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Summary 

Multiplexed fluorescence in situ hybridization techniques have enabled cell class or type 

identification by mRNA quantification in situ. However, inaccurate cell segmentation can 

result in incomplete cell-type and tissue characterization. Here, we present a robust 

segmentation-free computational framework, applicable to a variety of in situ transcriptomics 

platforms, called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density 

estimation (SSAM). SSAM assumes that spatial distribution of mRNAs relates to 

organization of higher complexity structures (e.g. cells or tissue layers) and performs de 

novo cell-type and tissue domain identification. Optionally, SSAM can also integrate prior 

knowledge of cell types. We apply SSAM to three mouse brain tissue images: the 

somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, 

and the visual cortex by multiplexed smFISH. SSAM outperforms segmentation-based 

results, demonstrating that segmentation of cells is not required for inferring cell-type 

signatures, cell-type organization or tissue domains. 
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Introduction 

The underlying transcriptional and spatial heterogeneity of cells gives rise to the plethora of 

phenotypes observed in cell types, tissues, organs and organisms. It is important to 

investigate this heterogeneity to better understand the basis of health and disease. Recent 

technological advances (Svensson et al., 2018a) have seen the profound adoption of single 

cell sequencing to unravel transcriptional heterogeneity in healthy and diseased tissue, and 

have subsequently given rise to international consortia such as the Human Cell Atlas (HCA) 

(Regev et al., 2017). Such efforts would not be possible without the various computational 

frameworks supporting analysis of single-cell sequencing data (Luecken and Theis, 2019). 

 

Pairing this transcriptional heterogeneity with spatial heterogeneity of cells is a critical factor 

in understanding cell identity in the context of the tissue, for example, revealing the 

transcriptional basis of invasive cancer regions (Salmén et al., 2018) and highlighting rich 

diversity of neuronal subtype expression and localization (Moffitt et al., 2018). Recently 

developed multiplexed fluorescence in-situ hybridization (mFISH) (Chen et al., 2015; 

Codeluppi et al., 2018; Lubeck et al., 2014) and in situ mRNA tissue sequencing (Ke et al., 

2013; Lee et al., 2015; Maniatis et al., 2019; Ståhl et al., 2016; Vickovic et al., 2019a; Wang 

et al., 2018) techniques have enabled the simultaneous measurement of multiple mRNAs in 

a spatial context. Application of cell segmentation algorithms to images obtained by these 

techniques identifies cells, and allows classification of classes or types of cells together with 

their locations (Hodneland et al., 2013; Jiang et al., 2019; Kong et al., 2015; Salvi et al., 

2019). The rapid increase in establishment of in situ transcriptomics platforms inspired the 

inception of the SpaceTx Consortium (Perkel, 2019), which aims to systematically evaluate 

these platforms and protocols. 

 

Segmentation-based approaches usually rely on additional signals or landmarks obtained by 

staining nuclei (Shah et al., 2016), cell membrane (Halpern et al., 2017; Kishi et al., 2019; 
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Lignell et al., 2017), or total poly-A RNA (Codeluppi et al., 2018; Moffitt et al., 2018). 

Accurate cell segmentation, however, is difficult to achieve due to tightly apposed or 

overlapping cells, uneven cell borders, varying cell and nuclear shapes, signal intensity 

variation, probe fluorescence emission efficiency variation, and tiling artifacts (Thomas and 

John, 2017). The underlying problem is that the cellular structures one would want to 

segment are much smaller than the resolution of a diffraction-limited microscope. Therefore, 

there is a need for robust segmentation-independent methods for identification of cell-type 

signatures, cell-type organization, and tissue domains from multidimensional mRNA 

expression data in complex tissues. These methods could be used for datasets lacking 

landmarks or to validate segmentation-based approaches and identify associated artifacts. 

 

Here we introduce a novel computational framework named Spot-based Spatial cell-type 

Analysis by Multidimensional mRNA density estimation (SSAM), a multi-platform 

segmentation-free computational framework for identifying cell-type signatures and 

reconstructing cell-type and tissue domain maps from both 2D- and 3D-spatially resolved in 

situ transcriptomics data. We apply SSAM to three mouse brain tissue images obtained by 

different techniques: the somatosensory cortex by osmFISH, the hypothalamic preoptic 

region by MERFISH, and the visual cortex by multiplexed smFISH. We demonstrate the 

performance of SSAM in identifying 1) cell types in situ, 2) spatial distribution of cell types, 3) 

spatial relationships between cell types, and 4) tissue domains (e.g., cortical layers) based 

on the local composition of cell types without having even segmented a single cell. 

 

Results 

The SSAM computational framework 

SSAM consists of 4 major steps (Figure 1), namely 1) cellular mRNA density estimation and 

selection of representative gene expression profiles; 2) computation of cell-type signatures; 

3) generation of a cell-type map, and 4) identification of tissue domains. In the first step, 
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SSAM estimates intra-cellular mRNA densities and then selects representative cell-wise 

gene expression profiles (Figure 1A). SSAM models the density of intracellular mRNAs as 

the probability density representing the existence of observed mRNA molecules. The mRNA 

density model is computed by applying Kernel Density Estimation (KDE) (Parzen, 1962; 

Rosenblatt, 1956) with a Gaussian kernel whose dispersion pattern models average cell 

size. Here, we measure the dispersion pattern as the full width tenth maximum (FWTM) of 

the Gaussian distribution. This approach models the distribution of mRNAs in the cell body, 

while also preserving the shapes of cells, successfully recovering the mRNA density over the 

tissue (Figure S1A). Further, it will also recover the shape of the distributions of subcellular 

localizing mRNAs. 

 

SSAM then projects the mRNA density values estimated via the Gaussian KDE onto a 

square lattice, which represents coordinates in the tissue. The spacing between adjacent 

points of the lattice is set to have an order of magnitude below the average cell diameter (1 

μm in our examples), to ensure both high resolution and feasible computation time. Next, the 

mRNA densities estimated per gene are stacked to produce a vector field over the lattice, 

which will be called the gene expression vector field hereafter. The gene expression vector 

field is analogous to a 2D/3D image where each pixel/voxel encodes the estimated gene 

expression of the unit area. 

 

Next, the vectors representing likely cell locations are selected based on their total gene 

expression. Recalling that most mRNAs would be found inside the cell body, the total mRNA 

densities of a unit area reflects the probability of the unit area locating inside a cell body. 

Moreover, since the smoothing effect of the Gaussian kernel propagates information across 

neighboring positions, any local maximum of gene expression in the gene expression vector 

field would contain signal from all nearby mRNAs, and therefore local maxima can be 

considered as the representative transcriptome of its containing cell (Figure S1C). These 

local maxima are filtered to remove artifacts, and can be further restricted to informative 
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parts of the tissue image using an optional “input mask” (Methods). Then, both the local 

maxima vectors and the vector field are then normalized (Methods). 

 

After this first step, SSAM can be operated in either guided mode or de novo mode. The 

guided mode SSAM assigns cell types to the representative vectors using a given set of cell-

type gene expression signatures. In guided mode, the following second step can be skipped 

and continued to the third step. 

 

In the de novo mode, SSAM identifies cell-type gene expression signatures utilizing 

clustering algorithm and classifies the representative gene expression vectors to known cell 

types (Figure 1B). First, SSAM initially clusters the representative vectors using a 

reimplementation of the Seurat clustering method (Butler et al., 2018) (Methods). After 

clustering, SSAM excludes representative vectors that are lowly correlated to the cluster 

medoid, (i.e., the representative object of a cluster whose average dissimilarity to all the 

objects in the cluster is minimal). After filtering the lowly correlating vectors, SSAM models 

the representative gene expression profile for each cell type identified from clustering as the 

centroid of each cluster (i.e. the unweighted mean gene expression profile of a cluster) 

(Figure S1A). Next, clusters with highly similar expression profiles can be merged and 

dubious clusters removed. To assist users in selecting clusters for merging or removal, 

SSAM generates ‘diagnostic plots’ for each cluster (Methods). 

 

In the third step, SSAM generates a cell-type map image (Figure 1C). Here, SSAM maps 

the computed cell-type signatures in de novo mode (or the given cell-type signatures in 

guided mode) to the normalized vector field. Each position is assigned a single cell type 

based on the highest Pearson’s correlation with the respective cell-type signature (Figure 

S2A). This assignment of cell-type signatures to the vector field is used to generate the cell-

type map, which can be used to investigate the spatial distribution of cell types in the profiled 

tissue. In cases where the user is interested in a particular region of the tissue, an “output 
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mask” can be applied to restrict reporting to a specific region of the image. 

 

In the fourth step, SSAM identify tissue domains by defining local neighborhoods of similar 

cell-type composition (Figure 1D). SSAM computes the cell-type compositions in a 

circular(2D)/spherical(3D) sliding window over the cell-type map, and clusters them using 

agglomerative hierarchical clustering (Figure S2B). Clusters with high correlation to each 

other are then merged into a single tissue domain signature, and the cell-type composition of 

each domain is calculated. 

 

In the following sections, we provide results of SSAM applied to three multiplexed FISH 

datasets obtained using different methodologies. We reanalyze two previously published 

datasets, profiled by osmFISH (Codeluppi et al., 2018) and MERFISH (Moffitt et al., 2018), 

and provide biological insights of a newly generated multiplexed smFISH dataset. 

 

SSAM improves astrocyte and ventricle detection in the mouse brain somatosensory 

cortex (SSp) 

To demonstrate utility of SSAM, we first analyzed published osmFISH data, where the 

transcripts of 33 cell-type marker genes were localized in 2D space of the mouse brain 

somatosensory cortex (SSp) (Codeluppi et al., 2018). 

 

The osmFISH dataset was analyzed using both the guided and de novo modes of SSAM 

(Figure 2, 3). For the guided mode, two sets of pre-determined cell-type signatures were 

used to generate cell-type maps: one obtained by segmentation of the osmFISH data and 

another from scRNA-seq  (Marques et al., 2016; Zeisel et al., 2015). The resultant cell-type 

maps were very similar to the one previously published (Figure S4E). 

 

Next, we tested a completely de novo cell-typing approach. The resultant 30 cell-type 

signatures (Figure 2A, B) were consistent with those identified from the segmentation-based 
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clustering (Figure S4C) and scRNA-seq based clustering (Figure S4D) (Codeluppi et al., 

2018). As such, the SSAM de novo cell-type signature clusters were named after the closest 

matching segmentation-based cluster. Despite the difference of normalization and clustering 

methods, we find that the clustering of cell-type signatures are comparable. The domain 

analysis result based on SSAM de novo cell-type map correlated well with the known cortical 

layers of the tissue, consistent with results reported in the previous study (Figure 3A). 

 

All of the cell-type maps generated by SSAM showed high density of Mfge8 expressing 

astrocytes (Astrocyte Mfge8) in visual inspection. The tissue domains inferred from the de 

novo cell-type map also showed high contributions from the Mfge8 expressing astrocytes 

(Figure 3B), confirming what we observed in visual inspection. Generally, we found that 

Mfge8 expressing astrocytes contributed 7-14 % of each of the tissue layers, in contrast to 

the significantly fewer numbers of Astrocyte Mfge8 cells called in the previous study 

(Codeluppi et al., 2018). Comparison of high-resolution images of DAPI and poly-A signals 

with KDE generated Mfge8 expression implicates that the poly-A signal was not strong 

enough to discriminate presence of Mfge8 expression astrocyte cells from the background, 

while the DAPI images clearly supported the existence of Mfge8 expressing astrocytes 

identified by SSAM (Figure 2E). The clear DAPI signal but low poly-A signal for these Mfge8 

expressing astrocytes implicates that they would have a lower mRNA content compared to 

other cells. To confirm this we investigated the total counts of mRNA molecules of astrocytes 

compared to other cell types from mouse brain scRNA-seq data (Zeisel et al., 2018). We 

found that astrocytes exhibited significantly less mRNA molecules than other cell classes 

(Figure S4B). Our observation reveals the inadequacy of the watershed segmentation 

algorithm applied to poly-A signal when not considering cells with a low total mRNA content. 

In addition, elements of the protruding processes of astrocytes were recovered in our cell-

type map (zoom panel, Figure 2C). 

 

SSAM also reconstructed a more complete structure of the ventricle, composed of 
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ependymal (yellow) and choroid plexus cell types (teal), compared to the results of the 

previous study (Figure 2D). The Poly-A and DAPI signals confirm the existence of both cell 

types in the ventricle area, but since ependymal and choroid plexus cells are small and 

tightly packed, and exhibit relatively lower DAPI and poly-A signal, the performance of 

watershed algorithm was insufficient to identify cells in the area. 

 

SSAM confirms diversity of inhibitory and excitatory neuron cell types and 

localization in the hypothalamic preoptic region (POA) 

To demonstrate the performance of SSAM for three-dimensional in situ transcriptomics data, 

we applied SSAM to previously published MERFISH data, where 135 transcripts were 

localized in 3D space of the hypothalamic preoptic region (POA) of a mouse brain (Moffitt et 

al., 2018). In this section, we demonstrated SSAM on a single layer of the MERFISH data at 

the posterior region of the mouse POA. 

 

We first tested both SSAM guided mode and de novo mode. For guided mode, the 

previously known cell-type signatures obtained by segmentation and scRNA-seq were used. 

Both in guided mode and de novo mode, since the input mRNAs are located in 3D space, 

SSAM analysis were performed in 3D space accordingly. The resulting cell-type maps on the 

x-y plane at the center of slice on the z-axis (at 5 μm) were visually similar to the previous 

study (Figure S5G). Also, the SSAM cell-type signatures showed high correlation to the cell-

type signatures from both the segmentation-based clusters and scRNA-seq clusters (Figure 

S5E, F). While we missed some cell types identified in the previous study by restricting our 

analysis to one out of twelve slices of the dataset, we found a similarly large number of cell-

type signatures of inhibitory and excitatory neurons compared to Moffitt et al (25 vs 39 

inhibitory and 13 vs 31 excitatory neurons). We also observed similar tissue localization 

patterns for inhibitory and excitatory cell types (Figure 4D, E), validating the computational 

approach adopted by SSAM to identify de novo cell-type signatures. The generated tissue 

domain map clearly shows the structure of tissue simplified to several domains consisting of 
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region with mainly inhibitory neurons, excitatory neurons, oligodendrocytes and the ventricle 

structure (Figure 5A, 5B). 

 

Finally, the reconstructed three-dimensional cell-type map is visualized in movies of the 

turntable-rotating cell-type map (Movie 1). The whole cell-type map and the cell-type specific 

maps for inhibitory / excitatory neurons and astrocytes by sweeping in the z-direction with a 

scale of 1 μm (Movie 2, 3, 4) were generated, demonstrating the size and shape difference 

of cells giving rise to the cell-type signal identified by SSAM. 

 

Compared to the osmFISH dataset, which was from a 2D image, the MERFISH dataset was 

from a 3D image. Despite the difference of dimensionality, SSAM is still able to successfully 

process the data and produce meaningful results. More importantly, the analyses in this 

section was performed with almost the same procedure and parameters used for the 

osmFISH data analysis: same lattice spacing, same bandwidth, same cluster refining 

threshold, circular window size among others. Therefore, we set the parameters as the 

default values. This implies that one can easily analyze their own multidimensional in situ 

transcriptomics dataset with little effort and generate accurate and meaningful results rapidly 

using the default parameters of SSAM. 

 

SSAM defines rare cell types and cortical sub-layering in the adult mouse visual 

cortex (VISp) 

To further demonstrate that SSAM can be used for rapid and robust analysis of in situ 

transcriptomics data, we applied SSAM to unpublished multiplexed smFISH data of the 

mouse primary visual cortex (VISp) generated as part of the SpaceTx consortium (Perkel, 

2019). In total, the expression of 22 genes was quantified in situ (Methods). 

 

The VISp region on the tissue was manually defined to restrict analysis to relevant cell types 

(Figure S6D), and local maxima vectors were only selected within the defined VISp region 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 13, 2019. ; https://doi.org/10.1101/800748doi: bioRxiv preprint 

https://doi.org/10.1101/800748
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

input mask (Figure S6A). SSAM was performed in both guided mode and de novo mode 

(Figure S7D). The guided mode of SSAM was performed with scRNA-seq data (Tasic et al., 

2018). For the de novo run, the name of cell-type signature clusters were assigned with the 

name of closest correlated cluster in the scRNA-seq data (Figure 6A,B). Then the tissue 

domains were identified based on de novo cell-type map (Figure 7), with the result showing 

the laminar structure of the VISp region. We found that there were two different layer 4 (L4) 

neuronal clusters determined by SSAM. Interestingly, both of them showed the highest 

correlation to the single L4 IT type identified via scRNA-seq, but their spatial locations show 

a clear difference (Figure 6C, S7C). We named the cluster mapping to superficial region of 

L4 layer as ‘L4 IT Superficial’. This finding adds context to the previously observed 

heterogeneity of the L4 IT cell type (Tasic et al., 2018), where the heterogeneity could be 

related to superficial and deep localization in layer 4. 

 

The cell-type map generated by SSAM guided mode were visually similar to that of de novo 

mode, except for the cell types found in the layer 2 (L2) (Figure S7D). We found that the 

majority of cell types found in L2 were assigned to the VLMC type in SSAM guided mode. 

We observed that this type was actually a neuronal type in L2. This cell type showed high 

expression of Alcam, a marker gene of the VLMC cell type, but low expression of other 

genes. Due to the limited number of genes profiled in the multiplexed smFISH experiment, 

lack of other neuronal marker genes led to incorrect high correlation of this type VLMC. 

However, SSAM properly assigned the centroid to be L2 neurons in de novo mode. 

 

There is one type mapped in the cell-type map generated by SSAM guided mode (yellow 

spot, Figure S7D), that was not found in the initial try of SSAM de novo mode. The 

corresponding type found in the scRNA-seq data is Sst Chodl, which is known to be a rare 

neuronal type related to long-range projection and sleep-active neurons (Gerashchenko et 

al., 2008; Tasic et al., 2016; Tomioka et al., 2005). Therefore, we manually verified whether 

SSAM detected the vectors corresponding to this cell type. We found that there were two 
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high Chodl expressing vectors that were in close proximity to each other (Figure S7A), but 

due to the limitation of the clustering method employed, these vectors were not clustered 

correctly. By comparing the centroid of the two vectors to the scRNA-seq data, we found that 

this cell-type signature showed highest correlation to the Sst Chodl cluster in scRNA-seq 

data (Figure S6C, S6E). In addition, the centroids of these types were found in layer 5, 

consistent with the localization of Sst Chodl types to L5 and L6 as previously reported (Tasic 

et al., 2016). Thus, these two vectors were manually rescued (Figure S7A, B), and its 

centroid added to the list of signatures identified by SSAM. Also, in the cell-type map the 

centroid is clearly mapped to the yellow spot region but not anywhere else (Figure 6C), 

confirming that its gene expression signature is unique to other areas in the vector field. This 

finding is consistent with the expectations that the Sst Chodl cell type has a very distinct 

expression signature. 

 

The application of SSAM to this previously undescribed dataset, using default parameters, 

clearly demonstrates that it is feasible to rapidly and robustly identify cell types and tissue 

structures without segmentation. This example also demonstrates the possible use case of 

employing both guided mode and de novo mode of SSAM - the former is helpful to quickly 

identify known rare cell types in tissue, and the latter can be used to identify new cell-type 

clusters not observed in the scRNA-seq data. 

 
Discussion 

We describe a segmentation-free computational framework for processing in situ 

transcriptomics data and demonstrate its performance on three different adult mouse brain 

datasets: the somatosensory cortex (SSp) profiled by osmFISH, the hypothalamic preoptic 

region (POA) by MERFISH, and the visual sensory cortex (VISp) by multiplexed smFISH. 

We find that the cell-type signatures and maps generated by SSAM for both osmFISH and 

MERFISH datasets were similar to the previously reported ones, validating the underlying 

methodology of SSAM. Based on this, we successfully determined cell types and 
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constructed cell-type and tissue domain maps in the multiplexed smFISH mouse VISp 

dataset. 

 

In the osmFISH dataset our method outperforms the original segmentation-based cell-type 

map reconstruction in cases that were limited by the segmentation process. In the MERFISH 

dataset we show that SSAM is able to identify diverse populations of cell types and that 

SSAM is scalable to 3D image data by reconstructing plausible tissue structures in 3D. For 

the VISp multiplexed smFISH data, SSAM identified a rare cell type and elucidated a 

suspected spatial heterogeneity of cell types in the cortex without segmenting a single cell. 

 

SSAM is a reasonable alternative to segmentation based analysis, especially in difficult to 

segment tissues or when DAPI or poly-A images are not available. However, for some 

questions it is important to distinguish between cells to e.g. delineate growth arising from 

increasing cell size vs cell proliferation or to investigate multinucleation in cardiomyocytes or 

cytotrophoblast cells. In cases such as these, we also postulate the use of SSAM as a 

complementary method to segmentation-based analysis in two ways. First, the output of 

SSAM can be compared to validate that the segmentation process did not introduce 

artifacts. Secondly, to use the SSAM output as an input for the segmentation process to 

refine the segmentation procedure for different domains or cell-type signals. 

 

SSAM identified a distinct cell-type signature of Aldoc-expressing astrocytes that had low 

expression of Gfap and Mfge8. When looking closely at the localization of their signal they 

corresponded to specific subcellular compartmentalization in astrocytes that express high 

levels of Mfge8, which could also be due to localization of these mRNAs to different parts of 

the cell in astrocytes, due to the internal subcellular localization of the gene in Astrocytes. 

Such an intracellular spatial organization of the transcriptome is often an important form of 

post-transcriptional regulation (Flynn et al., 2019) and imaging-based methods can reveal 

this organization (Battich et al., 2013). Thus, SSAM can be used to identify and investigate 
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organization of mRNAs. 

 

One important parameter of SSAM is the kernel bandwidth of the KDE. We initially 

rationalized the bandwidths FWTM as 10.7 μm being close to the average size of cells in the 

mouse brain SSp tissue image (11.6 μm), and therefore applicable for the other brain tissue 

images, which is demonstrated by SSAMs performance in identifying neurons, microglia and 

astrocytes of different sizes. However, these tissues contain cells that exhibit a range of 

sizes which makes it hard to postulate that the FWTM of the kernel is a one-size-fits-all just 

because of its size. In fact, we believe the bandwidth needs only to be sufficient to smooth 

the gene expression signal over the majority of the cell body in order to identify an local 

maxima vector which represents that cell’s gene expression profile. Future applications of 

SSAM will need to show whether this may be a parameter that would need to be optimized 

for other tissue types that consist of cells of varying sizes and densities. 

 

In our clustering analysis of all three datasets, we observed that some clusters showed 

moderate mixed expression of signature genes from different cell types. Possible causes 

include: (1) different cells can overlap at different z location if the thickness of the section is 

comparable to the cell size; (2) clustering of the vectors might not be perfect and can include 

vectors in nearby clusters; (3) the gene expression estimated by the KDE algorithm is 

smoothed and the gene expression of one cell type can contaminate cells with different cell 

types located nearby. We found that (1) and (2) are of major importance for this 

phenomenon, but (3) also becomes noticeable in the closely packed small cells. For 

example, we found that relatively higher expression of the Foxj1 gene (a signature gene of 

ependymal cells) is detected in the choroid plexus signature, compared to that of 

segmentation-based osmFISH centroid. Such signal ‘contamination’, caused by the KDE 

spreading signal into adjacent cells, can be controlled by the bandwidth value of KDE - the 

smaller the bandwidth, the lower the contamination; however, use of very low bandwidths 

break one of the primary assumptions of SSAM in that the smoothed KDE signal should 
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represent cells, and not subcellular features. In this paper, we showed that this phenomenon 

is not so critical as to hinder detection of cell types in our examples when using a bandwidth 

of 2.5 μm (thus making this the default values for the bandwidth for KDE). However, it is 

recommended trying different bandwidths when it is expected that the average cell size 

deviates significantly from 10 μm. 

 

Currently, the field of in situ transcriptomics is advancing rapidly and more than 10,000 

genes can be simultaneously profiled using FISH-based methods (Eng et al., 2019; Xia et 

al., 2019). The high number of genes detected in large volumes opens up the potential for in 

situ transcriptomics methods to at least partially replace single cell RNA sequencing at large 

scale, placing SSAM as the first generic and segmentation-free pipeline to rapidly and 

precisely reconstruct tissue structure independent of the underlying imaging technique. 

Moreover, since the only required input data for SSAM is mRNA locations, it is highly 

adaptable to spatially resolved transcriptomics technologies beyond FISH methods, e.g. in 

situ or intact tissue sequencing (Ke et al., 2013; Lee et al., 2015; Wang et al., 2018), 

composite in situ imaging  (Cleary et al., 2019), Slide-seq (Rodriques et al., 2019), and 

Spatial Transcriptomics (Ståhl et al., 2016; Vickovic et al., 2019b). 

 

Also, the modular nature of the SSAM framework allows for easy incorporation of new 

features such as spatial differential gene expression analysis (Svensson et al., 2018b), 

pseudo-time analysis to infer differentiation trajectories (Angerer et al., 2016; Haghverdi et 

al., 2016; Qiu et al., 2017; Trapnell et al., 2014) and RNA velocity analysis to analyze the 

speed of transcriptional reprogramming or flux (La Manno et al., 2018) that is particularly 

applicable to the recently published intronSEQFISH technique (Shah et al., 2018). 

 

In summary, we present a novel algorithm, SSAM, to analyze cell types based on mRNA 

locations. Although not required, SSAM can make use of both prior defined cell-type 

signatures and segmentation. SSAM not only reproduces cell-type maps comparable to 
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segmentation-based approaches, but can improve them when image based cell 

segmentation is the limiting factor. This not only places SSAM as an independent method to 

segmentation-based approaches, but also a complementary one. SSAM is written as a 

Python library, with some core analysis functions wrapped up with external C functions to 

speed up the computation. The package is available as an easily installable Python 

package, and can easily be extended with existing in situ transcriptomics pipelines, e.g. 

starfish (https://github.com/spacetx/starfish) or Giotto (Dries et al., 2019). SSAM is 

accompanied with a notebook outlining all the steps presented in this paper. Taken together, 

we present a novel, flexible and robust method for fully automated cell-type and tissue 

domain analysis that is readily applicable to virtually any in situ transcriptomics methods 

including all imaging and in situ sequencing methods. 
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Figure titles and legends 

 
Figure 1. Schematic diagram of the SSAM computational workflow for cell type and 

tissue domain definition based on gene expression data. 

(A) In step 1, SSAM converts mRNA locations into a vector field of gene expression values. 

For this, SSAM applies a Gaussian KDE to mRNA locations for each gene and projects the 

resulting mRNA density values to a square lattice which represents coordinates in the tissue. 

The mRNA density estimated per each gene are stacked to produce a “gene expression 

vector field” over the lattice. The gene expression vector field is analogous to a 2D/3D image 

where each pixel/voxel encodes the averaged gene expression of the unit area. Further 

details of the application of KDE can be found in Figure S1A. 

(B) In step 2, cell-type signatures are identified de novo. First, the gene expression profile at 

probable cell locations are identified as the local regions in the gene expression vector field 

where the signal is highest. These local maxima of gene expression signals are identified 

and used for de novo cell type identification by cluster analysis. Alternatively, previously 

defined cell-type signatures can be used. Further details on local maxima selection can be 

found in Figure S1B. 

(C) In step 3, a cell-type map is generated. For this, the cell-type signatures are mapped 

onto the gene expression vector field and cell types are assigned based on Pearson’s 

correlation between each cell-type expression signature to the vector field to define cell-type 

distribution in situ. Further details about creating the cell-type map can be found in Figure 

S2A. 

(D) In step 4, the tissue domains are identified. The tissue domain signatures are identified 

using a sliding window to sample the cell-type neighborhood around local maxima. The 

tissue domain map is created by mapping these signatures onto the cell-type map. Further 

details on creating the tissue domain map can be found in Figure S2B. 

See also Figure S1, S2. 
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Figure 2. SSAM improves astrocyte and ventricle detection in the mouse SSp region. 

(A) Gene expression heatmap showing cell-type specific expression of marker genes. Rows 

show z-score normalized gene expression and columns show the gene expression patterns 

of filtered local maxima vectors (representative of gene expression within a cell). The top 

annotation shows the cell types and coloring based on the best correlating segmentation-

based cell-type signature from Codeluppi et al. The colors of the top annotation correspond 

to the cell type legend in Figure 2B. 

(B) A t-SNE map of cell-type signatures with distinct expression. Cell-type clusters are 

visualized as a 2D t-SNE embedding of filtered local maxima vectors. Cell-type annotation 

and coloring are based on the best correlating segmentation-based cell-type signature from 

Codeluppi et al. The cell-type legend is grouped by cell-type classes labels shown in the 

tSNE plot, and are based on groupings by Codeluppi et al., (Figure S3B,C). 

(C) The SSAM de novo cell-type map showing spatial organization of the cell types 

signatures in the gene expression vector field. Inset shows a zoom in of the highlighted 

tissue region. The colors of the cell types correspond to the cell-type legend in Figure 2B. 

(D) SSAM improves the reconstruction of the ventricle. The upper left 2 panels show the 

DAPI and Poly-A signal around the ventricle area, showing tightly packed cells (occlusion) 

and lower signal in the ventricle structure compared to surrounding cells. The lower left 2 

panels show the KDE gene expression signature for Foxj1 (the marker for ependymal cells) 

and Ttr (the marker for choroid plexus cells). The upper right 2 panels show the cell-type 

maps reconstructed by SSAM, showing a more complete reconstruction, and by Codeluppi 

et al., which misses parts of the ventricle structure. The bottom right 2 panels show the 

reconstructions of only the ependymal (yellow) and choroid plexus (teal) cell types by SSAM 

and Codeluppi et al. 

(E) SSAM has increased sensitivity of astrocyte detection. The far left upper and lower 

panels show DAPI and Poly-A signal for a region in the tissue. The middle left upper and 

lower panels show the overlap of Mfge8 signal (a marker for one astrocyte) with DAPI and 

Poly-A signals, showing that Mfge8 signal corresponds with low Poly-A signal, but with 
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higher DAPI signal. The top right 2 panels show the cell-type signals for Mfge8 expressing 

astrocytes by SSAM and Codeluppi et al., showing that SSAM detect much more astrocyte 

cell types. The bottom right 2 panels shows the overlay of Mfge8 signal with the cell-type 

calls by SSAM and Codeluppi et al., showing the astrocyte signals detected by SSAM 

correspond well with Mfge8 signal. 

See also Figure S3, S4. 

 

Figure 3. SSAM identifies cortical layer tissue domains in the mouse SSp cortex. 

(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from 

clustering local cell-type composition over sliding 100 μm circular windows, and projected 

back onto the cell-type map. The reconstruction shows the various cortical layers. 

(B) Cell-type composition within each tissue domain. The plots show that each domain 

consists of 7-14% Astrocyte Mfge8 cell types, apart from the ventricle, which instead shows 

a majority of choroid plexus and ependymal cell types. The colors in the pie charts 

correspond to the cell-type legend in Figure 2B. 

 

Figure 4. SSAM confirms rich diversity of inhibitory and excitatory neuron cell types 

and localization in the posterior hypothalamic POA. 

(A) Gene expression heatmap showing cell-type specific expression of marker genes. Rows 

show z-score normalized gene expression and columns show the gene expression patterns 

of filtered local maxima vectors (representative of gene expression within a cell). The bottom 

row of the top annotation shows the cell types. Due to a rich diversity of various inhibitory 

and excitatory neurons captured, the cell types were grouped into classes. The top row of 

the top annotation shows the cell classes which are named and colored based on the best 

cell-type signatures and cell classes from Moffitt et al. The colors of the cell classes top 

annotation correspond to the cell-type legend in Figure 4B. 

(B) A tSNE map of cell-type signatures with distinct expression. Cell-type clusters are 
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visualized as a 2D t-SNE embedding of filtered local maxima vectors. Cell-type annotation 

and coloring are based on the best correlating segmentation-based cell-type signature from 

Moffitt et al. The tSNE map clearly shows the distinct cluster of different inhibitory and 

excitatory cell-type signatures. Cell types are grouped into classes based on groupings by 

Moffitt et al. 

(C) The SSAM de novo cell-type map showing spatial organization of the cell types 

signatures in the gene expression vector field. Below left and right a zoom in of the 

highlighted tissue regions of the ventricle structure and clusters of oligodendrocyte cell 

types. The colors of the cell types correspond to the cell-type legend in Figure 4B. 

(D) Spatial localization of various inhibitory cell-type signatures. We found a number of 

inhibitory cell types which both matched expression signature and tissue localization 

described by Moffitt et al. The cell-type clusters and names (and corresponding cell type 

from Moffitt et al) are: C39 Inhibitory Coch (I-12), C16 Inhib Arhgap36 (I-13), C45 Inhib Isr4 

(I-15), C34 Inhib Calcr (I-14), and C14 Inhib Gda (I-23). 

(E) As panel D, but for excitatory cell types. Shown are: C19 Excitatory Cbln1,Cbln2 (E-19), 

C42 Excitatory Omp (E-16), C25 Excitatory Necab1,Gda (E-9), C8 Excitatory Necab1 (E-14), 

and C36 Excitatory Col25a1 (E-24). 

See also Figure S5. 

 

Figure 5. SSAM identifies enriched inhibitory and excitatory tissue domains in the 

posterior hypothalamic POA. 

(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from 

clustering local cell-type composition over sliding 100 μm circular windows, and projected 

back onto the cell-type map. The ventricle was manually removed from the tissue domain 

reconstruction. The reconstruction shows while the distribution of inhibitory and excitatory 

regions is intermingled, there are domains with enrichment of either of these cell types. 

(B) Cell-type composition within each tissue domain. The plots shows the composition ratio 
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of approximately 5:1 of inhibitory to excitatory cell types in the inhibitory tissue domain and 

vice versa. The colors in the pie charts correspond to the cell-type legend in Figure 4B. 

 

Figure 6. SSAM identifies a new cell type in L4 and confirms rare Sst Chodl cell type 

in the mouse VISp region. 

(A) Gene expression heatmap showing cell-type specific expression of marker genes. Rows 

show z-score normalized gene expression and columns show the gene expression patterns 

of filtered local maxima vectors (representative of gene expression within a cell). The top 

annotation shows the cell types and coloring based on the highest correlating single cell 

RNA-seq based cell-type signature from previous result (Tasic et al., 2018). The colors of 

the top annotation correspond to the cell-type legend in Figure 6B. 

(B) A tSNE map of cell-type signatures with distinct expression. Cell-type clusters are 

visualized as a 2D t-SNE embedding of filtered local maxima vectors. Cell-type annotation 

and coloring are based on the best correlating segmentation-based cell-type signature from 

previous result (Tasic et al., 2018). 

(C) The SSAM de novo cell-type map showing spatial organization of the cell types 

signatures in the gene expression vector field. Lower images zoom in on the highlighted 

tissue regions of the new cell type found in the L4 superficial region (boxed in white), and 

rare Sst Chodl cell type. The colors of the cell types correspond to the cell-type legend in 

Figure 6B. 

See also Figure S6. 

 

Figure 7. Rare Sst Chodl cell type localizes to the L5b cortical layer of the mouse VISp 

region. 

(A) Tissue domain map generated by SSAM. Tissue domain signatures were identified from 

clustering local cell-type composition over sliding 100 μm circular windows, and projected 

back onto the cell-type map. The reconstruction shows the various cortical layers within the 

adult mouse VISp, with very clear separation of the pia layer, and separation of layer 5 into 2 
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layers, 5a and 5b. Inset zooms into the location of the rare Sst Chodl cell type found in layer 

5b. 

(B) Cell-type composition within each tissue domain. The colors in the pie charts correspond 

to the cell-type legend in Figure 6B. 

See also Figure S7. 
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Materials and Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Roland Eils (roland.eils@charite.de). 

 

METHOD DETAILS 

Using Kernel Density Estimation to generate the gene expression vector field 

We used the n-dimensional KDE algorithm to estimate the density of mRNAs in 2D and 3D. 

To compute Gaussian KDE, we used our own implementation of the KDE algorithm for rapid 

computation. Spatial distribution of the probability of mRNA presence is estimated using the 

kernel density estimation; 

 

 

where  is a kernel function with a fixed window size . Here we use the Gaussian kernel: 

  

 

 

 

Note that each data point  lies within the respective image, hence the dimension  is either 

two or three. Ideally, the probability density at each lattice point must be evaluated by 

integration over the unit area. The lattice size is considered sufficiently fine-grained to 

capture all relevant information of the continuous Gaussian curve. To create a proper 

probability density, the lattice points are scaled to a sum of 1. Finally, the gene expression is 

estimated by multiplying each density by its total number of mRNA molecules. 
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Filtering of local maxima vectors 

The full set of local maxima may contain spurious signals originating from the extracellular 

space due to small debris, image artifacts, and background noise. To eliminate such 

deficiencies, SSAM uses minimum expression threshold defined by the position of 

observable drop in the histogram of gene expressions (Figure S3A, S5A, S6A) as an initial 

selection criterion. After that, the local maxima is filtered once more with a minimum total 

gene expression threshold further reducing spurious local maxima (Figure S3B, S5B, S6B). 

Furthermore, we implemented an optional “input mask” feature to limit selection of local 

maxima to regions of the image containing informative data, e.g. a mask outlining the 

informative tissue area. 

 

Normalization of local maxima vectors and the vector field 

Since the gene expression profiles of local maxima vectors are representative of the 

transcriptomes of cells, we considered them to be analogous to the gene expression count 

matrix obtained from single cell RNA sequencing (scRNA-seq) using unique molecular 

identifiers (UMI). Therefore, we normalized the local maxima vectors of the vector field 

(which would be representative of single cells) using sctransform (Hafemeister and Satija, 

2019), a normalization and regularization algorithm for UMI count data. After that, each 

vector of the vector field is normalized using sctransform, with the same parameters 

previously used to normalize the local maxima. 

 

Clustering of representative gene expression vectors 

The clustering algorithm implemented in SSAM is based on the source code of the R 

package Seurat (Butler et al., 2018). Here, we used the same algorithm reimplemented in 

Python. In short, an SNN network with correlation metric is built using a python package 

NetworkX (Hagberg et al., 2008). The weight of the network is calculated by a Jaccard 

similarity coefficient. A weight smaller than 1/15 was set to zero. Clustering was done by 

detecting communities in the network using a Louvain community detection algorithm 
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implemented in Python (python-louvain, https://python-louvain.readthedocs.io/). The 

resolution of the Louvain algorithm is set to 0.15. 

 

SSAM diagnostic plots 

To provide support to the user on whether to merge or remove clusters, SSAM generates a 

cluster-wise ‘diagnostic plot’, which consists of the following four panels: 1) location of the 

vectors originating from the cluster, 2) a map of the centroid embedded into the vector field, 

3) the centroid of the cluster, 4) the location of the cluster in t-SNE or UMAP embedding. In 

the three applications in this paper, the clusters to be merged or removed often showed a 

mismatch between the location of vectors (panel 1) and the map of the centroid (panel 2). 

For sub cell types, the map typically does not clearly show the full shape of the cells but only 

fragments, but simultaneously having clear marker gene expression (panel 3). This usually 

indicates that there is another centroid that has higher correlation to the expression profile of 

the entire cell body. In such cases, such centroids are merged to the centroid with higher 

correlation. For dubious clusters, it is observed that vectors are usually located outside the 

tissue region or represent image artifacts (panel 1), the map clearly shows that the centroid 

is mapped to the artifacts (panel 2), or that the gene expression does not show any clear 

expression of marker genes (panel 3). Such clusters are removed thereafter. The remaining 

clusters are then identified by comparing cluster marker genes to known cell-type markers. 

Note that in many cases, the identity of clusters can be easily assigned by comparing the 

centroids of the clusters to the known cell-type signatures, e.g., from single cell RNA 

sequencing. Therefore, if such signatures are given, SSAM additionally shows the closest 

cell-type signature among the given signature in the diagnostic plot to help users easily 

assign classes to clusters. The diagnostic plots for osmFISH, MERFISH, and multiplexed 

smFISH data is available online in the Jupyter notebook uploaded to zenodo 

(http://doi.org/10.5281/zenodo.3478502). 
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SSAM analysis of osmFISH data 

KDE was performed with a bandwidth of 2.5. The individual gene expression threshold and 

total gene expression threshold for selection of local maxima was 0.027 and 0.04, 

respectively (Figure S3A, S3B). Local maxima vectors were filtered once more with local k-

nearest neighbor density with a threshold of 0.002 (Figure S3C). The selected local maxima 

vectors were passed to sctransform to determine normalization parameters, after which the 

whole vector field was normalized. 

 

In SSAM guided mode, the mRNA count matrix of both the previously segmented cells and 

the scRNA-seq data were normalized by sctransform. The centroid of each of the annotated 

clusters was used to classify cell types in the vector field, generating a cell-type map guided 

by prior knowledge. 

 

In SSAM de novo mode, initially the selected local maxima vectors were clustered using the 

Louvain algorithm with a resolution value of 0.15. 66 clusters were initially identified (Figure 

S4A). The sub-cell-type clusters were merged manually and spurious clusters were 

removed, resulting in a total of 30 clusters (Figure 2A, 2B). For each cluster, the vectors 

with insufficient correlation to its cluster medoid were excluded from the centroid calculation 

(Figure S1B). The cluster centroids were compared to that of the segmentation-based 

clustering result (Figure S4B) and scRNA-seq result (Figure S4C) using Pearson’s 

correlation coefficient. The name of de novo clusters were determined based on the name of 

the highest correlated segmentation-based cluster for easy comparison of the gene 

expression signature. Note that clusters closest mapped to Inhibitory IC and Inhibitory CP 

cell types do not only appear in the internal capsule and caudoputamen, but also in the 

cortex. Therefore, we renamed these clusters to Inhibitory Kcnip2 (since Kcnip2 was the 

third most expressed gene for this cluster) and Inhibitory Rest, respectively. 

 

For tissue domain analysis based on the de novo cell-type map, the radius of the circular 
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window was 100 μm. The cell-type proportions at each window were clustered using 

agglomerative clustering with 15 clusters as an initial estimate. Spatially connected clusters 

with a correlation coefficient higher than 0.6 are merged. The resulting domain map is 

resized to match the size of the cell-type map, after which the cells in different domains are 

colored. 

 

Quantification of mRNA abundance in astrocytes and other brain cell types for osmFISH 

data interpretation 

The “L5_All.loom” loom object containing scRNA-seq expression data of half a million cells 

from the mouse nervous system (Zeisel et al., 2018) was downloaded 

(http://mousebrain.org/downloads.html). Using Python, the total mRNA molecules per cell 

were extracted and aggregated by their level 2 class labels (astrocytes, immune, vascular, 

ependymal, neuronal, peripheral glia and oligodendrocyte cells). The total mRNA counts per 

class were log normalized and subsequently followed a normal distribution (tested using the 

Shapiro-Wilk test for normality, all p-values < 1 x 10e-4 for each class), therefore a Student’s 

t-test was applicable. For each of the two classes of interest (‘Astrocytes’,’Immune’), we 

performed independent log-space t-tests for unequal sample sizes and unequal variance 

against each of the other classes. Both astrocyte and immune cell classes have significantly 

lower mRNA molecule counts compared to other cell types (all p-values < 1 x 10e-12). While 

the distribution of mRNA counts in log space followed a normal distribution, the use of a 

Student’s t-test for large numbers may be not appropriate. Hence, we also describe the 

difference in their distributions. For both astrocyte and immune cell classes, more than half 

of the cells of each classes exhibited a lower UMI count than the lowest quartile of any other 

cell class. 

 

SSAM analysis of MERFISH data 

KDE was performed with bandwidth 2.5. For local maxima selection the individual gene 

expression threshold was 0.0055, and total gene expression threshold was 0.0035 (Figure 
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S5A, S5B). The selected local maxima vectors were passed to sctransform to determine 

normalization parameters, after which the whole vector field was normalized. 

 

When running SSAM in guided mode, both the mRNA count matrix for each previously 

segmented cell was obtained, as well as scRNA-seq data. Both signature sets were 

normalized using sctransform, and mapped onto the normalized vector field producing the 

guided cell-type maps. 

 

For SSAM de novo mode, the selected vectors were clustered with resolution 0.15 of 

Louvain algorithm, resulting in 66 clusters (Figure S5C). By manual inspection, the sub cell-

type clusters were merged, and spurious clusters were removed, resulting in a total of 50 

clusters (Figure 2A, 2B). For each cluster, the vectors that did not have high correlation to 

its cluster medoid were excluded from the centroid calculation (Figure S1B). The centroids 

of the clusters are compared with that of the segmentation-based clustering result (Figure 

S4B) and scRNA-seq result (Figure S4C) using Pearson’s correlation coefficient. The SSAM 

de novo clusters correlating best to inhibitory and excitatory neurons were named based on 

the most highly expressed genes of each cluster, and the other clusters were named based 

on the previous study (Moffitt et al., 2018). 

 

Tissue domain analysis based on the cell-type map was performed with sliding spherical 

window with radius 100 μm. The cell-type proportions from each window are clustered using 

agglomerative hierarchical clustering with 20 clusters as an initial estimate, subsequently 

merging the clusters with correlation coefficient higher than 0.8. The resulting domain map 

was resized to match the size of the cell-type map, after which the cells in different domains 

were colored. 

 

Comparison of localization of inhibitory and excitatory neurons 

For a number of inhibitory and excitatory neuronal subtypes identified in the posterior POA 
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tissue image using SSAM de novo mode, we identified the best matching cell type based on 

Pearson correlation of their gene expression signatures (Figure S5F). We matched the 

following cell types: SSAM cluster 39 (C39) called Inhibitory Coch to Moffitt cluster I-12, C16 

Inhibitory Arhgap36 to I-13, C45 Inhibitory Isr4 to I-15, C34 Inhibitory Calcr to I-14 , C14 

Inhibitory Gda to I-23, C19 Excitatory Cbln1-Cbln2 to E-19, C42 Excitatory Omp to E-16, 

C25 Excitatory Necab1-Gda to E-9, C8 Excitatory Necab1 to E-14, and C36 Excitatory 

Col25a1 to E-24. For these cell types we checked the tissue localizations reported in the 

previous studies figures 5a, 5c, 5e, 6b, 6d, and S17 (Moffitt et al., 2018). Visually comparing 

localization of these neurons computed by SSAM reconstruction and those taken from the 

original publication revealed very similar patterns of localization (Figure 4D,E). 

 

3D modelling of MERFISH cell-type maps 

Firstly, the connected components in 3D were determined using a python package called 

‘connected-components-3d’ (https://github.com/seung-lab/connected-components-3d). 

Components comprising fewer than 100 voxels were removed. After this, the voxels filling 

connected components were removed, and only the contours were used for the vertex of the 

3D models. For each vertex the vertex normal was calculated by simple physics simulation, 

assuming that the direction of vertex normal vector is the same as the force vector when 

there are pulling forces between all of the contour voxels. The surface of the objects are 

reconstructed using screened Poisson reconstruction algorithm (Kazhdan and Hoppe, 2013; 

Kazhdan et al., 2006) using default parameters. The number of vertices was reduced to 5% 

of the total number of vertices using ‘vtkQuadricDecimation’ function (Garland and Heckbert, 

1997; Hoppe, 1999) of VTK library (Schroeder et al., 2006). Finally the objects are merged 

into one file. Each scene of the rotating movie was created using Meshlab (Cignoni et al., 

2008). 

 

VISP multiplexed smFISH data generation 

Multiplexed smFISH data of mouse primary visual cortex (VISp) was generated as part of 
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the SpaceTx consortium. Tissue processing was carried out as previously described (Hodge 

et al., 2019), with some modifications. 

 

Silanization of coverslips (#1.5, Thorlabs CG15KH) was performed by plasma cleaning for 

30 min in a Plasma-Prep III (SPI 11050-AB), followed by vapor deposition of 3-

aminopropyltriethoxysilane (APES, Sigma A3648) in a vacuum for 10 minutes. Coverslips 

were then washed in 100% methanol for 2 x 5 minutes, allowed to dry, and stored in a dust-

free environment until use. 

 

Fresh-frozen mouse brain tissue was sectioned at 10 μm onto silanized coverslips, let dry for 

20 min at -20°C, then fixed for 15 min at 4 °C in 4% PFA in PBS. Sections were washed 3 × 

10 min in PBS, then permeabilized and dehydrated with chilled 100% methanol at -20°C for 

10 min and allowed to dry. Sections were stored at −80 °C until use. Frozen sections were 

rehydrated in 2X SSC (Sigma 20XSSC, 15557036) for 5 min, then treated 10 min with 8% 

SDS (Sigma 724255) in PBS at room temperature. Sections were washed 5 times in 2X 

SSC. Sections were then incubated in hybridization buffer (10% Formamide (v/v, Sigma 

4650), 10% dextran sulfate (w/v, Sigma D8906), 200 µg/mL BSA (ThermoFisher AM2616), 2 

mM ribonucleoside vanadyl complex (New England Biolabs S1402S), 1 mg/ml tRNA (Sigma 

10109541001) in 2X SSC) for 5 min at 37°C. Probes were diluted in hybridization buffer at a 

concentration of 250 nM and hybridized at 37°C for 2 h. Following hybridization, sections 

were washed 2 × 10 min at 37°C in wash buffer (2X SSC, 20% Formamide), and 1 × 10 min 

in wash buffer with 5 μg/ml DAPI (Sigma 32670), then washed 3 times with 2X SSC. 

Sections were then imaged in Imaging buffer (20 mM Tris-HCl pH 8, 50 mM NaCl, 0.8% 

glucose (Sigma G8270), 30 U/ml pyranose oxidase (Sigma P4234), 50 µg/ml catalase 

(Abcam ab219092). Following imaging, sections were incubated 3 × 10 min in stripping 

buffer (65% formamide, 2X SSC) at 30°C to remove hybridization probes from the first 

round. Sections were then washed in 2X SSC for 3 × 5 min at room temperature before 

repeating the hybridization procedure. 
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The multiplexed smFISH image data was collected and processed using methods previously 

described (Hodge et al., 2019), except that images from different rounds of hybridization 

were registered in (x,y) based on the DAPI signal. The spot locations and raw data are 

available on request. 

 

SSAM analysis of VISp multiplexed smFISH data 

KDE was performed with bandwidth 2.5 μm. Local maxima were filtered with gene 

expression threshold of 0.027, and then filtered with total gene expression threshold of 0.2 

(Figure S6A, S6B). Initially 30 clusters were obtained using Louvain algorithm with a 

resolution value of 0.15. The rare cell type (Sst Chodl) was rescued, hence a total of 31 

clusters are considered for further analysis. By manual inspection, two pairs of the sub-cell-

type clusters are merged, and three spurious clusters were removed, resulting in 26 clusters. 

The centroids of the clusters are compared with that of scRNA-seq result using Pearson’s 

correlation coefficient (Figure S6E). The name of clusters were determined based on the 

name of highest correlated clusters found in the scRNA-seq data, except the newly found ‘L4 

IT Superficial‘ cluster. 

 

Tissue domains were defined with a sliding circular window with radius 100 μm, on a square 

periodic lattice with spacing 10 μm over the cell-type map. Agglomerative clustering of the 

compositions of cell types within the windows was initially performed with 20 clusters. 

Clusters with Pearson’s correlation higher than 0.8 were merged to result in nine clusters. 

Further, two clusters are merged since these are different parts of the Pia layer, and one 

cluster is removed since the cluster is mapped outside of the tissue region, resulting in a 

final set of seven clusters representing tissue domains (Figure 4E). 

 

Plotting 

The python packages Matplotlib 3.1.0 (Caswell et al., 2019) and Seaborn 0.9.0 (Waskom et 
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al., 2018) were used to draw 2D images, plots, and heatmaps. In SSAM, helper functions 

are included to easily generate plots. 

 

Movies 

Movies were generated by using Virtualdub (1.10.4-AMD64, http://www.virtualdub.org/). The 

H.264 codec was used to compress videos. 

 

Software 

Python version 3.7.0 was used throughout. The following python packages were used: 

numpy, scipy, pandas, matplotlib, seaborn, scikit-learn, umap-learn, python-louvain, sparse, 

scikit-image. R package sctransform was used for normalization and variance stabilization of 

the data. 

 

DATA AND CODE AVAILABILITY 

The source code of SSAM is available online at: https://github.com/eilslabs/ssam. A Jupyter 

notebook (https://github.com/eilslabs/ssam_example) outlines the commands used to 

download and pre-process the data, and to reproduce the results and figures of this study. 

The Jupyter notebooks also contain the extensive diagnostic plots used for parameter 

selection, and choice of removal or merging of clusters. All large files are available online 

from zenodo: http://doi.org/10.5281/zenodo.3478502. 

 

The osmFISH data (Codeluppi et al., 2018) used within the study is available from 

http://linnarssonlab.org/osmFISH/availability/. The single cell RNA sequencing data of 

mouse somatosensory cortex (Marques et al., 2016; Zeisel et al., 2015) are available from 

http://loom.linnarssonlab.org/. The single cell RNA sequencing data (Zeisel et al., 2018) to 

compare total mRNA molecules between cell types is available from http://mousebrain.org/. 

The high resolution poly-A and DAPI images of osmFISH data (Codeluppi et al., 2018) were 

kindly provided by Sten Linnarsson. The MERFISH data (Moffitt et al., 2018) is available 
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from https://datadryad.org/handle/10255/dryad.192644. Mouse VISp multiplexed smFISH 

data is available from Zenodo: http://doi.org/10.5281/zenodo.3478502. 

 

Supplemental Videos 

 

Supplemental Video 1. MERFISH 3D cell-type map, turntable rotating 

Supplemental Video 2. MERFISH 3D cell-type map, sweeping along z axis by 1 μm 

Supplemental Video 3. MERFISH neuronal cells, sweeping along z axis by 1 μm 

Supplemental Video 4. MERFISH astrocytes, sweeping along z axis by 1 μm 
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