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Abstract 9 

 10 

DNA methylation is an epigenetic modification of cytosine nucleotides that represents a 11 

promising suite of aging markers with broad potential applications. In particular, determining 12 

an individual’s age from their skeletal remains is an enduring problem in the field of forensic 13 

anthropology, and one that epigenetic markers are particularly well-suited to address. 14 

However, all DNA methylation-based age prediction methods published so far focus on tissues 15 

other than bone. While high accuracy has been achieved for saliva, blood and sperm, which are 16 

easily accessible in living individuals, the highly tissue-specific nature of DNA methylation 17 

patterns means that age prediction models trained on these particular tissues may not be 18 

directly applicable to other tissues. Bone is a prime target for the development of DNA 19 

methylation-based forensic identification tools as skeletal remains are often recoverable for 20 

years post-mortem, and well after soft tissues have decomposed. In this study, we generate 21 

genome-wide DNA methylation data from 32 individual bone samples. We analyze this new 22 

dataset alongside published data from 133 additional bone donors, both living and deceased. 23 

We perform an epigenome-wide association study on this combined dataset to identify 108 24 

sites of DNA methylation that show a significant relationship with age (FDR < 0.05). We also 25 

develop an age-prediction model using lasso regression that produces highly accurate estimates 26 

of age from bone spanning an age range of 49-112 years. Our study demonstrates that DNA 27 

methylation levels at specific CpG sites can serve as powerful markers of aging, and can yield 28 

more accurate predictions of chronological age in human adults than morphometric markers. 29 
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Introduction 30 

 31 

Determining a person’s age from skeletal and dental remains has been an integral component 32 

of building a biological profile for several decades of forensic investigations. Classic methods 33 

rely on morphological features of development and functional decline, such a tooth eruption, 34 

suture closure, and bone density (Cunha et al., 2009; Franklin, 2010). However, these 35 

approaches suffer from difficulties in implementation and standardization (Cunha et al., 2009; 36 

Franklin, 2010). One such issue is that there are few morphological features that can be used to 37 

precisely estimate the age of adults, as most developmental processes that can distinguish 38 

between juveniles of different ages cease by adulthood. Thus, different skeletal features are 39 

analyzed for this purpose in different age classes, but the overall accuracy of morphology-based 40 

estimates is typically low for adults (Cunha et al., 2009; Franklin, 2010). 41 

Molecular-based methods of age estimation represent a promising alternative to those 42 

based on morphometrics. One early approach was based on the degree of amino-acid 43 

racemization of bones and teeth, which produces highly accurate estimates of age (Meissner 44 

and Ritz-Timme, 2010; Ohtani and Yamamoto, 2010). However, this method still suffers from 45 

practical limitations, such as difficulties in standardizing the procedure, and the need for 46 

specialized equipment and technical expertise to isolate the tissue of interest and conduct 47 

protein fractionation (Meissner and Ritz-Timme, 2010; Ohtani and Yamamoto, 2010). 48 

More recently, advances in the study of DNA methylation have driven its popularity in 49 

the field of forensic sciences as a general molecular approach to estimating individual age that 50 

can be applied in various contexts. DNA methylation is a chemical modification to the primary 51 

DNA sequence; in mammals, it occurs predominantly on cytosine nucleotides that are in a 52 

cytosine-guanine dinucleotide context (a CpG site). It has been shown that, at certain CpG sites, 53 

the average level of DNA methylation changes measurably throughout life in a manner that 54 

makes them potentially useful markers of human aging. This has led to a profusion of methods 55 

being developed for tissues such as sperm, blood, saliva, and teeth which produce highly 56 

accurate estimates based on DNA methylation levels from relatively few CpG sites, measured 57 

using widely used, often commercially available, assay methods (Hong et al., 2017; Lee et al., 58 
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2015; Vidaki et al., 2017; Yi et al., 2014; Zbieć-Piekarska et al., 2015b). However, there does not 59 

yet exist a DNA methylation-based method for estimating age from human bone, a tissue type 60 

that is highly relevant to the field of forensic sciences. Methods developed for other tissues 61 

likely cannot be applied directly to bone due to the highly tissue-specific nature of age-related 62 

DNA methylation patterns (Dmitrijeva et al., 2018; Hannum et al., 2013; Lee et al., 2015; 63 

Maegawa et al., 2010; Slieker et al., 2018). 64 

In this study, we analyze bone-derived DNA methylation data from hundreds of 65 

thousands of CpG sites across the genome in a large sample of human adults to identify CpG 66 

sites that change significantly with age. We then use a subset of these sites to develop a highly 67 

accurate prediction model for individuals in an age class where morphological methods can be 68 

problematic. Furthermore, we show that our model exhibits higher accuracy and relies on 69 

fewer CpG sites compared to a previously published model that was developed for use on 70 

multiple tissues. 71 

 72 

Methods 73 

Description of datasets 74 

Three previously analyzed and published datasets were derived from bone biopsies of 75 

living donors, assayed on the Illumina Human Methylation 450k array, and previously analyzed 76 

(Table 1) (Horvath et al., 2015; Reppe et al., 2017). Additional data were generated for this 77 

study from bone-derived DNA from deceased donors from both forensic and preserved 78 

specimens and assayed on the Illumina Human Methylation EPIC array (Table 1). 79 

  80 
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Table 1 - Description of datasets analyzed. 81 

 82 

Dataset (GEO 

accession) 

N samples N 

females 

Age 

range 

Sample 

type 

Methylation 

array 

Citation 

Osteoporosis 

study 

84 84 49-86 Living 

donor 

450k (Reppe et 

al., 2017) 

Multi-tissue 

study 

(GSE64490) 

48 46 49-104 Living 

donor 

450k (Horvath 

et al., 

2015) 

Supercentenaria

n from multi-

tissue study 

(GSE64491) 

1 (plus 3 

replicates) 

1 112 Deceased 

donor 

450k (Horvath 

et al., 

2015) 

Preserved 

specimens 

19 7 60-97 Deceased 

donor 

EPIC This study 

Forensic 

specimens 

13 4 18-95 Deceased 

donor 

EPIC This study 
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Forensic specimens 84 

Forensic specimens were collected from the Forensic Anthropology Center at Texas 85 

State (FACTS) in San Marcos, Texas. Donated specimens are typically allowed to decompose 86 

naturally in an outdoor environment on the premises for 2-3 years, after which the bones are 87 

cleaned with a mild detergent and housed in their storage facilities. For this study, trabecular 88 

bone from femurs was collected based on a previously published protocol for minimally 89 

destructive sampling for skeletal remains (Gibbon et al., 2009). Briefly, the outside of the bone 90 

was cleaned between the medial and lateral condyles with 95% ethanol. The femur was then 91 

held vertically while a small hole was drilled with a Dremel 200 rotary tool and a 1/8” diameter 92 

bit. After rotating the fully inserted drill bit and withdrawing it, the femur was inverted over a 93 

collection tube to collect the bone powder. Between 0.1 and 1g (0.67g average) of bone 94 

powder was recovered for these samples. 95 

 96 

Preserved specimens 97 

Preserved specimens were collected from the Department of Anatomical Sciences Stony 98 

Brook University. Bodies donated to this facility are treated with chemical preservatives and 99 

used in medical and dental anatomy courses. For each sample, a Dremel 200 rotary tool with a 100 

1” cutting disc was used to extract a piece of tissue that contained the petrous portion of the 101 

temporal bone, which has been previously shown to be among the densest skeletal elements in 102 

the body and typically contains relatively uncontaminated endogenous DNA in even ancient 103 

samples (Pinhasi et al., 2015). This piece was then pre-digested in a solution of TE buffer and 104 

proteinase K at 55°C for up to 5 days, or until all soft tissue was dissolved, leaving behind only 105 

bone. This piece was then subsampled into smaller pieces and ground to a fine powder using a 106 

combination of a mortar and pestle and an IKA tube mill. Between 0.27 and 1.13g (0.54g 107 

average) of bone power per sample was extracted. 108 

 109 

DNA extraction 110 

Bone samples underwent a pre-digestion step prior to DNA extraction using a standard 111 

phenol-chloroform method. The powder was incubated in a solution of 250 uL of N-112 
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Laurylsarcosine and 30uL proteinase K in 10mL EDTA at 55°C on a nutating mixer for two days 113 

to dissolve the mineral structure of the bone. If powder was not completely dissolved after two 114 

days, an additional 5mL of EDTA was added and the sample incubated for a further two days. 115 

One volume of phenol-chloroform was then added to the dissolved bone solution, shaken at 116 

room temperature for one minute, and centrifuged for 20 minutes at 3,500 rpm. The aqueous 117 

phase was transferred to a fresh tube where one volume (the same amount as EDTA and 118 

phenol-chloroform) of chloroform was added. The sample was again shaken for one minute and 119 

centrifuged for 20 minutes. The aqueous phase was then transferred to an Amicon Ultra-15 120 

filter and centrifuged for up to 20 minutes, or until most of the liquid passed through. The filter 121 

was washed with 12mL of ultra-pure HPLC water and spun down until most of the liquid passed 122 

through. If necessary, this step was repeated until the wash-through liquid was clear. 123 

 124 

Methylation array data processing and quality control 125 

DNA methylation data generated for this study was preprocessed from raw intensity 126 

files (IDATs) using the R package minfi (Aryee et al., 2014). The GEO deposited datasets were 127 

preprocessed from raw methylated and unmethylated counts using the R packages lumi and 128 

methylumi (Davis et al., 2015; Du et al., 2008). Raw data was not available for the osteoporosis 129 

study, so pre-processed and rescaled data (by beta mixture quantile dilation – BMIQ) provided 130 

by the author was used (Reppe et al., 2017). All raw data were first filtered for poorly 131 

performing samples and CpG sites. Samples were flagged if their median methylated or 132 

unmethylated levels were low (if log2 of the count was less than 10.5), if more than 10% of 133 

measured probes exceeded a detection p-value threshold of 1%, or if the sex predicted by X 134 

and Y chromosome methylation levels did not match the reported sex, as per standard DNA 135 

methylation array processing procedures (Aryee et al., 2014). All forensic samples failed these 136 

quality control measures. Probes that were among previously identified cross-reactive probes 137 

were removed (Chen et al., 2013; Pidsley et al., 2016). Colour correction, background 138 

correction, and functional normalization of IDAT data was conducted with the 139 

‘preprocessFunnorm’ function in minfi (Aryee et al., 2014). Colour correction, background 140 

correction, and shift and scaling normalization of signal count data was conducted with the 141 
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‘lumiMethyC’ and ‘lumiMethyN’ functions in lumi (Du et al., 2008). Rescaling of type 1 and 2 142 

probes was conducted by BMIQ, implemented in the R package wateRmelon. All remaining 143 

probes that failed a detection p-value threshold of 5% were then set to NA and all CpG sites on 144 

sex chromosomes were also removed. Continuous beta values for each CpG site, which range 145 

from 0 (indicating that the site is completely unmethylated) to 1 (completely methylated), were 146 

extracted for subsequent analysis. 147 

 148 

Principal components analyses 149 

We conducted a principal components analyses (PCA) on the merged dataset of samples 150 

that were successfully assayed (n = 155) in order to identify factors correlated with significant 151 

sources of variation across the datasets. PCAs were conducted with the ‘prcomp’ function in R. 152 

 153 

Epigenome-wide association study (EWAS) 154 

An EWAS for age was performed using the R package CpGassoc on the combined 155 

dataset of 155 individuals and all CpG sites that were present on the 450k dataset and passed 156 

quality control. Dataset identity was included as a covariate to control for excessive genomic 157 

inflation in the EWAS. 158 

 159 

Horvath age prediction 160 

The original Horvath age prediction algorithm was implemented by using the ‘agep’ 161 

function from the R package wateRmelon on the preprocessed and normalized data (Horvath, 162 

2013; Pidsley et al., 2013). The optional normalization step in the Horvath workflow was not 163 

used. 164 

 165 

Developing age prediction models 166 

We created a training set of data to develop an age prediction model by randomly 167 

sampling approximately 70% of individuals from each dataset, except for GSE64491, which 168 

contains four replicates of one individual; these were evenly divided into the test and training 169 

dataset. We then made minor label adjustments to ensure that the training set always 170 
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contained the widest possible age range. We then used lasso regression, implemented in the R 171 

package glmnet (Friedman et al., 2010), to select predictors from only those CpG sites that 172 

were found to be significantly associated with age (FDR < 0.05) in the EWAS. We varied the 173 

regularization penalty parameter (λ – not to be confused with the genomic inflation factor) 174 

across a range to select two primary models: the best model had the lowest prediction error in 175 

the training dataset, and the other model had a prediction error within one standard error of 176 

the minimum in the training dataset. 177 

 178 

Gene region enrichment analysis 179 

The 37 CpG sites comprising the best performing model were tested for enrichment of 180 

several possible categories, including gene and disease ontology terms, phenotypes, genes, and 181 

Molecular Signatures Database (MSigDB) terms using Genomic Regions Enrichment of 182 

Annotation Tool (GREAT) (McLean et al., 2010). A custom background set of all CpGs tested in 183 

the EWAS was used. 184 

 185 

Results 186 

 187 

Data quality 188 

Genome-wide methylation data was successfully generated for all preserved specimens, 189 

but all forensic samples failed post-assay quality control measures. For the latter, both median 190 

methylated and unmethylated signals were too low to pass the threshold and all samples had a 191 

high proportion of unreliable probes (see Methods). Furthermore, while the median methylated 192 

signal was significantly lower than the median unmethylated signal across all samples (p = 9.2 x 193 

10-6, paired sample t-test), this difference was more pronounced in the forensic samples (p = 194 

4.1 x 10-14, t-test) (Figure 1). The forensic samples were excluded from all subsequent analyses. 195 

 196 

Principal components analysis 197 
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A principal components analysis of the 155 successfully assayed samples showed that 198 

batch effects were the major drivers of the first two principal components, which together 199 

accounted for over 55% of the variation in the dataset (Figure 2). 200 

 201 

Epigenome-wide association study (EWAS) 202 

We performed an EWAS on the merged DNA methylation dataset to identify CpG sites 203 

that were significantly associated with age in bone tissue (see Methods). When not correcting 204 

for dataset identity, we observed extreme genomic inflation, which is not unexpected given the 205 

substantial batch effects observed and the differences in age distributions across the three 206 

largest datasets (Figures 2-3; Table 1). When using dataset identity as a covariate in the EWAS, 207 

this inflation was greatly reduced, and 108 CpG sites were significantly associated with age (FDR 208 

< 0.05) (Figures 3-4). 209 

 210 

Developing and evaluating models for chronological age prediction for bone 211 

We used the prediction model published by Horvath (2013), which leverages DNA 212 

methylation information from 353 CpG sites, to estimate the age of the individuals in the 213 

merged dataset. The model was trained on DNA methylation data derived from 13 different 214 

tissue types, including bone marrow, but not hard bone tissue (i.e. osteocytes and osteoblasts) 215 

(Horvath 2013). It was previously tested on the bone samples from the GSE64490 and 216 

GSE64491 datasets in Horvath et al. 2015 (see Figure 6 in that paper) and was consequently 217 

described as also being applicable to hard bone tissues, although no metric of accuracy was 218 

reported (Horvath et al 2015). We visually parsed 51 of the 52 data points in the GSE64490 and 219 

GSE64491 datasets using a plot digitizer (Rohatgi, 2018), and estimated the root mean squared 220 

error (RMSE) to be 8.1 years. Our application of the same model to these datasets, appears to 221 

have yielded more accurate results than the initial publication (5.9 and 6.3 years, respectively, 222 

and 6.0 across both datasets; Figure 5). The reasons for this are unclear, but could be attributed 223 

to differences in how the data were processed prior to running the age prediction algorithm 224 

(see Methods and Discussion). 225 
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We sought to determine if accurate estimates of individual age could be achieved for 226 

human bone using fewer than 353 sites. We split the individuals in the datasets into training 227 

and test groups and used lasso regression to select predictor variables from among the 108 228 

age-associated CpGs identified in the EWAS (see Methods). The model that minimized the 229 

prediction error in the training data was based on information from 46 sites, while a second 230 

model exhibited comparably low error using information from only 37 CpG sites. Both models 231 

included two CpG sites that are also used in the Horvath model. These two new models were 232 

also used to generate estimates of age for all individuals in the dataset, and the RMSE between 233 

the true age and the prediction in the test dataset was calculated (Table 2). Both models were 234 

more accurate than the Horvath model, with the sparser model (based on 37 CpG sites) being 235 

slightly more accurate in the test samples overall (Figure 5; Table 2). This model is hereafter 236 

referred to as the ‘bone clock’, and additional details for the specific CpG sites that comprise it 237 

are given in Table 3. 238 

An enrichment analysis identified two significant categories as being overrepresented in 239 

these 37 bone clock CpG regions; the gene ELOVL2 was represented twice (a 948-fold 240 

enrichment relative to the background, p = 2.1 x 10-6), and genes bearing the motif ‘AAGCACA’ 241 

in their 3’ untranslated regions (UTRs) were represented 8 times (4.8-fold enrichment, p = 2. 1 x 242 

10-4). 243 
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 245 
 246 

Figure 1 - The distribution of median methylated (blue) and unmethylated (red) signal values in 247 

forensic samples (left) and all other samples (right). The threshold typically used for post-assay 248 

quality control is indicated with the dashed line (Aryee et al., 2014). All forensic samples in this 249 

study failed to meet this threshold and were thus excluded from subsequent analysis. 250 
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 252 
 253 

Figure 2 - Scatterplot of the first two principal components of variation in the DNA methylation 254 

dataset. 255 
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 257 
 258 

Figure 3 - Quantile-quantile plot of expected p-values (under a uniform distribution) versus 259 

observed p-values in the EWAS. The points represent p-values for a tested CpG site. Red points 260 

indicate those that are found to be significantly associated with age (FDR < 0.05). A) When no 261 

covariates are used, an excessive number of CpG sites are found to be significant. B) The 262 

inclusion of dataset identity appears to correct this, likely by accounting for batch effects 263 

between sets of samples that were assayed separately. 264 
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 266 
 267 

Figure 4 - Manhattan plot depicting the location of all CpG sites tested in the EWAS where 268 

dataset identity was included as a covariate. The false discovery rate threshold of 0.05 is 269 

indicated by the horizontal dashed line. 108 CpG sites were found to exceed this threshold 270 

(larger dots).  271 
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 272 
 273 

Figure 5 - True chronological age versus estimates from three DNA methylation-based models. 274 

A) Age estimates from A) the Horvath model, based on DNA methylation data from 353 CpG 275 

sites, B) the 46-site model and C) the 37-site model. Outlined circles represent samples that 276 

were used to train the 46- and 37-site models, while solid circles represent test set samples. 277 
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Table 2 - Root mean squared errors (RMSE) for each prediction model tested; the Horvath 279 

model, the 46-site model and the 37-site model. As the Horvath model was not trained on any 280 

of the individuals analyzed here, the RMSE for all samples is also reported. Of these three, the 281 

37-site bone clock performs best in the test set of individuals. 282 

 283 

 Root mean squared error (years) 

 

 

 

Model 

 

All 

samples 

Test samples 

All test 

samples 

Preserved 

samples 

(this study) 

Osteoporosis 

study (Reppe 

et al. 2017) 

GSE64490 

(Horvath et 

al. 2015) 

GSE64491 

(Horvath et 

al. 2015) 

Horvath 

model 7.4 

 

7.7 11.7 8.1 3.9 5.5 

46 site model - 5.1 8.4 4.2 4.6 5.4 

37 site model - 4.9 7.1 4.2 4.8 4.3 

 284 

  285 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/801647doi: bioRxiv preprint 

https://doi.org/10.1101/801647
http://creativecommons.org/licenses/by-nc/4.0/


Table 3 – Details of the 37 bone clock CpG sites. The names of all CpG sites that comprise our 286 

best model are reported here, along with their genomic positions (based on the hg19/GRCh37 287 

reference), the gene(s) they are annotated to (if any), and their relative positions within those 288 

genes. The positions of these CpG sites are either within the transcriptional start site (TSS), 289 

gene body, exons, or untranslated regions (UTR). The two bone clock CpG sites that are also 290 

used by the Horvath clock are indicated by an asterisk. 291 

 292 
Name Position UCSC Gene Name UCSC Gene Group 
cg01974375 1:151298954 PI4KB TSS1500 
cg21748207 2:26395359 FAM59B TSS1500 
cg12206199 2:39187543 LOC375196, LOC100271715 TSS200, Body 
cg20547295 2:69664869 NFU1 TSS200 
cg27213509 2:176947228 EVX2 Body 
cg21545859 3:5068037   
cg03607117 3:53080440 SFMBT1 TSS1500 
cg07553761 3:160167977 TRIM59 TSS1500 
cg23995914 4:10459228 ZNF518B TSS200 
cg07171111 4:10462903   
cg01899437 4:24914441 CCDC149 1st  exon, 5'UTR 
cg03133735 4:111562270   
cg03663715 5:72744904 FOXD1 TSS1500 
cg23500537 5:140419819   
cg13773570 6:6006707 NRN1 Body 
cg16867657 6:11044877 ELOVL2 TSS1500 
cg24724428 6:11044888 ELOVL2 TSS1500 
cg00464814 6:16758889 ATXN1 5'UTR 
cg22736354* 6:18122719 NHLRC1 1st exon 
cg10970124 6:31634602 BAT4, CSNK2B TSS1500, 5'UTR 
cg13959344 6:32901642   
cg08541518 6:69942892 BAI3 Body 
cg19509311 6:106429191   
cg00590036 6:158957433 TMEM181 TSS200 
cg07955995 7:130419159 KLF14 TSS1500 
cg24681895 8:145743681 RECQL4, LRRC14 TSS1500, 5'UTR 
cg10217503 12:65153209 GNS 5'UTR, 1st exon 
cg22171539 12:81107990   
cg11082362 14:36003181 INSM2 TSS200 
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cg21801378* 15:72612125 BRUNOL6 1st exon 
cg06279276 16:67184164 B3GNT9 Body 
cg24668364 17:16284324 UBB TSS200 
cg22361181 17:40171740 NKIRAS2 TSS1500, 5'UTR 
cg16969368 17:57642752 DHX40 TSS200 
cg17243289 18:45458021 SMAD2 TSS1500 
cg16665444 18:76828655 ATP9B TSS1500 
cg02997982 19:41082291 SHKBP1, SPTBN4 TSS1500, 3'UTR 
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Discussion 294 

In this study, we present newly generated genome-wide DNA methylation data from 295 

adult human bones spanning a nearly 4 decade age range. We incorporate additional DNA 296 

methylation array data derived from living and deceased donors, resulting in a combined 297 

dataset that spans a total age range of over 6 decades, which we use to conduct the first 298 

comprehensive analysis of patterns of epigenetic aging in adult human bone tissue. We show 299 

that a previously published epigenetic age predictor generates reasonably accurate estimates 300 

of chronological age based on DNA methylation data from 353 CpG sites (RMSE 7.4) (Horvath 301 

2013). 302 

Surprisingly, we achieved more accurate estimates of chronological age using the 303 

Horvath algorithm on the GSE64490 and GSE64491 datasets than the original publication 304 

(RMSE of 6.0 years rather than ~8.1 years) (Horvath et al., 2015). This may be due to differences 305 

in processing the raw DNA methylation signal data. One major difference is our implementation 306 

of the beta mixture quantile dilation (BMIQ) normalization method, which corrects for technical 307 

differences between probes measured with the Type I and Type II Illumina chemistry, on all 308 

probes in the dataset (Teschendorff et al., 2013). By contrast, Horvath et al. uses a custom 309 

script to normalize data, which is based on the BMIQ method but uses a ‘gold standard’ 310 

reference panel of Type II probes (Horvath, 2013; Horvath et al., 2015). There may be additional 311 

differences in our processing pipelines beyond this normalization step, but it is nonetheless 312 

noteworthy that such significant variation in overall accuracy can result from such differences. 313 

Relative to the best implementation of the Horvath model, I demonstrate that even 314 

more accurate estimates of chronological age can be generated for human bone from nearly 10 315 

times fewer sites. There are two likely reasons for this improvement. The first is that the 316 

original Horvath model was only trained on CpG sites that were present on an earlier Illumina 317 

DNA methylation array, which assayed 27 thousand sites (Horvath 2013). This excluded any 318 

sites present on the more comprehensive 450k array, many of which were reported to be 319 

excellent potential predictors of age. For example, it was demonstrated that DNA methylation 320 

at the gene ELOVL2, and in particular the CpG site cg16867657, showed a strong and precise 321 

relationship with age (Garagnani et al., 2012). This association was confirmed in subsequent 322 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/801647doi: bioRxiv preprint 

https://doi.org/10.1101/801647
http://creativecommons.org/licenses/by-nc/4.0/


studies, which further supported its utility for estimating chronological age in humans with 323 

potential forensic applications (Hannum et al., 2013; Johansson et al., 2013; Naue et al., 2017; 324 

Spólnicka et al., 2018; Zbieć-Piekarska et al., 2015a). By training our predictor on data from age-325 

associated CpG sites identified from 450k array data, we were able to achieve accurate results 326 

using fewer and, arguably, better markers of chronological age. 327 

The second reason for improved accuracy is our focus on a single tissue rather than the 328 

Horvath model’s focus on multiple tissues. It is well known that genomic patterns of DNA 329 

methylation differ broadly across tissue types; in fact, DNA methylation is an important 330 

mechanism by which tissue identity is established during development (Lokk et al., 2014; 331 

Rakyan et al., 2008). That these tissue-specific differences intersect with changes in DNA 332 

methylation with age is also well established (Dmitrijeva et al., 2018; Hannum et al., 2013; 333 

Maegawa et al., 2010; Slieker et al., 2018). It is therefore unsurprising that it would be 334 

challenging to develop a predictor of age that is equally accurate on all human tissue types. In 335 

fact, the Horvath model has been used to argue that different tissues ‘age’ at different rates 336 

based on the consistent deviations from a linear model relating chronological age to the 337 

predicted age (Horvath et al., 2015, 2014). 338 

It is important to note here a difference in the motivations behind the Horvath model 339 

and any model intended for forensic applications, including the one presented here. The 340 

Horvath model is primarily used as a measure of a conceptual ‘biological’, not chronological, 341 

age, which reflects individual functional capacity and overall health rather than simply the 342 

number of years lived. The 37 bone clock CpGs identified here may therefore be best suited for 343 

forensic applications, and not for estimating health status. 344 

It is interesting to note that one of the significant results of the enrichment analysis was 345 

the gene ELOVL2. Two of 37 CpG sites selected by lasso regression, the aforementioned 346 

cg16867657 as well as cg23606718, were annotated to this gene. This supports the idea that 347 

the gene ELOVL2 is a uniquely useful predictor of chronological age, as it is significantly 348 

associated with age across multiple tissue types, including blood, saliva, brain, buccal cells, liver, 349 

fat, breast, kidney, lung, teeth, and now, bone, as well as across diverse populations (Bekaert et 350 

al., 2015; Giuliani et al., 2016; Gopalan et al., 2017; Hannum et al., 2013; Johansson et al., 2013; 351 
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Slieker et al., 2018). However, it is still unclear if the specific relationship between DNA 352 

methylation level and age (i.e., the ‘slope’ and intercept’ of the linear model) is consistent 353 

across all these tissue types. 354 

The second significant enrichment category identified here was the presence of the 355 

AAGCACA motif in the 3’ UTR. Genes that bear this motif are putative targets of negative 356 

regulation by the miR-218 microRNA, which carries the complementary sequence (Subramanian 357 

et al., 2005). It has been shown that miR-218 is upregulated during osteoblast differentiation, 358 

driving bone differentiation via a positive feedback loop involving the Wnt pathway (Hassan et 359 

al., 2012). Interestingly, while miR-218 has been shown to have tumor-suppressing activity in 360 

multiple tissue types, it also promotes metastasis of breast cancer to bone by mimicking this 361 

molecular signature of bone differentiation (Alajez et al., 2011; Hassan et al., 2012; Liu et al., 362 

2018; Tatarano et al., 2011; Venkataraman et al., 2013; Yang et al., 2017). While it is unclear if 363 

the enrichment of miR-218 targets among the bone clock CpGs is meaningful, it is nevertheless 364 

tempting to speculate that it suggests a bone-specific characteristic of our predictive model. 365 

A significant limitation of this study is the age range of individuals available for training 366 

the model. While the datasets altogether provided a cross-section of 63 years of adult human 367 

lifespan, it is not clear if our bone clock can accurately estimate the age of younger adults. In an 368 

attempt to improve age-association detection power by increasing the sample size and the age 369 

range surveyed, we also assayed 13 forensic samples on the EPIC methylation array (see 370 

Methods). Unfortunately, none of these passed post-assay quality control metrics and therefore 371 

could not be reliably analyzed alongside the other samples. It is likely that the DNA in these 372 

samples was already too degraded for quantitative measures of DNA methylation to be 373 

recovered after a few years of exposure to the elements and taphonomic processes. A common 374 

type of DNA damage occurs when cytosines are spontaneously degraded into thymines if they 375 

are methylated or uracils if they are unmethylated. Bisulphite treatment, which precedes most 376 

DNA methylation assay techniques, also converts unmethylated cytosines to uracils that are 377 

later read as thymines, but does not affect methylated cytosines; the attached methyl group 378 

‘protects’ those cytosines from being mutated. DNA methylation levels are subsequently 379 

measured from the difference between the cytosines and thymines at a given CpG site. 380 
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Therefore, post-mortem cytosine damage will generally make methylated cytosines appear 381 

unmethylated, a phenomenon that is the likely explanation for the large difference observed 382 

between the median methylated and unmethylated signals in the forensic samples (Figure 1). 383 

The poor quality of our forensic DNA samples does not negate the utility of bone-384 

specific DNA methylation-based age predictor. It does, however, highlight several practical 385 

considerations related to the application of any method that relies on good-quality DNA, 386 

including preservation and skeletal element choice . These issues have started to be 387 

investigated in the context of ancient DNA, where there is significant interest in understanding 388 

the DNA methylation profiles of individuals at different points in the past (Gokhman et al., 389 

2017, 2014; Llamas et al., 2012; Pedersen et al., 2014; Seguin-Orlando et al., 2015; Smith et al., 390 

2015). Studies have shown that it is possible to recover accurate measurements of DNA 391 

methylation at individual CpG site level even for samples that are thousands of years old 392 

(Llamas et al., 2012; Smith et al., 2015). However, the success of such bisulfite-based DNA 393 

methylation assays depends on the quality and preservation of the input DNA (Seguin-Orlando 394 

et al., 2015). Therefore, bone clock developed here may have substantial utility for forensic 395 

investigations when used in the appropriate contexts. 396 

The forensic samples in the present study may have been from individuals that were 397 

particularly poorly preserved, but additionally, the skeletal element sampled, the intercondylar 398 

fossa of the femur, is not ideal for the recovery of DNA. Ancient DNA studies have shown that 399 

the petrous portion of the temporal bone is a good source of DNA that is relatively resistant to 400 

contamination and degradation (Gamba et al., 2014; Pinhasi et al., 2015). It is, however, 401 

difficult to access without significant destruction of the skull, which was permitted for the 402 

preserved samples but not for those sourced from the forensic collection. In ancient DNA 403 

studies, a sample’s collagen content is usually measured first before deciding if sequencing 404 

should be done, as this is a good indicator of preservation and DNA quality (Ovchinnikov et al., 405 

2000). This may also be a worthwhile step to incorporate into a forensic investigation workflow 406 

when deciding which aging method is most appropriate for a given case. 407 

In this study, we show that chronological age can be accurately estimated from bone-408 

derived DNA from human adults. This model represents a promising molecular method that 409 
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may be useful for building biological profiles of unknown individuals in forensic cases. Future 410 

research to focus on further refining the bone clock CpG set may allow for the development of 411 

more precise and, importantly, more cost-effective methods of aging individuals’ skeletal 412 

remains using DNA methylation markers. 413 

  414 
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