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Abstract		

Single-cell transcriptomics has sensitivity limits that restrict low abundance transcript identification, 

affects clustering and introduce artefact. Here, we describe Constellation DropSeq (C-DropSeq), a 

molecular transcriptome filter that delivers two orders of magnitude sensitivity gains by maximising 

read utility while reducing sequencing depth and costs. The simple and powerful method is broadly 

compatible with library preparation routines and was demonstrated by identifying and characterizing 

the activation of rare dendritic cell sub-populations. 

Main		

The dramatic uptake and expansion of single-cell transcriptome analysis tools has transformed 

biological research, enabling reconstruction of population architectures and underlying processes to 

be revealed. The tools rely on compartmentalisation of single cells with the introduction of unique 

genetic barcodes during library preparation1. Though formidable, not unexpectedly these methods 

have sensitivity limits, with associated transcript absence events (dropouts) that restrict the faithful 

delineation of cell subtypes and especially overlook low abundant transcripts such as transcription 

factors, receptors and signalling molecules that are often pivotal for accurately describing cell 

processes and fate2,3. This is a consequence of high abundance transcripts occupying the available 

NGS read space and exacerbated by exponential PCR-directed library preparation routines. 

 

Targeted approaches forgo global transcriptome screens, preferring to select transcripts of known 

utility and are especially favoured for mechanistic studies. Diverse targeted strategies have emerged; 

physical recovery of transcriptome subsets4, coupling custom primers to poly(dT) capture beads 

(DART-seq)5 and panel selection by PCR as with the Rhapsody workflow (BD)6. These methods are 

technically challenging and introduce substantial costs. Here, we describe Constellation DropSeq (C-

DropSeq), a remarkably simple, inexpensive and scalable (e.g. >200 targets) approach, introducing a 

linear amplification stage in advance of conventional library preparation. Superior performance is 
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demonstrated with two orders of magnitude sensitivity gains using only a 1/10th of the sequencing 

depth for describing system architectures and processes with unprecedented resolution.  

 

The DropSeq beads support 1010 probes5 indicating that sensitivity losses arise from the restricted 

NGS read space (~104–6/cell) and also from exponential PCR amplification during library preparation, 

where abundant and more efficiently replicated transcripts dominate the available reads. In contrast, 

linear (single primer) amplification provides an unbiased route to enrichment across transcripts7,8. 

Therefore, in our C-DropSeq approach we have used linear amplification following cDNA synthesis for 

the targeted enrichment of transcripts of interest. The method involves replacing the template 

switching oligo (TSO) with hybrid primers containing a transcript-specific region adjacent to a 

universal handle to select and barcode desired transcripts in a single linear amplification (Fig. 1A; 

supplementary Fig. 1). We introduced this linear targeted amplification step to the DropSeq pipeline 

to provide a direct comparison that is amenable to cost-effective, large-scale cell screening campaigns 

albeit with recognised dropout limitations1.  
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Figure 1. Characterisation of Constellation DropSeq.  

A) C-DropSeq protocol: A hybrid primer (14-18 bp specific sequence, black, adjacent to a common 14 
bp handle 2, red) binds to a specific target sequence of cDNA captured on Macosko beads9. A panel of 
such hybrid primers can be introduced to standard DropSeq pipeline following cell encapsulation and 
generation of STAMPS. Linear amplification of 500-1000 bp stretches of target transcripts allows 
selective enrichment of targets of interest, and the inclusion of the cell barcode and UMI sequences, 
leads to generation of constellation library, ready to use in Next Generation Sequencing. The initial 
template copy number Xo multiplied by the replication efficiency E and the cycle number n. B-F) C-
DropSeq was compared against DropSeq using a panel of 52 targets with control beads. B) C-DropSeq 
UMI counts per bead are 2.7-fold greater than with DropSeq. C) Scaled individual target transcripts 
counts show ~100-fold sensitivity gains for genes selected in C-DropSeq. D) A trackplot showing the 
data structure in a head to head comparison. Each bar represents a gene expression signal from a 
single cell. Full Trackplot is included as Supplementary Fig. 4.  E) The fraction of expressing beads as a 
function of the mean expression was used as the comparator, error bars represent SD. F) Dramatic 
reduction in dropouts achieved by C-DropSeq compared with DropSeq. At 2K UMI counts per bead 
32/49 genes were detected in half of the beads (3 negative controls were not detected) in C-DropSeq 
whereas only 1 was detected with the same threshold in DropSeq.  

 

Assay development first involved a panel of 20 primers applied to control beads9,10 bearing a bulk RNA 

sample to exclude biological variation. Sensitivity was compared between single primer linear 

amplification and dual primer exponential amplification (PCR, requiring a SMART-Seq reverse primer) 
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akin to state of the art methods (e.g. Rhapsody, BD)6. The primer panel contained high, medium and 

low expression level transcripts specific for peripheral blood mononuclear cells (PBMCs) and 

activation traits (Supplementary Table 1). C-DropSeq is amplification cycle and primer concentration 

dependent method (Supplementary Fig. 2), with straightforward optimisation enabling the selective 

capture of desired transcripts which produce a characteristically spiny tapestation plot (Fig. 1A). 

Critically, at 12K reads/bead, linear amplification has a low, 6.8 duplication rate, producing 1,818 

UMIs per bead to enable the detection of 17/20 transcripts using a 50% dropout cut-off. In contrast, 

exponential amplification has a 24.1 duplication rate, reducing the UMI number to 467 and resulting 

in only 13/20 transcripts attaining the 50% dropout cut-off (Supplementary Fig. 3).  

 

Next, C-DropSeq was scaled to 52 targets including 3 negative controls and compared with standard 

DropSeq(Supplementary Table 2). Using 15k reads/bead, we demonstrated efficient use of the read 

space (93.5% reads) and increasing the average UMI counts/cell at 2.7-fold (Fig. 1B). Individual target 

transcript counts from C-DropSeq were on average 83-fold higher (Fig. 1C), dramatically reducing the 

dropout rate and providing a uniform gene expression distribution to accurately rank expressed 

transcripts (Fig.1 C,D; Supplementary Fig. 5). Standard DropSeq only detected 41 of the targets, while 

C-DropSeq detected all 49 targets and none of the control genes (Fig. 1E). The 8 transcripts 

exclusively detected by C-DropSeq had average expression levels ranging from 0.03–2.60 counts per 

ten thousand (CPTT), without length correlation. In practical terms, when using a 50% dropout cut-

off, 32/49 are detected by C-DropSeq and only 1/49 by standard DropSeq at a sequencing depth of 8k 

reads/bead (Fig. 1F). Of merit, the sensitivity of C-DropSeq cascades directly into significantly lower 

read requirements; the 32/49 transcripts above 50% cut-off are detected when reducing the depth to 

4k reads/bead, with losses (28/49) only evident at 2k (Supplementary Fig. 5). This striking feature of 

C-DropSeq presents the option to reduce the sequencing depth and associated experimental cost, or 

increase the scale of the experiment.   
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To explore the ability of C-DropSeq to measure gene expression changes in response to perturbation 

in a cellular system, we challenged human peripheral blood mononuclear cells (PBMCs) with a super 

antigen Staphylococcal enterotoxin B (SEB, 100 ng/mL, 16 hours). To compare methods 1000 cells per 

treatment were sequenced (DropSeq: 200K reads/cells C-DropSeq: 20Kreads/cell, Fig. 2A). In this 

context, C-DropSeq consistently detected low copy transcripts such as GZMB, IRF4 and SOCS1 with 

reduced dropout and increased UMI counts at 10-fold lower sequencing depth. Differential gene 

expression was compared between control and stimuli for both standard DropSeq and C-DropSeq. 

The fold change measurements correlated well between the methods (r=0.62, p-value=8e-5, Fig. 

2B,C).  Importantly, C-DropSeq was 1.6 times more sensitive (assessed by gradient) to gene 

expression changes (Fig. 2B), improving the resolution of typical activation features such as 

NFKB1/NFKBIA while maintaining comparable expression levels for stable transcripts unperturbed by 

stimulation (e.g. CD74). In summary, the linear amplification step in C-DropSeq retains the authentic 

biological response, while measuring responses with greater sensitivity and resolving greater detail in 

the underlying process (Supplementary Fig. 5). 

 

Figure 2. Constellation DropSeq reliably measures changes in gene expression.  
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A) Experimental design; PBMCs from healthy subjects (n=3) were stimulated with Staphylococcal 
enterotoxin B (SEB) or media control for 16h and analysed using DropSeq and C-DropSeq. B) 
Correlation of normalised gene expression fold changes induced by SEB as detected by DropSeq and 
C-DropSeq. Pseudo-bulk counts for each gene used for the comparison. C) Comparative analysis of 
selected markers induced by SEB in cultured PBMCs. Violin plots in each row show the distribution 
and levels of each expressed gene in different culture conditions (CTR – media control, SEB – 
stimulated cells) and assessed by DropSeq (grey) and C-DropSeq (orange). y axis represents 
normalized UMI counts. 
 

To demonstrate the applicability of C-DropSeq for the analysis of specific cell subtypes within complex 

cellular systems, we designed a primer panel targeting 127 transcripts (Supplementary Table 3) using 

a recent molecular classification11 for the identification of dendritic cell (DC) subpopulations and their 

activation states. 4000 Human PBMCs were cultured with Gram-negative bacterial endotoxin 

lipopolysaccharide (LPS, 1 µg/mL for 4 hours), a potent inflammatory mediator inducing DC activation 

via TLR4. While standard DropSeq was able to segregate the blood cell types, including DCs and 

monocytes (Fig. 3A), the technique was not sufficiently sensitive to detect DC sub-populations. In 

contrast, the sensitivity of C-DropSeq allowed the classification of expression markers for two DC 

subpopulations (DC1: CLEC9A, and DC2: FCERIA11 Supplementary Fig.6, Fig. 3B), Furthermore, C-

DropSeq provided greater insights into LPS-induced transcriptome remodelling, including the 

identification of activation markers (CCR7), cytokines (IL1B) and low abundance transcription factors 

(IRF7,) in the DC1 subpopulation (Fig. 3C), and up-regulation of CD83, CCR7 and PSMA1 in DC2 

(Supplementary Fig. 6). 
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Figure 3. Constellation DropSeq can resolve rare cell populations  

DropSeq assay of human PBMC stimulated with lipopolysaccharide (LPS). A) Control and 4 hours LPS 
stimulated PBMC were analysed using DropSeq. UMAP plot of the merged dataset is shown (2542 
single cells). Expression of selected markers induced in response to LPS in DCs and monocytes and DC-
subset specific markers (red) (Scanpy, UMAP plot: Leiden r = 0.5, n_pcs=10, n_neighbours =20).  B) 
Expression of low abundance genes in DC population by DropSeq. Markers for DC1 (CLEC9A) and DC2 
(FCER1A)11 and are not detected.  C) Direct comparison of differential gene expression in dendritic cell 
population in response to LPS Stimuli using C-DropSeq vs DropSeq. Left: C-DropSeq (blue) vs DropSeq 
(orange), gene expression measured in normalised UMAP counts D) Direct comparison of gene 
expression in monocytes using C-10X vs 10X. Left: C-10X (blue) vs 10X (orange), gene expression 
measured in normalised UMAP counts E). UMAP plot of 6000 monocyte transcriptomes assessed 
using 10X and C-10X. At 1.5K UMI counts per cell, C-10X shows more granularity than normal 10X at 
the same resolution. The enhanced sensitivity of C-10X is represented using monocyte markers.   
 

Next the constellation approach was reconfigured for use with the popular Chromium 10x Genomics 

technology using 6000 CD14 enriched monocytes.  Constellation-10X (C-10X) greatly improved the 

detection of transcripts of interest (Fig.3D). C-10X showed 22-fold greater sensitivity allowing 

reduction of the sequencing depth from 70k to 1.5K reads/cell, while distinguishing 5 clusters and 
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identifying rare dendritic cells (FCER1A) and an activated monocyte sub-population (CXCL8). In 

comparison standard 10X at 1.5K reads/cell failed to resolve these sub-populations and activation 

states (Fig. 3E, Supplementary Fig.7). Indeed, standard 10X requires 70k reads/cell to obtain the same 

results, inflating the experimental costs 46-fold (Supplementary Fig. 7) demonstrating both the 

sensitivity and financial gains achieved using the Constellation approach. 

 

The simplicity of the Constellation method allows inclusion in almost any single cell transcriptome 

library preparation pipelines involving SMART-Seq primers (DropSeq, Seq-Well, 10x and potentially 

InDrop). The multiplex scaling capacity is governed by available volume; a 300-plex assay is feasible 

for a 50 µL reaction volume (without affection the normal library preparation pipeline; 

Supplementary Fig. 8). The highly multiplexed selection of transcripts of interest is at the expense of 

global transcriptome coverage, yet benefits from maximising the efficient use of the NGS space to 

enable ultra-sensitive investigations. In this manner, the architecture of cellular systems can be 

understood with unprecedented resolution and biological processes can be mapped in exquisite 

detail. Central to C-DropSeq is prior knowledge of the cellular system, where specific target selection 

lends strength to mechanistic studies or allows the prioritisation of targets for targeted perturbation. 

Additionally, C-DropSeq can be implemented efficiently in drug discovery, and preliminary toxicity and 

efficacy screens for pharmacological compounds of interest. To gain entry to new biological scenarios 

and to define the targeted primer library for C-DropSeq, various standard scRNA-seq approaches or 

bulk transcriptome analyses can first be applied to provide a global screen of the defining molecules 

and pathways of interest.  

 

C-DropSeq builds on standard DropSeq, an already cost-effective single cell transcriptomics approach 

for large-scale experiments, while addressing the issues of sensitivity and dropout. With C-DropSeq 

further savings emerge from shrinking the required sequencing depth to allow substantially larger 

experiments or simply more experiments. The experimental economies, including time-finance trade-
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offs, of C-DropSeq and C-10x are compared with standard DropSeq and 10x approaches in 

Supplementary Table 4 to inform method selection by end-users. Beyond this, C-DropSeq is accessible 

to resource limited laboratories, overall representing a step towards the democratisation of single-cell 

transcriptomics and the broad-scale expansion of our understanding of biological systems. 

 

Methods	

Primer Design 

Primers targeting genes of interest were designed using Beacon Designer primer design software 

(PREMIER Biosoft, California US). The last 14 bases from the SMART primer sequence 

(TATCAACGCAGAGT) were added to the 5’ end of the designed primers. Desired features of primers 

included: a length between 28-32 base pairs, 40-60% GC content, a primer melting temperature 

between 52-58°C, and with minimal chance of secondary structures being produced.  

 

Negative control beads 

RNA from fresh PBMC was extracted using RNeasy Plus Mini Kit (Qiagen). Control beads were 

generated by adding a solution of PBMC RNA at 10 pg/bead, making the RNA content in each droplet 

equivalent. 200 μL of reverse transcriptase mix (75 μL water, 40 μL Maxima 5x RT buffer, 40 μL 20% 

Ficoll PM-400, 20 μL 10 mM dNTPs, 5 μL RNase inhibitor and 10 μL Maxima H- RTase) was added to 

each bead sample. 10 μL of 50 μM TSO was added to the DropSeq controls, whereas for C-DropSeq 

no TSO was used. Samples were incubated with rotation at room temperature for 30 minutes 

followed by 90 minutes at 42°C with continuous rotation. Beads were washed with 1 mL TE-SDS (10 

mM Tris, pH 8.0, 1 mM EDTA, 5% SDS) and twice with 1 mL TE-TW (10 mM Tris, pH 8.0, 1 mM EDTA, 

0.01% Tween-20). Finally, beads were washed with 1 mL 10 mM Tris pH 8.0, and stored at 4C.  

 

Cell preparation 
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Human blood was collected from donors with written consent and ethical approval (study number: 

17/EM/0349). PBMC were extracted immediately using Lymphoprep™ (STEMCELL Technologies) and 

incubated at 37°C with 5% CO2. For SEB stimulation experiments cells were cultured in 24 well plates 

at 2x106 cells/mL for 16h with or without SEB, using a final SEB concentration of 100 ng/mL. For LPS 

stimulation experiments cells were cultured in 24 well plates at 2x106 cells/mL for 4h with or without 

LPS, using a final LPS concentration of 1 µg/mL. Following the incubation period cells were harvested, 

washed in PBS and counted. 180,000 cells were taken for encapsulation. CD14+ monocytes for the 

10X experiment were purchased from Tissue solutions (Glasgow, UK). 

 

DropSeq 

Drop-Seq library preparation and sequencing was performed as described previously9. Briefly, single 

cells were co-encapsulated with beads in droplets using the microfluidic design provided by Macosko 

et al9. After cell lysis, cDNA synthesis was carried out (Maxima Reverse Transcriptase, Thermo Fisher), 

followed by PCR (Kapa Hotstart Ready mix, 15 cycles: 4 at 67C, 11 at 65C). cDNA libraries were 

tagmented and PCR-amplified (Nextera tagmentation kit, Illumina). Finally, libraries were pooled and 

sequenced on an Illumina Nextseq500, (paired end 20x50 bp reads). 

 

Constellation DropSeq 

For Constellation DropSeq, experiments were processed as normal from encapsulation through to 

extraction and purification of beads from the droplet emulsion. During reverse transcription however, 

the template switching oligo (TSO) was absent from the reaction*. This resulted in cDNA fragments 

without SMART primer binding sites at the 3’ end of the Macosko bead primers,. Hybrid primers were 

pooled at 10 µM. A 50 μL amplification mix was added (25 μL 2X Kapa HiFi Hotstart Readymix, 10 μM 

primer pool, 24.6 μL water) to aliquots of 2000 beads (~100 STAMPs). 20 rounds of linear 

amplification (at 60℃) were first performed before continuing the standard Drop-Seq protocol for 

library preparation with PCR amplification and tagmentation. cDNA libraries were purified twice using 
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AMPure XP magnetic beads (Beckman Coulter) (1:0.6) and libraries assessed using Agillent bioanalyser 

(KIT) before tagmentation and Next-seq sequencing.  

*Standard reagents including the TSO can be used with the caveat of transcript noise generated by 

the reverse SMART primer. 

 

10X Genomics 

Single cell libraries were generated using the Chromium Single Cell 3ʹ library and gel bead kit v3.1 

from 10x Genomics. Briefly, 10,000 cells were loaded onto a channel of the 10x chip to produce Gel 

Bead-in-Emulsions (GEMs). This underwent reverse transcription to barcode RNA before clean-up and 

cDNA amplification followed by enzymatic fragmentation and 5ʹ adaptor and sample index 

attachment using the Nextera XT Library preparation kit (Illuumina). Libraries were sequenced on the 

MiSeq500 (Illumina) with 28x60 bp paired-end sequencing. 

 

Constellation 10X  

For Constellation 10X, 395 pg of cDNA were used for linear amplification comprising 20 rounds of 

linear amplification (60°C) using a pool of primers at 10 µM. A 40 μL amplification mix was added (20 

μL 2X Kapa HiFi Hotstart Readymix, 10 μM primer pool) to 10 μL of cDNA library.  cDNA libraries were 

purified twice using AMPure XP (Beckman Coulter) magnetic beads (1:0.6) and libraries assessed using 

a bioanalyser before tagmentation and Next-seq sequencing on an Illumina Nextseq500, (paired end 

28x60 bp reads). 

 

Real Time PCR 

Control beads were used to assess the specificity of C-DropSeq. 400 control beads per well were used 

as starting material. C-DropSeq libraries were produced by linear amplification using two control 

primers (CFL1 and UBB from IDT ) for 5, 10 or 20 cycles. Libraries were purified twice using 0.6X 

AMPure XP magnetic beads (Beckman Coulter) and eluted with 20 µL 1xTE, pH 8.0. C-DropSeq 
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libraries were tested using specific primers designed within the amplicon region including a negative 

control, CD74. 2 µL of the C-DropSeq library was amplified in iTaq™ Universal SYBR (Bio-Rad) 

containing 200 nM of CFL1, UBB or CD74 primers. Amplification was undertaken in technical 

triplicates on a HT7900 Fast Real-Time PCR System (Applied Biosystems). Quantification was achieved 

against a serial dilution calibration curve of the pool of samples in each plate. Ct values were 

thresholded at 0.1 relative fluorescence units (RFU).  

 

Bioinformatic pipelines 

Alignment, read filtering, barcode and UMI counting were performed using kallisto-bustools12. High 

quality barcodes were selected based on the overall UMI distribution using emptyDrops13. All further 

analyses were run using the Python-based Scanpy14. To remove low quality cells, we filtered cells with 

a high fraction of counts from mitochondrial genes (20% or more) indicating stressed or dying cells9. 

In addition, genes expressed in less than 20 cells were excluded. 

Cell by gene count matrices of all samples were concatenated to a single matrix and values log 

transformed. To account for differences in sequencing depth or cell size UMI counts were normalized 

using quantile normalization. The top variable genes were selected based on normalized dispersion. 

This output matrix was input to all further analyses except for differential expression testing where all 

genes were used.  

 

Visualization and clustering 

A single-cell neighbourhood graph was computed on the 50 first principal components that 

sufficiently explain the variation in the data using 20 nearest neighbours. Uniform Manifold 

Approximation and Projection (UMAP) was run for visualization. For clustering and cell type 

identification Leiden-based clustering 15 at 0.5 resolution was used. Cell types were annotated based 

on the expression of known marker genes.  
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Supplementary	figures			

  

 

Figure S1. Comparison of the standard DropSeq with C-DropSeq and other targeted methods.  

The methods use the same capture probes, with the exception of the DART-Seq method that have 
probes extended with target-specific capture sequences (multiplexing is illustrated with shapes). 
Following cDNA capture DropSeq and DART-Seq methods progress directly to PCR library 
preparation, whereas targeted PCR and the Constellation Drop-Seq methods first involve PCR and 
linear amplification cycles, respectively. The amplification behaviour, exponential or linear, is 
described by the initial target number Xo, the efficiency of replication E and the cycle number n. 
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Figure S2 Expression analysis of a C-DropSeq library containing CLF1 and UBB primers.  

The library generated from control beads using linear amplification, at primer concentration10 nMol 
and 65°C annealing temperature was tested with qPCR for expression of CLF1 and UBB as targeted 
genes and CD74 as a negative control. Error bars represent standard deviation (SD). 
 
 
 
 
 
 
 

 

Figure S3  Head to head comparison of detection of 20 targets using linear vs targeted approach. 

A) Expression levels (Normalized UMI counts) detected by linear amplification (orange) and PCR 
(blue). B) Drop-out rate vs mean expression levels in linear amplification. Red dots represent genes 
included in test library. C) Drop-out rate vs mean expression levels in targeted PCR. Red dots 
represent genes included in the library tested. 
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Figure S4.  DropSeq and C-DropSeq comparison for the detection of a panel of 52 genes  

Trackplot of gene expression for high, medium and low expressed genes detected using Drop-seq 
(grey) and C-DropSeq (orange) with control beads. A total of 41/52 genes were detected in both 
methods.  Each bar shows the UMI counts signal from a single cell. 
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Figure S5 DropSeq and C-DropSeq sensitivity comparison varying sequencing depth.  

The total number of counts for each target was calculated and compared between DropSeq (top) and 
C-DropSeq (bottom). The fraction of beads with detected target expression vs mean level of target 
expression are shown for each gene. The horizontal line indicates the 50% of beads detection 
threshold Red: genes from the panel. Grey: genes not included in the panel. Numbers are the 
predicted effective cost for 1000 cells. 
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Figure S6 Two dendritic cell populations uniquely identified by C-DS 
Top: UMAP plot showing DC1 cells, control (blue) and LPS (orange) stimulated, (Leiden r=0.5, 
n_neighbours = 20). While CLEC9A+ expression is uniform in control and LPS stimulated cells, CXCL8 
and IL1B and JAK3 expression can be detected exclusively in LPS stimulated cells. Bottom: UMAP plot 
showing DC2 cells, control (blue) and LPS (orange) stimulated. While subset marker, FCER1A+ 
expression is high in control cells, the expression of CD83, CCR7 and PSMA1, encoding DC activation is 
upregulated by LPS. Colour denotes gene expression level, as indicated by the heat-map legend 
(normalised UMI counts).  
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Figure S7 The Constellation method can be translated to other single-cell protocols 

UMAP plots showing comparison of single cell sequencing of 6000 monocytes using C-10X at 1500 
reads per cell sequencing depth with standard 10X at varying sequencing depths. Column 1: clustering 
results, Leiden r=0.5, n_neighbours = 20, columns 2-5: examples of monocyte activation expression 
markers. Colour denotes gene expression level, as indicated by the legend (normalised UMI counts). 
Right: the effective cost of sequencing 1000 cells. 
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Figure S8 Optimization of Library preparation in C-10X 

Typical plot from the bioanalyser (Agilent) showing the library input and primer concentration effect 
on library preparation for C-10X.  Top: library input – 34 pg/mL, bottom – library input 340 pg/mL. 
Left: Primer concentration c= 0.4	𝜇Mol, right: Primer concentration c= 10	𝜇Mol. Y axis shows 
fluorescence units (FU) indicating signal intensity and product concentration. The spikes in the plot 
are characteristic for Constellation method due to the selection of targets with distinct molecular 
weights.  
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