
of FIC average values calculated from checkerboard assays measured by AlamarBlue or 1031 
BacTiter Glo. Each point represents the average of the FIC indices of equivalently inhibited 1032 
concentrations on an individual checkerboard plate. Pearson’s R for this is .78 (p < 0.0001).  1033 

 1034 

Table S1: (A) Compendium of transcriptomics/chemogenomic data for INDIGO-MTB. (B) 1035 
Training combinations with associated FIC interaction indices. (C) List of all possible pairwise 1036 
interaction scores (164 compounds and 65 perturbations). (D) INDIGO-MTB predictions along 1037 
with corresponding experimental (in vitro) and clinical validation data. Highlighted combinations 1038 
are novel i.e. not used in training set. (E) Pathway enrichment analysis using the top 500 1039 
predictive genes. (F) DiaMOND Distribution Transformation. (G) Impact of various thresholds for 1040 
finding differentially expressed genes after drug treatment. Changing the log fold change 1041 
threshold from 4- to 32-fold showed similar correlation with the experimental test set interactions 1042 
as the default threshold (2-fold). The use of a fold change threshold to binarize the data was 1043 
performed to reduce the noise in the datasets. Overall, this analysis shows that the INDIGO 1044 
model is robust to the thresholds used. At the highest threshold (32-fold), a slightly higher 1045 
correlation was observed, although it was not significantly better than the default settings based 1046 
on partial correlation analysis (p-value > 0.05). (H) Impact of using various machine learning 1047 
algorithms for predicting drug interactions.   1048 

Table S2: 2-way, 3-way, INDIGO-MTB scores for 35 high-interest TB drugs. 1049 

Table S3: 4-way, and 5-way INDIGO-MTB scores for 35 high-interest TB drugs. 1050 
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