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Abstract1

DNA methylation is a highly studied epigenetic signature that is associated with regulation2

of gene expression, whereby genes with high levels of promoter methylation are generally3

repressed. Genomic imprinting occurs when one of the parental alleles is methylated, i.e,4

when there is inherited allele-specific methylation (ASM). A special case of imprinting occurs5

during X chromosome inactivation in females, where one of the two X chromosomes is silenced,6

in order to achieve dosage compensation between the sexes. Another more widespread form7

of ASM is sequence dependent (SD-ASM), where ASM is linked to a nearby heterozygous8

single nucleotide polymorphism (SNP).9

We developed a method to screen for genomic regions that exhibit loss or gain of ASM in10

samples from two conditions (treatments, diseases, etc.). The method relies on the availability11

of bisulfite sequencing data from multiple samples of the two conditions. We leverage other12

established computational methods to screen for these regions within a new R package called13

DAMEfinder. It calculates an ASM score for all CpG sites or pairs in the genome of each14

sample, and then quantifies the change in ASM between conditions. It then clusters nearby15

CpG sites with consistent change into regions.16

In the absence of SNP information, our method relies only on reads to quantify ASM.17

This novel ASM score compares favourably to current methods that also screen for ASM. Not18

only does it easily discern between imprinted and non-imprinted regions, but also females19

from males based on X chromosome inactivation. We also applied DAMEfinder to a colorectal20

cancer dataset and observed that colorectal cancer subtypes are distinguishable according to21

their ASM signature. We also re-discover known cases of loss of imprinting.22

We have designed DAMEfinder to detect regions of differential ASM (DAMEs), which23

is a more refined definition of differential methylation, and can therefore help in breaking24

down the complexity of DNA methylation and its influence in development and disease.25

Background26

Epigenetic modifications refer to mitotically-heritable, chemical variations in DNA and27

chromatin in the absence of changes in the DNA nucleotide sequence itself [1, 2]. Although28

there are a large number of such documented phenomena, DNA methylation (i.e., methyl29

groups added to cytosines in mammalian DNA, mostly in CpGs dinucleotides) stands out30

because the mechanism of heritability, via maintenance methyltransferases, is well-determined31

[3–5]. In addition, due to well-known effects of chemical reactions, such as sodium bisulfite32

conversion of cytosines to uracils [6], and biochemical reactions like TET-pyridine borane33

conversion of 5-methylcytosine to dihydrouracil [7], the interrogation of DNA methylation34

level across the genome can be sampled and quantified at each cytosine.35

DNA methylation plays a role in several biological phenomena. It is believed to be36

associated with gene expression, with the canonical relationship suggesting that transcriptional37

units with high levels of promoter methylation are repressed or silenced, although not all38

genes with unmethylated promoters are switched on, since other epigenetic mechanisms of39

silencing may come into play [8].40

Genomic imprinting, where genes are expressed in a parent-of-origin manner [9], is also41

regulated by DNA methylation. Imprinting occurs via allele-specific methylation (ASM),42

in which only the paternal or the maternal allele is methylated in all or most of the tissues43

of an individual [9]. This methylation asymmetry is conferred during gametogenesis in the44

parental germlines, or during early embryogenesis after fertilization, and will remain during45
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the lifetime of the offspring [10]. A recent survey [11] reported 228 genes linked to imprinted46

control, and from those, 115 linked to imprinted regulation in human placenta. These genes47

are known for their roles in embryonic and fetal development, placental formation, cell growth48

and differentiation, metabolism and circadian clock regulation [11]. In fact, loss of imprinting49

and abnormal expression of imprinted genes are implicated in severe congenital diseases, like50

the neurodevelopment disorders Angelman and Prader-Willi syndromes. The first is caused51

by the lack of maternal UBE3A gene expression, the second by loss of paternal expression52

of several contiguous genes on chromosome 15q11-q13 [12]. Furthermore, disruption of53

imprinting in somatic cells has been implicated in the pathogenesis of different cancers, like54

loss of imprinting within the H19/IGF2 imprinting control region in colorectal cancer [13],55

and gain of imprinting at 11p15 in hepatocellular carcinoma [14].56

A special and well characterized case of imprinting occurs during X chromosome57

inactivation (XCI), where one of the two X chromosomes is randomly silenced via DNA58

methylation and other epigenetic mechanisms, early in development in each cell of a female,59

in order to achieve dosage compensation between the sexes [15].60

Beside imprinting and XCI, the rest of the genome is thought to be symmetrically61

methylated across both alleles. However, sequence-dependent ASM (SD-ASM) has been62

frequently reported in the last 10 years and appears to be widespread in the human genome63

[16–21]. In this case, the DNA methylation asymmetry between the parental alleles appears64

to be causally related to the presence of a single nucleotide polymorphism (SNP). As for65

imprinted ASM and XCI, SD-ASM can be associated with silencing of one of the two parental66

gene copies, likely mediated by cis-acting, allele-specific changes in affinity of DNA-binding67

proteins [21]. Thus, SD-ASM would explain why a large number of genes are differently68

expressed among individuals in a given cell type. SD-ASM appears to be also tissue-specific69

[22, 23], thus it is commonly believed that the interaction between genetic variants (i.e.,70

SNPs) and epigenetic mechanisms (i.e., effects of DNA methylation asymmetry on gene71

expression) modulates the susceptibility of the general population to frequent, multi-factorial72

diseases affecting specific organs, such as ASM in the PEAR1 intron 1, which is linked to73

platelet reactivity and cardiovascular disease [24]; or ASM in FKBP5 enhancers, which poses74

an increased risk to stress-related psychiatric disorders in individuals who suffered an abuse75

during childhood [25]. Although the modulation of the susceptibility to a complex disease by76

a SD-ASM is generally weak and influenced by environmental factors, it is worth noting that77

5-10% of all SNPs might be associated with SD-ASMs in the genome of a given tissue of a78

given individual [19, 20, 26].79

Although there are several technologies to study DNA methylation, such as microarrays80

that genotype bisulfite-converted DNA, or lower resolution capture technologies such as81

methyl-binding domain (MBD) sequencing [27], or methylated DNA immunoprecipitation82

(MeDIP) sequencing [28], bisulfite sequencing (BS-seq) remains distinct for the ability to83

read out DNA methylation of a single allele at base-resolution. Importantly, BS-seq can be84

conducted both in an unbiased genome-wide fashion, or in combination with technologies85

that focus the sequencing to particular regions, either by making use of hybridization or86

enzyme digestions [29].87

Recent studies have obtained ASM readouts from mapped bisulfite reads, by assigning88

them to the alleles of each known heterozygous SNP. Methylation levels are then determined89

for all allele-linked cytosines in the reads (see [20, 30, 31] for recent examples). The ASM90

calculated in this way is interpreted as SD-ASM, and it does not include imprinted ASM nor91

XCI, since they are not necessarily sequence dependent. Calculating ASM in this fashion is92

limited by the availability of SNP information from either DNA-seq or SNP-array data, or93

directly from the BS-seq reads [32]. However performing different types of high-throughput94
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experiments is economically restrictive and time consuming, and deriving SNPs from BS-seq95

reads can be problematic due to bisulfite conversion of DNA (i.e., distinguishing a C/T SNP96

from a C/T conversion of a methylated cytosine) and imbalanced strand coverage (i.e., when97

the Watson and Crick strands are not equally or highly covered) [32].98

Considering these limitations in ASM detection, a couple of studies have sought to99

make sole use of BS-seq reads to screen for the full spectrum of ASM. The tools allelicmeth100

and amrfinder (from the same authors) [33] are the only available executable methods that101

detect ASM without SNP information. Briefly, the allelicmeth method creates a contingency102

table with the counts of methylated and unmethylated reads covering a pair of CpG sites.103

A score is calculated via Fisher’s exact test that represents the probability that both CpG104

sites have an equal proportion of methylated-unmethylated reads. amrfinder also calculates105

ASM but at a regional level. It fits two statistical models, one assuming that both alleles are106

equally methylated, and the other assuming different methylation states for the two alleles.107

A region is considered to have ASM by comparing the likelihoods of the two models. A108

more recent algorithm termed MethylMosaic relies on the principle that bimodal methylation109

patterns, independent from the genotype, are a good indicator of ASM [34]; however, to our110

knowledge there is no publicly available implementation.111

Based on the current state of ASM detection from BS-seq reads, we set out to develop112

a simple yet effective method to screen for genomic regions that exhibit loss or gain of113

ASM between samples from distinct conditions. The methods mentioned above detect ASM114

in individual samples, however they do not allow a flexible comparison between groups of115

samples, such as that performed in a typical differential methylation analysis [35, 36], where116

the goal is to find the effect of treatments or diseases on methylation, reflected as increase117

or decrease of methylation levels. Here, we are interested in performing such differential118

analysis but focusing on the effect of ASM, reflected as gain or loss of allele-specificity. For119

this task, we introduce DAMEfinder (Differential Allele-specific MEthylation finder), an R120

package [37] that consists of: i. a scoring function that reflects ASM for several samples;121

ii. integration with limma [38] and bumphunter [39] to detect differentially allele-specific122

methylated regions (DAMEs); and, iii. accurate estimation of false discovery rates (FDR).123

We demonstrated the ASM score and DAMEfinder on two real data sets, one based on124

targeted-enrichment BS-seq, comparing normal colonic mucosa to cancerous colorectal lesions,125

and another on whole genome BS-seq (WGBS), comparing blood monocytes from healthy126

females and males.127

Results128

The overall DAMEfinder workflow129

Figure 1 gives an overview of the pipeline. We make considerable use of existing tools and130

keep inputs/outputs in standard formats. In order to make use of the package, the user must131

independently use bismark to map paired-end BS-seq reads against a reference genome132

(Figure 1A). Once this is done, the user has the option to detect ASM for each sample in133

two ways: (1) Using the output from methtuple [40], which computes read counts of pairs134

of nearby CpG sites. From these counts, we compute an ASM score; and/or (2) using an135

additional VCF file containing heterozygous SNPs. For each SNP we call methylation from136

the reads containing that SNP, and calculate an ASM score for each CpG site (Figure 1B137

and details below). From the set of scores, we leverage routines from the bumphunter and138

limma packages to calculate a statistic and detect regions showing persistent change in ASM.139
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We call these regions DAMEs (Figure 1C). We estimate and control a regional FDR through140

permutations or by implementation of the Simes method [41].141

Figure 1. The DAMEfinder pipeline. A. Files necessary to run DAMEfinder are reported in yellow rectangles.
White rectangles show the main R outputs from DAMEfinder. Steps to be run before DAMEfinder are in
the circle, i.e., fastq files undergo quality control and read alignment with bismark [42]. The resulting bam
file is used to calculate an ASM score, which can be done in two ways: B. (i) the tuple-based strategy that
takes as input a beforehand created methtuple [40] file. The score is calculated based on the read counts of
pairs of CpG sites. (ii) the SNP-based strategy, which takes as input both the bam file and a VCF file with
heterozygous SNPs. Here the score is calculated for each CpG site in the reads containing a SNP. C. We
determine differential ASM by calculating a statistic based on either the tuple ASM or the SNP-ASM (using
limma [38]), which reflects the difference between two conditions (Group A vs. Group B) for each genomic
position (tuple or site). DAMEs are defined based on this statistic, as regions of contiguous positions with a
consistent change in ASM.

The ASM score142

SNP-based ASM143

The most straightforward way of detecting ASM from mapped reads, is by assigning them to144

either of the alleles at each known heterozygous SNP. Methylation status is then determined145

for each allele-linked cytosines in the reads. We have used this strategy to calculate a146

SNP-based ASM score (ASM i
snp), and consider it to be the genuine form of ASM, since it is147

derived from an extra layer of information, i.e. the genotype of an individual.148
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We extract the reads overlapping every heterozygous SNP in a VCF file with the149

GenomicAlignments R package [43], and for each read determine the methylation status150

of the CpG sites. Sites that are not in reads containing a SNP are not considered. We151

calculate ASM i
snp for each CpG site i contained in the reads of a SNP as:152

ASM i
snp = abs

{X ir
M

X ir
− X ia

M

X ia

}
(1)

where X ir
M and X ia

M correspond to the number of methylated reads from the reference r allele,153

and the alternative a allele. In practice, it makes no difference which allele is the reference or154

the alternative. X ir and X ia correspond to the total number of reads covering the reference155

and the alternative allele (see schematic in Figure 1B). The score ranges from 0 to 1, where a156

score of 1 represents the scenario where one allele is completely methylated, and the other157

allele is fully unmethylated; a value of 0 means an equal proportion of methylated sites in158

both alleles.159

Tuple-based ASM160

Instead of restricting ASM detection to allele-linked reads, we can make use of an entire161

set of CpG sites to detect ASM. For this task, we designed a score under the assumption162

that pairs of CpG sites in the same DNA molecule (read) are correlated [44, 45], and that163

in a biallelic organism, intermediate levels of methylation could represent allele-specificity,164

i.e., the proportion of methylated reads in a pair of CpG sites or tuple is close to 0.5. We165

calculate this score as a weighted log-odds ratio:166

ASM i
tuple = log10

{(X i
MM + c)(X i

UU + c)

(X i
MU + c)(X i

UM + c)

}
· wi (2)

where X i
· corresponds to the number of reads covering a unique pair of CpG sites i, generated167

by running the methtuple tool. CpG sites in a pair can be methylated MM , unmethylated168

UU , or mixed (UM or MU). A constant c is added to every X i to avoid dividing by 0. The169

log-odds ratio is multiplied by a weight, wi, which is set such that the ratio of MM :UU can170

depart somewhat from a 50:50 relation, while MM or UU tuples, which represent absence of171

allele-specificity, are attenuated to 0. This is calculated as:172

wi = P (0.5− ε < θi < 0.5 + ε|X i
MM , X

i
UU , γ1, γ2) (3)

where ε represents the degree of allowed departure from a 50:50 ratio, and θi:173

θi|X i
MM , X

i
UU , γ1, γ2 ∼ Beta(γ1 +X i

MM , γ2 +X i
UU), (4)

represents the moderated proportion of MM to MM+UU reads. It is based on a beta model,174

where γ1 and γ2 are hyperparameters set to penalize fully methylated or fully unmethylated175

tuples, i.e., when the MM : UU balance goes farther from a 50:50 relation. Similar to176

ASM i
snp, higher values of ASM i

tuple (can be higher than 1), indicate putative presence of177

allele-specificity.178

ASM score validation179

In order to test the ASMtuple score, we used the ASMsnp score as an indicator of true ASM,180

and calculated the ASMtuple score, the allelicmeth and amrfinder scores, and a score181

representing absolute deviation from 50% methylation (methdeviation; see Methods), in a182

single normal tissue sample from the colorectal cancer (CRC) dataset (see Methods).183
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Figure 2 shows the true positive rate (TPR) and false positive rate (FPR) achieved184

by the 4 evaluated scores at 3 different coverage thresholds (left to right), and 2 ASMsnp185

cutoffs (top to bottom). ASMtuple was consistently more sensitive and specific than the other186

three scores, especially as coverage was increased. Intermediate methylation values yielded187

comparable results, however the ASMtuple was able to detect more cases of “real” ASM in188

all combinations. allelicmeth increasingly failed as coverage and ASMsnp value increases.189

amrfinder performed better than allelicmeth at higher true values.190

Figure 2. Comparison of the ASMtuple score to allelicmeth, amrfinder and methylation deviation, by
considering ASMsnp as true ASM. We calculated ASMtuple scores (red), deviations from 50% methylation
(blue), allelicmeth scores (green), amrfinder scores (purple) in a sample of normal colorectal mucosa
included in the CRC dataset. The scores were compared to each other by plotting the FPR against the TPR
achieved. The plots are drawn for different intervals of read coverage (5-9, 10-49, ≥ 50), and different levels of
the ASMsnp score (≥ 0.5, ≥ 0.8), which is considered the “true” ASM. Overall AUCs (area under the curve)
for the top three panels: ASMtuple = 0.83, deviations from 50% = 0.81, allelicmeth = 0.66, amrfinder =
0.68. Overall AUCs for the lower three panels: ASMtuple = 0.82, deviations from 50% = 0.81, allelicmeth
= 0.64, amrfinder = 0.72

As an additional validation of the ASMtuple score, we used the blood dataset (see191

Methods) to compare healthy male and female samples. In principle, females should exhibit192

allele-specificity in the X chromosome due to XCI and thus higher ASMtuple values. Figure 3193

shows the distribution of ASMtuple values across all samples in the dataset, in chromosome 3194

and chromosome X. From a whole genome perspective (Figure 3A), there is little difference195

between males and females in X chromosome (mean of row-means females: 0.13, males:196

0.098), and practically no difference in chromosome 3 (0.060, 0.074). However, by focusing197

on CpG tuples located in promoter regions (1 kb upstream the transcription start site - TSS),198

we observed ASM values increased only in chromosome X of females (Figure 3B; 0.30, 0.088).199

In the same blood dataset, we also compared the ASMtuple scores from the promoters200

of imprinted genes reported in [11] (see Methods), to the scores from rest of the genome201

(Figure 3C). As expected, ASM scores were higher in the tuples located within imprinted202

promoters, for both males and females.203
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Figure 3. ASMtuple distribution in the genome. We used XCI as a proof of concept for allele-specificity
in females. Data from the blood dataset comprising 3 females and 3 males was used for this analysis. A.
When considering all CpG tuples in the genome, the ASMtuple distribution (y-axis) in chromosome 3 and
chromosome X is similar in both genders. B. When considering CpG tuples located in promoter regions (i.e.,
1 kb upstream of the TSS), the ASMtuple score is higher in chromosome X of females. C. Promoter regions
of 89 known imprinted regions (see Methods) also exhibit higher ASMtuple compared to values in the rest of
the genome. Y-axis in all plots is square-root transformed

DAME detection204

As depicted in Figure 1, after calculating ASMtuple or ASMsnp in the DAMEfinder pipeline,205

we continue to detect regions of persistent change in ASM between one condition to another206

within a cohort of samples. Change can occur as loss of ASM, when a reference group207

exhibits allele-specificity across a region (high values of ASM), and the group of interest208

has this same region fully methylated, unmethylated, or with random methylation (low209

values of ASM). Change can also occur as gain of ASM, where the reference group does not210
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have allele-specificity and the group of interest does. We call regions such as this DAMEs211

(Differentially Allele-specifically MEthylated regions).212

To detect DAMEs, we first obtain a regression coefficient βij followed by a t-statistic213

using the R package limma [38] (see Methods), on the transformed ASM i
tuple score, or on214

the ASM i
snp score, for each CpG position i (tuple or site), across j samples (see Methods for215

model).216

We detect regions of contiguous CpG positions where βij persistently deviates in the217

same direction from zero; this is done in two ways:218

Permuting bumphunted-regions219

The regionFinder function from bumphunter is used to scan for regions (R) where CpG220

sites close in proximity have βij above a user-defined threshold K, which corresponds to a221

percentile of βij . For each region detected, the function also calculates an area A =
∑
iεR |βij|.222

For the CRC data set, we used the default value K = 0.7, and distance between CpG positions223

up to 100 bp.224

We assess significance of every region detected by assigning an empirical p-value. For225

every non-redundant, permutation of the coefficient of interest (chosen from a column in the226

design matrix X), regionFinder is applied again. All the areas generated by all permutations227

are pooled to generate a null distribution of areas [46]. We define the p-values for each R228

as the proportion of null areas greater than the observed A; p-values are adjusted using the229

Benjamini-Hochberg method [47] from the stats R package [37].230

Cluster-wise correction231

Optionally, we define regions that exhibit changes in ASM by first generating clusters of232

CpG sites with clusterMaker. For each cluster, we aggregate all the CpG position p-values233

generated by limma using the Simes method [41], which is applicable when test statistics234

exhibit positive dependence [48]. As implemented in [49], we calculate:235

pc = min{np(i)/(i)} (5)

where p(1), . . . , p(n) are the ordered p-values of each CpG position i in a cluster c and n is the236

number of CpG positions in the cluster. pc summarizes evidence against the null hypothesis237

that all CpG positions are not differential. We adjust pc as above.238

Evaluation of DAME detection239

We compared the different strategies to control FDR in the DAME detection pipeline, by240

applying them to a semi-simulated dataset and plotting the TPR and FDR achieved at241

different adjusted p-value thresholds (0.01, 0.05, 0.1) (Figure 4). We designed a small set of242

simulated DAMEs to evaluate the FDR control of the above strategies. We took 6 samples243

of normal tissue from the CRC dataset and calculated ASMsnp scores in each of them. We244

assumed these scores to be the ASMsnp baseline in the simulation. Then, we divided the245

samples into two groups of three samples each, and for all the CpG sites covered by the 6246

samples, we defined clusters of contiguous CpG sites. For each truly differential cluster, we247

added signal to a randomly determined subset of adjacent CpG sites (see Methods for more248

details).249

Overall, the empirical p-value controlled the FDR, whereas the Simes method tended250

to be less conservative but more sensitive (Figure 4 and Supplementary Figure 1, Additional251

File 1 for same plot tested with different parameters).252

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/800383doi: bioRxiv preprint 

https://doi.org/10.1101/800383
http://creativecommons.org/licenses/by/4.0/


Figure 4. FDR control of p-value assignment strategies. We plot the FDR against the TPR achieved by
the two alternatives for assigning p-values to a DAME: The first by generating permutations and setting a
threshold K (see text) on the t-statistic (here 0.2,0.5,0.8), the second by using the Simes method. Lines are
colored by strategy. Each strategy was run 50 times with the same simulation parameters. Colored circles
indicate that the FDR achieved is smaller than the specified threshold (dashed lines at 0.01, 0.05 and 0.1),
white circles indicate the opposite. x-axis is square-root transformed.

Discovery of DAMEs in colorectal cancer dataset253

We used a previously published dataset comprising 6 patients with diagnosed colorectal254

cancer, three with CIMP (CpG-Island Methylator Phenotype), and three without CIMP (see255

Methods); DNA from normal mucosa and cancer lesions was bisulfite-sequenced. We ran256

DAMEfinder on this dataset in both modes, therefore obtaining the ASMsnp and ASMtuple257

scores. After filtering for coverage (more than 5 reads) and for sites with more than 80% of258

samples covered, we obtained information for 43,420 CpG sites using the ASMsnp. Using259

the tuple score, we obtained summaries for 1,849,831 CpG pairs. Within the DAMEfinder260

pipeline, we generated multi-dimensional scaling (MDS) plots using each score (Figures 5A261

and B), and observed that both scores are able to recover distinct CRC phenotypes. However262

using the ASMtuple score, samples cluster according to tissue type (normals, CIMP cancer263

and non-CIMP cancer) (Figure 5A), whereas using the ASMsnp score, only the two cancer264

types are distinguishable, while the normal tissues cluster with their matched cancers (Figure265

5B).266

We performed DAME detection on each score independently using the Cluster-wise267

correction (Supplementary Figure 2, Additional File 1 for p-values of both Cluster-wise268

correction and Permutations). When using the ASMsnp score, we could not detect DAMEs269

with an adjusted p-value below 0.05. Using the ASMtuple score, we were able to detect 4,051270

DAMEs in the CIMP samples (versus matched normal samples), and 258 in the non-CIMP271

samples. We noticed that regions detected using ASMtuple were also detected using ASMsnp,272

but with lower strength of signal and with p-values above a cutoff of 0.05 (one example in273

Figure 5C), and other regions showing the contradicting changes in ASM (one example in274
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Figure 5. ASM scores on the CRC dataset. A. MDS plot of all the samples in the CRC dataset, based
on all the the ASMtuple scores. Scores were square-root transformed before plotting. B. MDS plot based
on the ASMsnp scores. Scores were arcsine transformed. MDS plots were generated with the plotMDS
function from limma and the top 1000 most variable positions. N: normal mucosa; C: CRC. Each pair of
samples from the 6 patients with CRC are numbered from 1 to 6. C. A DAME detected in CIMP CRCs
using the ASMtuple score shows a higher signal than using the ASMsnp score. Region shown is located on
chr9:99,983,697-99,984,022, shaded region in the center corresponds to the DAME. Tracks for methylation
levels (meth) and methylation levels in reference and alternative alleles (based on SNP in chr9:99,983,812) is
also shown. Points in ASMtuple and meth tracks correspond to intermediate positions between a pair of CpG
sites. Points in the rest of tracks correspond to CpG sites.

Supplementary Figures 3-4, Additional File 1). Additionally, we found DAMEs corresponding275

to known regions exhibiting loss of imprinting in cancer, including those in the genes MEG3,276

H19, and GNAS [13, 50] (Figure 6).277

Considering the high number of DAMEs detected in the CIMP contrast compared to278

the non-CIMP contrast, we thought this could be a consequence of hypermethylation in279

CIMP [51], and a typical DMR (differentially methylated region) analysis would be able280

to detect these same regions. To corroborate this, we performed a DMR analysis on the281

CIMP and non-CIMP contrasts using the dmrseq R package [46] (Supplementary Figure 5,282

Additional File 1 for top DAMEs and DMRs per comparison). We found that from the 6,753283

DMRs (5,040 hypermethylated, 1,713 hypomethylated) detected in the CIMP comparison,284

2,285 overlap with DAMEs (hypermethylated DMRs = 32%, hypomethylated DMRs = 1.7%285

from total DMRs), and from 13,220 DMRs in the non-CIMP comparison, only 164 overlap286

(hypermethylated DMRs = 0.57%, hypomethylated DMRs = 0.66%) (Table 1).287
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Figure 6. DAMEs overlapping known loci exhibiting loss of imprinting in colorectal cancer. A. DAME
located in chr14:101,291,540-101,293,480, upstream the imprinted MEG3 gene. The loss of imprinting was
significant in both types of CRCs. B. DAME located in chr11:2,021,017-2,021,260, upstream the imprinted
H19 gene. Loss of imprinting only occurred in CIMP CRCs. C. DAME in the GNAS gene located in
chr20:57,425,758-57,428,036. Loss of imprinting was detected in both types of CRCs. Y-axis in all panels
corresponds to ASMtuple means. Lines connect means at intermediate positions between a pair of CpG sites.
Shared areas correspond to confidence intervals at each position (standard errors of the mean).

Table 1. DMRs overlapping DAMEs. Hyper or hypo-methylated DMR refers to the increase or decrease
of methylation in cancers in comparison with paired normal samples, while gain or loss of ASM refers to
whether cancers have more or less allele-specificity than paired normal samples.

DMR state Total DMRs DMRs DAMEs Gain / Loss ASM
with DAMEs with DMRs

CIMP
Hyper 5,040 2,171 2,789 2,694 / 95
Hypo 1,713 114 116 88 / 28

non-
CIMP

Hyper 3,187 76 77 61 / 16
Hypo 10,033 88 88 64 / 24

Because of this overlap, we conclude that a proportion (1,146 [28%] in CIMP, 93 [36%]288

in non-CIMP) of DAMEs would not be detected via a typical DMR analysis. Figure 7 shows289

4 examples of DAMEs missed by the DMR detection. In principle, these regions exhibit290
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differential methylation according to the global methylation levels (bottom panels of each291

region), however the hypermethylation reaches intermediate values, which might not represent292

a sufficiently high effect size to be detected. However, in the context of differential ASM,293

these intermediate values are highly scored, based also on the allele-specificity of the change.294

Therefore, even though these are not highly ranked DAMEs, they were still included as such.295

Figure 7. DAMEs not detected as DMRs. A. Two different DAMEs in non-CIMP, the first located in
chr9:136,658,255-136,658,387, and the second located in chr4:30,723,185-30,724,099. B. Two different DAMEs
in CIMP, the first in chr14:105,554,096-105,554,445; the second in chr16:21,295,180-21,295,412. Y-axis
corresponds to ASMtuple or methylation. Points correspond to intermediate positions between a pair of CpG
sites.
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Discussion296

We have developed a scoring method that provides a measure of allele-specific methylation,297

and developed a method (DAMEfinder) that detects regions that display loss or gain of298

allele-specific methylation, by leveraging existing methods into a single framework. We offer299

the possibility to detect regions exhibiting ASM based on genotype information (ASMsnp), or300

independent from it (ASMtuple). The latter offers a novel approach for identifying different301

types of ASM, such as imprinted, non-imprinted, XCI, and new types yet to be described.302

Compared to existing scores (allelicmeth, deviations from 50% methylation), ASMtuple303

showed favourable performance at identifying individual cases of ASM at different coverage304

levels. The scaled methylation also demonstrated high sensitivity and specificity, and as the305

true ASM score (ASMsnp) and coverage were increased, results were close to those of the306

ASMtuple score. Nonetheless, the advantage of using the ASMtuple score is the flexibility in307

its implementation; specifically, the weight that is added to the log-odd ratio can be adapted308

to the user’s needs. As an example, one could argue that a 50:50 proportion of methylated309

to unmethylated reads is not a good indicator of ASM. This assumption can be relaxed or310

changed within the model by changing the level of departure ε in the weight calculation.311

In contrast, the allelicmeth score reduced its performance when the true ASM value was312

increased. As for amrfinder, we believe defining ASM as regional is a nice implementation313

in this method, and can make ASM interpretation and visualization easier. However, the314

definition of regions is done for each sample independently, and this does not allow for a315

direct comparison between samples. This is the main reason why our ASM scores are not316

regional. Our method focuses on obtaining regions of consistent change in ASM between317

conditions relative to the variability, which in turn implies consistent ASM in the majority of318

samples from an experimental condition.319

Our ASMtuple score was able to distinguish female from male samples based on XCI.320

When analyzing the entire genome however, we did not find differences between males and321

females. The fact that the entire female chromosome X does not contain high ASM, or that322

the global distribution of methylation is not skewed towards intermediate values has been323

shown before [52]. The presence of genes escaping XCI may also affect global ASM. It is324

known that 15% of genes escape XCI, and an additional 10% vary in the inactivation state325

among the female population [53]. Therefore, a mixture of ASM scores in females is an326

accurate reflection of the complex dynamics of XCI.327

We were also able to validate the score by comparing the promoters of 89 known328

imprinted genes with the rest of the genome. We observed an increase in the ASM of329

imprinted genes, with a bimodal distribution of ASM scores. This can be a reflection of330

tissue or cell type specificity in imprinted genes, meaning not all known imprinted genes331

show ASM throughout the somatic cell lineage, as is traditionally assumed [54]. Studies have332

reported tissue and cell type-specific allelic expression [55, 56] and tissue-specific ASM [23]333

in known imprinted genes, supporting our finding that imprinting is not equally maintained334

in all genes in every tissue and/or cell type.335

Another aspect that could easily affect the range of ASM scores is cell heterogeneity,336

where we may expect a mixture of methylated and unmethylated alleles. The fact that the337

ASM scores observed in both the CRC and Blood datasets are continuous is likely a reflection338

of this. We expect ASM to be an all or none phenomenon, where “real” ASM should be either339

fully allele-specific (one allele fully methylated and the other fully unmethylated) or not (either340

both fully methylated, or both fully unmethylated). Additionally, reads from the colorectal341

cancer dataset were sequenced from cancerous tissue, which is typically associated with high342

intra-tumor heterogeneity of several biological features, including cellular morphology and343
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gene expression [57]. Our method does not account for this additional variability, and we344

recognize this as a limitation. However, we believe the ASM scores are still robust enough to345

detect allelic patterns as shown by the recovery of the colorectal cancer subtypes in Figure 5346

and that even changes in cell composition, which would also affect DMR detection, can be347

interesting events to understand.348

To obtain all-or-none ASM, single cell BS-seq (scBS-seq) data may become the most349

suitable high-throughput technology. Previous studies have shown the use of scBS-seq to350

detect heterogeneity within a single cell type [58] and cell states [59]. However, the accurate351

detection of methylation from scBS-seq is still a difficult task, mainly due to the extensive352

DNA damage from the bisulfite treatment. There are currently around 21 different protocols353

to profile single cell DNA methylation, mostly bisulfite-based, each one aiming at improving354

recovery of CpGs and mapping efficiency [60]. However, it has not been established how355

these methods compare to each other, and a consistent framework for their data analysis356

does not exist, as is the case for bulk BS-seq protocols. Therefore there is still work ahead to357

precisely quantify ASM using scBS-seq.358

Regarding DAME detection, we offer two strategies that differ in the statistical strin-359

gency. In our experience, fewer regions are obtained by permuting the group labels, since360

the FDR control is more conservative. However, more regions can always be detected by361

setting the K threshold lower, while still controlling the FDR. The Cluster-wise correction,362

or Simes method is less conservative, and therefore can be used as an alternative to extract363

more detection power. This is likely because of the global hypothesis tested at each DAME,364

where at least one CpG site in a region is changed.365

We applied DAMEfinder to a real dataset to detect DAMEs in CIMP and non-CIMP366

cancers (versus paired normal samples). We found that the ASMtuple and ASMsnp scores367

are consistent in describing the CIMP status of samples, but as expected, the ASMsnp score368

was dominated by SD-ASM, because its calculation relies on the heterozygous SNPs of each369

sample; paired samples thus clustered with each other not by tissue, as observed with the370

ASMtuple score. Additionally, ASMtuple typically detected more DAMEs, which we attribute371

to two reasons. First, there are ∼40x more places in the genome where ASMtuple can be372

calculated. Second, because the tuple score is a more general calculation, i.e., it quantifies373

the mixing of methylated and unmethylated reads, instead of relying on allele information.374

We also compared the DAME detection to a typical DMR analysis of the same samples,375

and found that DMRs detected may or may not include DAMEs. Most DMRs overlapping376

DAMEs were hypermethylated in CIMP cancers, which led us to conclude that most DAMEs377

reflected gain of ASM from a low methylation baseline. This result shows how differential378

ASM is a more refined definition of differential methylation, and can therefore provide379

additional information regarding methylation disruptions in disease (or different conditions).380

Conclusion381

Cytosine methylation restricted to only one allele, i.e., ASM, is a particular pattern of382

methylation that should be approached differently than the rest of the human methylome.383

We have designed DAMEfinder to screen for ASM and identify regions of differential ASM.384

The latter can be viewed as a special case of differential methylation. Previous studies have385

quantified ASM within one sample, however, to our knowledge, there is no method that386

identifies loss or gain of ASM between conditions. DAMEfinder fills this gap. Studying387

changes in ASM can help us understand epigenetic processes in development and diseases. To388

this aim, further studies are necessary to associate ASM to allele specific gene expression and389

to verify whether gain or loss of ASM would affect gene dosage and eventually phenotypes.390
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Methods391

The code used to generate the article figures and data processing is available from https:392

//github.com/markrobinsonuzh/allele_specificity_paper. The R package is available393

from https://github.com/markrobinsonuzh/DAMEfinder.394

Data Sets395

Colorectal cancer (CRC) data set396

The CRC data set came from our published study [51] describing the progression of a397

methylation signature from pre-cancerous lesions to colorectal cancer tissue in two types398

of CRC. We used 12 samples from 6 patients with sporadic cancer (arrayexpress accession399

number: E-MTAB-6949, Table 2). For each sample, DNA from both CRC lesion and normal400

mucosa was bisulfite treated and sequenced according the Roche SeqCapEpi CpGiant protocol,401

where only DNA captured by probes was sequenced. We analyzed 12 files in total. For details402

on data generation refer to [51].403

Table 2. Colorectal cancer sample characteristics. *Sample ID changed from arrayexpress. C: CRC; N:
paired sample of normal mucosa; non-CIMP: the mismatch repair gene MLH1 normally expressed; CIMP:
MLH1 silenced by promoter hypermethylation.

Sample ID* CIMP status Sex Number of Average coverage Average coverage
mapped reads in probes

N1 76,801,310 3.025 78.06
C1 non-CIMP F 68,010,696 2.47 61.62
N2 74,815,980 2.97 69.96
C2 CIMP M 62,122,636 2.47 63.16
N3 66,608,688 2.64 63.88
C3 non-CIMP M 57,828,284 2.28 57.52
N4 66,108,442 2.62 58.61
C4 CIMP M 59,390,888 2.35 61.25
N5 70,070,214 2.56 59.0032
C5 non-CIMP M 68,575,884 2.50 49.98
N6 59,056,548 2.15 49.52
C6 CIMP F 79,669,532 2.92 71.39

Blood dataset404

We used data generated by the Blueprint Consortium. We downloaded raw paired-end405

fastq files from venous blood of 3 healthy females and 3 healthy males (CD14-positive,406

CD16-negative classical monocyte, EGA dataset: EGAD00001002523).407

Quality control and mapping408

Quality control was done using fastQC (version 0.11.4) [61]. The reads were subsequently409

trimmed using TrimGalore! (version 0.4.5) [62]. Reads were mapped to the reference410

genome using bismark (version 0.18.0). Bowtie2 (version 2.2.9) was used to map to genome411

hg19 in the CRC data set, and hg38 in the Blood dataset. Duplicate reads were removed with412
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Table 3. Blood data sample characteristics. *Sample ID changed from source.

Sample ID* Sex Number of mapped reads Average coverage
1 M 390,837,942 12.73
2 M 420,368,438 13.70
3 M 305,490,164 9.95
4 F 383,782,378 12.50
5 F 581,667,082 18.86
6 F 572,224,352 18.55

the deduplicate command from bismark. Deduplicated bam files corresponding to technical413

replicates in the Blood data set were merged with samtools merge [63] for each sample.414

SNP calling415

We extracted heterozygous SNPs from the CRC dataset bam files with Bis-SNP (version416

1.0.0) [32] by running the BisulfiteGenotyper mode with default parameters, using the dbSNP417

(Build150) [64] generated VCF file from the NCBI Human Variation Sets (GRCh37p13, last418

modified:07-10-2017).419

methtuple420

Methtuple (version 1.5.3) [40] was used to produce a list of unique tuples of size two and421

the corresponding MM, MU, UM, and UU counts where M stands for “methylated” and U422

for “unmethylated”. The bam files of each sample are those of PE reads and so they were423

sorted by queryname before using methtuple, as the tool demands it.424

tuple-based ASM Score425

We used γ1 = γ2 = 0.5 and ε = 0.2 for all analyses, and allowed for a maximum distance426

of 150 base pairs between two CpGs in a tuple. Supplementary Figure 6, Additional File427

1, show ASMtuple diagnostic plots for the CRC dataset (and Supplementary Figure 7 with428

ASMsnp).429

ASMtuple score transformation430

We apply a square root transformation to the ASMtuple score before running limma, to get431

a more stable mean-variance relationship.432

L(ASMtuple) =
√
|ASMtuple| (6)

allelicmeth433

allelicmeth (MethPipe version 3.4.3) [33] is a tool that also detects ASM for a given sample434

directly from BS-seq reads. The tool is part of the MethPipe pipeline [65], which does not435

use standard bam files. We used commands from the pipeline to transform our bismark436

bam files from the CRC dataset into mr files, the input to allelicmeth. The output is a437

bed file with p-values for each pair of CpG sites, reflecting the degree of allele-specificity.438
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amrfinder439

amrfinder (MethPipe version 3.4.3) [33] also detects ASM from the BS-seq reads, however440

it generates regional scores. As with allelicmeth, we transformed bismark bam files from441

the CRC dataset into mr files, then ran methstates to generate epiread files, and used these442

to run amrfinder with default parameters. The output is a bed file with p-values for each443

genomic region with consistent ASM.444

Score evaluation445

We converted the ASMsnp into a tuple-ASMsnp as abs
{
Xi1r

M +Xi2r
M

Xi1r+Xi2r −
Xi1a

M +Xi2a
M

Xi1a+Xi2a

}
, where 1 and446

2 are the the first and second CpG site in a tuple i. We treated this converted score as true447

allele-specific methylation to test our scores at two thresholds: ≥0.5 and ≥ 0.8.448

We transformed the p-values generated by allelicmeth and amrfinder with a negative449

log base 10. We assigned the same transformed p-values to all CpG tuples included in a450

single amrfinder region.451

We also compared to a score based on whether the proportion of methylated reads to452

total number of reads deviates from 0.5, but transformed so a value of 0.5 is indicative of453

high ASM, and 1 or 0 is the lowest ASM. The score is 1− 2(|methylation− 0.5|).454

We used these four metrics to build ROC curves at different read coverages (5-9, 10-49455

and ≥ 50) and at different thresholds of ASMsnp, for a single normal mucosa sample in the456

CRC data set.457

As an additional validation, we used the Blood dataset to obtain the ASMtuple scores458

from the promoters of known imprinted genes reported in [11]. Only gene symbols that459

were traceable with biomaRt [66, 67] were included, and genes labelled to be imprinted in460

placenta were removed, as indicated in [68, 69].461

t-statistic calculation462

From the limma R package [38], we use lmFit to fit a linear model for each CpG position,463

and eBayes to calculate a moderated t-statistic on the transformed ASMtuple score, or on464

the ASMsnp score. For the former, we set the median of two CpGs in a tuple as the CpG465

position of that tuple. Transformed ASM scores across samples are given as input to lmFit,466

as well as a design matrix that specifies the conditions of the samples of interest. As specified467

in [38, 70], a CpG site-wise or tuple-wise linear model is defined as:468

E(yi) = Xβi (7)

where for each CpG site or tuple i, we have a vector of ASM scores yi and a design matrix X469

that relates these values to some coefficients of interest βi.470

In the end, we test for a specific contrast that Ho : Cβij = 0.471

Smoothing472

We group the positions into genomic clusters using the clusterMaker function from the473

bumphunter R package [39]. Then we use the loessByCluster function to perform loess474

within each cluster, and obtain β̃ij, our smoothed estimate.475
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FDR control evaluation476

We selected 6 samples of normal tissue from the CRC dataset and calculated their ASMsnp477

scores as a baseline in the simulation. We divided the samples in 2 groups of 3. We generated478

1038 clusters of CpGs with the clusterMaker function from the bumphunter package, and479

set a maximum distance between CpGs of 100 bp (Supplementary Figure 8, Additional File480

1). We chose 20% of all clusters to be truly differential, and to each of them added effect to a481

number of randomly selected consecutive CpGs. The effect size is the same for every chosen482

CpG per cluster, and is obtained by inverse transform sampling of the form F−1
X (u) = x,483

where u ∼ Unif(0.35, 0.75), and FX(x) the CDF of Beta(1, 2.5) [46] (Supplementary Figure484

9, Additional File 1). Additionally, for each truly differential cluster, we randomly selected485

the sign of the effect size (positive or negative), as well as the group of samples that contains486

the effect size.487

We generated 50 of these simulations, and for each of them, ran DAMEfinder with the488

cluster-wise correction, and the permutation correction (Supplementary Figure 10, Additional489

File 1 for distributions of null and observed areas) with three different K thresholds: 0.2, 0.5,490

0.8. We used the iCOBRA R package (version 1.12.1) [71] to calculate TPR and FDR at491

different adjusted p-value thresholds: 0.01, 0.05, 0.1.492

DMR detection493

We identified DMRs with the dmrseq R package (version 1.5.11) [46] for each cancer subtype.494

We specified the tissue via the testCovariate parameter (CIMP, non-CIMP or normal), and495

the patient with the adjustCovariate parameter. The cutoff parameter (cutoff of the single496

CpG coefficient that is used to discover candidate regions) was set as 0.05 and the rest of497

parameters were set as default.498
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