
 1 

Deciphering the transcriptomic landscape of tumor-infiltrating CD8 lymphocytes 

in B16 melanoma tumors with single-cell RNA-Seq 

 

Authors: Santiago J. Carmona1,2*, Imran Siddiqui1, Mariia Bilous1,2,3, Werner Held1, 

David Gfeller1,2,3* 

*correspondence: Santiago.Carmona@unil.ch, David.Gfeller@unil.ch 
 
Affiliations 
1Department of Oncology UNIL CHUV, University of Lausanne, 1066 Epalinges, 

Switzerland. 2Ludwig Institute for Cancer Research, University of Lausanne, 1066 

Epalinges, Switzerland. 3Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, 

Switzerland. 

 
ABSTRACT 

Recent studies have proposed that tumor-specific tumor-infiltrating CD8+ T 

lymphocytes (CD8 TIL) can be classified into two main groups: “exhausted” TILs, 

characterized by high expression of the inhibitory receptors PD-1 and TIM-3 and lack 

of transcription factor 1 (Tcf1); and “memory-like” TILs, with self-renewal capacity 

and co-expressing Tcf1 and PD-1. However, a comprehensive definition of the 

heterogeneity existing within both tumor-specific and total CD8 TILs has yet to be 

clearly established.  

To investigate this heterogeneity at the transcriptomic level, we performed paired 

single-cell RNA and TCR sequencing of CD8 T cells infiltrating B16 murine melanoma 

tumors, including cells of known tumor specificity. Unsupervised clustering and gene 

signature analysis revealed four distinct CD8 TIL states - exhausted, memory-like, 

naïve and effector memory-like (EM-like) - and predicted novel markers, including 

Ly6C for the EM-like cells, that were validated by flow cytometry. Tumor-specific 

PMEL T cells were predominantly found within the exhausted and memory-like states 

but also within the EM-like state. Further, TCR repertoire sequencing revealed a large 

clonal expansion of exhausted, memory-like and EM-like cells with partial clonal 

relatedness between them. Finally, meta-analyses of public bulk and single-cell RNA-

seq data suggested that anti-PD-1 treatment induces expansion of EM-like cells.  

Our reference map of the transcriptomic landscape of murine CD8 TILs will help 

interpreting future bulk and single-cell transcriptomic studies and may guide the 

analysis of CD8 TIL subpopulations in response to therapeutic interventions. 
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INTRODUCTION 

 

Chronic antigen stimulation and inflammation lead to CD8 T cell differentiation and 

function that differ from those generated during acute infections. Chronically 

stimulated CD8 T cells acquire an “exhausted” state characterized by a progressive loss 

of cytolytic activity, reduced cytokine production and proliferative capacity, 

upregulation of multiple co-inhibitory receptors, such as PD-1, CTLA4, LAG3, TIGIT 

and TIM3, and a unique epigenetic state (Mclane, Abdel-Hakeem and Wherry, 2019). 

Although initially considered hypofunctional effector T cells, several observations 

suggest that exhausted T cells are heterogeneous and have crucial roles in limiting viral 

infection or tumor growth while avoiding damage to normal tissues (Speiser et al., 

2014). Yet, antigen-specific T cells in tumors often lack effector function and fail to 

control tumor growth and therefore they are also referred to as “dysfunctional” (Li et 

al., 2019; Philip and Schietinger, 2019). Notwithstanding, immune-checkpoint 

blockade (ICB) therapies using anti-PD-1 can result in a proliferative response of CD8 

tumor-infiltrating lymphocytes (TILs) and improve effector functions (Tumeh et al., 

2014).  

Understanding how anti-PD-1 therapy affects distinct CD8 TIL subsets is a major 

challenge in cancer immunotherapy. Recently, a novel intratumoral tumor-specific 

CD8 T cell subpopulation was discovered among murine TILs that mediates cellular 

expansion in response to immune checkpoint blockade (Miller et al., 2019; Siddiqui et 

al., 2019). These cells have been isolated and characterized using different 

combinations of surface markers and reporter genes (e.g. PD-1+ Tcf7:GFP+ and PD-1+ 

TIM3- SLAMF6+) and were named “memory-like” (Siddiqui et al., 2019) or 

“progenitor exhausted” (Miller et al., 2019). Memory-like CD8 TILs cells have the 

capacity to expand, self-renew and give rise to terminally differentiated cells (PD-1+ 

TIM3+ Tcf1-, GZMB+; termed “exhausted”) in the context of chronic antigenic 

stimulation, similarly to progenitor CD8 T cell subsets previously described in chronic 

infection (He et al., 2016; Im et al., 2016; Utzschneider et al., 2016; Wu et al., 2016; 
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Kallies, Zehn and Utzschneider, 2019). However, there are still many unknowns 

regarding how T cells committed to the exhaustion lineage develop from pre-exhausted 

T cell states and which of these states are present in the tumor. Therefore, a 

comprehensive definition of the heterogeneity existing within both tumor-specific and 

total CD8 TILs has yet to be clearly established. 

Here we aimed at defining a reference transcriptomic map and determining clonal 

relatedness of CD8 TILs, including cells of known tumor-specificity, in the common 

B16 murine melanoma model.  To this aim, we have sequenced the transcriptome 

including full-length T cell receptor genes of >3500 single-cell CD8 TILs from seven 

tumor-bearing mice including wild-type C57BL/6 and PMEL transgenic mice. 

Furthermore, to study how the CD8 TIL landscape is modulated by immunotherapy, 

we performed a meta-analysis of published bulk and single-cell RNA-seq (scRNA-seq) 

data. Our study provides new insights into the heterogeneity of CD8 TILs, including 

novel markers to define T cell subpopulations, as well as freely accessible 

bioinformatics tools to guide the analysis of scRNA-seq data sets. 

 

 

RESULTS 

 

Single-cell RNA-seq of CD8 TILs reveals the presence of exhausted, memory-like, 

naïve and effector memory-like T cells 

 

To obtain an unbiased view of the transcriptomic landscape of tumor-infiltrating CD8 

T cells from B16 melanoma tumor-bearing mice, we performed single-cell 

transcriptomic profiling paired with VDJ locus sequencing of CD8 TILs. We 

individually analyzed 4 wild-type (WT) C57BL/6 mice and 3 PMEL transgenic mice, 

whose CD8 T cells express a transgenic TCR specific for the B16 tumor-associated 

antigen gp100/PMEL (Figure 1 A). After data processing and quality control, >3500 

CD8 T cells from the 7 tumors were kept for downstream analyses (See Methods). 

Unsupervised clustering on the high-dimensional space revealed the presence of four 

robust CD8 TIL clusters with distinct transcriptomic profiles. Cluster 1 (C1) was 

defined by high expression of inhibitory receptors Pdcd1, Havcr2, Ctla4, Tigit and 

Lag3, exhaustion-related transcription factors such as Batf and Tox (Alfei et al., 2019; 

Khan et al., 2019; Scott et al., 2019; Yao et al., 2019) and high expression of cytotoxic 
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molecules (e.g. Gzmb, Prf1, Fasl), compatible with an exhausted state (Figure 1 B,C). 

Cluster 2 (C2), in proximity to C1, was defined by the co-expression of inhibitory 

receptors (expressing Pdcd1, Tigit and Lag3 but not Havcr2 or Entpd1) and memory 

related genes (e.g. Tcf7, Lef1, Sell), and low levels of cytotoxicity genes (Figure 1 B,C), 

compatible with the recently described memory-like subset (Miller et al., 2019; 

Siddiqui et al., 2019). Cluster 3 (C3) was defined by high expression of markers of 

naïve/memory (e.g. Tcf7, Sell, Ccr7, Lef1, Il7r) and no expression of cytotoxicity genes 

or inhibitory receptors, compatible with a naïve or central memory state (Figure 1 B, 

C). Based on the lack of Cd44 expression in this cluster (Figure 1 C) we provisionally 

refer to it as naïve cells cluster. Finally, cells in cluster 4 (C4) expressed high levels of 

memory-related genes (e.g. Tcf7, Lef1, Il7r) together with cytotoxicity genes (e.g. 

Gzmk, Gzmb). Compared to the memory-like C2, C4 was characterized by low 

expression of the inhibitory receptors Pdcd1, Tigit, Lag3 and the exhaustion-related 

transcription factors Tox and Batf (Figure 1 C). Expression of granzymes and lack of 

Sell and Ccr7 expression suggested an effector memory rather than a central memory 

phenotype (Figure 1 C). Hence, this cluster was referred to as Effector Memory-like 

(“EM-like”) state (Figure 1 B,C). Note that, while T cells with effector memory 

phenotype have been previously observed among TILs (Zhang et al., 2018; Haas et al., 

2019), EM-like cells have never been characterized at the transcriptomic level on 

murine tumors, and a gene signature for this population remains to be defined. 

Differentially expressed genes in each cluster are shown in Supplemental Table 1. Gene 

expression differences between these four clusters could be further summarized by the 

expression of three gene sets associated with 1) cytotoxicity (Gzmb, Prf1 and Fasl), 2) 

inhibition/exhaustion (Pdcd1, Havcr2, Tigit, Lag3, Ctla4) and 3) “stemness” (Tcf7, 

Sell, Il7r, Lef1). While the naïve cluster (C3) presented the highest level of stemness 

and the lowest inhibition and cytotoxicity, the exhausted cluster (C1) presented the 

lowest levels of stemness with the highest levels of inhibition and cytotoxicity (Figure 

1 D).  The memory-like (C2) cluster displayed higher levels of “stemness” compared 

to exhausted, together with lower levels of inhibition and very low levels of 

cytotoxicity, in line with previous observations (Miller et al., 2019; Siddiqui et al., 

2019). Instead, the EM-like (C4) cluster displayed intermediate levels of cytotoxicity 

and “stemness”, with low levels of inhibition (Figure 1 D). 
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Figure 1, Defining CD8 TIL states. A Overview of experimental design. B tSNE plots 

indicating global transcriptomic similarities of CD8 TILs, and colored by unsupervised 

clustering (upper-left panel, clusters C1 to C4) or by expression of specific marker genes (other 

panels). Cycling cells are marked in magenta. C Dotplot indicating average expression of a 

panel of marker genes (x-axis, associated with naïve/memory, exhaustion and effector T cell 

phenotypes) for the four T cell clusters (y-axis). Color scale indicates scaled and centered log-

normalized UMI counts. D Projection of T cell states onto three phenotypic scores axes 

(stemness, inhibition/exhaustion and cytotoxicity, see Methods). Phenotypic scores are relative 

to each other, varying from 0% (inner circle) for the lowest score, to 100% (outermost circle) 

for the highest score. E Gene signature enrichment analysis against reference CD8 T cell 

subtypes signatures observed in cancer and chronic infection. UP and DOWN refer to the sets 

of up- or down-regulated genes associated to each comparison. Color scale indicate statistical 

significance of signature overlap (FDR corrected p-values, Fisher’s exact test). Details about 

the reference signatures in Methods. F Volcano plot showing top differentially expressed genes 
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between EM-like vs exhausted and memory-like states. G Relative T cell cluster composition 

for each mouse. H Percentage of cycling cells in each cluster, as defined by high expression 

levels of cell-cycle genes in all TILs (left) or PMEL-specific TILs (expressing PMEL TCR,  

right). See methods for details.  

 

 

We next evaluated to what extent these CD8 TIL states relate to previously described 

CD8 T cell subsets found in the context of cancer or infection. An initial gene signature 

enrichment analysis confirmed that C3 matched the transcriptomic state of splenic 

naïve T cells (Sarkar et al., 2008), while the other three clusters up-regulated genes 

associated with differentiated CD8 T cells (Supplemental Figure 1, see Methods). Next, 

we focused on the three differentiated states to evaluate signature enrichment against 

specific CD8 T cell subtypes. We found a consistent mapping of the memory-like (C2) 

cluster with the tumor-resident PD-1+ Tcf1+ “memory-like” subset (Siddiqui et al., 

2019) (Figure 1 E), whereas the exhausted cluster (C1) was mapped to the “exhausted” 

PD-1+ Tcf1- subset described in the same study. Further, these two clusters also 

matched the memory-like and exhausted subsets, respectively, found in chronic 

infection (Utzschneider et al., 2016) (Figure 1 E). 

 

The EM-like cluster did not match the exhausted nor the memory-like signatures,  and 

instead showed specific enrichment for the signature of pathogen-specific CD8 T cells 

found upon acute infection (“Tumor vs acute infection – DOWN”, row 6 in Figure 1 E) 

(Schietinger et al., 2016). Further, among pathogen-specific CD8 T cells found upon 

acute infection, the EM-like cluster was specifically enriched in the signature of 

memory (day 60 post LCMV Armstrong infection, “Memory vs effector (acute inf.) – 

UP”) rather than effector (KLRG1+ day 4.5 post LCMV Armstrong infection) CD8 T 

cells (“Memory vs effector (acute inf.) – DOWN”) (rows 7 and 8 in Figure 1 E). Hence, 

signature enrichment analysis confirmed an effector memory (EM-like) phenotype for 

this population. Since EM-like cells have not been previously characterized in B16 

tumors, we analyzed this cluster in more detail. Differential gene expression analysis 

of EM-like vs exhausted and memory-like cells revealed potential novel markers for 

this population (Figure 1 F), including Ly6c2 that encodes a surface molecule that has 

been previously associated to memory CD8 T cells (Walunas et al., 1995; Pihlgren, 
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1996; Cerwenka et al., 1998) and Cxcr3, a chemokine receptor that guides the 

recruitment of T cells into inflamed peripheral tissue (Groom and Luster, 2011). 

 

Next, we analyzed how CD8 TIL states were distributed among WT and PMEL mice, 

i.e. according to antigen-specificity. We found that T cell from both types of mice were 

present in all four states (Figure 1 G and Supplemental Figure 2), although a clear 

distribution bias was observed. TILs from PMEL mice were enriched in exhausted (33-

49% of PMEL vs 2-4% of WT) and memory-like (14-20% of PMEL vs 3-8% of WT) 

states. TILs from WT mice were enriched in EM-like (17-37% of PMEL vs 26-69% of 

WT) and naïve (14-20% of PMEL vs 27-65% of WT) T cells. Thus, while tumor-

specific cells are enriched in the exhausted and memory-like states, total polyclonal 

CD8 TILs are enriched in the EM-like and naïve states. Interestingly, our analysis 

revealed the presence of tumor-reactive (PMEL) cells in the EM-like state. 

 

Cycling cells (i.e. with high expression of cell cycle-related genes) were detected within 

exhausted (16%), memory-like (6%) and EM-like (4%) states (cells in magenta in 

Figure 1 B, and Figure 1 H left panel), as opposed to cells from the naïve cluster that 

did not cycle (<1%). When considering PMEL-specific T cells (effectively expressing 

PMEL TCR receptor, see Methods), a similar distribution was observed (Figure 1 H, 

right panel). This indicates that in addition to exhausted and memory-like, EM-like 

cells, including tumor-specific EM-like cells, replicate in the tumor. 

 

The robustness of the four identified transcriptomic states was confirmed by 

unsupervised clustering of an independent publicly available scRNA-seq dataset of 

CD8 TILs from B16 melanoma tumors (Singer et al., 2016), where a consistent cluster 

correspondence was verified between datasets (Supplemental Figure 3). Furthermore, 

re-analysis of a recently published scRNA-seq dataset of tumor-specific CD8 TILs in 

B16-OVA tumors (Miller et al., 2019) revealed the presence of EM-like cells (12% 

among OVA Tetramer+ CD8 TILs) in addition to memory-like (11%) and exhausted 

(76%) cells (Supplemental Figure 4), further supporting that part of the EM-like subset 

contains tumor-specific cells. 

 

Overall, we were able to define the landscape of transcriptomic states of endogenous 

CD8 TILs in B16 melanoma tumors and recapitulate the naïve, memory-like and 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800847doi: bioRxiv preprint 

https://doi.org/10.1101/800847


 8 

exhausted CD8 TIL subsets through an unbiased analysis of single-cell heterogeneity. 

Moreover, we observed that among total CD8 TILs the most prominent subset 

corresponded to a transcriptomically distinct state that resembles that of effector 

memory T cells found in the context of acute infections.  

 

EM-like cells can be identified as Tcf1 high PD-1 intermediate CD8 TILs by flow 

cytometry 

Our scRNA-seq data showed that the levels of Tcf7 (encoding Tcf1) expression were 

high among naïve, memory-like and EM-like, and zero among exhausted cells (Figure 

2 A). Pdcd1 (encoding PD-1) expression was highest in exhausted and memory-like, 

intermediate in EM-like and absent in naïve CD8 TILs (Figure 2 A). To validate these 

observations at the protein level, we performed flow cytometry analysis of CD8 TILs 

infiltrating B16 tumors at day 12 post tumor engraftment. In agreement with previous 

studies (Thompson et al., 2010) and consistently with our scRNA-seq data, we found 

both naïve (CD44low, 4 to 20%) and antigen-experienced (CD44high) cells among CD8 

TILs. Next, CD44high CD8 TILs were classified into four compartments according to 

Tcf1 and PD-1 expression: Tcf1low PD-1high (~9% on average), Tcf1high PD-1high (~31%) 

and Tcf1high cells with low (~21%) or intermediate (~30%) PD-1 levels (Figure 2). 

According to the transcriptomic profiles and in line with previous evidence (Miller et 

al., 2019; Siddiqui et al., 2019), exhausted cells are mostly found in the Tcf1low PD-

1high compartment and memory-like cells in the Tcf1high PD-1high gate. From our 

transcriptomics data EM-like cells were predicted to be in the Tcf1high PD-1int 

compartment (Figure 2 A) and show over-expression of Ly6c2, Cxcr3 and Itgb7 (Figure 

1 F). Indeed, the Tcf1high PD-1int compartment showed the highest levels of EM-like 

predicted markers Ly6C and CXCR3 and a higher proportion of ITGB7+ cells (Figure 

2 B,C), confirming our predictions. Hence, EM-like cells can be identified by flow 

cytometry as Tcf1high PD-1int CD8 TILs. 
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Figure 2, Flow cytometry validation of CD8 TIL populations. A Violin plots showing the 

decreasing and increasing expression levels (log-transformed normalized UMI counts +1) for 

Tcf7 and Pdcd1 for naïve, EM-like, memory-like and exhausted states. B Flow cytometry 

analysis of endogenous CD8 TILs from one representative tumor. Histograms show cell counts 

normalized by mode for naïve (CD44 low) T cells (red), Tcf1high PD-1low (light violet),  Tcf1high 

PD-1intermediate (violet), Tcf1high PD-1high (blue) and Tcf1low PD-1high (green).  C geometric Mean 

Fluorescence Index (MFI) for Ly6c and Cxcr3 and percentage of ITGB7high cells for three 

tumors. Representative of two independent experiments. * denote statistically significant mean 

differences (Dunnett's multiple comparisons test p-value < 0.05). 

 

 

Exhausted, Memory-like and EM-like CD8 TILs are clonally expanded and show 

partial clonal relatedness 

In order to assess the clonal relatedness of CD8 TILs states, we analyzed TCR alpha 

and beta chain sequences in the >3500 single-cells shown in Figure 1 B (see Methods). 

We obtained full-length productive paired alpha and beta chains sequences (VJ or VDJ, 

respectively) in 81% of the CD8 TILs (Figure 3 A). 
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In each WT mouse, we identified T cells of the same clonotype, i.e. those expressing 

identical CDR3s for both alpha and beta T cell receptor chains. We found that between 

10 and 39% of the TILs were expanded (i.e. their TCR were shared with at least another 

T cell in the same mouse). As expected, less than 1% of expanded T cells were found 

in the naïve state (Figure 3 B). In contrast, 68% of the T cells were expanded in the 

exhausted state, 52% in the EM-like state and 39% in the memory-like state. Expanded 

clonotypes did not match reported invariant chains and no known epitopes were found 

for these TCRs by literature and database searches. Furthermore, clonotypes in WT 

mice were largely private (mouse-specific) (see Methods and Supplemental Figure 5). 

As a control, a large clonal overlap was observed between different PMEL mice, due 

to the common transgenic PMEL TCR (Supplemental Figure 5).  

 

Next, we evaluated TCR repertoire overlap between transcriptomic states. To this aim, 

we assessed TCR repertoire similarity using the Morisita-Horn (MH) similarity index 

that considers the relative frequencies of clonotypes between samples, where 0 

indicates no overlap, and 1 is an exact match (Weinberger et al., 2015). Interestingly, 

this analysis revealed that exhausted and memory-like states had a considerable 

repertoire overlap (MH index = 0.302, Figure 3 C), indicating the presence of shared T 

cell clones. A smaller overlap was observed between exhausted and EM-like states 

(MH = 0.127), indicating that these are also clonally related, yet to a lesser degree 

(examples of expanded clones are shown in Figure 3 D). Finally, very low overlaps 

were observed between EM-like and memory-like (MH = 0.002) or between naïve and 

any other state (MH = 0.001).  

 

These results show that single clonotypes span both exhausted and memory-like states, 

in line with recent studies demonstrating that memory-like T cells can give rise to 

exhausted T cells in the tumor (Miller et al., 2019; Siddiqui et al., 2019). Furthermore, 

although EM-like and exhausted states presented largely distinct TCR repertoires, some 

clones were present in both, suggesting that occasionally EM-like cells (most likely 

tumor-specific) may yield exhausted T cells, yet to a lesser degree than the memory-

like state. 
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Figure 3, Clonal relatedness of CD8 TIL states. A Percentage of cells with productive TCR 

paired alpha/beta chains obtained in each of the 7 mice. B Percentage of T cells with non-unique 

(clonally expanded) TCR clonotype in each CD8 TIL cluster in endogenous responses in wild-

type mice. C Repertoire overlap (Morisita-Horn index) between TIL states in wild-type mice. 

D Examples of clonally expanded T cells in wild-type mice. In each sub-panel, T cells with 

identical alpha and beta CDR3 sequences detected in individual mice are shown. Cell colors 

represent corresponding CD8 TIL states.  

 

PD-1 checkpoint blockade expands EM-like cells 

Multiple studies have established that PD-1 blockade expands intratumoral T cells and 

improves tumor control (Curran et al., 2010; Wei et al., 2017; Gubin et al., 2018; Gide 

et al., 2019). However, it is less clear how different CD8 T cell states are affected by 

immune-checkpoint blockade (ICB). Hence, here we aimed at evaluating the impact of 

ICB on the murine CD8 TIL transcriptomic landscape. To this end, we first extracted 

gene signatures of the exhausted, memory-like and EM-like states from our scRNA-

seq dataset (Figure 4 A and Supplemental Table 1). Next, we performed gene-set 

enrichment analysis (GSEA) on published bulk RNA-seq data of CD8 TILs following 

anti-PD-1 therapy (raw data in murine sarcoma from (Gubin et al., 2014). Our results 

indicated that ICB led to a selective enrichment of the EM-like signature (p=0.035, 
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Figure 4 B). A similar effect was observed for non-small-cell lung cancer CD8 TILs 

upon ICB (Supplemental Figure 6 A, raw data from (Markowitz et al., 2018)). 

 

In order to assess whether the bulk transcriptomic signature shift towards the EM-like 

state upon ICB is explained by differences in CD8 TIL states composition, we re-

analyzed publicly available scRNA-seq data of CD8 TILs pre vs post ICB. To this aim, 

we developed a machine learning tool, named TILPRED, that predicts CD8 TIL states 

according to our definition (see Methods). TILPRED analysis of CD8 TIL scRNA-seq 

data from murine sarcoma ((Gubin et al., 2018)) and MC38 colon adenocarcinoma 

(Kurtulus et al., 2019) showed an increase in the proportion of EM-like TILs upon ICB 

at the single-cell level (Figure 4 C,D), consistent with the enrichment of the EM-like 

signature in the bulk transcriptomics data. Hence, our analyses indicate that EM-like T 

cells expand upon ICB. 

 

Finally, we investigated whether ICB resulted in an enrichment of EM-like cells in 

cancer patients. Re-analysis of CD8 TIL scRNA-seq data from melanoma patients that 

responded to ICB (Sade-Feldman et al., 2018) showed an increased proportion of 

predicted EM-like cells (p=0.032, see Methods and Supplemental Figure 7). These data 

suggest that intratumoral EM-like T cells in cancer patients might be modulated by 

ICB. 
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Figure 4, CD8 TIL state gene signature analysis of anti-PD-1 therapy. A Gene signatures 

of EM-like, memory-like and exhausted derived from our scRNA-seq analysis. For 

visualization, 100 random cells were sampled from each TIL state, and top differentially 

expressed genes are displayed. Horizonal lines separate groups of genes with similar expression 

patterns.  B TIL state gene-signature enrichment analysis (GSEA) for the transcriptomic 

response of bulk endogenous CD8 TILs to PD-1 blockade (raw from (Gubin et al., 2014)). 

NES=Normalized Enrichment Score. C tSNE plot of global transcriptomic similarity of CD8 

TILs from  murine sarcoma upon PD-1 blockade (dataset from (Gubin et al., 2018)); D tSNE 

plot of global transcriptomic similarity of CD8 TILs from MC38 colon adenocarcinoma upon 

PD-1 and TIM3 blockade (dataset from (Kurtulus et al., 2019), contains only PD-1 low TILs). 

Cell colors represent TIL state predictions by TILPRED.  

 

DISCUSSION 
 
In the past few years, single-cell transcriptomics and mass cytometry studies have 

revealed a large complexity of CD8 T cells in the tumor microenvironment, including 

multiple cellular states that have been referred to as exhausted, memory, naïve, effector, 

effector memory, etc., and this heterogeneity is likely to be a determining factor in 

therapy outcome (Tirosh et al., 2016; Chevrier et al., 2017; Kang et al., 2017; 
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Brummelman et al., 2018; Guo et al., 2018; Jerby-Arnon et al., 2018; Sade-Feldman et 

al., 2018; Zhang et al., 2018; Li et al., 2019; Yost et al., 2019). However, as biological 

variability between patients and clinical samples is very large and tumor-specificity of 

T cells is rarely known, it is also crucial to define robust and unbiased tumor-infiltrating 

T cell transcriptomic states in murine models.  Indeed, very recent studies in B16 

murine melanoma model have shown that tumor-specific CD8 TILs can be found in the 

exhausted (PD-1+ TCF1-) and memory-like (“stem-like” PD-1+ TCF1+) states (Miller 

et al., 2019; Siddiqui et al., 2019).  

Here we have defined a reference transcriptomic map of CD8 TILs in the common B16 

melanoma model. Our single-cell RNA-seq analysis enabled us to robustly and 

unbiasedly define four distinct CD8 TIL transcriptomic states: exhausted, memory-like, 

naïve and effector memory-like (EM-like).  

 

Consistently with previous observations, tumor-specific PMEL TILs were enriched in 

exhausted and memory-like states  (Miller et al., 2019; Siddiqui et al., 2019).  In 

contrast, total polyclonal CD8 TILs were enriched in the EM-like and naïve states. 

Therefore, an intriguing question is why the EM-like population is abundant in the 

endogenous polyclonal CD8 TIL compartment, but small among tumor-specific cells. 

A likely explanation is that the EM-like compartment is enriched in non tumor-specific 

cells, as multiple studies have shown the presence of large numbers of “bystander” T 

cells in human tumors (Simoni et al., 2018; Scheper et al., 2019). However, the 

presence of tumor-specific PMEL T cells in the EM-like state (Figure 1 G and 

Supplemental Figure 2) as well as the clonal expansion and partial TCR repertoire 

overlap between the EM-like and exhausted states (Figure 3 C,D) indicate that at least 

part of the EM-like population is indeed tumor-specific.  

 

Compared to exhausted and memory-like, EM-like cells have lower expression of 

inhibitory receptors genes such as Pdcd1, Tigit, Lag3 and of the transcription factor Tox 

(Supplemental Figure 6 D), which is essential to establish and maintain the epigenetic 

T cell exhaustion program enabling T cells to persist in the context of chronic antigenic 

stimulation (Alfei et al., 2019; Khan et al., 2019; Scott et al., 2019; Yao et al., 2019). 

Interestingly, reanalysis of published data indicated that tumor-specific CD8 TILs 

knock-out for Tox down-regulated the signature of the exhausted state and up-regulated 

the EM-like signature (and the memory-like signature to a lesser extent, Supplemental 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800847doi: bioRxiv preprint 

https://doi.org/10.1101/800847


 15 

Figure 6 C). This suggests that Tox-KO tumor-specific CD8 TILs, which are unable to 

differentiate into exhausted cells, might remain in the pre-exhausted EM-like and 

memory-like states. Hence, our data suggest that the EM-like may be an early 

differentiation state of tumor-infiltrating CD8 TILs before receiving persistent 

antigenic stimulation. In this scenario, upon tumor migration, immunodominant clones 

in the EM-like state would rapidly activate the exhaustion program and differentiate in 

response to strong antigenic stimulation.  In line with this hypothesis, our re-analysis 

of scRNA-seq data of tumor-specific CD8 TILs from Miller and colleagues (Miller et 

al., 2019) indicated that while 12% of EM-like cells were detected at day 10 

(Supplemental Figure 4), only 1% were detected at day 20 post-tumor engraftment, 

suggesting a temporal progression towards more differentiated states. Cognate antigen 

dose and T cell avidity might be relevant factors controlling the dynamics of such 

intratumoral differentiation. For example, it has been shown that increased antigen dose 

and T cell avidity promote CD8 T cell differentiation into the exhausted phenotype in 

cancer and chronic infection (D. T. Utzschneider et al., 2016; Martínez-Usatorre et al., 

2018). It is possible that subdominant clones, less subject to persistent stimulation, 

undergo a retarded differentiation and accumulate in the EM-like state. Hence, our 

results have potential implications on the understanding of intratumoral differentiation 

of CD8 T cells, an open central question in immunology (Blank et al., 2019). 

 

Our flow cytometry analysis revealed that the EM-like population is enriched within 

the Tcf1high PD-1intermediate CD8 TIL compartment and expresses high levels of the 

surface markers Ly6C, CXCR3 and ITGB7, as predicted from the transcriptomic 

analysis. These are novel EM-like CD8 TILs surface markers that can be useful in 

functional studies of this population. Ly6C is an adhesion molecule expressed by 

neutrophils, monocytes, dendritic cells and also in subsets of CD4 and CD8 T cells, 

including memory CD8 T cells (Walunas et al., 1995; Pihlgren, 1996; Cerwenka et al., 

1998; Lee et al., 2013). Interestingly, Ly6C+ CD8 T cells with effector memory 

phenotype isolated from spleens of tumor-primed mice have shown anti-tumor activity 

in vitro (Piranlioglu et al., 2019), supporting the hypothesis that tumor-specific EM-

like cells are related to pre-exhaustion states. The chemokine receptor CXCR3 is 

important for the recruitment of T cells into inflamed peripheral tissue (Groom and 

Luster, 2011) and is also required by CD8 TILs for effective response to anti-PD-1 

therapy (Chow et al., 2019). As the EM-like state expressed the highest levels of 
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CXCR3, this chemokine system might contribute to the enrichment of EM-like cells 

upon anti-PD-1 therapy observed in our study. The EM-like state -together with naïve 

cells- also showed  differential expression of the integrin subunit b7 (Itgb7). At the 

protein level however, ITGB7 was expressed only by a subset of EM-like cells (Figure 

2 C). Of note, Itgb7 was co-expressed in EM-like cells with the integrin subunit a4 

(Itga4) but not with Itgae (CD103), with which ITGB7 dimerizes in tissue-resident T 

cells (Corgnac et al., 2018). Instead, the a4b7 integrin has been previously shown to 

mediate lymphocyte migration to gut-associated lymphoid tissue and might have a 

different function in the context of tumors (Denucci, Mitchell and Shimizu, 2009). 

 

Multiple studies have established that PD-1 blockade increases T cell infiltrations in 

tumors leading to improved anti-tumor control (Curran et al., 2010; Wei et al., 2017; 

Gubin et al., 2018; Gide et al., 2019). Moreover, recent studies have shown that ICB 

promotes expansion of tumor-specific memory-like cells and their differentiation into 

(terminally) exhausted cells (Miller et al., 2019; Siddiqui et al., 2019). However, it is 

less clear how the CD8 TIL landscape is impacted by ICB.  

Our meta-analysis of bulk and single-cell transcriptomic data showed a selective 

enrichment of the EM-like signature (e.g. Cxcr3, Ly6c2, Ccl5, Gzmk, Itgb7) following 

ICB. As the EM-like is a relatively undifferentiated state, we reasoned that the EM-like 

signature would not be enriched upon ICB among T cells subsets that were already 

differentiated before treatment. Indeed, we observed that in vitro activated tumor-

specific cells did not up-regulate the EM-like signature following adoptive transfer and 

ICB but instead up-regulated the exhaustion signature (e.g. Mt1, Havcr2, Prf1, Gzmb, 

etc., Supplemental Figure 6 B, sequencing data from (Mognol et al., 2017)).  This 

suggests that the enrichment in EM-like cells upon ICB depends on the expansion of 

relatively undifferentiated clones whereas tumor-specific T cells that have already 

activated the exhaustion program will only progress further towards exhaustion in 

response to ICB. In line with our observations, other studies have shown up-regulation 

of Cxcr3, Ccl5 and Ifit3 (EM-like state genes) or expansion of PD-1low CD8 T cells 

(that partially contain EM-like cells, Figure 4 D) among CD8 TILs following ICB in 

murine models (Gubin et al., 2018; Kurtulus et al., 2019). In humans, a CD8 TIL subset 

differentially expressing GZMK and CXCR3 (EM-like state markers) has been 

previously observed in scRNA-seq analysis of basal and squamous cell carcinoma 
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(Yost et al., 2019), hepatocellular carcinoma (Kang et al., 2017) and small-cell lung 

cancer (Guo et al., 2018), suggesting that a similar population might be conserved 

between mice and human. However, in these studies tumor specificity was unknown, 

limiting our understanding of EM-like TILs in cancer patients. Our results will facilitate 

future investigations aimed at defining the function of intratumoral EM-like cells, 

which may provide novel markers of T cell response to immune checkpoint blockade. 

 

In conclusion, our scRNA-seq study defined a reference map of the transcriptomic 

landscape of CD8 TILs in B16 melanoma. As such, this resource provides a base upon 

which to interpret more complex CD8 TIL transcriptomic landscapes such as those 

derived from clinical samples, where T cell specificity and clonality are usually 

unknown. Our CD8 TIL state predictor is available as an R package at 

https://github.com/carmonalab/TILPRED and a streamlined web interface for 

exploring our scRNA-seq data is available at 

https://tilatlas.shinyapps.io/B16_CD8TIL_10X/.  
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MATERIALS AND METHODS 

Mice 

For scRNA-seq 6-12 week-old male C57BL/6 mice (CD45.1+) and PMEL (Jackson 

Laboratory, Cat#005023) were bred and housed under SPF conditions in the 

conventional animal facility of the University of Lausanne. Experiments were 

performed in compliance with the University of Lausanne Institutional regulations and 

were approved by the veterinarian authorities of the Canton de Vaud. 

 

Tumor experiments and isolation of TILs 

Right flanks of mice (C57BL/6 or PMEL) were shaved and B16F10 cells (2.5x105) 

were injected subcutaneously. Tumor volumes were estimated by measuring the tumor 

size in two dimensions using a caliper. The tumor volume was calculated according to 

the formula (length x width2)/2. Mice were sacrificed at the indicated time point and 

the weight of the excised tumor mass was determined. 

Tumors were excised post 15 days of tumor engraftment, manually dissociated and 

digested enzymatically with Tumor Dissociation Kit (Miltenyi Biotec). Digested 

tumors were mashed through 70 µm filters. Hematopoietic cells were further purified 

using a discontinuous Percoll gradient (GE Healthcare). Cells at the interface were 

harvested and washed twice before further use.  For cell sorting, tumor infiltrating T 

cells were further purified using mouse CD8 T cell enrichment kit (StemCell 

Technologies) and sorted by flow cytometry using following antibodies - CD8a (Clone 

53-6.7; eBiosciences), CD45 (Clone MI/89; eBiosciences) and Zombie Aqua (423102; 

Biolegend). The purity of sorted cells was greater than 99%. Flow sorted tumor 

infiltrating CD8 T cells were thus used for single cell RNA sequence purpose. 
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10x Genomics single-cell gene expression sample processing and sequencing 

After sorting, intratumoral CD8 T cells were loaded into a Chromium Single Cell 

Instrument (10x Genomics, Pleasanton, CA) together with beads, master mix reagents 

(containing RT enzyme and poly-dt RT primers) and oil to generate single-cell-

containing Gel Beads-in-emulsion (GEMs). Single-cell Gene Expression libraries were 

then prepared using Chromium Single Cell 5’ Library & Gel Bead Kit (PN-1000006) 

following the manufacturer's instruction (protocol CG000086 Rev E).  With this 

procedure, the cDNAs from distinct droplets harbor a distinct and unique 10x “cell 

barcode”. These sequencing libraries were loaded onto Illumina NextSeq High Output 

Flow Cells and sequenced using read lengths of 26 nt for read1 and 132 nt for read2. 

The Cell Ranger Single Cell Software Suite 2.1.1 

(https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/using/mkfastq) was used to perform sample 

demultiplexing, barcode processing, reads downsampling per sample (down to 118,806 

mean reads per cell) and single cell 5’ gene counting using default parameters and 

mouse genome assembly mm10. 

   

Single-cell TCR sequencing and analysis 

Intratumoral CD8 T cells cDNAs that were generated as an intermediate step during 

the aforementioned  single-cell gene expression libraries preparation were 

subsequently used in a distinct workflow. Briefly, the 10x mouse V(D)J Enrichment 

Kit (PN-1000071) was used to enrich for TCR sequences, after which V(D)J-enriched 

libraries were constructed with the Chromium Single Cell 5’ Library Construction Kit 

(PN-1000020). The Cell Ranger Single Cell Software Suite 2.2.0 

(https://support.10xgenomics.com/single-cell-gene-
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expression/software/pipelines/latest/using/mkfastq) was used to perform sample 

demultiplexing,  barcode processing and clonotype identification, using default 

parameters.  

For each mouse separately, T cells sharing identical alpha and beta TCR chains were 

assigned to a unique clonotypes ID. PMEL-specific cells were identified based on 

expression of the transgenic PMEL-specific TCR (CASSFHRDYNSPLYF and 

CAVNTGNYKYVF for beta and alpha CDR3s, respectively, (Overwijk et al., 2003), 

GenBank entries EF154513.1 and EF154514.1, Supplemental Figure  6 B). Single-cell 

TCR sequences are available as Supplementary Files at GEO under accession 

GSE116390).   

TCR repertoire similarity between mice (Supplemental Figure 5 A) and TIL states 

(Figure 3 B) was calculated using the Morisita-Horn (MH) index as implemented in the 

R package ‘divo’ (Rempala and Seweryn, 2013).   

 

Processing, dimensionality reduction and clustering of newly generated scRNA-

seq data 

A total of 7174 single-cell transcriptomes were obtained from 7 samples (4 WT + 3 

PMEL mice) after Cell Ranger pre-processing and UMI quantification. Next, UMI 

counts were normalized by dividing them by the total UMI counts in each cell and 

multiplying by a factor of 10,000. Then, we took the log of the normalized UMI counts 

prior sum of 1 (log normalized UMI counts+1).  Then, cells were filtered based on 

quality control and expression of CD8 T cell markers to remove low-quality cells, 

doublets and contaminating non CD8 T cells, as follows. Upon examination of 

parameters distributions, we filtered out cells having less than 1,500 or more than 

30,000 UMIs;  cells having less than 1,500 or more than 5,000 detected genes, cells in 
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which ribosomal protein coding genes represented more than 50% of UMI content and 

cells in which mitochondrial protein coding genes represented more than 5% of UMI 

content. The 5542 quality-passed cells were further filtered based on expression of CD8 

T cells markers: 3574 cells expressing Cd8a, Cd8b1 and Cd2 but not Cd4 were kept for 

further analysis (processed data available as supplementary file in GEO entry). 

For dimensionality reduction, we first identified the set of most variable genes using 

Seurat 2.3.4 method ‘mean.var.plot’ (using 20 bins, minimum mean expression = 0.25 

and z-score threshold for dispersion = 0), which identified 1107 highly variable genes 

while controlling for the relationship between variability and average expression. 

Briefly, this method divides genes into 20 bins based on average expression, and then 

calculates z-scores for dispersion (calculated as log(variance/mean)) within each bin. 

From this initial set of highly variable genes, we removed 204 genes involved in cell 

cycle (as annotated by Gene Ontology under code GO:0007049 or highly correlated 

with them, i.e. with Pearson’s correlation coefficient > 0.5) or coding for ribosomal or 

mitochondrial proteins. The remaining 903 highly variable genes were used for 

dimensionality reduction using Principal Components Analysis (PCA). PCA was 

performed on standardized gene expression values by subtracting from normalized 

UMI counts, their mean and dividing by the standard deviation. Upon scree plot 

inspection of PCA eigenvalues contributions, we selected the first 10 Principal 

Components for clustering and tSNE visualization. For visualization, we used tSNE 

with default parameters (perplexity = 30 and seed set to 12345). For clustering, we 

performed hierarchical clustering on the top 10 PCs using Euclidean distance and 

Ward’s criteria. Silhouette coefficient analysis over different number K of clusters 

indicated a big drop of cluster silhouette after K=4, and this was selected as the optimal 

number of clusters. To evaluate clustering robustness, we additionally run K-means 
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(with K=4) and the shared nearest neighbor (SNN) modularity optimization clustering 

algorithm implemented in Seurat 2.3.4 with resolution parameter = 0.3 (which 

produced 4 clusters) and other parameters by default. Clustering agreement analysis 

using adjusted Rand Index (as implemented in mclust R package (Scrucca et al., 2016)), 

indicated high agreement between the three clustering results (Rand Index 0.70-0.81). 

Moreover, this analysis indicated that the SNN clustering produced the most consistent 

result with the other two (with Rand Index of 0.81 against hierarchical and 0.76 against 

K-means, while K-means vs hierarchical had 0.7), and therefore was kept as the final 

clustering solution. 

 

Gene Signature analysis 

To obtain cluster-specific gene signatures, we performed differential expression 

analysis of each cluster against the others using MAST (Finak et al., 2015) with default 

parameters, and further required that for each cluster, differentially expressed genes had 

a log fold-change higher than 0.25, were expressed at least in 10% of its cells, and that 

this fraction is at least 10% higher than in the other clusters. Lists of differentially 

expressed genes in each cluster can be found in Supplemental Table 1. 

To identify cycling cells we evaluated enrichment of the cell cycle signature 

(Supplemental Table 2) in each cell, using the Area Under the Curve (AUC) method 

implemented in AUCell Bioconductor’s package (Aibar et al., 2017). Briefly, the AUC 

value represents the fraction of genes, within the top 1500 genes in the ranking (ordered 

by decreasing expression) that are included in the signature. Upon examination of 

AUCs distribution, we set an AUC cut-off of 0.2 for cell cycling classification (which 

corresponded to a z-score of ~2.5).   
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For CD8 T cell subtypes reference signature enrichment analysis, we first collected 

different T cell signatures from literature and generated other signatures by performing 

differential expression analysis (using Geo2R NCBI Gene Expression Omnibus tool, 

with default parameters) from public transcriptomic datasets. Cut-off values for log 

fold-change (between 1 and 3) and adjusted p-value (either 0.05 or 0.01) were set in 

order to obtain gene sets of similar size (in the order of a hundred genes), as described 

below. The list of genes in each signature can be found in Supplemental Table 2. 

For signatures of naïve (CD44-), effector (KLRG1+ at day 4.5 p.i.) and memory (day 

60 p.i.) virus-specific CD8 T cell isolated in the context of acute infection (“Memory 

vs effector (acute inf.)”), we used the LCMV Armstrong virus infection data from 

(Sarkar et al., 2008), GEO accession GSE10239, considering differentially expressed 

genes of effector vs naive, memory vs naïve and effector vs memory. For every gene 

signature, up to 200 top genes were kept sorted by fold-change from the differentially 

expressed genes (defined as FDR adjusted p-value < 0.05 and |log2 fold-change| > 1). 

The signatures of (PD-1+ Tcf1+) memory-like vs (PD-1+ Tcf1-) exhausted virus-specific 

(P14) CD8 T cells in LCMV chronic infection clone 13 (“memory-like vs exhausted 

(chronic inf.)”) were obtained from ((Utzschneider et al., 2016), GSE83978) by taking 

differentially expressed genes between PD-1+ Tcf7:GFP+ vs PD-1+ Tcf7:GFP- . The 

signatures of (PD-1+ Tcf1+) memory-like vs (PD-1+ Tcf1-) exhausted tumor-

specific(P14) CD8 T cells in B16-gp33 melanoma tumors (“memory-like vs exhausted 

(tumor)”) were obtained from GEO GSE114631 (Siddiqui et al., 2019) by taking 

differentially expressed genes between Tcf7:GFP+ vs Tcf7:GFP-.  For the signatures of 

tumor-infiltrating vs spleen-derived in acute infection at day 8 post listeria infection 

(“Tumor vs acute infection”), we used the data of (Schietinger et al., 2016) (GEO 

GSE60501).  
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For cell cycle signature we used the gene set (cellCycle_union, Supplemental Table 2) 

obtained by combining the G1/S and G2/M signature genes from (Tirosh et al., 2016) 

(cellCycle, Supplemental Table 2) with the set of genes whose expression in our dataset 

were highly correlated with cell-cycle related genes (Pearson’s correlation > 0.5, 

cellCycleCorrelated, Supplemental Table 2).  

To evaluate associations (overlap) between cluster signatures and reference signatures 

(Figure 1 E and Supplemental Figure 1), for each pair of cell cluster signature genes 

and reference signatures, contingency tables were calculated by counting how many 

genes among all expressed genes (15337) are present or absent in the cluster or the 

reference signature, and then one-sided Fisher’s exact test with FDR adjustment for 

multiple testing were used to calculate statistical significance of associations. 

For the quantification of stemness (Tcf7, Lef1, Sell, Il7r), cytotoxicity (Prf1, Fasl, 

Gzmb) and inhibition/exhaustion (Pdcd1, Havcr2, Tigit, Lag3, Ctla4) scores, we 

calculated single-cell AUC enrichment scores (using AUCell package, as described for 

cell cycling). For Figure 1 D, average enrichment scores for each cluster (after 

removing cycling cells from all clusters) were scaled to range between 0 and 1 and 

plotted using ggradar R’s package (https://github.com/ricardo-bion/ggradar). 

 

To evaluate enrichment of EM-like, memory-like and exhausted signatures in public 

bulk RNA-seq data of CD8 T cells upon PD-1 blockade or TOX KO, we performed 

signature enrichment analysis (GSEA) using Bioconductor package clusterProfiler with 

default parameters (version 3.10.1, (Yu et al., 2012) ). Reads were pre-filtered using 

Trimmomatic v0.39 (Bolger, Lohse and Usadel, 2014); transcript abundances were 

estimated using Salmon v0.14.0 (Patro et al., 2017) with default parameters and mouse 

reference transcriptome version GRCm38, summarized at gene-level using tximport 
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v1.10.1 (Soneson, Love and Robinson, 2015) and differential gene expression analysis 

was conducted using DESeq2 v1.22.2 with default parameters (Love, Huber and 

Anders, 2014). RNA-seq data of CD8 TILs in murine sarcoma (tumors were harvested 

at day 12 post-transplant, 3 days after treatment) was obtained from GEO accession 

GSE62771 (anti-PD-1 vs control) (Gubin et al., 2014). RNA-seq data of CD8 TILs in 

non-small cell lung cancer (anti-PD1 vs control) were obtained from GEO accession 

GSE114300 (Markowitz et al., 2018). RNA-seq data from adoptively transferred (in 

vitro activated) OT-1 cells infiltrating B16-OVA tumors (anti-PD1 vs control) were 

obtained from GEO GSE93014 (Mognol et al., 2017).  Differential expression data 

from tumor-specific CD8 TILs (liver cancer) knockout for TOX (TOX-KO) vs 

wildtype were obtained from Supplementary Table 1 of (Scott et al., 2019). 

 

Cluster validation using independent dataset 

To confirm the robustness of the transcriptomic states identified in our data, we re-

analyzed an independent publicly available single-cell RNA-seq dataset of ~400 CD8 

TILs from B16 melanoma tumors (Singer et al 2016). Gene expression data processing 

and clustering was conducted in the same way as described for our dataset. 

Consistently, four distinct transcriptomic states were identified corresponding to naïve, 

terminal exhausted, memory-like and EM-like populations (Supplemental Figure 3 A, 

B), plus a cluster of cycling cells in proximity to exhausted and memory-like cells. 

Despite the different technologies used (smart-seq2 vs 10X 5’ counting) we found a 

remarkable correspondence between the CD8 TIL states identified in the two datasets, 

both in terms of gene markers (Supplemental Figure 3 B) and systematic comparison 

of gene signatures (Supplemental Figure 3 G).  To evaluate associations (overlap) 
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between cluster signatures from the two datasets, one-sided Fisher’s exacts test with 

FDR adjustment for multiple testing were used (Supplemental Figure 3 G). 

 

Flow Cytometry Analysis of CD8 TILs 

For the flow cytometry analysis purified CD8 cells specific for the surrogate tumor 

antigen LCMV gp33 (P14) were adoptively transferred (106 cells) into naive C57BL/6 

(B6) mice (CD45.1). One day later, mice were implanted subcutaneously with B16 

melanoma cells expressing LCMV gp33 (B16-gp33). Tumors were excised post 12 

days of tumor engraftment and tumor infiltrating T cells were isolated as described 

above. Surface staining was performed with mAbs for 30 min at 4°C in PBS 

supplemented with 2% FCS and 0.01% azide (FACS buffer) using antibodies listed in 

table below.  

For intranuclear staining cells were first stained at the surface before fixation and 

permeabilization using the transcription factor staining kit (eBioscience) followed by 

intranuclear staining for transcription factor. 

Flow cytometry measurements of cells were performed on an LSR-II or Fortessa flow 

cytometer (BD). Data were analyzed using FlowJo (TreeStar).  

 

ANTIBODIES SOURCE IDENTIFIER 
Anti-Mouse CD8a – APC-Cy7 eBioscience Clone 53-6.7 
Anti-Mouse CD45.1 – AF680 eBioscience Clone A20 
Anti-Mouse CD45.2 – PerCP Cy5.5 eBioscience Clone 104.2 
Anti-Mouse PD1 – PE Cy7 Biolegend Clone RMP1-30 
Anti-Mouse CD45R/B220 – BV 711 Biolegend  Clone RA3-6B1 
Anti-Mouse Ly-6C – BV 785 Biolegend Clone HK1.4 
Anti-Mouse CD183 (CXCR3) – BV 650 Biolegend Clone CXCR3-173 
Anti-Mouse CD44 – BV 605 Biolegend Clone IM7 
Anti-Human/Mouse integrin b7 (ITGB7) - FITC Biolegend Clone FIB504 
Mouse anti-rabbit IgG - PE eBioscience polyclonal 
Rabbit anti-mouse Tcf1 Cell signaling C63D9 
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Construction and validation of the Tumor-infiltrating CD8 T cell transcriptomic 

state predictor (TILPRED) 

Integrated knowledge on CD8 tumor-infiltrating T cells states was used to develop a 

novel transcriptomic classifier of CD8 T cell states for mice and human (TILPRED).  

A major challenge for the classification of single-cell transcriptomes across 

experiments is that gene expression measurements are affected by the large variability 

in single cell library sizes, and experimental and data processing protocols used. To 

overcome some of these issues, our classifier uses only gene expression rankings to 

quantify TIL state signature enrichment. Moreover, since cell cycle has a significant 

transcriptomic impact (McDavid et al., 2014; Scialdone et al., 2015; Barron and Li, 

2016), we also included cell cycle signature detection in TILPRED, which allows for 

quantification of cycling T cells in the different states.  

 

To classify tumor-infiltrating CD8 T cells from single-cell RNA-seq data we first 

generated 12 sets of differently expressed genes (DEG) corresponding to all possible 

pairs between the four transcriptomic states. Differentially expression between pairs of 

clusters was assessed with MAST 1.8.2 using default parameters (after excluding 

cycling cells in all cluster, in order to avoid this confounding factor), and further 

filtering genes with a log fold-change higher than 0.5, expressed at least in 10% of one 

of the clusters, and with a cellular detection rate difference of at least 10% between 

clusters. Next, pairwise DEG sets were further filtered to keep those having orthologs 

in humans (as annotated in Ensembl 95 (Zerbino et al., 2018), or NCBI HomoloGene 

68 if orthologs missing in Ensembl). 
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The 12 pairwise DEG sets were then used to score all single-cells in our dataset, 

calculating gene set enrichment AUC (area under the ‘enrichment’ curve) within the 

top 1500 genes in the ranking, using AUCell (Aibar et al., 2017).  Next, the AUC scores 

for the 12 pairwise DEG (a training set of 70% of the cells) were used to train a 

multinomial logistic regression model with lasso penalty using R package glmnet 

(Friedman, Hastie and Tibshirani, 2010) with parameter alpha = 1 (lasso penalty) and 

intercept set to 0. The regularization parameter lambda for the lasso was evaluated by 

10-fold cross-validation using cv.glmnet function, and was set to the minimum value 

(lambda = e-6) for which the mean cross-validated error (cve) was at most 50% higher 

(i.e. cve = 0.539) than the minimum mean cross validation error (cve = 0.374, for lamda 

= 4.2 e-5).  

Performance of the model was assessed in the test set (remaining 30% of the cells) 

assigning T cell state predictions to all cells where the model output (logistic response 

variable) was higher than 0.5 in any state (~5% of the cells did not pass the threshold 

and were annotated as ‘unknown’); its accuracy was 0.94 ( 95% CI: 0.92, 0.95) with a 

mean specificity of 0.98 and a mean sensitivity of 0.90. Finally, the model was trained 

on the full dataset and implemented as an R package, publicly available at 

http://github.com/carmonalab/TILPRED. 

To evaluate predictive performance in an independent dataset, we compared TILPRED 

predictions against the result of unsupervised clustering of the CD8 TIL dataset of  

(Singer et al., 2016) (GEO GSE86042). The clustering analysis was performed in the 

same way as for our dataset (on the first 10 principal components of the most highly 

variable genes), except that instead of using a unique clustering solution (such as SNN 

clustering used to defined clusters in our dataset), we used as T cell states ‘ground truth’ 
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the consensus between SNN, K-means and hierarchical clustering (using Ward’s 

criteria) solutions. Classification accuracy using this dataset was 91%. 

 

TILPRED analysis of public datasets 

For prediction of CD8 TIL states in the MC38 dataset (NCBI GEO GSE122969 

(Kurtulus et al., 2019)), high-quality cells were filtered based on number of detected 

genes (between 500 and 5000), number of UMIs (1K to 50K) and percentage of UMIs 

mapping to mitochondrial (<10%) or ribosomal genes (<60%). CD8 T cells were 

further filtered by based on co-expression of Cd2, Cd8a, Cd8b1 and Cd3g (>= 1 UMI 

each) and lack of Cd4 expression. For the sarcoma dataset (NCBI GEO GSE122969 

(Gubin et al., 2018)), after examining distributions, high-quality cells were filtered 

based on number of detected genes (between 500 and 5000), number of UMIs (1.5K to 

20K) and percentage of UMIs mapping to mitochondrial (<10%) or ribosomal genes 

(<50%). CD8 T cells were further filtered from other immune cell infiltrates based on 

co-expression of Cd2, Cd8a and Cd8b1 (>= 1 UMIs each), lack of Cd4 expression (0 

UMI) and lack of -or low expression- of Fcer1g and Tyrobp (<2 UMIs). For both 

filtered datasts, TILPRED was run with default parameters.  

For the prediciton of CD8 TIL states in the melanoma patients dataset (GEO 

GSE120575 (Sade-Feldman et al., 2018)), high-quality cells were filtered based on 

number of detected genes (between 1000 and 6000) and percentage of UMIs mapping 

to ribosomal genes (<10%). CD8 T cells were further filtered from other immune cell 

infiltrates based on co-expression of CD2, CD8A, CD8B (>= 1 UMIs each), lack of 

CD4 expression (0 UMI) and lack of -or low expression- of FCER1G, TYROBP, SPI1, 

IGKC, IGJ,  IGHG3 (<7 UMIs). Next, TILPRED was run using parameters set for 

human genes (human=TRUE) and using with lower score threshold for prediction 
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(scoreThreshold=0.3, instead of the default 0.5), in order to increase sensitivity to 

weaker signals (as TILPRED was trained for mouse data). For the visualization of these 

data in Figure 3, we used Seurat 2.3.4 to identifiy highly variable genes and perform 

dimensionality reduction using tSNE on the first 10 Principal Components computed 

on centered and scaled normalized expression values ( log (UMI counts / sum UMI 

count in cell * 10,000 + 1) ). The four CD8 TIL states (naïve, EM-like, exhausted and 

memory-like) as well as cycling TILs were predicted in all patients (Supplemental 

Figure 7A). To evaluate compositional shifts upon therapy, we selected patients having 

samples before and after ICB and at least 30 cells in each sample (Supplemental Figure 

7B). Seven patients matched these criteria, 3 of which responded (P1, P7, P28) and 4 

that failed to respond to ICB (P2, P3, P12, P20). Interestingly, compared to non-

responders, responders had an increased proportion of EM-like cells upon therapy 

(Supplemental Figure 7 C, p=0.0317 one-sided Wilcoxon test).  

For the prediction of TIL states of the Miller dataset of (B16-OVA) tumor-specific 

tumor-infiltrating CD8+ T cells, UMI counts matrix was obtained from GEO (accession 

GSE122675). Upon examination, high-quality CD8 T cells were filtered as those 

having between 1000 and 5000 expressed genes, 1000 and 30,000 UMI counts, less 

than 6% of UMI counts mapping to mitochondrial genes, less than 50% of genes 

mapping to ribosomal proteins coding genes, and that expressed Cd2, Cd3g, Cd8a, 

Cd8b1 and did not express Cd4 or high levels of Tyrobp or Spi1 (that are associated to 

CD4 T cells or myeloid cells, respectively). Next, cycling cells were further filtered 

(those with an AUC score higher than 0.1 for the ‘cell cycle’ signature) and cell states 

were predicted using TILPRED with default parameters. 

 

WebApp deployment for scRNA-seq data exploration 
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Our web application uses iSEE (interactive SummarizedExperiment Explorer) (Rue-

Albrecht et al., 2018) and R Shiny (https://shiny.rstudio.com), and is available at 

https://tilatlas.shinyapps.io/B16_CD8TIL_10X/. 

 

SUPPLEMENTAL MATERIAL 

Supplemental Table 1 (SupplementalTable1.csv): Exhausted, Memory-like and EM-

like gene signatures  

 

Supplemental Table 2 (SupplementalTable2.csv): Reference gene signatures used for 

signature enrichment analyses 

 

Supplemental Material. Contains Supplemental Figures. 
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