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Abstract 25 

Complex visual processing involved in perceiving the object materials can be better elucidated 26 

by taking a variety of research approaches. Sharing stimulus and response data is an effective 27 

strategy to make the results of different studies directly comparable and can assist researchers with 28 

different backgrounds to jump into the field. Here, we constructed a database containing several sets 29 

of material images annotated with visual discrimination performance. We created the material 30 

images using physically-based computer graphics techniques and conducted psychophysical 31 

experiments with them in both laboratory and crowdsourcing settings. The observer’s task was to 32 

discriminate materials on one of six dimensions (gloss contrast, gloss distinctness-of-image, 33 

translucent vs. opaque, metal vs. plastic, metal vs. glass, and glossy vs. painted). The illumination 34 

consistency and object geometry were also varied. We used a non-verbal procedure (an oddity task) 35 

applicable for diverse use-cases such as cross-cultural, cross-species, clinical, or developmental 36 

studies. Results showed that the material discrimination depended on the illuminations and 37 

geometries and that the ability to discriminate the spatial consistency of specular highlights in 38 

glossiness perception showed larger individual differences than in other tasks. In addition, analysis 39 

of visual features showed that the parameters of higher-order color texture statistics can partially, 40 

but not completely, explain task performance. The results obtained through crowdsourcing were 41 

highly correlated with those obtained in the laboratory, suggesting that our database can be used 42 

even when the experimental conditions are not strictly controlled in the laboratory. Several projects 43 

using our dataset are underway.  44 

 45 

 46 

47 
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Introduction 48 

Humans can visually recognize a variety of material properties of the objects they daily 49 

encounter. Although material properties, such as glossiness and wetness, substantially contribute to 50 

recognition, the contributions of value-based decision making, motor control, and computational 51 

and neural mechanisms underlying material perception had been overlooked until relatively 52 

recently—for a long time vision science mainly used simple artificial stimuli to elucidate the 53 

underlying brain mechanisms. In the last two decades, however, along with the advancement in 54 

computer graphics and machine vision, material perception becomes one of major topics in vision 55 

science (Adelson, 2001; Fleming, 2017; Nishida, 2019). 56 

Visual material perception can be considered to be an estimation of material-related properties 57 

from an object image. For example, gloss/matte perception entails a visual computation of the 58 

diffuse and specular reflections of the surface. However, psychophysical studies have shown that 59 

human gloss perception does not have robust constancy against changes in surface geometry and 60 

illumination (e.g., Nishida & Shinya, 1998; Fleming et al. 2003), the other two main factors of image 61 

formation. Such estimation errors have provided useful information as to what kind of image cues 62 

humans use to estimate gloss. A significant number of psychophysical studies have been carried out 63 

not only on gloss, but also on other optical material properties (e.g., transparency, transparency and 64 

wetness) (Fleming et al., 2005; Motoyoshi, 2010; Xiao et al., 2014; Sawayama, Adelson, & Nishida, 65 

2017) and mechanical material properties (e.g., viscosity, elasticity) (Kawabe et al., 2015; Paulun et 66 

al., 2017; van Assen, Barla & Fleming, 2018). Neurophysiological and neuroimaging studies have 67 

revealed various neural mechanisms underlying material perception (Kentridge et al., 2012; Nishio 68 

et al., 2012, 2014; Miyakawa et al., 2017).  Some recent studies have also focused on developmental, 69 

environmental, and clinical factors of material processing (Yang et al., 2015; Goda et al., 2016; 70 

Ohishi et al. 2018). For instance, Goda et al. (2016) showed in their monkey fMRI study that the 71 

visuo-haptic experience of material objects alters the visual cortical representation. In addition, large 72 

individual differences in the perception of colors and materials depicted in one photo (#TheDress) 73 

has attracted a broad range of interest and has provoked intensive discussions (Brainard & Hurlbert, 74 

2015; Gegenfurtner et al., 2015). 75 

A promising strategy for a more global understanding of material perception is to promote 76 

multidisciplinary studies comparing behavioral/physiological responses of humans and animals 77 

obtained under a variety of developmental, environmental, cultural, and clinical conditions. There 78 

are two problems however. One lies in the high degree of freedom in selecting experimental stimulus 79 

parameters and task procedures. Since the appearance of a material depends not only on reflectance 80 

parameters, but also on geometry and illumination, all of which are high dimensional, use of 81 

different stimuli (and different tasks) in different studies could impose serious limitations on direct 82 

data comparisons. The other problem is the technical expertise necessary for rendering realistic 83 

images, which could discourage researchers unfamiliar with graphics from starting material 84 

perception studies.  85 
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Aiming at removing these obstacles, we attempted to build a database that can be shared among 86 

multidisciplinary material studies. We rendered several sets of material images. The images in each 87 

set were changed in one of material dimensions in addition to illumination and viewing conditions. 88 

We then measured the behavioural performance for those image sets using a large number of 89 

“standard” observers. We used a simple task that can be used in a variety of human, animal and 90 

computational studies. By using our database, one would be able to efficiently start a new study, 91 

shortening time for stimulus preparation, as well as time for control data collection with standard 92 

human observers.  93 

Specifically, we selected six dimensions of material property (Fig. 1). These dimensions have 94 

been extensively studied in the past material perception studies. Most of them can be unambiguously 95 

manipulated by changing the corresponding rendering parameters. Although we attempted to cover 96 

a wide range of optical material topics, we never believe this an exclusive list of critical material 97 

properties vision science should challenge. Our intention is not to build the standard database for all 98 

material recognition research, but to make one primitive test set that promotes further examination 99 

of the previous findings on material recognition in more diverse research contexts. (see Discussion). 100 

Three of these dimensions are related to gloss (Fig. 1, Task 1: GC, Task 2: GD, and Task 6: 101 

GP), the most widely investigated material attribute (Pellacini et al., 2000; Fleming et al., 2003; 102 

Motoyoshi et al., 2007; Olkkonen & Brainard, 2010; Doerschner et al., 2011; Kim et al., 2011; 103 

Marlow et al., 2011; 2012; Kentridge et al., 2012; Sun et al., 2015; Nishio et al., 2014; Adams et al., 104 

2016; Miyakawa et al., 2017). We controlled the contrast gloss and distinctness-of-image (DOI) 105 

gloss (gloss distinctness-of-image) as in previous studies (Pellacini et al., 2000; Fleming et al., 2003; 106 

Nishio et al., 2014). For instance, Nishio et al. (2014) found neurons in the inferior temporal cortex 107 

(ITC) of monkeys that selectively and parametrically respond to gloss changes in these two 108 

dimensions. We also controlled the spatial consistency of specular highlights, which is another 109 

stimulus manipulation of gloss perception (Fig. 1, Task 6: GP). By breaking the spatial consistency, 110 

some highlights look like albedo changes by white paint (Beck & Prazdny, 1981; Kim et al., 2011; 111 

Marlow et al., 2011; Sawayama & Nishida, 2018). Besides gloss perception, translucency perception 112 

has also been widely investigated (Fleming & Bülthoff, 2005; Motoyoshi, 2010; Nagai et al., 2013; 113 

Gkioulekas et al., 2013; Xiao et al., 2014; Chadwick et al., 2018). We adopted the task of 114 

discriminating opaque from translucent objects by controlling the thickness of the translucent media 115 

(Fig. 1, Task 3: OT). Furthermore, we adopted the task of plastic-yellow/gold discrimination 116 

(Okazawa et al., 2011, Task 4: MP) and glass/silver discrimination (Kim & Marlow, 2016; Tamura 117 

et al., 2019, Task 5: MG). 118 

We used an oddity task (Fig. 3) to evaluate the capability of discriminating each material 119 

dimension. We chose this task because it requires neither complex verbal instruction, nor verbal 120 

responses by the observer. Therefore, it can be applied to a wide variety of observers including 121 

infants, animals, and machine vision algorithms, and their task performances can be directly 122 

compared. Indeed, several research projects using our dataset are underway (see the Discussion 123 

section). 124 
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To control the task difficulty, we varied the value of the parameter of each material dimension. 125 

In addition, we manipulated the stimulus in two ways that affected the task difficulty. First, we set 126 

three illumination conditions: one set of stimuli included images of different poses taken in identical 127 

illumination environments (Fig. 2a, Illumination condition 1); the second set contained stimuli of 128 

identical poses taken in slightly different illumination environments (Fig. 2a, Illumination condition 129 

2); the third set contained identical poses taken in largely different illumination environments (Fig. 130 

2a, Illumination condition 3). Second, we used the five different object geometries for each task 131 

(Fig. 2b).  132 

We wish to collect data from a large number of observers. A laboratory experiment affords 133 

control over the stimulus presentation environment, but is unsuited to collecting a large amount of 134 

data from numerous participants. In contrast, one can collect a lot of data through crowdsourcing, at 135 

the expense of reliable stimulus control. To overcome this trade-off, we conducted identical 136 

psychophysical experiments both in the laboratory and through crowdsourcing. This enabled us to 137 

evaluate individual difference distributions along with the effects of environmental factors on task 138 

performance. 139 

In sum, we made a large set of image stimuli for evaluations of visual discrimination 140 

performance on six material dimensions (gloss contrast, DOI (distinctness-of-image) of gloss, 141 

translucency-opaque, plastic-gold, glass-silver and glossy-painted) and measured a large number of 142 

adult human observers performing oddity tasks in the laboratory and through crowdsourcing. The 143 

tasks had three illumination conditions and five object geometries. Although the original motivation 144 

of this project was to make a standard stimulus-response dataset of material recognition for 145 

promotion of multidisciplinary studies, it also has its own scientific value as it is the first systematic 146 

comparison of the effects of illumination condition and object geometry, as well as of individual 147 

variations across a variety of material dimensions. Our data include several novel findings, as shown 148 

below.  149 
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  150 

Figure 1. Schematic overview of six tasks recorded in the database.   151 

 152 

 153 
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 154 

 155 

Figure 2. (a) Illumination conditions. Object images were rendered with six global 156 

illumination environments and were presented to observers under three illumination 157 

conditions. Under illumination condition 1, a stimulus display consisted of four objects 158 

(same shape, different poses) rendered with the same illumination environment. Under 159 

illumination condition 2, a stimulus display consisted of three objects (same shape, same 160 

pose) rendered with slightly different (in terms of their pixel histograms) light probes. Under 161 

illumination condition 3, a stimulus display consisted of three objects (same shape, same 162 

pose) rendered with largely different illumination environments. (b) Geometrical conditions. 163 

We used five different object shapes for each material task under each illumination 164 

condition. The stimulus condition is also summarized in Table 1.  165 

 166 
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 167 

Figure 3. Example of a four-object oddity task (illumination condition 1) used for collecting 168 

standard observer data. The observers were asked to select which image was the odd one 169 

out in the four images. We did not tell the observer that the experiment was on material 170 

recognition. We conducted experiments both in the laboratory and through crowdsourcing.  171 

 172 

 173 

 174 

Table 1. The summary of stimulus condition. The digit in parentheses indicates the number 175 

of each condition. 176 

 177 

 178 

179 
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Methods 180 

We evaluated the observers' performance of six material recognition tasks. We selected such 181 

tasks that had been used in previous material studies: 1) Contrast gloss discrimination (GC); 2) 182 

DOI (distinctness-of-image) discrimination (GD); 3) Opaque vs. translucent (OT); 4) Metallic 183 

gold vs. plastic yellow (MP); 5) Metallic silver vs. glass (MG); 6) Glossy vs. painted (GP). For 184 

each task, we used five geometry models and six global illuminations. We conducted behavioral 185 

experiments using an oddity task, which can be used even with human babies, animals, and 186 

brain-injured participants, because it does not entail complex verbal instructions. In the 187 

experiment, the observers were asked to select the stimulus that represented an oddity among 188 

three or four object stimuli. They were not given any feedback about whether their responses 189 

were correct or not. We controlled the task difficulty by changing the illumination and material 190 

parameters. To test the generality of the resultant database, we conducted identical experiments 191 

in the laboratory and through crowdsourcing. 192 

 193 

Image generation for making standard image database 194 

We utilized the physically-based rendering software called Mitsuba (Jakob 2010) to make 195 

images of objects consisting of different materials, and we controlled six different material 196 

dimensions. 197 

 198 

Material for tasks 1) Gloss discrimination (contrast dimension) (Task 1: GC) and 2) Gloss 199 

discrimination (DOI dimension) (Task 2: GD) 200 

To control the material property of the gloss discrimination tasks, we used the perceptual light 201 

reflection model proposed by Pellacini et al. (2000). They constructed a model based on the results 202 

of psychophysical experiments using stimuli rendered by the Ward reflection model (Ward, 1992) 203 

and rewrote the Ward model parameters in perceptual terms. The model of Pellacini et al. has two 204 

parameters, named d and c, and they roughly correspond to the DOI gloss and the contrast gloss of 205 

Hunter (1937). The difficulty of our two gloss discrimination tasks was controlled by separately 206 

modulating these two parameters.  207 

The parameter space of the Ward reflection model can be described as follows. 208 

, 209 

where ρ(θi,φi,θo,φo) is the surface reflection model, and θi, φi, and θo, φo are the incoming and 210 

outgoing directions, respectively. The model has three parameters; ρd is the diffuse reflectance of a 211 

surface, ρs is the energy of its specular component, and α is the spread of the specular lobe. Pellacini 212 

et al. (2000) defined two perceptual dimensions, c and d on the basis of the Ward model’s 213 
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parameters. d corresponds to DOI gloss and is calculated from α, while c corresponds to perceptual 214 

glossiness contrast and is calculated from ρs and ρd, using the following formula: 215 

. 216 

Although more physically feasible BRDF models than the Ward model have been proposed for 217 

gloss simulation (Ashikmin et al., 2000; Walter et al., 2007), we based ours on the Ward model 218 

because it has been used in many previous psychophysics and neuroscience studies (Nishio et al., 219 

2014). 220 

For the task of gloss discrimination in the contrast dimension, the specular reflectance ρs was 221 

varied in a range from 0.00 to 0.12 in 0.02 steps while keeping the diffuse reflectance ρd constant 222 

(0.416), indicating the contrast parameter: 0, 0.018, 0.035, 0.052, 0.067, 0.082, and 0.097. The 223 

distinctness-of-image d was the fixed value (0.94). (Fig. 4, Task 1: GC). As c gets closer to 0, the 224 

object appears to have a matte surface. The specular reflectance ρs of the non-target stimulus in the 225 

task was 0.06. 226 

For the experiment of gloss discrimination in the DOI dimension, the  parameter d was varied 227 

from 0.88 to 1.00 in 0.02 steps while keeping ρs  constant (0.06) (Fig. 4, Task 2: GD). As d gets 228 

closer to 1.00, the highlights of the object appear sharper. The DOI parameter, d, of the non-target 229 

stimuli was 0.94.  230 

 231 

   232 

 233 
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Figure 4. Material examples of tasks 1 (GC) and 2 (GD). For task 1 (GC), the specular 234 

reflectance of the odd target stimulus was varied from 0.00 to 0.12. The non-target stimuli 235 

that were presented as the context objects in each task had specular reflectance of 0.06. 236 

For task 2 (GD), the DOI parameter of the target specular reflection was varied from 1.00 237 

to 0.88, while that of the non-target stimuli was 0.94. 238 

 239 

Material for task 3) Opaque vs. Translucent (Task 3: OT) 240 

To make translucent materials, we used the function of homogeneous participating medium 241 

implemented in the Mitsuba renderer. In this function, a flexible homogeneous participating medium 242 

is embedded in each object model. The intensity of the light that travels in the medium is decreased 243 

by scattering and absorption and is increased by nearby scattering. The parameters of the absorption 244 

and scattering coefficients of the medium describe how the light is decreased. We used the 245 

parameters of the “Whole milk” measured by Jensen et al. (2001). The parameter of the phase 246 

function describes the directional scattering properties of the medium. We used an isotropic phase 247 

function. To control the task difficulty, we modulated the scale parameter of the scattering and 248 

absorption coefficients. The parameter describes the density of the medium. The smaller the scale 249 

parameter is, the more translucent the medium becomes. The scale parameter was varied as follows: 250 

0.0039, 0.0156, 0.0625, 0.25, and 1.00 (Fig. 5, Task 3: OT). The scale parameter of the non-target 251 

stimulus in the task was 1.00. In addition, the surface of the object was modeled as a smooth 252 

dielectric material to produce strong specular highlights, as in previous studies (Gkioulekas, I. et al, 253 

2013; Xiao et al., 2014). That is, non-target objects were always opaque, and the degree of 254 

transparency of the target object was changed.   255 
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 256 

Figure 5. Material examples of tasks 3 (OT), 4 (MP), and 5 (MG). For task 3 (OT), the scale 257 

of the volume media that consisted of milk was varied from 1.0 to 0.0039. For task 4 (MP) 258 

and 5 (MG), the blending ratio of the two materials was varied from 0.0 to 0.8. The non-259 

target stimuli in the tasks were shown as in the legend. 260 

 261 

Material for task 4) Metallic gold vs. Plastic yellow (Task 4: MP) 262 

To morph the material between gold and plastic yellow, we utilized a linear combination of gold 263 

and plastic BRDFs, which is implemented in the Mitsuba renderer. By changing the weight of the 264 

combination, the appearance of a material (e.g., gold) can be modulated toward that of the other 265 

material (e.g., plastic yellow). In this task, the weight was varied in a range from 0.00 to 0.80 in 0.20 266 

steps (Fig. 5, Task 4: MP). The parameter of the non-target stimulus was 0, at which the material 267 

appeared to be pure gold. 268 

 269 
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Material for task 5) Metallic silver vs. Glass (Task 5: MG) 270 

Similar to task 4), we utilized a linear combination of dielectric glass and silver materials, which 271 

is also implemented in the Mitsuba renderer. The weight of the combination was varied from 0.00 272 

to 0.80. The parameter of the non-target stimulus was 0, at which the material appeared to be pure 273 

silver (Fig. 5, Task 5: MG). 274 

As noted above, for Tasks 3, 4, and 5 in which the parameters of the target stimulus were varied 275 

between two material states (i.e., opaque vs. transparent, metallic vs. plastic, and metallic vs. glass), 276 

we placed the non-target objects at one end (i.e., one of two material states). If we placed the non-277 

target stimuli in the middle of the stimulus variable as in Tasks 1 and 2, and when the difference 278 

between the target and non-target stimuli was small, the display only contained ambiguous material 279 

objects. In such cases, the observers might not pay attention to the material dimension relevant to 280 

the task. By placing the non-target at one extreme value, we could make the stimulus display always 281 

contain the object images in a specific material state, helping participants focus on the task relevant 282 

material dimension. 283 

Material for task 6) Glossy vs. Painted (Task 6: GP) 284 

The skewed intensity distribution due to specular highlights of an object image can be a 285 

diagnostic cue for gloss perception (Motoyoshi et al., 2007). However, when the specular highlights 286 

are inconsistent in terms of their position and/or orientation with respect to the diffuse shading 287 

component, they look more like white blobs produced by surface reflectance changes even if the 288 

intensity distribution is kept constant (Beck & Prazdny; 1981; Anderson & Kim, 2009; Kim et al., 289 

2011; Marlow et al., 2011; Sawayama & Nishida, 2018). For our last task of glossy objects vs. matte 290 

objects with white paint, we rendered the glossy objects on the basis of Pellacini et al. (2000)’s 291 

model. The parameter c was set to 0.067, and the parameter d ranged from 0.88 to 1.00 in 0.04 steps 292 

(Fig. 6, lower). Considering material naturalness, these objects may not be typically encountered in 293 

the real world, but this task is theoretically important because it will provide insights into the 294 

underlying visual computation of material recognition. 295 

To make object images with inconsistent highlights (white paints), we rendered each scene twice 296 

with different object materials with identical shapes. First, we rendered a glossy object image by 297 

setting the diffuse reflectance to 0, i.e., the image that includes only specular highlights. The 298 

rendered image of specular highlights was a 2D texture for the second rendering. We eliminated the 299 

brown table when rendering the first scene. Next, we rendered a diffuse object image, i.e., one 300 

without specular reflection, with the texture of specular highlights. The object and illumination for 301 

the first and second renderings were the same. We mapped the specular image rendered in one object 302 

pose to the 3D geometry by a spherical mapping with repeating the image. Since the position of 303 

texture mapping was randomly determined, the highlight texture positions were inconsistent with 304 

diffuse shadings.  We varied the parameter d of the first rendering from 1.00 to 0.88 (Fig. 6, lower). 305 
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After we rendered the inconsistent-highlights image, the color histogram of the image was set to that 306 

of a consistent glossy object image by using a standard histogram matching method (Sawayama & 307 

Nishida, 2018).  308 

We made task 6 only under Illumination 1. This is because it was hard to match the color 309 

distributions of the target and non-target stimuli for Illuminations 2 and 3, where one stimulus set 310 

was rendered under different illuminations. If we match the objects’ color histograms under these 311 

conditions, the object’s colors could  be incongruent with their background colors (i.e., the table and 312 

the shadow in this scene). This could produce another cue to find an outlier, which making these 313 

conditions inappropriate for the task purpose. 314 

  315 

 316 

Figure 6. Material examples of task 6. The distinctness-of-image of the specular reflection 317 

was varied from 1.00 to 0.88. This parameter was the same for the non-target painted 318 

objects and the target glossy object in each stimulus display. 319 

 320 

Geometry 321 

For each material, we rendered the object images by using five different abstract geometries 322 

(Fig. 2b).   These geometries were made from a sphere by modulating each surface normal direction 323 

with different kinds of noise (see also ShapeToolbox: https://github.com/saarela/ShapeToolbox) 324 
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(Saarela & Olkkonen, 2016, Saarela, 2018). Specifically, Object_1 was made from modulations of 325 

low-spatial-frequency noise and crater-like patterns. The source code of this geometry is available 326 

on the web (http://saarela.github.io/ShapeToolbox/gallery-moon.html). Object_2 was a bumpy 327 

sphere modulated by low-pass band-pass noise. Object_3 was a bumpy sphere modulated by sine-328 

wave noise. Object_4 and Object_5 were bumpy spheres modulated by Perlin noise. These objects 329 

were also rendered usign Shapetoolbox.  330 

Five samples were too small to systematically vary shape parameters. Instead, we handcrafted 331 

sphere-based abstract shapes in such a way expected to maximize the shape diversity. It is known 332 

that even when rendering with the same reflectance function (BRDF), objects with smooth/low-333 

frequency surface modulations and those with spiky/high-frequency surface modulations could have 334 

very different material appearance (Shinya & Nishida, 1998, Vangorp, Laurijssen, & Dutré, 2007). 335 

We therefore created five geometries with a variety of low and high spatial frequency surface 336 

modulations to see human material perception under widely different geometry conditions.  337 

Illumination and pose 338 

 We used six high-dynamic-range (HDR) light-probe images as illuminations for rendering. 339 

These images were obtained from Bernhard Vogl’s light probe database 340 

(http://dativ.at/lightprobes/). To vary the task difficulty, we used three illumination conditions 341 

(illumination conditions 1, 2, and 3, Fig. 2a). Under illumination condition 1, the observers selected 342 

one oddity from four images in a task. We rendered the images by using an identical light probe 343 

(i.e., ‘Overcast Day/Building Site (Metro Vienna)’). We prepared five poses for each task of 344 

illumination condition 1 by rotating each object in 36-degree steps; four of them were randomly 345 

selected in each task. 346 

Under illumination condition 2, the observers selected one oddity from three images in a task. 347 

We created the images by using slightly different (in terms of their pixel histograms) light probes 348 

(i.e., ‘Overcast Day/Building Site (Metro Vienna)’, ‘Overcast day at Techgate Donaucity’, and 349 

‘Metro Station (Vienna Metro)’). The task procedure of illumination condition 3 was the same as 350 

that of illumination condition 2. For illumination condition 3, we created the three images by using 351 

light probes that were rather different from each other (‘Inside Tunnel Machine’, ‘Tungsten Light 352 

in the Evening (Metro Building Site Vienna)’, and ‘Building Site Interior (Metro Vienna)’). We 353 

computed the pixel histogram similarity for each illumination pair and used it as the distance for the 354 

multidimensional scaling analysis (MDS). We extracted three largely different light probes in the 355 

MDS space and used them for illumination condition 3. We also selected three similar light probes 356 

in the space and used them for illumination condition 2. The pose of each object in the illumination 357 

condition 2 and 3 was not changed. The stimulus condition is summarized in Table 1.  358 

 359 
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Rendering 360 

To render the images, we used the integrator of the photon mapping method for tasks 1, 2, 4, 5, 361 

and 6 and used the integrator of the simple volumetric path tracer implemented in the Mitsuba 362 

renderer for task 3 (OT). The calculation was conducted using single-float precision. Each rendered 363 

image was converted into sRGB format with a gamma of 2.2 and saved as an 8-bit .png image. 364 

 365 

Behavioral experiments 366 

Laboratory experiment 367 

Twenty paid volunteers participated in the laboratory experiment. Before starting the 368 

experiment, we confirmed that all had normal color vision by having them take the Famsworth–369 

Munsell 100 Hue Test and that all had normal or corrected-to-normal vision by having them take a 370 

simple visual acuity test. The participants were na ̈ıve to the purpose and methods of the experiment. 371 

The experiment was approved by the Ethical Committees at NTT Communication Science 372 

Laboratories. 373 

The generated stimuli were presented on a calibrated 30-inch EIZO color monitor (ColorEdge 374 

CG303W) controlled with an NVIDIA video card (Quadro 600). Each participant viewed the stimuli 375 

in a dark room at a viewing distance of 86 cm, where a single pixel subtended 1 arcmin. Each object 376 

image of 512 x 512 pix was presented at a size of 8.5 x 8.5 degrees. 377 

In each trial, four (Illumination 1) or three (Illumination 2 & 3) object images chosen for each 378 

task were presented on the monitor (Fig. 3). Measurements of different illumination conditions were 379 

conducted in different blocks. Under illumination condition 1, four different object images in 380 

different orientations were presented. Under illumination conditions 2 and 3, the three different 381 

object images had different illuminations. The order of illumination conditions 1, 2, and 3 was 382 

counterbalanced across observers. The observers were asked to report which of the object images 383 

looked odd by pushing one of the keys. The stimuli were presented until the observer made a 384 

response. The task instructions were simply to find the odd one with no further explanation about 385 

how it was different from the rest. The observers were not given any feedback about whether their 386 

response was correct or not. All made ten judgments for each task of illumination condition 1. 387 

Seventeen observers made ten judgments for each task of illumination condition 2, while three made 388 

only seven judgments due to the experiment’s time limitation. Seventeen observers made ten 389 

judgments for each task of illumination condition 3, while three made seven judgments due to the 390 

experiment’s time limitation.  391 

 392 

 393 
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Crowdsourcing experiment 394 

In the web experiment, 416, 411, and 405 paid volunteers participated in the tasks of illumination 395 

conditions 1, 2, and 3, respectively. We recruited these observers through a Japanese commercial 396 

crowdsourcing service. All who participated under illumination condition 3 also participated under 397 

illumination conditions 1 and 2. Moreover, all who participated in illumination condition 2 had also 398 

participated under illumination condition 1. The experiment was approved by the Ethical 399 

Committees at NTT Communication Science Laboratories. 400 

Each observer used his/her own PC’s or tablet’s web browser to participate in the experiment. 401 

We asked them to watch the screen from a distance of about 60 cm. Each object image was shown 402 

on the screen at a size of 512 x 512 pix. We didn’t strictly control the visual angle of the image 403 

participants observed. 404 

The procedure was similar to that of the laboratory experiment. In each trial, four or three object 405 

images that had been chosen depending on the task were presented on the screen, as in Fig. 3. The 406 

measurement was conducted under illumination condition 1 first, followed by one under 407 

illumination condition 2 and one under illumination condition 3. The observers were asked to report 408 

which of the object images looked odd by clicking one of the images. Each participant made one 409 

judgment for each condition. The other steps of the procedure were the same as those in the 410 

laboratory experiment. 411 

 412 

Data analysis 413 

For each oddity task, we computed the proportion that each participant got correct. The chance 414 

level of the correct proportion was 0.25 for illumination condition 1 and 0.33 for illumination 415 

conditions 2 and 3. We computed the sensitivity d' from each correct proportion by using a numerical 416 

simulation to estimate the sensitivity of the oddity task (Craven, 1992). We used the "Palamedes" 417 

data analysis library for the simulation (Kindom & Prins, 2010; 2016; Prins & Kingdom, 2018). To 418 

avoid values of infinity, we converted the one probability according to the total trial number (i.e., 419 

corrected the one value to 1-(1/2N), where N is the total trial number) in the simulation (Macmillan 420 

& Kaplan, 1985). For the laboratory experiment, we computed the sensitivity d' of each observer 421 

and averaged it across observers. For the crowdsourcing experiment, since each observer engaged 422 

in each task one time, we computed the proportion correct for each task from all observers' responses 423 

and used it to compute d'. 424 

 425 

 426 

Results 427 
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In this section, we describe the results of our benchmark data acquisition. First, we evaluate the 428 

environment dependency of our experiment, the performance difference between the online and 429 

laboratory experiments. Then, we describe the illumination and geometry effect on each task. After 430 

discussing each task, we show how intermediate visual features contribute to task performance. In 431 

the end, we analyze the individual difference in each task. 432 

 433 

Environment dependence 434 

For cross-cultural, cross-species, brain-dysfunction, and developmental studies, stimulus 435 

presentation on a monitor cannot always be strictly controlled because of apparatus or ethical 436 

limitations. Therefore, a performance validation of each task across different apparatuses is critical 437 

to decide which tasks the users of our database should select in their experimental environment. 438 

Figure 7a shows the results of the correlation analysis between the laboratory and crowdsourcing 439 

experiments. The coefficient of determination (R2) of the linear regression between the sensitivity 440 

d' in the laboratory experiment and that of the crowdsourcing experiment is 0.83, indicating a high 441 

linear correlation. However, the slope of the regression is less than 1. This shows that the sensitivity 442 

of the crowdsourcing experiment was worse than that of the laboratory experiment, with many 443 

repetitions in general. These findings suggest that the present tasks maintain relative performance 444 

across different experimental environments.  445 

Figure 7b shows the results for each task of the laboratory and crowdsourcing experiments in 446 

more detail. The coefficients of determination (R2) in tasks 1 to 6 are 0.60, 0.40, 0.86, 0.60, 0.62, 447 

and 0.39, respectively. The coefficient of task 6 (GP) was the worst, followed by task 2 (GD). As in 448 

the latter section, task 6 (GP) also showed large individual differences, and thus, the correlation 449 

between the laboratory and crowdsourcing experiments was decreased. The slope of the linear 450 

regression on task 2 (GD) was 0.44, and the proportion correct in the crowdsourcing experiment for 451 

tasks 2 were generally lower than those in the laboratory for tasks 2. In the laboratory experiment, 452 

we used a 30-inch LCD monitor, and the stimulus size of each image was presented at a size of 8.5 453 

x 8.5 degrees, which we expected to be larger than when participants on the web observed the image 454 

on a tablet or PC. Task 2 (GD) is related to the distinctness-of-image of the specular reflection, and 455 

thus, the spatial resolution might have affected the accuracy of the observers’ responses, although 456 

the relative difficulty for task 2 (GD) even in the crowdsourcing experiment was similar to that in 457 

the laboratory experiment. These findings suggest that the absolute accuracy of task 2 (GD) depends 458 

largely upon the experimental environment. 459 

 460 

 461 

 462 
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 463 

Figure 7. Results of laboratory and crowdsourcing experiments. The sensitivity d' in each 464 

task in the crowdsourcing experiment is plotted as a function of that in the laboratory 465 

experiment. (a) Results of all tasks. Each plot indicates a task with an object, an 466 

illumination, and a difficulty. The red line indicates the linear regression between the 467 

crowdsourcing and laboratory results. The coefficient of determination (R2) of the 468 

regression and the equation are shown in the legend. The results show that the present 469 

tasks are generally robust across experimental environments. (b) Results of individual 470 

tasks. Different panels indicate tasks involving different materials. Each plot in a panel 471 

indicates a task with an object, illumination, and difficulty. The red line indicates the linear 472 

regression between the laboratory and crowdsourcing results. The coefficient of 473 

determination (R2) of the regression and the equation are shown in the legend. The 474 
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accuracy of task 2 (GD) in the crowdsourcing experiment was generally lower than that in 475 

the laboratory experiment. The correlation of task 6 (GP) between the laboratory and 476 

crowdsourcing experiments was the worst. 477 

 478 

Illumination and geometry 479 

Figures 8 to 13 show the performance of each task in the laboratory experiment. Different panels 480 

depict results obtained for different objects. Different symbols in each panel depict different 481 

illumination conditions. The results of the crowdsourcing experiment are shown in Appendix A. For 482 

task 1 to task 5 (Figures 8 to 12), we parametrically changed the material parameters, e.g., the 483 

contrast dimensions for task 1 (GC). Results show that the discrimination accuracy increased as the 484 

target material parameters deviated from the non-target one. This trend can be most evidently 485 

observed for Illumination 1 on each task condition. In contrast, the accuracy didn't change much 486 

with the material parameters for some conditions. This trend can be observed on Illuminations 2 and 487 

3 of task 1 (GC) and Objects 4 and 5 of task 2 (GD). For task 6, the relation of target and non-target 488 

stimuli is different from the other tasks. In this task, the non-target stimulus was made for each 489 

material parameter, i.e. the distinctness-of-image (DOI). As shown in Figure 13, this material 490 

parameter didn’t affect the task difficulty.  491 

By comprehensively assessing material recognition performance across different stimulus 492 

conditions, we found novel properties that have been overlooked in the previous literature. One 493 

regards the geometrical dependence of material recognition. When object images changed in the 494 

gloss – distinctness-of-image dimension (task 2: GD, Fig. 9), the observers could detect the material 495 

difference better for smooth objects (Object 2 & 3) than for rugged objects (Object 4 & 5). In 496 

contrast, when the object images changed in the glossiness-contrast dimension (task 1: GC, Fig. 8), 497 

little geometrical dependence was found. We also found little geometrical dependence when 498 

observers detected highlight-shading consistency (task 6: GP, Fig. 13). While geometrical 499 

dependencies of glossiness perception have been reported before (Nishida & Shinya, 1998; Vangorp, 500 

Laurijssen, & Dutré, 2007), they were mainly about the effects of shape on apparent gloss 501 

characteristics, not on gloss discrimination. Furthermore, our results also show a geometrical 502 

dependence of translucency perception (task 3: OT, Fig. 10). Similar to the dependence on the 503 

distinctness-of-image dimension, the sensitivity changed between the smooth objects (Object 2 & 504 

3) and rugged objects (Object 4 & 5), but in the opposite way. Specifically, the translucent difference 505 

was more easily detected for the rugged objects than for the smooth objects (Fig. 10).  506 

 507 

 508 

 509 
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 510 

Figure 8. Results of task 1 (GC) in the laboratory experiment. Different panels show 511 

different objects. Different symbols in each panel depict different illumination conditions. 512 

The vertical red line in each panel indicates the parameter of the non-target stimulus. Error 513 

bars indicate ± 1 SEM across observers. 514 

 515 
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 516 

 517 

Figure 9. Results of task 2 (GD) in the laboratory experiment.  518 

 519 

  520 
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 521 

Figure 10. Results of task 3 (OT) in the laboratory experiment.  522 

 523 

 524 
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 525 

Figure 11. Results of task 4 (MP) in the laboratory experiment. One of the observer data 526 

on Object 1 and Illumination 2 is missing due to a mistake in the stimulus presentation. 527 

 528 

 529 
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 530 

Figure 12. Results of task 5 (MG) in the laboratory experiment. 531 

 532 

 533 
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 534 

Figure 13. Results of task 6 (GP) in the laboratory experiment. 535 

 536 

 537 

We also found an illumination dependence in material recognition. We used three illumination 538 

conditions, wherein the illumination environments used in a task were identical (Illumination 1), 539 

similar to each other (Illumination 2), or largely different from each other (Illumination 3). The 540 

results showed that task accuracy decreased as the difference in light probes across the images 541 

increased from Illumination 1 to 2 and 3 (Figs. 8-13). This finding not only confirms the large effect 542 

of illumination on gloss perception reported before (Fleming et al., 2003; Motoyoshi & Matoba 543 
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2012; Zhang et al., 2019), but also demonstrates similarly strong effects of illumination on other 544 

material discrimination tasks (OT, MP and MG). 545 

 546 

Intermediate visual feature analysis 547 

One may raise a concern that our observers might make oddity judgments based on differences 548 

in low-level superficial image properties such as the object's mean color. We did not explicitly ask 549 

the observers to select one object image in terms of the material appearance. This procedure could 550 

lead observers to take a simple strategy unrelated to material judgment. A related question is that, if 551 

not such simple properties, is there any intermediate image features in hierarchical visual processing 552 

that can explain the observers' responses? Recent studies have shown that the intermediate 553 

processing in the ventral visual stream of humans and monkeys encodes the higher-order image 554 

features as computed in texture synthesis algorithms or deep convolutional neural networks 555 

(Freeman et al., 2013; Okazawa, Tajima, Komtsu, 2014; 2016, Yamins & Dicarlo, 2015). It has been 556 

suggested that the processing in the visual ventral stream also mediates material recognition for 557 

static objects (Nishio et al., 2012; 2014, Miyakawa et al., 2017). We asked how such intermediate 558 

features possibly processed in material computation can explain the observers' responses. 559 

More specifically, we analyzed how various image feature differences on each task can explain 560 

the observers' task performance. Each task, i.e., a material dimension with an object under an 561 

illumination condition, includes a set of material objects with different combinations of poses 562 

(Illumination condition 1) or illuminations (Illumination conditions 2 and 3). These combinations 563 

are used as repetition for the behavioral experiment. In the analysis, we chose all combinations for 564 

each task and calculated the mean feature distance. We calculated this distance metric using various 565 

image features (e.g., pixel statistics or texture statistics) as described below in detail. If the distance 566 

metric of each image feature is correlated with human performance, the feature can be diagnostic 567 

for human judgments. 568 

We linearly regressed the discrimination sensitivity d' for each task using the distance metric 569 

calculated from various image features. Specifically, we used the texture parameters originally 570 

proposed in the literature of texture synthesis by Portilla & Simoncelli (2000). They suggested that 571 

natural textures can be synthesized by the probabilistic summary statistics derived from the pixel 572 

histogram and the subband distribution, including higher-order statistics such as the correlations 573 

across the subband filter outputs. More recently, many studies have shown that the intermediate 574 

visual processing in the ventral stream, such as V2 or V4, encodes these texture parameters (Freeman 575 

et al., 2011; Okazawa et al., 2013). Following the previous studies (Okazawa et al., 2013), we 576 

reduced the original texture parameters by removing redundant features because a large number of 577 

parameters make the fitting unreliable. Specifically, we conducted the same reduction as Okazawa 578 

et al. (2013), except that 1) we included the mean, sd, and kurtosis of the marginal statistics, as well 579 

as the skewness and that 2) we calculated these statistics not only for grayscale images (CIE L* 580 

image) but also for color images (CIE a* and CIE b* images). We defined the white XYZ value 581 
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averaging the diffuse white sphere rendered under each illumination condition and used it to 582 

calculate the CIE L*, a*, and b* of each image. We extracted the center 128 x 128 pixels of each 583 

image and calculated the texture parameters using the texture synthesis algorithm by Portilla & 584 

Simoncelli (1999) with four scales and four orientations. We reduced these original texture 585 

parameters of each L*, a*, or b* image to 32 parameters following Okazawa et al. (2013). More 586 

details are described in the supplementary tables S1 and S2 of Okazawa et al. (2013). In total, we 587 

used 96 parameters for the regression analysis.  588 

We conducted five regressions with different types of parameters to explore the contribution of 589 

different statistics. Specifically, we used (1) pixel color means, (2) pixel color statistics, (3) Portilla 590 

& Simoncelli’s (PS) grayscale texture statistics, (4) PS grayscale statistics, and pixel color statistics, 591 

(5) PS color statistics. The pixel color means and the pixel color statistics were the marginal statistics 592 

in the PS texture statistics. The pixel color means indicated the averaged pixel values of each L*a*b* 593 

channel. The pixel color statistics indicated the mean, standard deviation, skewness, and kurtosis of 594 

each color channel. The number of these parameters was 3 and 12, respectively. For the two 595 

conditions, we used a linear regression without regularization to fit the discrimination sensitivity 596 

(blue and red in Fig. 14). For the three PS texture statistics conditions (yellow, purple, and green in 597 

Fig. 14, respectively), we used the compressed PS statistics as described above. Since the number 598 

of parameters for these conditions is large (32, 48, 96, respectively), we used L1-penalized linear 599 

least-squares regression (i.e., lasso) to avoid overfitting. We controlled the hyperparameters so that 600 

the number of independent variables is 18, where the regression of the PS grayscale statistics 601 

condition showed the minimum mean-squared error (MSE). 602 

We divided all tasks into training and test datasets with a ratio of four to one, respectively, and 603 

conducted the above five regressions. The task ratio was kept constant across the training and test 604 

datasets. For the training dataset on the lasso regressions, we regressed the discrimination sensitivity 605 

using the 5-fold-cross validation. Figure 14 shows the MSE and the determinant coefficient for the 606 

test datasets. We resampled the training and test datasets 10000 times and depicted the distribution 607 

using a violin plot. First, the predictions based on the color mean statistics didn't match the observers' 608 

discrimination sensitivity at all (Fig. 14a and 14b). These results suggest that the observers did not 609 

simply rely on the mean differences to perform the oddity tasks. The MSE and the determinant 610 

coefficient for the marginal statistics condition were more improved when we added the higher-611 

order statistics (marginal statistics condition, PS grayscale statistics condition, and PS color statistics 612 

condition). Since the regularization parameter is controlled under the PS color and grayscale 613 

statistics conditions, these results cannot be ascribed to the number of independent variables. It is 614 

noteworthy that even when all the PS color statistics are used, the prediction is not sufficient to 615 

explain observers' discrimination performance. This finding suggests that human material judgments 616 

also rely on higher-order features the PS statistics do not cover. One possible future direction is to 617 

use the intermediate activation of the deep neural networks. To support this direction, we include in 618 

our database the activation data of VGG-19, a feedforward convolutional neural network, for our 619 

image dataset and the analysis about how the dataset is represented in each layer (Appendix C). In 620 
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short, our dataset images were clustered in higher layers of the pretrained network according to 621 

object differences, and the material differences were represented in each object cluster. 622 

 623 

 624 

 625 

Figure 14. Results of the linear regressions using different parameters. We regressed the 626 

human discrimination performance on pixel color means (3 parameters, blue), pixel color 627 

statistics (12 parameters, red), Portilla & Simoncelli’s (PS) grayscale texture statistics 628 

(regularized 18 parameters, yellow), PS grayscale statistics and pixel color statistics 629 
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(regularized 18 parameters, purple), or PS color statistics (regularized 18 parameters, 630 

purple). (a) Results of the mean squared error (MSE) for each regression. (b) Results of 631 

the mean squared error for each regression. These results are shown using a violin plot. 632 

(c) Results of the MSEs for each task. The error bars indicate the bootstrap 95% confidence 633 

intervals.  634 

 635 

 636 

 637 

Individual differences 638 

Next, we evaluated the individual differences of each task in the Japanese adult population. 639 

Figure 15 shows the histogram of the response accuracy for each observer in the crowdsourcing 640 

experiment. The number of observers of illumination conditions 1, 2, and 3 was 416, 411, and 405, 641 

respectively. For each condition, the probability of a correct response was calculated by averaging 642 

the responses of each observer across objects and task difficulties. The standard deviations of tasks 643 

1 to 6 under illumination condition 1 are .14, .11, .12, .12, .12, and .23, indicating a particularly large 644 

individual difference for task 6 (GP). The standard deviation under illumination conditions 2 and 3 645 

ranged from .09 to .18. It should be also noted that most of the conditions show unimodal 646 

distributions, while task 6 (GP) shows a nearly uniform distribution. This finding suggests that 647 

individual differences in discrimination ability of the spatial consistency of specular highlights are 648 

larger than those for other material properties, including glossiness contrast and distinctness-of-649 

image (GC, and GD).  650 

 651 

 652 

 653 
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Figure 15. Histogram of response accuracy for each observer in the crowdsourcing (blue) 654 

and lab (red) experiments. Different panels indicate different material tasks and illumination 655 

conditions. For each condition, the probability of a correct response was calculated by 656 

averaging the responses of each observer across objects and task difficulties. The 657 

histograms of crowdsourcing and lab experiments are overlayed in each panel. The mean 658 

and standard deviation of each distribution are shown in each panel. 659 

 660 

Discussion 661 

The present study aimed to construct a database of material images annotated with the results of 662 

human discrimination tasks. We created material images that varied in six different material 663 

dimensions on the basis of the previous material-recognition studies. Our dataset includes various 664 

objects and illuminations so that users can comprehensively investigate the effects of these physical 665 

causes on material recognition. The results of psychophysical experiments showed that the task 666 

difficulty could be appropriately controlled by manipulating the material parameters. Furthermore, 667 

analysis of visual feature showed that the parameters of higher-order color texture statistics (Fig. 14, 668 

PS color statistics) can partially, but not completely, explain task performance.  One crucial point of 669 

our dataset is that we used a non-verbal procedure to collect the observers' data. Since this procedure 670 

is widely used in babies, brain-injured participants, and animals, the current behavioral data can be 671 

a benchmark for more diverse research fields. 672 

Since we comprehensively investigated the material recognition using a structured dataset, our 673 

dataset itself revealed novel findings about material recognition. For instance, the present results 674 

showed that the performance of the tasks in the crowdsourcing experiment was strongly correlated 675 

with that in the laboratory experiment. This suggests that the dataset has enough tolerance to conduct 676 

new experiments involving a variety of observers and experimental conditions. Another is that 677 

geometry dependency on material recognition emerges similarly in different material attributes such 678 

as gloss distinctness-of-image or translucency (Fig. 10). Specifically, the translucency 679 

discrimination sensitivity was high when the object had rugged surfaces (e.g., Object 1, 4, & 5). 680 

Some studies have shown that physically prominent features of translucent objects appear around 681 

sharp corners on the surface (Fleming et al., 2005; Gkioulekas et al., 2013). One possibility is that 682 

the diagnostic features for translucent perception lie in the edge/corner of a translucent object and 683 

our rugged objects included much information to judge translucency. More recently, Xiao et al. 684 

(2019) investigated the effect of geometry on translucency perception. In their experiments, they 685 

changed the smoothness of the object edges. In agreement with our findings, the edge modulation 686 

was critical to the translucency perception. Specifically, the object with the smooth edge was 687 

perceived as more translucent than the sharp one. 688 

Another finding is that the ability to discriminate the spatial consistency of specular highlights 689 

in glossiness perception has large individual differences, although other glossiness discrimination 690 
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tasks do not show such large differences. Some studies suggest that image statistics are diagnostic 691 

for glossiness perception (Adelson, 2001; Motoyoshi et al., 2008). However, when specular 692 

highlights of an object image are inconsistent in terms of their position and/or orientation with 693 

respect to the diffuse shading component, they look more like white blobs produced by surface 694 

reflectance changes (Beck & Prazdny, 1981; Kim et al., 2011; Marlow et al., 2011). This is why the 695 

highlight-inconsistency effect is considered to be a counterexample to the image statistics 696 

explanation. The large individual differences suggest that the discrimination of the spatial 697 

consistency of specular highlights may be mediated by a different, and possibly more complicated, 698 

mechanism than that responsible the glossiness contrast/distinctness-of-image discrimination. In 699 

agreement with this notion, Sawayama and Nishida (2018) showed that highlight inconsistency is 700 

discriminated by different image gradient features from those used in the human material 701 

computation. This suggests that the glossiness computation is mediated by multiple stages, i.e., one 702 

is to discriminate different materials on a surface for extracting a region-of-interest (ROI), and 703 

another is to compute the degree of glossiness in the ROI as shown in Motoyoshi et al. (2007). 704 

One may have a concern that the intermediate objects in tasks 4 and 5 are physically infeasible 705 

because they are a mixture of two physically distinct materials. However, our stimuli do not look so  706 

unrealistic. The dielectric/metal materials are distinct material categories when considering an object 707 

with a uniform single material, but many daily objects surrounding us however are a mixture of 708 

various materials, and we often see a plastic object coated by a metallic material. We can regard our 709 

intermediate materials as an approximation of such coated materials. In addition, continuously 710 

connecting distinct categories is common in various research fields such as speech recognition (e.g., 711 

Grey & Gordon, 1978) or face recognition (e.g., Turk et al., 2002), especially to elucidate what 712 

stimulus image features are involved in the processing. Considering the literature, we think our 713 

intermediate approach is reasonable. 714 

Although our database includes diverse material dimensions, they are still not enough to cover 715 

the full range of natural materials. One example is cloth (Xiao et a., 2016; Bi & Xiao, 2016; Bi et 716 

al., 2018; 2019). Cloth material is ubiquitous in everyday environments. A reason we did not include 717 

this class of materials is that it has been shown that the cloth perception strongly relies on dynamic 718 

information (Bi et al., 2018; 2019). Because of the limited experimental time, our database currently 719 

focuses on static images. This is why other materials related to dynamic information (reviewed by 720 

Nishida et al., 2018) related to the perception of liquidness (Kawabe et al., 2015), viscosity (Kawabe 721 

et al., 2015, van Assen & Fleming, 2018), stiffness (Paulun et al., 2017), etc., were not used in the 722 

current investigation. In addition, the perception of wetness (Sawayama, Adelson, & Nishida, 2017) 723 

and the fineness of surface microstructures (Sawayama, Nishida, & Shinya, 2017) were not 724 

investigated because of the difficulty of continuously controlling physical material parameters by 725 

using identical geometries of other tasks. Since we only used five geometries, material perceptions 726 

derived from object mechanical properties were not investigated either (Schmidt et al., 2017). A 727 

crucial point is that we share our source code to reproduce images. We hope to remove obstacles to 728 

constructing a new dataset and contribute to future work on material recognition. Sharing the 729 
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datasets with the source code should make researchers easily conduct a new experiment in this 730 

literature. For instance, we measured the discrimination sensitivities in our experiments from one 731 

side of the materials in tasks 3, 4, and 5 (i.e., opaque, gold, and silver). The sensitivities from the 732 

other side (i.e., transparent, plastic, and glass) could be slightly different from the current results. 733 

Researchers can easily render new images of different material parameters in the same scene 734 

condition and conduct a new investigation. 735 

Our datasets also highlighted the difficulty of choosing appropriate parameters that cover the 736 

full range of the material sensitivity. We chose the stimulus parameters based on the preliminary 737 

experiments. We tried to choose the parameters so that we can measure the sensitivity of each task 738 

in the full range, i.e., from the chance level to the maximum accuracy. However, we found large 739 

individual differences in some tasks, e.g., task 6, and they resulted in the partial measurement of the 740 

narrow sensitivity range. This unpredictability is one of the difficulties of producing the large size 741 

of the dataset. The current findings should contribute to the future attempt making material image 742 

datasets. 743 

Our dataset focuses on expanding the previous findings as to material recognition into more 744 

diverse research fields. From the view of a global standard dataset, our dataset has several limitations 745 

as described above. However, it did contribute to this expansion purpose. Specifically, several 746 

research groups of behavioral science, computer science, and neuroscience have on-going projects 747 

utilizing our dataset, and some findings have already been reported at conferences and journals. 748 

Kawasaki et al. (2019) used our dataset to explore the role of the monkey ITC on material perception 749 

by using the electrocorticography (ECoG) recordings. Tsuda et al. (2020) investigated the role of 750 

working memory on material processing using our dataset. Koumura et al. (2018) explored how 751 

mid-level features in deep convolutional neural networks can explain human behavioral data. Imura 752 

et al. (2017) compared the discrimination performance of children and adults. The attention and 753 

memory roles in material recognition are also investigated by Takakura et al. (2017).  754 

  755 

756 
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Conclusion 757 

We constructed image and observer database for material recognition experiments. We collected 758 

observation data about material discrimination in tasks that had a non-verbal procedure for six 759 

material dimensions and several task difficulties. The results of psychophysical experiments in 760 

laboratory and crowdsourcing environments showed that the performance of the tasks in the 761 

crowdsourcing experiment was strongly correlated with the performance of the tasks in the 762 

laboratory experiment. In addition, by using the above comprehensive data, we showed novel 763 

findings on the perception of translucence and glossiness. Not only can the database be used as 764 

benchmark data for neuroscience and psychophysics studies on the material recognition capability 765 

of healthy adult humans; it can also be used in cross-cultural, cross-species, brain-dysfunction, and 766 

developmental studies of humans and animals. 767 
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The results of the crowdsourcing experiment are shown in Figures A1 to A6. The same 940 

experiments were also conducted in the laboratory environment, and their results are shown in 941 

Figures 8 to 13. 942 

 943 

 944 

 945 

Figure A1. Results of task 1 (GC) in the crowdsourcing experiment. Different panels show different 946 

objects. Different stmbols in each panel depict different illumination conditions. The vertical red 947 

line in each panel indicates the parameter of the non-target stimulus. Error bars indicate the 95% 948 

bootstrap confidence intervals. 949 
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 950 

Figure A2. Results of task 2 (GD) in the crowdsourcing experiment. 951 
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 952 

Figure A3. Results of task 3 (OT) in the crowdsourcing experiment. 953 
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 954 

Figure A4. Results of task 4 (MP) in the crowdsourcing experiment. 955 
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 956 

Figure A5. Results of task 5 (MG) in the crowdsourcing experiment. 957 
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 958 

Figure A6. Results of task 6 (GP) in the crowdsourcing experiment. 959 

 960 

 961 

Appendix B 962 

Data records 963 

The database is available at 964 

https://www.dropbox.com/s/6bh1ncm8mv3i7dx/material_swym.zip?dl=0 [Currently, the database 965 
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is in a Dropbox folder, but we will put it on our project page later]. Figure A1 shows the data 966 

structure. The standard data are divided into three folders according to the illumination conditions. 967 

Each illumination condition folder contains folders of the material tasks (Task 1 to 6). Each material 968 

task folder includes experimental task folders. Each experimental task folder corresponds to one task 969 

in the behavioural experiments. The name of each folder indicates the illumination condition, object, 970 

material task, and task level. For instance, the name “Il1_obj1_Task1_06_12” indicates illumination 971 

condition 1 (i.e., Il1), object 1 (i.e., obj1), task 1 (Task1), contrast of 0.06 for the non-target stimulus, 972 

and contrast of 0.12 for the comparison stimulus.  973 

Each task folder contains the two folders named “1” and “0”. The images in the folder “0” 974 

indicate the non-target stimuli, while the images in the folder “1” are the target stimuli. Under 975 

illumination condition 1, three images are randomly selected from folder “0”, and one correct image 976 

is selected from folder “1”. Five images with different poses are stored in each “1” or “0” folder for 977 

illumination condition 1, while three images with different illuminations are stored for illumination 978 

conditions 2 and 3. The images in the database are in .png format and have a size of 512 x 512 px. 979 

In addition, standard observer data are placed on the top layer in the database in a .csv file. The file 980 

includes observer data including the probability of the correct response and the sensitivity d’ for 981 

each task in the crowdsourcing and laboratory experiments.  982 

 983 

 984 

Figure A1. Data structure in the database. Solid rectangles indicate a folder, while the 985 

dashed ones indicate a file. 986 

Appendix C 987 
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We analyzed how our datasets are represented in convolutional neural networks (CNNs). We 988 

extracted the visual features from each intermediate layer of a CNN. We used the VGGNet16 989 

(Simonyan and Zisserman, 2014), pre-trained for the object recognition task using ImageNet 2012 990 

(Russakovsky et al., 2015), and computed the activation of thirty convolution layers and three fully-991 

connected-layers of the model. To reduce the number of dimensions, we spatially averaged each 992 

channel's activation. Thus, we obtained the multidimensional activation vector for each layer with 993 

the dimension number of the channels.  994 

Figures C1 to C4 show the t-SNE embedding of each layer (Maaten & Hinton, 2008). Figure C1  995 

shows the results of the first convolution layer (conv 1_1), the last convolution layer (conv 5_3), 996 

and the third fully-connected-layer. Each plot indicates each material image. Different panels in each 997 

column mean different labelings based on task, object, and illumination, as shown in the legends. 998 

Figure C2 shows the embeddings of all the layers, which are colored by different tasks. Figures C3 999 

and C4 show the same embeddings as Figure C2, except colored according to different objects and 1000 

illuminations, respectively. 1001 

The embedding of the first convolution layer (conv 1_1) showed the clusters according to task 1002 

differences, especially MG, MP, and OT clusters. In contrast, this embedding didn't show any object-1003 

based clusters. Earlier layers are generally sensitive to lower image features. Different tasks have 1004 

different colors in our datasets, except that the tasks GC, GD, GP share similar green colors. In 1005 

addition, some clusters of illumination condition 3 emerged in the first layer embedding. The pixel 1006 

color distribution of illumination condition 3 is also largely different from the others. These results 1007 

suggest that the first layer code such lower image features.  1008 

The embeddings of the last convolution layer and the third fully-connected layer showed the 1009 

clusters according to object differences. Different tasks and illuminations are separately distributed 1010 

within each object cluster. Although the embedding is clustered according to object differences, it 1011 

didn't show the separation between Objects 2 and 3. This finding is consistent with human 1012 

discrimination performance. The results of behavioral experiments showed that the task accuracies 1013 

of Objects 2 and 3 were similar to each other and different from other object conditions, especially 1014 

on Task GD and OT. 1015 

 1016 
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 1017 

Figure C1. Embedding spaces of intermediate features of a deep neural network trained 1018 

for object recognition. The top, center, and bottom rows show the same embedding spaces 1019 

with different color symbols as shown in the legend. The left, middle, and right columns are 1020 

the results of the first convolution layer (conv1_1), the final convolution layer (conv5_3), 1021 

and the third fully connected layer (fc 3), respectively.  1022 

 1023 
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 1024 

Figure C2. Embedding spaces of intermediate features of a deep neural network trained 1025 

for object recognition. Results of all the 16 layers are shown with coloring different tasks. 1026 
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 1027 

Figure C3. Embedding spaces of intermediate features of a deep neural network trained 1028 

for object recognition. Results of all the 16 layers are shown with coloring different objects. 1029 

 1030 
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 1031 

Figure C4. Embedding spaces of intermediate features of a deep neural network trained 1032 

for object recognition. Results of all the 16 layers are shown with coloring different objects. 1033 

 1034 

 1035 

 1036 
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