
Zero-shot imputations across species are enabled through joint
modeling of human and mouse epigenomics

Jacob Schreiber
University of Washington

Seattle, Washington, United States
jmschr@uw.edu

Deepthi Hegde
University of Washington

Seattle, Washington, United States
deepthimhegde@gmail.com

William Noble
University of Washington

Seattle, Washington, United syayes
william-noble@uw.edu

TA
L1

C
H

D
1

JU
N

D

2370000 2372000 2374000 2376000 2378000

R
A

D
21

Genome Position

Zero-shot Imputations in the MEL Mouse Cell Line
Experimental Signal Avocado Imputations

Figure 1: The experimental ChIP-seq signal (in blue) and corresponding zero-shot imputations (in green) made at 25bp resolu-
tion for four proteins in the mouse cell line MEL using a model trained with the procedure we propose in this work. All tracks
depict signal at the same genomic locus and are on the same scale.

ABSTRACT
Recent large-scale efforts to characterize functional activity in hu-
man have produced thousands of genome-wide experiments that
quantify various forms of biochemistry, such as histone modifica-
tions, protein binding, transcription, and chromatin accessibility.
Although these experiments represent a small fraction of the possi-
ble experiments that could be performed, they also make human
more comprehensively characterized than any other species. We
propose an extension to the imputation approach Avocado that
enables the model to leverage genome alignments and the large
number of human genomics data sets when making imputations in
other species. We found that not only does this extension result in
improved imputation of mouse functional experiments, but that the
extended model is able to make accurate imputations for protein
binding assays that have been performed in human but not inmouse.
This ability to make “zero-shot” imputations greatly increases the
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utility of such imputation approaches and enables comprehensive
imputations to be made for species even when experimental data
are sparse.
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1 INTRODUCTION
Genome-wide sequencing-based measurements, such as ChIP-seq
for measuring histone modifications and protein binding, RNA-
seq for measuring transcription, and DNase/ATAC-seq for measur-
ing chromatin accessibility, quantitatively characterize the molec-
ular basis for cellular mechanisms, differentiation, and disease.
Consequently, individual investigators perform these assays to
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answer specific research questions, and large consortia—such as
the Roadmap Epigenomics Consortium [14], the ENCODE Project
[5], and the International Human Epigenomics Consortium [2]—
perform and collect thousands of them into compendia that broadly
characterize functional activity across a variety of primary cells
and tissues (“biosamples”).

Unfortunately, these compendia are rarely complete, and this
incompleteness is worse in species other than human. As of June 12,
2020, the ENCODE Project portal (https://www.encodeproject.com)
hosts only 1,814 epigenomic experiments mapped to the mouse ref-
erence genome mm10, in contrast to the 9,135 experiments mapped
to the human reference genome hg38. The experiments performed
in mouse span fewer assays and biosamples than the human exper-
iments, and each mouse biosample is generally less well assayed
than a typical human biosample. Perhaps most importantly, the
overall characterization of protein binding is far sparser in mouse
than in human, despite proteins, such as transcription factors, play-
ing crucial regulatory roles in the cell. To illustrate this difference
in sparsity: the best characterized human biosample, K562, has
558 protein binding experiments mapped to hg38, whereas the best
characterized biosample in mouse, MEL, has only 49 protein binding
experiments mapped to mm10. Further, only 32 mouse biosamples
have been assayed for protein binding at all, whereas hundreds of
human biosamples have been assayed for the binding of at least
one protein.

To mitigate this incompleteness, several computational methods
have been proposed for imputing the signal of experiments that
have not yet been performed [4, 7]. A recent method, Avocado [22],
is a deep tensor factorization model that treats a compendium as an
incomplete 3D tensor with axes corresponding to biosample, assay
type, and genomic position. Avocado learns latent representations
for each of the three axes independently and, by combining these
representations using a neural network, is able to impute the signal
for any genomics experiment contained within the tensor. However,
current imputation approaches, including Avocado, are restricted
to operate on the set of assays and biosamples where at least one
experiment has been performed. Because data is available for far
fewer assays in mouse than in human, existing imputation methods
are limited in two ways: first, there is less available data for training,
and second, there are far fewer assays for which even a single
experiment has been performed.

We address both of these problems with an extension to Avocado
that jointly models mouse and human genomics experiments. In
this extension, we expand the data tensor to include assays and
biosamples from both species, and use an alignment between the
human and mouse genomes (which we refer to as “synteny in-
formation”) to map signal from human experiments to positions
within the tensor. A side effect of this procedure is that most values
within the new tensor will come from human experiments; thus,
we modify the optimization strategy for Avocado to sample val-
ues from each species with equal probability to prevent the model
from focusing too much on human signal. The inclusion of human
experiments dramatically increases the amount of data available
for training mouse imputation models and, importantly, enables
imputations to be made for assays that have only been performed
in human. In machine learning terminology, imputing these assays
in mouse is an example of a “zero-shot” problem, where a model

makes predictions in a setting where it was not given any training
data. To our knowledge, no other large-scale imputation approach
is capable of making imputations in this zero-shot setting.

A notable aspect of this extension is that it takes advantage of
the evolutionary relationship between human and mouse. Mouse
and human genomes contain large amounts of shared sequence
[3, 24, 27], with approximately 40% of the human genome aligning
to the mouse genome [18]. This similarity is the basis for methods
that have identified previously unknown regulatory elements by
transfering functional annotations across species [10], and also
extends to the biochemistry of the cell. Naturally, transcription
and accessibility measure the same underlying phenomena in both
species, but even histone modifications and proteins are known
to play similar regulatory roles. For instance, in both species the
histone modification H3K4me3 is enriched in active promoters
[1, 9], H3K27me3 is enriched in repressed promoters [19], and the
transcription factor MYC is associated with cell growth [16, 17].

We find that our proposed joint optimization procedure allows
Avocado to make higher quality imputations for mouse than it does
using mouse data alone. When we compare a model trained using
our procedure to a model trained using only mouse data, we observe
an overall decrease in the mean-squared-error (MSE) of 4.4% and,
when partitioning the experiments by activity type, a decrease in
MSE of 24% for transcription-measuring experiments. Further, we
show that this improvement requires both human experiments
and synteny information, and that simply incorporating human
experiments is not as effective. Interestingly, we found that some
assays exhibited improved performance in mouse even when no
experiments of that type had been performed in humans. In these
cases, the improvement likely arose because Avocado identified
similarities between assays using only the mouse experiments and
then using the additional human experiments for those assays to
boost performance.

We next demonstrate that this procedure allows for imputation
of assays that have been performed in human but not in mouse.
Even though these experiments could not be imputed using tradi-
tional methods, we show that the resulting imputations are highly
accurate, with almost one-third of proteins showing a 50% decrease
in MSE compared to the strong average activity baseline and two-
third showing at least 20% decrease in MSE. Although we did not
find a strong correlation between the amount of available human
data for an assay and improvement in performance, we did find
that the our approach exhibited the strongest improvements over
the baseline in the most difficult cases. We find that that a major
source of improvement in these zero-shot imputations is that, de-
spite predicting a similar number of peaks as the baseline approach,
the peaks occur more frequently within accessible chromatin.

2 METHODS
2.1 Synteny mapping
A critical step in our procedure ismapping signal from human exper-
iments to positions on themouse genome.We build this mapping us-
ing sequence alignment annotations from the hg38ToMm10 liftOver
file available at http://hgdownload.cse.ucsc.edu/goldenpath/hg38/
liftOver/. The liftOver file consists of “chains” that define gapped
pairwise alignments between the two species. In the file, each chain
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Figure 2: The cross-species Avocado model. (A) A schematic of the expanded data tensor with shared assay and genomic posi-
tion axes. Mouse data is available for all positions on the mouse genome, whereas human data is only available for positions
in the mouse genome with aligned human positions. (B) The neural network takes in factor values for a single biosample,
assay, and genomic position, and predicts the corresponding value within the tensor.

is described by a single header line followed by one line for each
ungapped sequence alignment. When the alignment for one of the
species occurred on the minus strand, the positions were adjusted
appropriately, i.e. counting is done with respect to the end of the
chromosome instead of the beginning. When building our mapping,
we used only these ungapped alignment, rather than the entirety of
the chain, to diminish the effect of gaps. It is worth noting that the
hg38ToMm10 and mm10ToHg38 liftOver files are not symmetric
because the liftOver tool contains only unique coverage for the
target species but not the query species. We intentionally chose the
hg38ToMm10 file because we wanted to include as many connec-
tions from the mouse genome to the human genome as possible.

Next, we convert these sequence alignments to alignments of 25
bp bins because that is the resolution Avocado operates at. First,
ungapped alignments that are shorter than 25 bp are discarded
because they do not span a single bin and would distort the signal
in cases where the alignment is split by the boundaries of a bin. For
the remaining ungapped alignments, the starts and ends are divided
by 25 and rounded down (integer division) for each species inde-
pendently to get an alignment of bins. For example, an ungapped
alignment between positions 120–215 of mm10 and 72–167 of hg38
is converted to an alignment of zero-based half-open intervals of
bins 4–8 for mouse and 2–6 for human. The output of this step is
a triplet of arrays for each mouse chromosome: positions on the
mouse chromosome with aligned sequence, chromosomes in the
human genome that the mouse position aligned to, and positions
on the respective chromosome in the human genome that aligns to
the mouse position.

2.2 Data sets
In total, we downloaded and processed 8,015 genomics experi-
ments hosted on the the ENCODE project portal (https://www.
encodeproject.org). These experiments included 6,870 measuring

biochemical activity in humans, denoted as ENCODE2018-Full, and
1,145 measuring biochemical activity in mouse, denoted MouseEN-
CODE2019.

The output from these experiments was processed in a similar
fashion to previous work involving Avocado [21, 22]. The sequenc-
ing reads were processed using the ENCODE Processing Pipeline
[15] and mapped to either human genome assembly hg38 or mouse
genome assembly mm10. The resulting signal values are − log 10 p-
values for the ChIP-seq and ATAC-seq data, read-depth normalized
signal for DNase-seq, and normalized stranded read coverage for
the RNA-seq experiments. When a pooled replicate was present for
an experiment we preferentially chose it; otherwise, we chose the
second replicate if two replicates, but not a pooled version, were
present, and the first (and only) replicate otherwise.

After these experiments, the data were then further processed
before model training. First, the signal was downsampled to 25 bp
resolution by taking the average signal in each non-overlapping
25 bp window. Second, an inverse hyperbolic sine transformation
was applied to the downsampled data. This transformation has
been used previously to reduce the effect of outliers in epigenomic
signal [4, 11]. The inverse hyperbolic sine function is similar to a
log function except that it is defined at 0 and is almost linear in the
range between 0 and 1. The transformed tracks are used both for
training and evaluating the models.

Finally, we used our synteny mapping to extract measurements
from human experiments that mapped to each mouse chromosome.
This procedure was fairly straightforward and involved simply
applying the triplet of arrays to, using the first array, define the
position on the mouse genome and, using the second and third
arrays, copy the signal from the corresponding positions on the
human genome. When representing the data as a tensor, the mea-
surements from human experiments appear as partially complete
blocks attached to the tensor of mouse measurements at positions
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where the mouse genome aligns to a region on the mouse genome
(Figure 2A).

2.3 Avocado model
Avocado is a deep tensor factorization method for modeling a com-
pendium of experiments as a partially-filled 3D tensor [21, 22]. The
model is comprised of latent representations for each of the three
dimensions of the tensor—biosamples, assay types, and genomic
positions— (Figure 2A) and a neural network that combines these
representations in a non-linear manner to predict values within
the tensor (Figure 2B). The assay representations have 256 dimen-
sions, the biosample representations have 32 dimensions, and the
genomic representation is split between three resolutions with 25
dimensions at 25 bp resolution, 40 dimensions at 250 bp resolution,
and 45 dimensions at 5 kbp resolution. The neural network takes
the concatenation of these representations as input, has two dense
layers of size 2,048 with ReLU activation functions, and outputs the
signal at one position for a single experiment. The latent represen-
tations and the weights of the neural network model are trained
jointly using the Adam optimizer [13] with default hyperparame-
ters. Avocado can impute any genomics assay within the tensor by
sequentially substituting in the entire set of genome factors.

Although the topology of Avocado remains the same in our
extension, we made two changes to accomodate the expanded data
tensor. The first change is that the assay axis contains the union of
all assays in both species, and the biosample axis contains the union
of all biosamples in both species. During training, an example drawn
from a mouse experiment involves a triplet as input specifying the
genome position, the assay, and the mouse biosample. Similarly,
an example drawn from a human experiment involves a triplet
specifying the aligned position on the mouse genome, the assay,
and the human biosample. The second change involves modifying
how data are sampled during training. In our extension, half of
the values in each batch comes from each species. We made a
third change that was not critical for our procedure but empirically
improved the convergence of our model: instead of training on
genomic positions sequentially, as in previous work, we permute
the order that genomic positions are sampled each epoch.

As an additional baseline, we construct an Avocado model that
incorporates human experiments but does not use synteny informa-
tion. This model involves constructing a tensor of measurements
where each of the three axes is the concatenation of the mouse
and human elements. The primary difference between this and our
proposed extension is that this model will have a separate set of
factors for the mouse and human positions, instead of having only
genomic factors for mouse positions. This model is trained using
the same data as the model that incorporates synteny information,
i.e. measurements from the portions of the human genome that
align to the mouse genome, but this alignment information is dis-
carded. Thus, in the data tensor, there is only an overlap in assays
between experiments from the two species.

2.4 Calculation of average activity
We use the term “average activity” to refer to the average signal
value for each assay across a set of training tracks at each position
in the genome. This value can be used as a strawman imputation

procedure. As a baseline, the average activity score is typically
much stronger than the simple average signal value across all loci,
which is a more traditional baseline. Generally, we calculate the
average activity for an assay by calculating the average signal
across the experiments in the training set used to train the model
we are evaluating. In the context of three-fold cross-validation, for
each fold the average activity is calculated for each assay using the
experiments in the other two folds (the training set). Formally, the
average activity AA for an assay a from the set of all training set
experiments of that assay E at position i in the genome is calculated
as AAa,i = 1

|E |
∑
e ∈E

ei

2.5 Model evaluation
We evaluate the models presented in this work using the mean-
squared-error across all folds in a cross-validation that partitions
entire experiments into three folds. Due to computational limita-
tions that arise when training many models for comparison, we
limit our evaluations to chr3, chr11, and chr19 of the mouse genome.
We chose chr19 because it was the smallest, and the other two were
chosen randomly. Because the training process involves fitting each
chromosome independently, the released model is available for the
entire mouse genome.

For our initial cross-validation experiment in Section 3.1, we
partition experiments into folds that attempted to include each
assay at least once in each fold. Some assays had been performed
fewer than three times, and so experiments for these assays were
partitioned into folds normally for training but were excluded from
evaluation. This reduced the number of mouse experiments from
the 1,145 experiments used for training to 1,116 used for evaluation.

Our evaluation of the zero-shot imputations involved a cross-
validation of protein binding assays instead of experiments. Each
step of cross-validation involved filtering out all experiments for
the assays in the specified fold, training a model using all remaining
human andmouse data, and evaluating performance solely on those
experiments that had been filtered out. While this validation did
not require that an assay had been performed multiple times, like
the initial cross-validation did, the same set of 1,116 were used for
evaluation because the average activity baseline that we compared
against required multiple experiments to be performed per assay.

3 RESULTS
3.1 Joint optimization improves imputations in

mouse
Our primary hypothesis is that an imputation approach that jointly
models experiments from multiple species will perform better, and
be more comprehensive, than an approach that models experiments
from only a single species. Accordingly, we began by quantifying
the benefit that including human experiments in the training pro-
cess had when imputing mouse experiments. Our first evaluation
was a three-fold cross-validation, where the three folds came from
splitting the experiments in MouseENCODE2019 into three parti-
tions such that each assay had been performed at least once in each
partition (see Methods for details).

We evaluated three Avocado models that were trained using
differing amounts of information. The first model was trained using
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Table 1: Imputation performance. The MSE computed both overall across all experiments and for each of the four main forms
of biological activity in MouseENCODE2019. For each measure, the score for the best-performing model is in boldface if the
improvement over the Mouse Only model is significant (paired t-test p-value ≤ 0.01). For transcription experiments, the two
models that use human data sets are not significantly different from each other (p-value of 0.363) and so both numbers are
bolded.

MSE Overall Histone Modifications Protein Binding Transcription Accessibility

Average Activity 0.0824 0.1056 0.0942 0.00217 0.0519
Mouse Only 0.0596 0.0763 0.0646 0.00194 0.0440
+ Human Data Sets 0.0582 0.0741 0.0654 0.00151 0.0433
+ Synteny Information 0.0569 0.0721 0.0653 0.00148 0.0435

only mouse experiments and so represented model performance
on the standard imputation task. The second model was trained
using both mouse and human experiments, but without synteny
information, by simply concatenating together the two tensors
along the genome axis (see Methods for details). The third model
is trained on the same set of experiments as the second model but
uses our joint optimization procedure that accounts for synteny.
We train these three models so that we can separately assess the
benefit of including human genomics experiments and the synteny
information. Importantly, when performing cross-validation, mod-
els that include human experiments are given access to the entirety
of the human data sets in each fold. Although the second and third
models were trained using both human and mouse epigenomic
experiments, all three models were only evaluated on their ability
to impute mouse epigenomic experiments.

As a baseline for the imputation approaches described above,
we calculated the average activity of each assay (see Methods for
details). The average activity for an assay is the average signal at
each position exhibited by the training set experiments that are
of that assay. The average activity baseline represents a simple
rule that regions of consistently high or low signal in the training
set will exhibit similar behavior in the test set [23]. Accordingly,
improvement over the average activity baseline generally indicates
the prediction of cell type-specific activity.

We comprehensively calculated the performance, as measured
by MSE, of each of the models using cross-validation. Overall, we
found that the more information the model had access to, the better
the model performed: the model that used human data but not
synteny information outperformed the mouse-only model (paired
t-test p-value of 9.39e-8) but itself was outperformed by the model
that used both (p-value of 6.54e-7, Table 1). The largest perfor-
mance improvement came from imputing histone modification
experiments (p-value of 1.86e-28), which were plentiful in both
human and mouse contexts. Proportionally, the largest improve-
ment is in the experiments that measure transcription (p-value of
8.24e-6), likely because the human data sets contain a large number
of transcription-measuring experiments. A similar trend—a large
improvement in predicting transcription in mouse when leverag-
ing human data sets—has also been observed by Kelley [12] when
predicting functional state using nucleotide sequence alone.

We identified two sets of loci with distinct characteristics where
our approach led to improved performance. In the first set of loci,

each imputation method generally outperformed the average ac-
tivity baseline, but our approach led to more accurate predictions
of the exact signal values than the mouse-only model (Figure 3A).
The second set of loci were characterized by similarly poor perfor-
mance of both the average activity baseline and the mouse-only
model (Figure 3B), but better performance using our proposed ap-
proach. These loci were prominent among transcription-measuring
experiments, and might explain the large proportional gains in
performance observed when using our method.

To investigate the second set of loci further, we analyzed all
positions with non-zero experimental signal in chr3 for a total
RNA-seq experiment performed in CH12.LX. We found that the
MSE for these positions decreased from 0.191 when only the mouse-
only model to 0.09 when using our approach, but that the MSE
between the imputations and the average activity increased from
0.017 when using the mouse-only model to 0.20 when using our
approach (Figure 3C/D). These results indicate that a source of
error for the mouse-only model is making imputations that too
closely resemble the average activity, i.e. are not biosample specific,
and that the additional information provided to our approach can
improve the biosample-specificity of the resulting imputations.

Interestingly, we found that, for two of the three assays with
the largest absolute gain in performance (MYOG and H3ac, with
decreases of 8% and 12% MSE respectively), no experiments had
been performed in human. This observation may initially appear
counterintuitive. However, we note that both MYOG and H3ac
co-occur with other biological activity that has been measured in
both mouse and human. Specifically, according to STRING-DB [25],
MYOG interacts with five proteins that have been measured in
both species, most prominently TCF12 with five experiments in
human, and H3ac generally coincides with H3K4me3. The improved
performance on MYOG and H3ac indicates that our extension can
benefit the imputations not only of assays that have been performed
in human, but also those whose activity is correlated with assays
that have been performed in humans.

3.2 Joint optimization enables zero-shot
imputations

Encouraged that our proposed procedure led to an improvement
in overall performance, we hypothesized that the same procedure
could allow Avocado to make predictions in mouse for assays that
have only been performed in human. We refer to this as the “zero-
shot” setting because the model has no training data in mouse

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2020. ; https://doi.org/10.1101/801183doi: bioRxiv preprint 

https://doi.org/10.1101/801183
http://creativecommons.org/licenses/by-nc/4.0/


ACM-BCB 2020, Sept 21–24, 2020, Virtual Schreiber et al.

17320.55 17325.55 17330.55 17335.55
0

5

S
ig

na
l

MEL Cell Line H3K27acA. B.
C. D.

Experimental

17320.55 17325.55 17330.55 17335.55
0

5

S
ig

na
l

Average Activity: 1.147

17320.55 17325.55 17330.55 17335.55
0

5

S
ig

na
l MouseENCODE: 0.7101

17320.55 17325.55
Genomic Position (kb) Genomic Position (kb)

17330.55 17335.55
0

5

S
ig

na
l

+Human/Synteny: 0.3249

11250.75 11253.25 11255.75 11258.25
0

5

CH12.LX Cell Line Total RNA-seq

11250.75 11253.25 11255.75 11258.25
0

5 Average Activity: 4.005

11250.75 11253.25 11255.75 11258.25
0

5
MouseENCODE: 3.99

11250.75 11253.25 11255.75 11258.25
0

5 +Human/Synteny: 2.888 0 5 10 15 20
Squared Error

0

5

10

15

20

25

D
iff

er
en

ce
fr

om
A

.A
.

0 5 10 15 20
Squared Error

0

5

10

15

20

25

D
iff

er
en

ce
fr

om
A

.A
.

Figure 3: Examples of real and imputed signal. (A) An example of experimental signal for H3K27ac in the MEL cell line (blue),
the average activity (orange), the imputed signal from a model trained using only data from mouse (red), and the imputed
signal from a model trained using our procedure (green). Each approach is annotated with the MSE compared to the experi-
mental signal for the visualized region. (B) The same as (A) except for total RNA-seq in the CH12.LX cell line. (C) The MSE
between the imputations made from the mouse-only model and the experimental signal versus the difference between the
imputed signal and the average activity, from all positions exhibing non-zero experimental signal in chr3 for the experiment
in (B). (D) The same as (C) except for the model trained using our procedure.

for the assays that it is making imputations of. Although there
are a variety of assays where data is available in human but not
in mouse, we focused our evaluations here on imputing protein
binding experiments because of the importance that protein binding
plays in gene regulation and because many proteins have had their
binding characterized in human but not in mouse.

We began by investigating model performance in two related
zero-shot settings. In the first setting, protein binding assays (not
the experiments themselves) were divided into three partitions, and
cross-validation folds were constructed such that all experiments
in mouse from assays included in the corresponding partition were
removed. This resulted in three folds of experiments where each
fold excluded all mouse experiments from one-third of protein bind-
ing assays. In the second setting, all protein binding experiments
performed in mouse were excluded. Although the first setting is
more realistic, because some protein binding experiments have
already been performed in mouse, the second setting allows us to
investigate the performance benefit of including these experiments
when making zero-shot imputations. We compared performance in
both of these settings to the same average activity baseline from the
previous section. This baseline is even more difficult to beat in these
zero-shot settings because it is explicitly derived from data that the
model does not have access to, i.e., protein binding experiments in
mouse.

Despite the strength of the average activity baseline in this con-
text, we found that the Avocado models trained using our procedure
generally outperformed it. Visually, we observed that the impu-
tations in both settings were similar to the experimental signal
(Figure 4A/B). Overall, in the first setting, the MSE dropped signifi-
cantly from 0.919 when using the average activity to 0.778 when
using our procedure (paired t-test p-value of 3.29e-5) and, in the
second setting, remained at 0.919 (p-value of 0.996, Figure 4C).
In both settings, models that leveraged the synteny information
significantly outperformed those that did not (p-values of 5.07e-5

and 7.68e-6 respectively). The improvements in performance when
using synteny are over 1 and 2 orders of magnitude larger (respec-
tively) in the two zero-shot settings (0.0045 and 0.0246) than in
the original cross-validation experiments (0.00017), indicating that
synteny information is particularly useful for identifying protein
binding sites in the absense of experimental data sets.

Next, we evaluated the performance of the average activity and
our zero-shot imputations on a per-protein basis. We found that
our imputations improved upon the average activity baseline for
29 out of 31 proteins (Figure 4D). This improvement was often
substantial: for example, our models decreased the MSE by at least
50% relative to the average activity for almost one-third (10) of
proteins and decreased the MSE by at least 20% relative to the
average activity for over two-thirds (22) of proteins. The average
decrease in MSE was 0.035 and, on average, each protein saw a
33.7% improvement relative to the average activity baseline. These
results are particularly striking because the model had not been
explicitly exposed to nucleotide sequence, information about motif
occurrances, or examples of the respective protein binding in other
mouse biosamples.

However, we noted that the model does not improve over the
average activity baseline for all proteins. Specifically, our model
underperforms the average activity baseline on CTCF and USF1
(though we note that the performance difference on USF1 is very
small). It is not entirely surprising that the average activity base-
line is strong for CTCF. First, CTCF has been performed 33 times
in mouse, almost twice as many times as the next leading assay
POLR2A at 19 and over 8 times more than the average (4.1 times),
and so the average activity is likely a more robust estimator. Sec-
ond, CTCF binding is generally very similar across biosamples.
This means that a baseline derived from observed binding in some
biosamples will be a very strong baseline for prediction in a new
biosample, particularly when compared to a model that does not
observe this binding even a single time.
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Figure 4: Examples and evaluation of zero-shot imputations. (A) The experimental signal, average activity, and imputed signal
of four models for binding of CTCF in CH12.LX. The MSE for each approach compared to the experimental signal in the
displayed window is also shown to the right. The legend to the left shows the set of experiments used to train each model. (B)
The same as (A) but for the binding of MYC in CH12.LX. (C) The overall performance of each approach with four statistically
significant relationships highlighted. (D) The percentage improvement between imputations from our proposedmethodology
(that uses two folds of protein binding experiments) and the average activity. (E) The relationship between the performance
of the average activity baseline and the absolute improvement that our approach exhibits with a best-fit line drawn. (F) The
AUROC from identifying DNase peaks using imputed protein binding signal and the average activity. (G) The recall for the
same task as (F) when the protein binding signal is binarized with the same threshold as the DNase signal. (H) The same as (G)
except reporting precision instead of recall.

We then sought to better understand the cases where our model
achieved large gains. A reasonable hypothesis is that the perfor-
mance of our approach, which relies on human data to make zero-
shot imputations, is associated with the amount of available human
data. However, we did not find strong evidence that this was the
case. In fact, we initially found a negative correlation between the

number experiments performed in human and the resulting im-
provement in performance in mouse (r = −0.57). This negative
correlation was primarily driven by four outlier proteins, including
CTCF, that had been assayed in humans significantly more than the
norm (between 45 and 194 times compared to 11 times or fewer for
all other proteins). When we excluded these four we found that the
correlation decreased (to r = −0.11). In contrast, we found that the
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performance of the average activity baseline itself was much more
correlated with performance improvement, with a correlation of
0.579 over all proteins and 0.697 when excluding the four outliers
(Figure 4E). This finding is not unexpected: the worse the average
activity baseline, the larger the room for improvement. However,
confirming that our method exhibits larger improvements in more
difficult cases is still worthwhile.

Finally, we evaluated the biological consistency of these impu-
tations by measuring how well protein binding coincided with
chromatin accessibility. Accordingly, we identified 95 protein bind-
ing experiments from mouse biosamples that also had a DNase-seq
experiment performed in them, and we measured the extent that
imputed signal for each protein was localized within experimen-
tal DNase-seq peaks. This measurement was, specifically, the area
under the receiver-operator-characteristics curve (AUROC) for the
classification problem of identifying DNase peaks, defined by hav-
ing a read-depth normalized signal value above 2, using the protein
binding signal. The AUROC has the intuitive interpration of being
the probability that signal is higher within accessible sites than
elsewhere. Overall, we found that Avocado’s imputations had a
higher AUROC than the average activity baseline in 79 of the 95
experiments we considered, and had an average improvement of
0.119 AUROC (Figure 4F).

We reasoned that there were two possible sources for this im-
provement: imputed peaks could simply be occuring at all accessible
sites in each biosample, or more of the imputed peaks could fall
within accessible sites. Fortunately, distinguishing between these
sources is easy because they correspond simply to recall (propor-
tion of accessible loci that exhibit imputed peaks) and precision
(proportion of imputed peaks that occur at accessible loci) respec-
tively. The first source would indicate undesirable behavior from
the model, in that the model cannot identify which proteins bind
at which accessible loci, whereas the second would indicate de-
sirable behavior, because the model would not predict binding at
inaccessible loci.

When we calculated these values we found that the this increase
in AUROC was driven largely by increases in precision but not in
recall. Specifically, we found that the average activity had a recall
that was only larger by 0.004 (p-value of 0.769, Figure 4G), whereas
the imputations had a precision that was larger by 0.23 (p-value
1.2e-18, Figure 4H). The similar recall scores indicate that protein
binding predictions from both approaches cover roughly the same
number of accessible loci, but the higher precision score for the
imputations indicates that the imputed signal is more concentrated
in accessible loci than the average activity is, i.e. that fewer peaks
occur outside accessible loci. Taken together, these results confirm
that our protein binding imputations are concentrated at accessible
sites but do not simply associate accessibility with protein binding.

4 DISCUSSION
In this work, we introduce an extension to the imputation method
Avocado that improves its performance by jointly modeling experi-
ments from multiple species. We find that this extension improves
the performance of a mouse imputation model, and that part of this
improved performance comes from imputing biosample-specific

signal at loci where a mouse-only model simply imputes the aver-
age activity. Encouragingly, we find that improvements occurred
even for assays that have not been performed in human, demon-
strating the broad impact that modeling experiments from multiple
species can have. We then show that our extension enables the
model to make imputations in mouse for assays that have only been
performed in humans, and that these imputations are biosample
specific and significantly more accurate than the average activity—a
strong baseline for this setting. Altogether, our model is capable of
making imputations for over 750 different protein binding assays,
most of which have not yet been performed in mouse.

We anticipate that these imputations will be useful in a variety of
situations. Naturally, any existing application of imputed data, e.g.
augmenting genome segmentation methods [6, 7] or prioritizing
experimental efforts [20], will immediately benefit from improved
accuracy; however, these applications may further benefit because
the imputations that we provide span a much larger set of assays
than is covered by available experimental data. Potentially, one
could apply a method like the one proposed by Wei et al. [26] to
the zero-shot imputations to determine an order that assays should
be performed for the first time.

The finding that imputation performance for a particularly assay
is not strongly associated with the number of times the assay had
been performed in human is important. In particular, it suggests that
one does not need to perform an assay in several human biosamples
before zero-shot imputations can be trusted. However, this finding
may be confounded by the presence of other proteins that bind at a
similar set of loci (either because they are co-factors, members of the
same protein family, or otherwise). It may be the case that accuracy
of protein binding imputation is associated with the number of
times that co-binding assays have been performed, but we were
not aware of a simple way to determine this.

We intentionally do not consider the binding patterns of proteins
when constructing folds for our zero-shot imputation setting. As a
result, some proteins with similar binding patterns may occur in
different folds of cross-validation. We reasoned that this approach
for constructing folds is not problematic for evaluation because,
realistically, not all proteins with similar binding patterns will be
assayed together and, for the task of imputing protein binding,
one would expect a method to make use of close relationships.
Indeed, one would be disappointed if a model trained using MYC
experiments exhibited extremely poor performance at imputing
the binding of its near homolog, MAX. That being said, it is not
unreasonable to initially be concerned about the generalization
capabilities of the model to proteins whose binding patterns are
completely different from those already performed in mouse. For
those proteins, we expect that the performance of the model trained
using no protein binding experiments at all in mouse represents a
lower bound of performance.

Although this work focuses on modeling mouse and human ex-
periments, the method we propose is general to any pair of species.
It is likely that the performance of the model will be related to the
evolutionary distance between the species: when this distance is
high, the assumption that our model makes about biochemical sim-
ilarity in the cell may become a source of error in the imputations
[8]. For such pairs of species, it may become necessary to increase
the flexibility of the model by allowing it to learn species-specific
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assay representations that are regularized to be similar to each
other. On the other hand, careful analysis of errors made by the
current approach may yield a data-driven way of identifying bio-
chemistry that differs between species, and where these differences
occur along the genome. Regardless, it will be important to keep
these assumptions in mind when applying this extension.

Imputations, models, and latent factors produced by this project
will bemade freely available at https://github.com/jmschrei/avocado.
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