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Summary   
Recent   work   has   highlighted   that   many   types   of   variables   are   represented   in   each   
neocortical   area.   How   can   these   many   neural   representations   be   organized   together   
without   interference,   and   coherently   maintained/updated   through   time?   We   recorded   from   
large   neural   populations   in   posterior   cortices   as   mice   performed   a   complex,   dynamic   task   
involving   multiple   interrelated   variables.   The   neural   encoding   implied   that   correlated   task   
variables   were   represented   by   uncorrelated   neural-population   modes,   while   pairs   of   
neurons   exhibited   a   variety   of   signal   correlations.   This   �inding   relates   to   principles   of   
ef�icient   coding   for   task-speci�ic   information,   with   neural-population   modes   as   the   
encoding   unit,   and   applied   across   posterior   cortical   regions   and   layers   2/3   and   5.   
Remarkably,   this   encoding   function   was   multiplexed   with   sequential   neural   dynamics   as   
well   as   reliably   followed   changes   in   task-variable   correlations   through   time.   We   suggest   
that   neural   circuits   can   implement   time-dependent   encoding   in   a   simple   way   by   using   
random   sequential   dynamics   as   a   temporal   scaffold.   
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Introduc�on   
Hypothesized   neocortical   functions   such   as   predictive   coding    (Keller   and   Mrsic-Flogel   
2018;   Rao   and   Ballard   1999;   Bastos   et   al.   2012)    and   Bayesian   inference    (Helmholtz,   n.d.;   
Ma   et   al.   2006)    have   emphasized   that   a   crucial   component   of   cortical   computation   is   
context:   variables   that   indicate   the   external   state   of   the   world,   as   well   as   the   internal   state   
of   the   animal.   Our   work   here,   as   well   as   several   recent   studies    (Stringer,   Pachitariu,   
Steinmetz,   Carandini,   et   al.   2019;   Steinmetz   et   al.   2018;   Stringer,   Pachitariu,   Steinmetz,   
Reddy,   et   al.   2019;   Minderer,   Brown,   and   Harvey   2019;   Musall   et   al.   2018) ,   have   indeed   
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found   that   many   different   variables   are   all   represented   in   almost   every   region   of   the   dorsal   
cortex.   These   variables   range   from   sensory   and   motor,   to   internal   and   cognitive.   However,   
simultaneously   representing   many   pieces   of   information   in   neural   activity   can   also   pose   
computational   challenges   for   neural   systems   to   overcome.   We   focus   on   two   such   challenges.   
One,   how   are   multiple   variables   represented   together?   Two,   do   these   representations   
include   temporal   context,   e.g.   progression   through   a   time-varying   behavior,    an   important   
factor   for   episodic   memory   and   behavior   in   general?   To   answer   these   questions,   we   
examined   the   structure   of   neural   population   coding   during   a   rich   yet   well-controlled   task,   
where   correlated,   context-dependent   sensory   information   guided   a   decision-making   
behavior.   

We   recorded   from   large   neural   populations   across   the   posterior   cortex   as   mice   performed   a   
navigation-based   visual   evidence   accumulation   task    (Pinto   et   al.   2018;   BRAIN   CoGS   
Collaboration,   n.d.) ,   which   required   subjects   to   comprehend   time-varying   relationships   
between   multiple   visual,   motor,   cognitive,   and   memory-related   task   variables.   All   these   
dorsal   cortical   areas   were   implicated   in   the   mice’s   performance   of   the   task    (Pinto   et   al.   
2019) ,   and   here   we   wished   to   understand   how   the   neurophysiology   relates   to   behavior.   Our   
analysis   of   neural   data   is   based   on   conceptualizing   the   instantaneous    population   activity   of   
neurons   as   a   point   in   a   high-dimensional   neural   state   space,   where   each   coordinate   is   the   
activity   level   of   one   neuron   ( Fig. 1 A).   The   trajectory   of   the   neural   state   through   time   is   of   
interest   from   a   dynamical   systems   perspective,   and   re�lects   how   the   neural   circuit   
implements   computations   that   may   support   a   given   behavior.   Although   the   �ield   has   
enjoyed   remarkable   success   in   describing   decision-making   behaviors   in   terms   of   high-level   
algorithms   that   an   animal   may   employ,   much   less   is   known   about   which   of   many   possible   
implementations   of   these   algorithms   are   manifested   in   brain   circuits.   Here,   we   take   a   
bottom-up   approach   of   �irst   visualizing   and   characterizing   neural   population   dynamics   in   a   
decision-making   behavior,   which   then   inspired   hypotheses   at   both   computation   and   
implementation   levels    (Marr   and   Poggio   1976) .   

In   many   experimental   scenarios,   including   ours   ( Fig. 1 A),   the   observed   neural   states   
seemed   con�ined   to   a   lower-dimensional   region   of   the   neural   state   space,   termed   the   
“neural   manifold”    (Jazayeri   and   Afraz   2017;   S.   Ganguli   and   Sompolinsky   2012;   Gallego   et   al.   
2017;   Sadtler   et   al.   2014;   Tsodyks   et   al.   1999;   Okun   et   al.   2015;   Stopfer,   Jayaraman,   and   
Laurent   2003;   Luczak,   Barthó,   and   Harris   2009;   Shenoy,   Sahani,   and   Churchland   2013;   Yu   
et   al.   2009;   Pang,   Lansdell,   and   Fairhall   2016;   Williamson   et   al.   2019;   Hop�ield   and   Tank   
1986;   Aksay   et   al.   2003) .   Given   the   large   numbers   of   neurons   that   we   can   now   record   from,   
and   the   expectation   that   brain   circuit   dynamics   are   nonlinear,   many   recent   efforts   have   
focused   on   using   nonlinear   dimensionality   reduction   methods   to   describe   neural   manifold   
structure.   These   methods   have   the   advantage   of   being   able   to   approximate   the   geometrical   
structure   of   the   neural   manifold   using   a   small   and   therefore   easily   examined   number   of   
coordinates.   However,   the   often-complex   transformation   used   to   nonlinearly   map   neural   
data   to   low   dimensions   can   make   it   dif�icult   to   interpret   dimensionality-reduced   
observations   in   terms   of   speci�ic   candidate   circuit   mechanisms   (see    (Erem   et   al.   2016)    for   a   
counterexample).   The   alternative   that   we   pursued   was   motivated   by   how   the   smoothness   
and   continuity   of   physical   systems   often   allow   accurate   approximations   of   the   system’s   
behavior   using   simple   (e.g.   low-order   polynomial)   models,   provided   that   the   model   is   
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restricted   to   a   suf�iciently   local   region   of   the   system’s   parameter   space.   We   show   that   
locally-linear   projections   can   be   used   to   both   clearly   visualize   and   quantify   intriguing   
structure   in   our   neural   data.   In   particular,   we   found   that   the   neural   states   at   a   �ixed   
timepoint   in   the   trial,   taken   across   trials,   corresponded   to   local   regions   of   the   neural   
manifold   ( Fig. 1 B).   We   thus   used   subsets   of   neural   data,   with   each   subset   at   a   �ixed   
timepoint   in   the   trial,   to   construct   locally   linear   approximations   of   how   the   neural   state   
depended   on   various   behavioral   factors   ( Fig. 1 C-D).   

To   understand   how   multiple   variables   were   represented   together,   we   considered   “encoding   
directions”   along   which   the   neural   state   changes   if   the   task   variables   change   ( Fig. 1 E).   
These   encoding   directions   can   be   thought   of   as   de�ining   a   transformation   of   behavioral   
information   into   a   neural   code,   which   can   also   transform   relationships   stored   in   the   neural   
representations.   For   example,   using   the   same   encoding   directions   for   two   different   
variables   creates   interference,   in   that   these   two   pieces   of   information   cannot   then   be   
distinguished,   given   only   the   neural   state.   However,   such   an   encoding   scheme   could   also   
support   a   cognitive   function,   generalization,   by   indicating   that   the   two   variables   are   
equivalent   in   the   process   of   computing   successively   more   complex   features   of   the   world.   In   
this   way,   relationships   between   neural   representations   can   themselves   contain   extractable   
information   about   the   expected   structure   of   the   world    (H.   B.   Barlow   1989) .   We   
characterized   these   relationships   by   examining   the   dot   products   between   all   possible   pairs   
of   encoding   directions,   which   we   refer   to   as   the   “encoding   geometry”   (see    Fig. 1 F   for   a   
visual   interpretation).   

Figure	1.		    Conceptual			framework			for			quantifying			the			time-dependent			structure			of			
neural-population			coding			of			multiple			task			variables.		    (A)		  Visualization   of   10   trials   in   one   example   
imaging   dataset   (same   data   as   in    Fig. 3 ,   3rd   column).   The   coordinated   activity   of   neurons   can   be   
thought   of   as   a   point   in   a   high-dimensional   neural   state   space,   where   each   axis   is   the   activity   level   of   
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one   neuron.   To   visualize   this,   we   linearly   projected   this   neural   state   data   down   to   3   dimensions,   as   
explained   later   for    Fig. 3 A.   As   time   progresses,   the   neural   state   traces   out   a   trajectory   in   the   neural   
state   space   (black   line,   neural   state   evaluated   at   11   time-bins   in   the   trial   and   joined   with   a   line   to   
guide   the   eye).     (B)		  Illustration   of   how   neural   states   observed   across   time   in   the   experiment   appear   
con�ined   to   a   lower-dimensional   subset   of   the   state   space,   termed   the   neural   manifold   (gray   region).   
For   a   given   timepoint   in   the   trial,   the   neural   states   across   trials   (colored   dots)   appear   furthermore   
con�ined   to   a   local   subregion   of   the   neural   manifold   (dashed   circles).     (C-D)		  For   each   
timepoint/local   region   of   the   manifold   (dashed   circles),   we   will   show   that   the   neural   states   across   
trials   have   substructure   related   to   each   of   the   trial-speci�ic   behavioral   factors,   e.g.   navigational   
choice,   illustrated   in   (C)   and   evidence   levels   in   (D).     (E)		  For   a   given   timepoint    ,   the   substructure   in   
(C-D)   can   be   approximated   using   a   linear   regression   model   to   describe   how   the   neural   state     
changes   as   task   variables      change.   Each   row   of   the   regression   weight   matrix      is   a   

vector      (“encoding   direction”)   of   response   strengths    across		  neurons   to   a   given   task   variable    ,   
and   can   be   thought   of   as   a   gradient   direction   in   the   neural   state   space,   e.g.   arrows   in   (C-D).     (F)		  We   
call   the   set   of   dot   products   between   all   pairs   of   encoding   directions   the   “encoding   geometry”;   the   
dot   product   of   two   vectors   is   proportional   to   the   cosine   angle   between   the   two   vectors.   

  

Our   main   �inding   is   that   at   each   timepoint   and   in   all   recorded   posterior   cortices,   the   
encoding   geometry   across   trials   approximated   the   inverse   of   the   task   variable   covariance   
matrix.   This   �inding   implies   that   at   every   timepoint,   correlated   task   variables   were   encoded   
by   approximately   uncorrelated   neural-population   modes,   which   supports   theories   of   
ef�icient   coding    (Attneave   1954;   Horace   B.   Barlow   1961) .   As   the   task   variable   covariances   
changed   as   a   function   of   time   in   the   trial,   this   raises   a   question   of   how   a   neural   circuit   may   
implement   a   time-dependent   encoding   function.   Our   observation   that   neural   populations   
were   sequentially   active   over   the   course   of   the   trial   suggests   a   simple   neural   circuit   
solution   to   the   time-dependent   encoding   question,   where   the   encoding   geometry   at   a   
particular   timepoint   can   be   implemented   via   static   task-input   synapses   onto   only   the   
subpopulation   of   neurons   active   at   that   timepoint.   On   the   other   hand,   heterogeneous   
time-variations   in   the   activities   of   neurons   can   be   confounded   for   changes   in   the   
represented   task   variables,   even   when   no   such   change   has   occurred.   This   brings   up   a   
second   question   of   whether   careful   coordination   of   dynamics   across   the   population   is   
required   for   sequentially   active   neurons   to   implement   encoding   geometries   that   follow   the   
relevant   task-speci�ic   changes   in   time,   but   do    not		  follow   task-irrelevant   temporal   
�luctuations   of   individual   neurons.   We   show   via   simulations   that   given   a   suf�iciently   large   
neural   population,   the   time-modulations   of   each   neuron   can   be   randomly   designed,   so   long   
as   they   are   temporally   speci�ic,   and   can   implement   an   encoding   geometry   that   varies   
smoothly   on   a   timescale   slower   than   that   of   individual   neuron   time-modulations.   This   is   
related   to   a   mathematical   property   of   random   projections   in   high-dimensional   spaces,   
which   we   conjecture   may   enable   biologically   plausible   and   robust   circuit   implementations   
where   network   dynamics   do   not   have   to   be   carefully   coordinated   across   neurons.   

Our   �indings   have   implications   for   longstanding   theories   of   ef�icient   coding.   Much   work   on   
this   subject   has   focused   on   how   individual   neurons   in   a   population   should   exhibit   
statistically   independent   responses   in   order   to   represent   sensory   information   with   minimal   
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redundancy    (Rieke,   Bodnar,   and   Bialek   1995;   Laughlin   1981;   Dan,   Atick,   and   Reid   1996;   
Baddeley   et   al.   1997;   Vinje   and   Gallant   2000;   Olshausen   and   Field   1996;   Marsat   and   Maler   
2010;   Onken   et   al.   2014;   Weliky   et   al.   2003;   E.   P.   Simoncelli   and   Olshausen   2001;   Eero   P.   
Simoncelli   2003) ,   as   well   as   how   this   function   is   modi�ied   by   representational   constraints   
and   neural   noise    (Doi,   Balcan,   and   Lewicki   2006;   Diamantaras,   Hornik,   and   Strintzis   1999;   
D.   Ganguli   and   Simoncelli   2014,   2016;   Beyeler   et   al.   2019;   Brinkman   et   al.   2016;   Averbeck   
and   Lee   2006;   Doi   and   Lewicki   2014) .   Our   contribution   is   threefold.   First,   we   examined   the   
notion   of   ef�icient   coding   in   terms   of   neural-state-level   encoding   directions,   which   capture   
how   neural   populations   coordinate   to   represent   information   as   a   whole.   Second,   we   
discovered   that   ef�icient   coding   not   only   applies   to   early   sensory   information,   but   also   to   a   
set   of   external   and   internally-computed   variables   associated   through   a   learned   behavioral   
task,   including   in   brain   areas   such   as   the   retrosplenial   cortex   which   is   not   traditionally   
considered   a   sensory   area.   Third,   we   report   that   despite   dynamic   task   conditions   and   
time-varying   neural   representations,   the   neural   encoding   geometry   maintained   ef�icient   
coding   of   task   information   through   time.   Our   results   thus   link   concepts   of   ef�icient   coding   
with   properties   of   computation   in   high-dimensional   spaces,   through   an   ethologically   
important   question   of   how   neocortical   areas   represent   multiple   interrelated   variables   to   
support   a   complex,   dynamic   behavior.   

Results   
We   performed   cellular-resolution   two-photon   imaging   of   six   posterior   cortical   regions   of   
11   mice   trained   in   the   Accumulating-Towers   task   ( Fig. 2 A).   These mice   were   from   
transgenic   lines   that   express   the   calcium-sensitive   �luorescent   indicator   GCaMP6f   in   
cortical   excitatory   neurons   (Methods),   and   participated   in   previously   detailed   behavioral   
shaping    (Pinto   et   al.   2018)    and   neural   imaging   procedures   (Methods),   as   summarized   
below.   Water-restricted   mice   were   trained   in   a   head-�ixed   virtual   reality   system    (Dombeck   
et   al.   2010)  to   navigate   in   a   T-maze.   As   they   ran   down   the   stem   of   the   maze,   a   series   of   
transient,   randomly   located   cues   appeared   along   the   right   and   left   walls   of   the   cue   region   
corridor,   followed   by   a   delay   region   with   no   cues.   Mice   received   a   liquid   reward   for   turning   
down   the   arm   corresponding   to   the   side   with   more   cues,   and   experienced   a   longer   time-out   
in   the   inter-trial-interval   (ITI)   otherwise.   In   agreement   with   previous   work    (Pinto   et   al.   
2018) ,   all   mice   utilized   multiple   cues   to   make   decisions   ( Fig. 2 B).     

As   illustrated   in    Fig. 2 A,   each   trial   corresponds   to   �ive   conceptual   ( not		  explicitly   cued)   
phases   of   the   behavior,   where   the   mouse   traverses:   a   “start”   region   before   cues   appear,   a   
spatially   de�ined   region   in   which   cues   can   appear   (“cue   region”),   the   remaining   length   of   
the   T-maze   stem   (“delay   region”),   a   “turn   region”   up   to   the   end   of   the   trial;   the   last   phase   is   
the   ITI.   As   trials   could   be   of   different   durations,   we   resampled   the   behavioral   and   neural   
data   according   to   a   coordinate   that   measured   progress   through   the   trial   (“time   in   the   trial”   
which   is   linear   w.r.t.   experiment   time   within   each   behavioral   phase;   see   Methods).   In   
addition,   we   identi�ied   thirteen   variables   that   spanned   execution   and   psychophysics   of   the   
task:   (1&2)   the   running   tally   #ipsi   and   #contra   of   cue-counts   on   the   sides   ipsilateral   and   
contralateral   to   the   recorded   brain   hemisphere;   (3&4)   the   �inal   tally   of   ipsi/contra   cue   
counts   from   the   previous   trial;   (5)   the   navigational   choice   to   turn   right   or   left;    (6)   the   
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6   

choice   in   the   past   trial;   (7&8)   whether   the   (past)   trial   was   rewarded;   (9)   the   virtual   viewing   
angle     ( Fig. 2 C);   (10)   the   last   value   of     in   the   past   trial;   and   (11&12)   treadmill   velocities  θ θ  

  and   ;   (13)     spatial   position   (along   the   stem)   in   the   T-maze.  vx vy y  

  

Figure	2.		    Neural			populations			across			posterior			cortex			are			sequentially			active			during			the			
Accumulating-Towers			task.		    (A)		  Layout   of   the   virtual   T-maze   in   an   example   left-rewarded   trial.     (B)	  
Sigmoid   curve   �its   to   psychometric   data   for   how   frequently   mice   turned   to   the   side   ipsilateral   to   the   
recorded   brain   hemisphere,   as   a   function   of   ipsilateral   vs.   contralateral   cue   counts.     (C)		  Visual   and   
motor   task   variables   analyzed   in   this   study.   The   virtual   viewing   angle     determines   the   perspective  θ  
of   the   virtual   scene.     is   the   treadmill   velocity.     (D)		  Anatomical   layout   and   labels   for   the   six  v→  
posterior   cortical   areas   in   this   study.   V2   refers   to   the   set   of   four   secondary   visual   areas,   and   RSC   
(retrosplenial   cortex)   was   identi�ied   via   absence   of   retinotopy.   Visual   area   boundaries   were   
functionally   identi�ied   per   mouse   (Methods);   shown   here   are   average   boundaries   for     mice.  n = 5  
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7   

(E)		  Normalized   and   trial-averaged   activity   of   neurons,   pooling   data   across   sessions   for   the   labeled   
cortical   area.   Neurons   were   divided   into   left-/right-choice   preferring   populations,   and   sorted   by   the   
peak   activity   times   in   correct   preferred-choice   trials.   Each   row   corresponds   to   a   single   neuron,   for   
which   the   left   (right)   column   is   the   activity   of   that   neuron   averaged   across   left-   (right-)   choice   trials.   
“n.s.”:   neurons   with   no   signi�icant   choice   preference   according   to   a   t-test   (sorted   by   peak   activity   
averaged   across   all   trials,   see   Methods).   All   sorting   and   normalization   factors   were   computed   using   
a   set   of   training   data,   whereas   these   plots   were   made   using   the   held-out   set   of   testing   data.   Error   
trials   were   excluded   from   this   analysis.     (F)		   Rank   (normalized   to   [0,1])   of   sorted   neurons   vs.   the   
peak   activity   time   for   that   neuron.   Data   were   pooled   across   sessions   for   a   given   area   (colors).   RSC   is   
signi�icantly   different   from   other   regions   ( ,   K-S   test).     (G)		  Duration   of   activity   �ields   vs.   peak  0p ≤ 1 3−  
activity   times.   The   activity   �ield   is   de�ined   as   the   span   of   time-points   with   activity   at   least   half   the   
height   of   the   peak   above   baseline,   in   trial-averaged   data.   Lines:   Mean   across   neurons,   pooling   data   
across   sessions   for   a   given   area/layer.   Bands:   S.E.M.     (H)		  Distribution   (kernel   density   estimate)   of   
activation   reliabilities   for   neurons   in   a   given   area,   de�ined   as   the   fraction   of   trials   in   which   the   
neuron   is   signi�icantly   active   within   its   putative   activity   �ield.   For   (E-G),   only   neurons   with    0%≥ 5  
reliability   were   included   (this   criteria   was   not   applied   to   any   other   analyses).   See    Fig. S1    for   
additional   statistics.   Error   bars:   S.E.M.     

  

To   obtain   neurophysiological   data,   we   �irst   identi�ied   the   locations   of   visual   areas   per   
mouse   using   a   retinotopic   visual   stimulation   protocol   ( Fig. 2 D;   Methods).   Then,   while   mice   
performed   the   task,   we   used   two-photon   imaging   to   record   from   either   layers   2/3   or   5   from   
one   of   six   areas   ( Table S1 ):   the   primary   visual   cortex   (V1),   secondary   visual   areas   (V2,   
including   AM,   PM,   MMA,   MMP    (Zhuang   et   al.   2017) ),   or   retrosplenial   cortex   (RSC).   RSC   
imaging   locations   were   chosen   based   on   anatomy   (alongside   the   midline)   as   well   as   the   
absence   of   retinotopic   responses.   After   correcting   for   brain   motion,   putative   single   neurons   
were   identi�ied   using   a   demixing   and   deconvolution   procedure   ( (Pnevmatikakis   et   al.   
2016) ;   with   modi�ications   described   in   Methods).   Neural   activities   were   estimated   using   
�luorescence-to-baseline   ratios,   and   only   neurons   with    transients   per   trial   were  .1  ≥ 0  
selected   for   analysis.   In   total,   we   analyzed   8,477   neurons   from   143   imaging   sessions.   All   
population-level   analyses   were   performed   on   datasets   of   simultaneously   recorded   neurons   
(average   59   neurons/session;   see    Fig. S1 E   for   how   this   depends   on   cortical   region   and   
layer).   All   included   sessions   passed   a   behavioral   performance   criterion   to   gauge   task   
engagement,   and   a   small   fraction   of   trials   (   overall,     for   individual   sessions) .4%  0 .7%  < 2  
were   eliminated   from   these   sessions   that   had   extreme   outlier   values   of   task   variables   as   
these   are   known   to   cause   large   instabilities   in   �itting   regression   models   (Methods).   

The   neural   state   traverses   an   approximately   �me-ordered   manifold   in   the   course   
of   a   trial   

Extending   previous   work    (Harvey,   Coen,   and   Tank   2012) ,   we   show   in   a   cross-validated   
sense   (Methods)   that   neurons   in   all   recorded   areas   were   sequentially   active   vs.   place/time   
in   the   trial,   and   could   be   divided   into   left-   vs.   right-choice-preferring   subpopulations   
( Fig. 2 E;   see    Fig. S1    for   statistics).   Differences   across   areas   were   small,   with   RSC   having   
more   uniform   tiling   ( Fig. 2 F)   and   slightly   more   uniform   �ield   widths   ( Fig. 2 G)   of   neuronal   
activities   vs.   time.   Neurons   were   reliably   active,   i.e.   in   the   majority   of   their   preferred-choice   
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8   

trials   ( Fig. 2 H),   albeit   a   bit   less   so   in   RSC.   These   observations   are   compatible   with   previous   
�indings   of   place/time-preferring   (and   choice-preferring)   neurons   in   mouse   cortex    (Harvey,   
Coen,   and   Tank   2012;   Morcos   and   Harvey   2016a;   Saleem   et   al.   2018;   Krumin   et   al.   2018;   
Runyan   et   al.   2017;   Driscoll   et   al.   2017) .   

  

Figure	3.		    Neural			states			projected			down			to			a			3-dimensional			subspace			(cross-validated)			exhibit			
clear			structure			vs.			time			and			navigational			choice,			in			four			typical			imaging			sessions.				See    Movie S1   
for   3D   view   animations.     (A)		  Neural   states   across   time   and   trials,   projected   onto   a   3D   subspace   of   
the   neural   state   space   as   explained   below.   Each   point   corresponds   to   the   neural   state   at   one   
timepoint   in   one   trial   of   a   given   session.   Only   a   subset   of   data   are   shown,   i.e.   all   correct-choice   trials   
and   including   timepoints   at   the   start   of   the   trial   (maroon),   middle   of   the   cue   region(pink),   middle   of   
the   delay   period   (blue),   and   beginning   of   the   inter-trial-interval   (ITI,   cyan).   Denoting   the   
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trial-average   neural   state   at   time     as   ,   the   three   vectors   from     to   ,   ,   and  t (t)F (t )F start (t )F cues (t )F delay  
  de�ine   a   parallelepiped   in   the   neural   state   space,   and   the   projection   axes   for   this   3D   display  (t )F IT I  

were   chosen   such   that   they   span   the   subspace   containing   this   parallelepiped   (polar   decomposition   
(Higham   1988) ).   Half   of   the   trials   were   used   to   de�ine   the   projection   axes,   and   the   data   points   in   this   
plot   include   only   the   left-out   half   of   trials.   A   standard   viewing   perspective   (45°   azimuth   and   45°   
elevation   angles)   was   used   for   all   plots.   Line:   trial-average   neural   state   vs.   time,   .   Columns:   data  (t)F  
from   four   example   imaging   sessions   for   different   cortical   regions,   selected   so   as   to   have   some   active   
neurons   at   every   timepoint   in   the   trial.   First,     was   summed   across   neurons   in   a   given   dataset,  (t)F  
and   then   datasets   were   selected   to   have   the   minimum   across   time   of   this   summed-activity   value.   
(B)		  The   same   datasets   (including   identical   projection   axes   and   3D   viewing   perspective)   as   in   (A),   
but   with   data   points   restricted   to   one   timepoint   in   the   trial   (rows)   and   colored   by   whether   the   
mouse   will   make   a   left-   or   right-turn   choice   in   that   trial.     (C)		  The   same   datasets   as   in   (A),   but   
projected   onto   a   different   3-dimensional   subspace   chosen   to   best   visualize   the   separation   of   neural   
states   into   left-   vs.   right-choice   trials.   Data   points   are   restricted   to   the   timepoint   in   the   middle   of   the   
cue   region   (as   in   the   �irst   row   of   (B)).   One   projection   axis   is   the   direction   along   which   choice   can   
best   be   predicted   (i.e.    decoded	)   from   the   neural   population   activity   (data   from   all   timepoints   were   
used   to   train   a   linear   decoder).   The   two   other   projection   axes   are   orthogonal   to   this   
choice-decoding   direction,   and   chosen   to   maximize   the   variance   in   neural   states   projected   onto   
these   two   axes   (PCA   in   the   hyperplane   orthogonal   to   the   choice-decoding   direction).   Half   of   the   
trials   were   used   to   compute   all   projection   axes   and   the   data   points   in   this   plot   include   only   the   
left-out   half   of   trials.   

  

As   individual   neural   activities   could   be   ordered   in   time   across   the   population,   we   wondered   
if   a   similar   concept   could   be   applied   to   the   neural   manifold.   To   visualize   structure   at   the   
neural   population   level,   we   linearly   projected   the   high-dimensional   neural   state   data   down   
to   three   dimensions,   as   shown   in    Fig. 3    for   four   representative   imaging   sessions   (see   
Movie S1    for   3D-view   animations   of   this   �igure).   All   visualizations   were   cross-validated   by   
using   half   of   the   trials   to   de�ine   projection   axes   as   explained   below,   and   then   displaying   
only   the   left-out   half   of   trials.   First,   we   chose   a   projection   that   reveals   temporal   structure   in   
the   data:   given   four   points   in   the   neural   state   space   computed   as   the   trial-average   neural   
states   evaluated   at   roughly   equidistant   timepoints   across   the   trial,   we   de�ined   the   three   
projection   axes   so   that   they   span   the   subspace   containing   these   points.   As   seen   in    Fig. 3 A,   
the   trial-average   neural   state   has   a   ring-like   trajectory   vs.   time   in   the   trial   (black   line).   At   
each   timepoint   in   the   trial,   the   data    across		  trials   constitutes   a   cloud   of   points   in   the   
neural-state   space,   and   four   of   these   point   clouds   are   shown   in    Fig. 3 A   including   timepoints   
at   the   start   of   the   trial,   middle   of   the   cue   region,   middle   of   the   delay   period,   and   start   of   the   
inter-trial-interval   (ITI).   Each   of   these   time-speci�ic   point   clouds   appear   in   a   local   region   of   
the   neural   state   space   that   is   distinct   from   the   other   clouds,   and   these   clouds   can   be   
ordered   along   a   single   time   coordinate   in   a   ring-like   structure   (cf.   the   trial-average   
trajectory).   This   notion   of   time-speci�ic   subsets   of   the   neural   manifold   being   local   and   
orderable   along   a   time   coordinate   is   what   we   call   “global   time   order”   for   a   manifold   
(illustrated   in    Fig. 4 A),   which   we   will   quantify   below.   Note   that   due   to   the   high   
dimensionality   of   the   neural   state   space,   global   time   order   can   be   compatible   with   there   
being   clear   differences   in   neural   activity   patterns   correlated   to   other   behavioral   factors,   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://paperpile.com/c/GcgyJl/zw15
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


10   

such   as   choice   as   already   noted   in    Fig. 2 E.    Fig. 3 B   shows   the   same   data   in    Fig. 3 A   but   with   
neural   states   colored   by   the   mouse’s   navigational   choice,   from   which   we   see   that   each   point   
cloud   i.e.   local   region   of   the   neural   manifold   can   have   further   substructure   related   to   task   
variables   such   as   choice.   By   using   a   different   set   of   projection   axes   that   includes   a   direction   
along   which   choice   can   best   be   predicted   from   the   neural   population   activity   ( Fig. 3 C),   we   
see   that   a   choice-related   separation   of   neural   states   exists   but   along   other   directions   of   the   
neural   state   space   that   do   not   interfere   with   the   temporal   organization   seen   in    Fig. 3 A   (see   
Fig. S2 F   for   a   geometrical   illustration).   In   the   last   section,   we   explain   how   this   kind   of   
globally   time   ordered   neural   manifold   structure   can   arise   when   neural   responses   to   task   
variables   have   a   form   that   factorizes   from   a   neuron-speci�ic   time   modulation   function.   

We   devised   two   projection-based   measures   below   to   quantify   the   above   concept   that   
neural   states   at   speci�ic   timepoints   in   the   trial   constitute   (1)   local   regions   of   the   neural   
manifold   that   are   (2)   ordered   together   in   a   ring-like   structure.   As   a   null   hypothesis,   we   
constructed   pseudo-data   (“shuf�led”   in   the   panels   of    Fig. 4 )   by   randomly   rotating   the   neural   
state   across   imaging   frames   in   the   session:   given   an   -by-   neural   data   matrix   where     is   n m  n  
the   number   of   neurons   and     the   number   of   imaging   frames,   we   randomly   selected   a  m  
frame     and   then   constructed   a   pseudo-data   matrix   as   the   concatenation   of  1, ]  k ∈ [ m  
columns     of   the   original   matrix.   This   procedure   preserves   temporal   and  k...m, ...k ]  [ 1 − 1  
inter-neuron   correlations   while   breaking   relationships   between   the   neural   state   and   the   
behavioral   trial   structure,   and   exactly   the   same   behavioral   time-binning   (Methods)   and   
neural   manifold   structure   computations   were   then   applied   to   this   pseudo-data   as   for   the   
original   data.     

First,   to   quantify   how   localized   the   per-timepoint   neural   state   point   clouds   are   relative   to   
the   net   displacement   of   these   clouds   vs.   time   in   the   trial,   we   projected   the   neural   states   
onto   axes   related   to   the   trial-average   trajectory   through   time   (in   a   cross-validated   way,   see   
Fig. 4 B-C   captions   and   Methods).    Fig. 4 B   shows   that   the   inter-trial   spread   projected   along   
the   trial-average   trajectory   was   a   small   fraction   of   the   total   length   of   the   trajectory.   The   
maximum   spread   projected   along   axes   orthogonal   to   this   trial-average   trajectory   was   also   
comparably   small   ( Fig. 4 C).   These   results   indicate   that   the   neural   state   at   any   one   timepoint   
in   the   trial   occupied   a   relatively   small,   local   region   of   the   neural   manifold.     

Second,   two   point   clouds   for   two   distal   timepoints   had   little   (cross-validated)   overlap   when   
projected   along   the   axis   between   the   clouds   ( Fig. 4 D).   If   these   clouds   can   be   ordered   in   
time,   they   can   have   higher   overlap   for   nearby   timepoints,   but   should   have   low   overlap   for   
any   two   distal   timepoints   ( Fig. 4 E).   The   matrix   of   overlap   scores   for   all   pairs   of   timepoints   
is   shown   in    Fig. 4 F.   Entries   near   (far   from)   the   diagonal   of   this   matrix   correspond   to   nearby   
(distal)   timepoints,   so   we   expect   a   time-ordered   manifold   to   have   an   overlap   matrix   with   
high-valued   entries   close   to   the   diagonal.    Fig. 4 F   indeed   shows   such   structure,   albeit   with   
less   distinction   between   timepoints   around   the   end   of   the   cue   period   (see   also    Fig. 2 G   for   
how   individual   neurons   that   were   active   at   these   times   tend   to   have   the   longest   durations   
of   activity).   This   could   re�lect   reduced   neural   precision   in   keeping   track   of   place/time   along   
the   stem   of   the   T-maze   away   from   boundaries    (Tiganj   et   al.   2017;   Singh,   Tiganj,   and   Howard   
2018) ,   particularly   since   landmarks   (cues)   were   randomly   placed   on   every   trial.   Signatures   
of   globally   time-orderable   structure   were   observed   for   neural   manifolds   in   all   surveyed   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://paperpile.com/c/GcgyJl/MZFTx+34iCy
https://paperpile.com/c/GcgyJl/MZFTx+34iCy
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


11   

posterior   cortical   regions   and   layers,   and   are   far   from   that   expected   by   chance   of   neural   
population   activity   that   has   the   same   temporal   and   inter-neuron   correlations   but   no   
relationship   to   the   behavioral   trial   structure   (“shuf�led”    Fig. 4 ).   

The   above   analyses   examined   how   the   neural   manifold   was   geometrically   structured   vs.   
time,   but   for   insight   into   circuit   mechanisms   it   is   also   important   to   consider   what   this   
means   in   terms   of   single-neuron   activity   patterns.   For   example,   if   the   activity   levels   of   all   
neurons   were   to   be   scaled   by   the   same   amount   between   one   timepoint   and   the   next,   this   
would   also   present   as   a   change   in   state-space   distance,   yet   there   would   be   no   change   in   the   
identities   of   active   neurons.   To   quantify   whether   there   is   a   change   in   active   neurons   vs.   time   
at   a   neural-population   level   (as   seen   qualitatively   in    Fig. 2 E),   we   examined   the   angular   
difference   between   the   centers   of   the   per-timepoint   point   clouds.   As   illustrated   in   
Fig. S2 A-B,   an   overall   scaling   of   neural   activities   generates   zero   angular   difference,   whereas   
a     difference   is   interpretable   as   a   complete   change   in   active   neurons   given   that   activity  0  9 ∘  
levels   are   nonnegative.    Fig. 4 G   shows   that   at   all   timepoints,   there   was   an   above-chance   rate   
of   change   in   active   neurons   (see    Fig. S2 C   for   all   pairs   of   timepoints).   Small   differences   were   
observed   across   cortical   regions   mostly   during   the   cue   region,   where   there   was   a   
V1-V2-RSC   progression   from   more   stable   (near-chance)   to   more   rapidly   changing   sets   of   
active   neurons.     

  

Figure	4.		    For			each			timepoint			in			the			trial,			the			neural			states			across			trials			occupy			a			time-speci�ic			
local			region			of			the			neural			manifold.		    (A)		  Illustration   of   two   possible   forms   of   time   structure   for   
neural   state   trajectories   across   trials.   Top   and   middle   plots:   a   case   where   neural   states   at   each   
timepoint   in   the   trial   occupies   a   different   local   region   of   the   state   space   (dashed   ellipses).   This   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


12   

corresponds   to   a   neural   manifold   where   the   time     in   the   trial   is   a   coordinate   along   which   local  t  
regions   of   the   neural   manifold   can   be   ordered   (middle   plot).   Bottom   plot:   a   case   where   neural   states   
at   a   �ixed   time   in   the   trial   (say,   )   occupy   different   locations   of   the   neural   state   space   depending   on  t1  
particulars   of   the   trial,   and   these     neural   states   are   interspersed   with   neural   states   at   a   different  t1  
time   in   the   trial   (say,   ).   In   this   case   the   neural   state   trajectory   can   still   be   con�ined   to   a  t2  
low-dimensional   manifold,   but   there   is    no		  one   time   coordinate   along   which   local   regions   of   this   
manifold   can   be   ordered.     (B)		  For   each   neural-state   point   cloud   at   time     in   the   trial,   the   normalized  t  
standard   deviation   of   the   projection   of   the   point   cloud   onto   the   axis   between   the   centers   of   two   
adjacent   clouds.   These   centers   are   the   trial-average   neural   states     and   ,   and   the  (t)F (t )F + 1  
normalization   factor   is   the   total   length   of   the   trial-average   trajectory.   Projection   axes   were   de�ined   
using   one   half   of   trials   and   the   standard   deviation   computed   using   the   left-out   half   of   trials.   Lines:   
average   across   imaging   sessions.   Bands:   S.E.M.    Shuf�led:   Pseudo-data   with   the   neural   state   
randomly   cyclically   permuted   across   imaging   frames,   preserving   temporal   and   inter-neuron   
correlations,   but   destroying   any   relationships   between   neural   activity   and   behavior   (see   text).     (C)	  
Similar   to   (B),   but   for   the   standard   deviation   of   the   projection   of   the   neural   state   point   cloud   onto   
an   axis   orthogonal   to   the   axis   used   in   (B).   This   orthogonal   axis   was   selected   as   the   one   (out   of    m − 1  
possible   dimensions,   where     is   the   number   of   neurons)   for   which   the   projected   standard  m  
deviation   was   maximal.   Projection   axes   were   de�ined   using   one   half   of   trials   and   the   standard   
deviation   computed   using   the   left-out   half   of   trials.   Lines:   average   across   sessions.   Bands:   S.E.M.   
Shuf�led:   as   in   (B).     (D)		  Distribution   of   neural-state   point   clouds   for   two   distal   timepoints,   projected   
onto   the   axis   between   the   centers   of   those   two   clouds.   In   the   top   illustration,   the   timepoints   are   at   

  in   the   middle   of   the   delay   period   and     at   the   start   of   the   inter-trial-interval   (ITI).   Projection  t1 t2  
axes   were   de�ined   using   one   half   of   trials   and   the   distribution   uses   the   left-out   half   of   trials.   Lines:   
average   across   sessions.   Bands:   S.E.M.   Shuf�led:   As   in   (B).     (G)		  Angle   between   the   centers   of   
point-clouds   at   consecutive   timepoints,   divided   by   the   time   interval   between   timepoints.   Lines:   
average   across   sessions.   Bands:   S.E.M.   Shuf�led:   as   in   (B).     (E)		  Illustration   of   how   “time   order”   
means   that   regions   that   are   nearby   (far)   in   time   should   be   nearby   (far)   in   neural-state   space   (box),   
vs.   alternative   possibilities   (bottom   diagrams).     (F)		  Overlap   (see   Methods)   between   two   projected   
distributions   as   in   (D),   for   all   possible   pairs   of   timepoints.   0   means   no   overlap,   and   1   means   that   the   
distributions   are   identical.   Each   plot   was   averaged   across   imaging   sessions   for   the   stated   cortical   
areas.   Projection   axes   were   de�ined   using   one   half   of   trials   and   overlap   computed   using   the   left-out   
half   of   trials.   Shuf�led:   as   in   (B).   

  

To   summarize,   we   found   that   neural   manifolds   across   posterior   cortex   have   ring-like   
geometries,   where   time   in   the   trial   can   be   used   to   index   local   subsets   of   these   manifolds   in   
an   ordered   way   along   the   ring   ( Fig. 4 A-F).   This   time-related   structure   is   clearly   visible   even   
in   the   per-trial   raw   data   ( Fig. 3 A-B),   and   arose   from   a   systematic   turnover   in   the   active   
neurons   vs.   time   in   the   trial   ( Fig. 4 G).   At   a   �ixed   timepoint   in   the   trial   the   neural   manifold   
can   have   further   substructure   related   to   behavioral   factors   such   as   choice   ( Fig. 3 C),   which   
we   focus   on   in   the   next   sections   by   examining   how   the   neural   state   encodes   multiple   task   
variables   at   each   timepoint.   We   then   tie   together   the   observations   of   time-   and   
task-variable-related   structure   with   a   conceptual   model   in   the   last   section.   
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The   neural   encoding   geometry   approximates   a   whitening   opera�on   on   
correlated   task   variables   

Using   time   in   the   trial   to   divide   the   neural   data   into   local   subsets   of   the   neural   manifold,   we   
constructed   locally   linear   models   to   examine   how   the   neural   population   encodes   multiple   
task   variables.   Speci�ically,   we   hypothesized   that   at   a   time     in   the   trial,    t  
( Fig. 1 E)   where   the   rows   of      are   neural   states   across   trials,   and   each   column   of     
corresponds   to   values   of   one   task   variable   across   trials.   Each   row   of      is   an   encoding   
direction   for   one   task   variable,   which   describes   how   the   neural   state   changes   if   that   task   
variable   value   changes   (illustrated   geometrically   in    Fig. 1 C-D).    Fig. S3 A-B   show   that   
compared   to   linear   encoding   models,   the   cross-validated   proportion   of   variance   explained   
for   neural   activity   is   only   slightly   improved   by   including   2nd-   and   3rd-order   polynomial   
dependencies   on   task   variables.   Interestingly,   even   when   we   simulated   neural   responses   
with   gaussian   (i.e.   nonlinear)   tuning   curves   w.r.t.   the   behavioral   data,   these   simulated   
neural   activities   could   mostly   be   well-approximated   by   linear   models   ( Fig. S3 D-E).   This   
happens   because   at   any   one   timepoint   in   the   trial,   only   a   rather   restricted   range   of   task   
variable   values   were   actually   experienced   by   the   mouse   across   trials   in   the   experiment.   If   
simulated   neurons   have   broad   tuning   curves,   then   their   task-variable   dependencies   can   
seem   approximately   linear   within   the   range   of   the   behavior;   otherwise   if   neurons   have   very   
narrow   tuning   preferences   to   the   many   task   variables,   they   tend   to   have   near-zero   signal   
responses   and   thus   insuf�icient   signal-to-noise   to   resolve   nonlinear   details   of   their   
responses.   Given   these   empirical   �indings,   we   focused   on   the   �irst-order   (linear)   structure   
of   the   neural   code   in   the   rest   of   this   paper.   

As   explained   in   the   Introduction,   how   the   neural   population   encodes   different   task   
information    relative		  to   each   other   may   have   interesting   implications   on   brain   computation.   
We   wished   to   quantify   how   the   encoding   directions   (rows   of    )   are   related   to   each   
other   by   examining   the   matrix   of   dot   products   between   all   pairs   of   encoding   directions:   the   
“encoding   geometry”      (illustrated   in    Fig. 1 F   ;   geometrically,   the   dot   product   
between   two   vectors   is   proportional   to   the   cosine   angle   between   the   two   vectors,   i.e.   zero   if   
the   two   vectors   are   orthogonal,   positive   if   they   are   aligned,   and   negative   if   they   are   
anti-aligned).   However,   the   naıv̈e   method   of   �irst   estimating      and   then   computing   

  can   produce   noise-induced   structure   in   the   estimated   encoding   geometry   that   
does   not   average   to   zero   across   experiments   (a   “noise   offset”,   see   also    (Cai   et   al.,   n.d.) ).   We   
developed   a   novel   method   for   computing   an   estimate      of   the   encoding   geometry,   which   
includes   corrections   for   the   noise   offset   as   well   as   a   procedure   for   selecting   the   form   of   
regularization   to   reduce   the   expected   variance   of      insofar   as   possible   while   balancing   
regularization-induced   bias.    Fig. S4 B   shows   that   in   simulations,   our   method   (1)   returns   an   
estimated   encoding   geometry   with   no   signi�icant   structure   when   the   simulated   neural   data   
is   only   noise;   and   (2)   correctly   interprets   scenarios   where   choice   and   past-choice   variables   
were    not		  encoded   (i.e.   the   columns   and   rows   of      corresponding   to   these   variables   are   
near   zero)   even   while   other,   highly   behaviorally   correlated   variables   (view   angle   and   
past-view-angle)    were		  encoded.   Our   method   is   thus   robust   against   spurious,   noise-induced   
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structure   across   a   variety   of   signal   strength   scenarios.   The   interested   reader   is   referred   to   
the   Methods   for   details   on   the   design   of   this   encoding   geometry   estimator.   

We   found   striking   structure   in   the   neural   encoding   geometry   across   posterior   cortical   areas   
that   we   could   relate   to   the   behavioral   structure   of   task   variable   correlations   (   
where   each   column   of      corresponds   to   one   task   variable).   As   a   high-level   summary   
(statistical   tests   to   follow),    Fig. 5 A   shows   that   the   encoding   geometry   averaged   across   time   
and   imaging   sessions   has   high-magnitude   off-diagonal   entries   indicating   that   the   encoding   
directions   were   anti-aligned   (and   to   a   lesser   extent,   aligned)   for   some   pairs   of   task   
variables.   Interestingly,   these   relationships   between   encoding   directions   tended   to   be   
opposite		  to   the   behavioral   correlations   between   task   variables   ( Fig. 5 B),   i.e.   task   variables   
such   as   view   angle   and   choice   that   were   positively   correlated   in   terms   of   mouse   behavior,   
tended   to   correspond   to   encoding   directions   that   were   anti-aligned   (a.k.a.   negatively   
correlated)   to   each   other.   For   mathematical   reasons,   this   observation   led   us   to   wonder   if   
the   encoding   geometry   may   instead   resemble   the    inverse		  of   the   task-variable   covariance   
matrix   ( Fig. 5 C).   However,   some   rows/columns   of   the   encoding   geometry    ,   e.g.   
corresponding   to   past-trial   variables   and   ipsilateral   cue-counts,   have   overall   reduced   
magnitudes   (color   intensity   in    Fig. 5 A)   compared   to   the   same   rows/columns   of   the   inverse   
task-variable   covariance   matrix      ( Fig. 5 C).   We   note   that   the   magnitude   of   
the   encoding   direction   for   a   given   task   variable   measures   how   strongly   the   neural   state   
depends   on   that   task   variable,   and   therefore   can   have   small   magnitudes   if   a   task   variable   is   
noisily   encoded.   On   the   other   hand,   the   inverse   task-variable   covariance   matrix     
assumes   that   perfect   (noiseless)   information   about   each   task   variable      is   available   for   
computing   the   inverse   of    .   To   allow   for   noise   in   the   neural   code,   we   hypothesized   that   
the   neural   encoding   could   be   related   to    ,   where      is   a   trial-by-variable   matrix   of   noise   
�luctuations   unrelated   to   the   task   variables.   A   noisy   version   of   the   task   variable   covariance   
matrix   is     where      is   a   noise   covariance   matrix,   and   we   wished   to   compare   
the   neural   encoding   geometry   to   the   behavioral   hypothesis      (the   
scalar     allows   for   an   overall   difference   in   scales).   Since      and      are   unknown   
hypothesized   parameters   of   the   brain,   we   empirically   determined   these   per   dataset   by   
�itting   for   these   parameters   to   produce   the   best   agreement   between      and      in   the   
least-squares   sense   (Methods).   To   make   this   procedure   tractable,   we   assumed   that      is   a   
diagonal   matrix,   i.e.   that   noise   in   the   neural   code   is   uncorrelated   across   task   variables,   and   
all   �its   were   performed   separately   for   each   timepoint   in   the   trial,   so      and      depend   on   
time.    Fig. 5 D   shows   excellent   qualitative   agreement   between   the   encoding   geometry      and   
the   best-�it   inverse   noisy   task   variable   covariance   matrix    ,   which   we   quantify   below.   

We   evaluated   the   signi�icance   of   the   above   �indings   w.r.t.   a   null   hypothesis   that   breaks    only	  
potential   relationships   between   neural   activity   and   behavior,   while   preserving   the   same   
time-dependent   and   temporally   correlated   neural   activity   distributions,   inter-neuron   
covariance,   and   task-variable   covariance   as   the   actual   experiment.   Our   procedure   was   
inspired   by    (Elsayed   and   Cunningham   2017) ,   but   designed   to   preserve   all   the   above   data   
features.   As   detailed   in   the   Methods   and   illustrated   in    Fig. S5 A,   our   procedure   takes   as   
input   the   neural   data    ,   which   has   a   3-dimensional   structure   where   rows   correspond   to   
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trials,   columns   correspond   to   neurons,   and   the   third   dimension   corresponds   to   time   within   
the   trial   .   To   generate   one   instance   of   the   pseudo-data   null   hypothesis    ,   we   �irst   t  
randomly   permuted   the   neuron-by-time   “slabs”   of      across   trials   (rows).   This   trial   
permutation   breaks   correlations   between   the   neural   and   behavioral   data,   while   preserving   
neural   correlations   across   the   two   other   dimensions   that   de�ine   each   slab,   i.e.   inter-neuron   
and   within-trial   temporal   correlations.   However,   trial   permutations   removes   long-timescale   
correlations   across   trials,   i.e.   across   rows   of      assuming   that   they   are   ordered   by   time   in   
the   session.   Inter-trial   correlations   can   be   signal   correlations   re�lecting   neural   responses   to   
the   trial-speci�ic   behavioral   conditions,   which   we   indeed   want   the   null   hypothesis   to   break,   
but   alternatively   they   could   have   been   induced   by   slow,   task-unspeci�ic   modulations   of   the   
neural   state.   We   wish   to   retain   the   latter   type   of   temporal   structure   in   the   null   hypothesis,   
which   we   reasoned   is   not   due   to   inter-trial   correlation   per   se   but   rather   structure   in   the   
auto	correlation   function.   (The   autocorrelation   speci�ies   how   similar   the   neural   state   is   
between   temporally   adjacent   trials,   irrespective   of   i.e.   averaged   over   the   behavior-speci�ic   
trial   index.)   We   therefore   in   a   second   step   constrained   the   row-autocorrelation   function   of   

  to   approximate   that   of      by   applying   a   convolution   operation   to   the   rows   of    ,   
or   equivalently   adding   to   each   row   a   weighted   sum   of   a   small   number   of   adjacent   rows   in   
order   to   impose   similarities   between   the   neural   state   in   adjacent   trials.   Lastly   to   avoid   
sampling   discreteness   due   to   the   limited   number   of   trials   per   experiment,   we   then   added   a   
bit   of   noise   to   the   entries   of      in   a   way   that   preserved   the   mean   activity   levels,   
inter-neuron   covariance,   and   temporal   correlations   (Methods).   In   exactly   the   same   way   as   
we   did   for   the   data,      was   used   for   computing   the   null   hypothesis   encoding   geometry   
w.r.t.   the   unmodi�ied   task   variables    .   By   generating   the   pseudo-data      from   a  
time-speci�ic   data   matrix   ,   this   null   hypothesis   tests   whether   there   is   signi�icant   
task-variable-related   structure   in   the   encoding   geometry   beyond   trial-time   dependence   in   
neural   activity   levels,   inter-neuron   correlations   and   a   trial   history   effect   (autocorrelation).   
Since   task   variable   responses   could   have   produced   all   of   these   data   features   that   were   
preserved   in   the   null   hypothesis,   this   is   to   the   best   of   our   ability   the   most   conservative   null   
hypothesis   we   can   de�ine.   

For   most   pairs   of   task   variables,   the   corresponding   entry   of   the   encoding   geometry   matrix   
  was   signi�icantly   different   from   the   null   hypothesis   in   a   substantial   fraction   of   imaging   

sessions   ( Fig. 5 E,   controlled   for   false   discovery   rate,   see   Methods).   Given   that   the   encoding   
geometry   had   structure   beyond   that   expected   from   chance,   we   then   proceeded   to   ask   how   
well   this   neural   structure      matched   either   the   noiseless   inverse   task   covariance   matrix   

,   or   the   noisy   alternative    .   For   cross-validation   (details   in   Methods),   we   �irst   
randomly   divided   each   dataset   into   two   halves   of   trials,   and   optimized   the   free   parameters   

  and     using   one   half   of   trials.   Then   keeping   the   free   parameters   �ixed,   we   computed   the   
cosine   similarity   between      and       (or      which   has   no   free   parameters)   using   only   
data   from   the   left-out   half   of   trials.   The   cosine   similarity   score   is   de�ined   by   converting   each   
matrix   to   a   vector   of   its   entries   and   then   computing   the   cosine   angle   between   the   two   
vectorized   matrices.   This   score   is   insensitive   to   an   overall   scaling   of   either   matrix,   and   can   
range   from   +1   if   the   matrices   are   identical   (up   to   a   scale),   to   -1   if   their   entries   have   opposite   
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signs.    Fig. 5 F   shows   that   although      can   resemble      for   some   datasets   and   at   some   
timepoints   in   the   trial,   there   is   a   much   better   correspondence   between      and      that   is   
highly   consistent   across   time   and   imaging   sessions   ( Fig. 5 E;   this   also   holds   for   the   
Euclidean   distance   between      and    ,    Fig. S5 B).     

The   very   high   signi�icance   of   the   above   comparisons   w.r.t.   the   null   hypothesis   show   that   the   
relationship   of   the   encoding   geometry      to   behavioral   features   is   far   beyond   that   expected   
from   chance-level   correlations   of   task   variables   with   temporally   structured,   
low-dimensional   neural   population   activity.   We   additionally   asked   if   the   hypothesized   
relationship   of      to      can   be   explained   as   arising   from   neurons   that   did   respond   to   task   
variables,   but   in   a   random   manner   e.g.   random   mixed   selectivity    (Kennerley   et   al.   2009;   
Fusi,   Miller,   and   Rigotti   2016;   Rigotti   et   al.   2013;   Raposo,   Kaufman,   and   Churchland   2014) .   
A   random   neural   code   corresponds   to   an   encoding   weight   matrix      with   entries   that   
are   randomly   drawn   from   some   symmetric   distribution,   or   equivalently   encoding   
directions   that   are   a   set   of   randomly   oriented   vectors   in   the   neural   state   space.   In   high   
dimensions   (many   neurons)   random   vectors   are   likely   to   be   orthogonal   to   each   other,   i.e.   
the   off-diagonal   entries   of   the   encoding   geometry   (dot   products   between   different   
encoding   directions)   are   likely   to   be   near   zero.   However   as   seen   qualitatively   in    Fig. 5 A,   the   
encoding   geometry   in   our   data   has   off-diagonal   entries   that   are   far   from   zero,   and   
Fig. S5 D-left   shows   that   the   cosine   similarity   of      to       in    Fig. 5 E   has   substantial   
positive   contributions   from   just   the   off-diagonal   entries   of   the   two   matrices.   This   is   
qualitatively   different   than   in   simulations   of   random   linear   encoding   of   the   behavioral   data   
(for   the   same   neural   population   sizes   as   the   neural   data),   where   off-diagonal   contributions   
are   close   to   and   mostly   symmetrically   distributed   around   zero   ( Fig. S5 D-right).   In   sum,   the   
similarity   of   the   encoding   geometry     to   the   inverse   noisy   task   variable   covariance   
hypothesis      is   clearly   beyond   that   explainable   by   either   chance   or   random   linear   codes   
(see   also    Fig. S4 C-F   for   how   this   structure   does   not   match   some    non	linear   codes   that   we   
may   hypothesize).   
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Figure	5.		    Pairwise			dot			products			of			encoding			directions			(“encoding			geometry”)			are			compatible			
with			a			whitening			operation,			suggesting			that			correlated			task			variables			are			represented			by			
uncorrelated			neural			modes.		    (A)		  Time-   and   session-average   encoding   geometry    ,   corrected   for   
noise-offset   and   regularized   as   explained   in   the   text   and   Methods.   Task   variables   (rows   and   
columns)   were   ordered   by   performing   hierarchical   clustering   on   the   task   variable   covariance   
matrix   in   (B).   For   timepoints   where   a   particular   task   variable   was   not   de�ined,   e.g.   the   “reward”   
variable   before   the   end   of   the   trial,   the   row   and   column   corresponding   to   that   variable   were   zeroed   
out   before   averaging.     (B)		  Time-   and   session-average   covariance   matrix   of   the   behavioral   task   
variable   data.   Task   variables   are   in   the   same   behaviorally-de�ined   order   as   in   (A),   and   timepoints   
where   variables   were   not   de�ined   were   zeroed   out   before   averaging.     (C)		  As   in   (B),   but   for   the   time-   
and   session-average   inverse   of   the   task   variable   covariance   matrix.   For   timepoints   where   only   a   
subset   of   task   variables   were   de�ined,   the   inverse   covariance   matrix   was   computed   for   this   subset   of   
variables,   and   the   remaining   (unde�ined)   rows   and   columns   were   set   to   zero   before   averaging.     (D)	  
As   in   (C),   but   for   a   modi�ied   inverse   task   covariance   matrix   that   accounts   for   different   

signal-to-noise   levels   per   task   variable:    .   The   scalar      and   diagonal   matrix     

were   �it   per   dataset   so   that      best   matches   the   encoding   geometry      in   (A)   (Methods).     (E)	  
Proportion   of   sessions   for   which   various   entries   of   the   time-average   encoding   geometry   matrix   in   
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(A)   were   signi�icantly   different   from   chance   (   after   controlling   for   false   discovery   rate,   see  .022p ≤ 0  
Methods).     (F)		  Distribution   of   cross-validated   similarity   scores   for   how   well   the   encoding   geometry   

  matched   the   behavioral    .   One   score   was   computed   per   imaging   session   and   timepoint   in   the   
trial,   being   the   cosine   similarity   between      and      where   entries   of   the   two   matrices   were   
treated   as   two   vectors.   Left   plot:   histograms   of   the   similarity   score   across   imaging   datasets,   for   
various   phases   of   the   behavior   (colored   lines;   each   dataset   contributes   one   score   to   each   
phase-speci�ic   histogram,   which   is   the   score   averaged   across   timepoints   within   that   behavioral   
phase).   Right   plot:    p	-value   for   how   likely   the   similarity   score   for   data   is   to   exceed   that   of   null   
hypotheses.   Gray   region:     not   signi�icant   after   controlling   for   false   discovery   rate.     (G)	 .036p > 0  
Same   as   (F),   but   for   the   cross-validated   cosine   similarity   between      and   the   best-match   

regularized   inverse      (Methods).   Right   plot:     not   signi�icant   after   controlling   for  .046p > 0  
false   discovery   rate.     (H-L)		  Illustration   of   how   different   neural   encoding   schemes   can   modify   signal   
correlations   in   the   encoded   task   variables,   as   follows.     (H)		  Simulated   distribution   of   two   correlated   
task   variables.     (I)		  Simulated   responses   of   two   neurons   that   linearly   encode   the   task   variables   in   
(H),   with   a   small   amount   of   noise   and   encoding   direction   for     orthogonal   to   that   for   .     (J)	 x1 x2  
Simulated   responses   of   two   neurons   that   linearly   encode   the   task   variables   in   (H),   with   a   small   
amount   of   noise   and   encoding   geometry   proportional   to    .     (K)		  As   in   (J),   but   with   three   neurons   
encoding   the   two   task   variables   in   (H).   The   neural   activities   lie   within   a   2-dimensional   
information-coding   subspace   (blue   plane)   spanned   by   the   encoding   directions   (brown   arrows),   and   
the   neural   modes   that   de�ine   this   subspace   are   uncorrelated   (95%   C.I.   is   a   circle).     (L)		  The   same   
simulated   data   in   (K),   but   plotted   for   various   pairs   of   neural   axes.   These   pairs   of   neurons   have   
nonzero   signal   correlations   (95%   C.I.   are   ellipses).   

  

The   above   observed   structure   of   the   encoding   geometry      has   an   interpretation   that   
relates   to   theories   of   ef�icient   coding.   We   derive   this   mathematically   in   the   Methods   and   
sketch   the   idea   here,   starting   from   the   conceptually   simpler   case   of      being   proportional   to   
the   inverse   (non-noisy)   task   variable   covariance   matrix    .    Fig. 5 H   illustrates   
the   joint   distribution   of   two   correlated   task   variables     and     in   a   simulated   dataset,  x1 x2  
which   we   assume   are   linearly   encoded   by   some   neural   population:    .   If   this   
population   consists   of   many   neurons   that   encode   each   task   variable   with   randomly   
distributed   response   weights,   the   encoding   directions      and      are   likely   to   be   
orthogonal   due   to   a   mathematical   property   of   high-dimensional   spaces.   In   this   case,   we   can   
think   about   the   neural   code   as   a   veridical   copy   of   the   behavioral   data   (i.e.   preserving   
correlations),   where   the   behavioral     and     axes   in    Fig. 5 H   are   mapped   respectively   onto  x1 x2  
the   neural   axes      and      in    Fig. 5 I.   If   instead   the   encoding   geometry   is   

,   then   given   exactly   as   many   neurons   as   encoded   task   variables   we   can   
design   encoding   directions   to   be    ,   which   results   in   the   activities   of   
the   two   neurons   being   uncorrelated   as   illustrated   in    Fig. 5 J.   This   operation   of   encoding  
statistically    dependent		  information   with   statistically    independent		  channels   (neurons)   is   
called   “whitening”,   and   (barring   other   constraints   such   as   correlated   noise)   is   optimal   in   the   
sense   that   it   omits   redundancy   in   the   neural   code    (E.   P.   Simoncelli   and   Olshausen   2001) .   
However,   if   there   are   more   neurons   than   encoded   variables,   there   is   freedom   in   how   the   
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information-coding   subspace   spanned   by   encoding   directions   can   be   embedded   in   the   
neural   state   space   ( Fig. 5 K).   Even   though   the   neural   modes   are   mutually   uncorrelated,   pairs   
of   individual   neurons   can   still   have   a   variety   of   nonzero   signal   correlations   depending   on   
the   orientation   of   the   information-coding   subspace   ( Fig. 5 L),   and   we   indeed   found   nonzero   
correlations   between   pairs   of   neurons   in   our   data   ( Fig. S5 E-G).   Our   �indings   thus   deviate   
from   previous   reports   of   ef�icient   coding   in   two   interesting   ways:   (1)   whitening   is   only   
evident   at   the   level   of   neural-population   modes,   and   not   pairs   of   neurons;   (2)   the   whitening   
operation   is   imperfect,   in   that   instead   of      we   observed    ,   the   inverse   of   a  
noise-corrupted   behavioral   covariance   matrix   that   has   different   signal-to-noise   levels   for   
each   task   variable.   

The   neural   encoding   geometry   follows   changes   in   inverse   task-variable   
covariances    vs.   �me   in   the   trial   

So   far   we   have   performed   all   analyses   independently   per   timepoint   in   the   trial,   but   which   
�indings   are   actually   time-dependent   and   which   are   not?   First,   the   scale   of   some    task   
variables   depended   on   time   in   the   trial,   and   the   corresponding   encoding   weights   of   
neurons   across   the   population    inversely				followed   this   scale   ( Fig. S6 A-C).   This   is   as   expected   
of   the   hypothesis   that   the   neural   encoding   approximates   a   whitening   operation   at   all   
timepoints,   since   whitening   requires   equalization   of   the   scales   of   all   encoded   variables.   
Second,   correlations   between   task   variables   changed   slowly   as   a   function   of   time   in   the   trial   
( Fig. 6 B),   and   the   encoding   geometry     tracked   the   corresponding   time-variations   in   the   
inverse   task-variable   covariance   matrix      well   ( Fig. 6 A).   The   similarity   of      to   

  was   comparably   high   for   all   timepoints    ,   as   previously   quanti�ied   in    Fig. 5 G.   

In   addition   to   the   above   time-dependence,   differences   in   the   encoding   geometry   across   
cortical   regions   and/or   layers   may   hint   at   anatomical   trends   in   cortical   processing.   For   
example   during   the   cue   period,   the   encoding   geometry   averaged   across   V1   and   V2   datasets   
( Fig. 6 C-top)   exhibits   some   small   qualitative   differences   with   respect   to   the   encoding   
geometry   averaged   across   RSC   datasets   ( Fig. 6 C-bottom).   Despite   these   differences   in   the   
structure		  of   the   encoding   geometry    ,   we   wondered   if   our   hypothesis   about   the    function	  
of   ,   i.e.   that   it   resembles   the   inverse   of   a   noisy   task-variable   covariance    ,   holds   
across   cortical   regions.   To   evaluate   this,   we   used   linear   regression   to   predict   the   cosine   
similarity   of     to    ,   with   covariates   being   the   set   of   indicator   variables   (values   0   or   
1)   for   whether   a   given   dataset   was   recorded   in   a   particular   cortical   region   or   layer   (e.g.   a   
dataset   recorded   from   layer   5   of   V1   will   have   regressor   values   “V1”=1,   “layer”=1,   and   value   
0   for   all   other   regressors).   We   additionally   included   the   number   of   simultaneously   recorded   
neurons   in   the   datasets   as   a   covariate,   since   per-neuron   noise   can   affect   the   accuracy   to   
which   we   can   estimate   the   encoding   geometry   (see    Fig. S1 E   for   how   neuron   count   depends   
on   cortical   region   and   layers).    Fig. 6 D   shows   that      is   signi�icantly   more   similar   to   

  in   recordings   of   larger   neural   populations,   and   in   fact   the   number   of   neurons   is   the   
largest   factor   in   predicting   the   goodness   of   the      hypothesis   �it.   Beyond   this   
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population   size   effect,   the   similarity   of      to      is   comparable   across   cortical   
regions,   with   slightly   better   agreement   in   the   secondary   visual   area   PM,   and   no   signi�icant   
effect    of   cortical   layer.   

We   can   understand   both   the   time   dependence   and   inter-region   differences   in   encoding   
geometries     by   examining   the   best-�it   parameters      and      in   the   hypothesized   
structure    .   As   explained   in   the   previous   
section,   we   can   think   of      as   a   task-signal   covariance   and      as   a   noise   covariance   that   
determines   the   neural   code.   To   visualize   these   parameters,   we   de�ined   a   measure   of   “signal   
strength”     for   task   variable     as   the   proportion   of   signal   over   total   variance   (diagonal  (i)  ξ i  
entries   of   the   covariance   matrices)   for   that   variable:   

.   This   signal   strength   is   plotted   in   
Fig. 6 E   for   each   task   variable,   and   exhibits   variable-speci�ic   time   dependencies   as   well   as   
some   inter-region   differences.   The   largest   differences   are   for   visual-related   task   variables   
such   as   the   running   tally   of   contralateral   cues   and   the   virtual   viewing   angle,   for   which   the   
signal   strengths   are   highest   in   V1   and   progressively   lower   in   V2   and   RSC.   The   neural   coding   
of   past-trial   reward   is   also   signi�icantly   higher   and   persists   for   a   longer   duration   of   the   trial   
in   RSC   compared   to   the   visual   areas.   In   sum,   posterior   cortical   regions   are   all   comparably   
well-modeled   as   having   encoding   geometries      that   imply   a   time-speci�ic   whitening   of   
noisy   task   variable   information    ,   but   the   signal-to-noise   parameters   of   the     
hypothesis   varies   with   time   as   well   as   across   cortical   regions   for   some   task   variables.   
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Figure	6.		    Encoding			geometry			follows			time-variations			in			the			inverse			task-variable			covariance			
matrix,			with			inter-region			differences			explainable			as			differences			in			task-variable-speci�ic			signal			
strength.		    (A)		  Session-average   encoding   geometry   as   a   function   of   time   in   the   trial   (columns).   Top   
row:   Noise-corrected   and   regularized   encoding   geometry   estimate   as   in    Fig. 5 A,   but   each   plot   was   
only   averaged   across   a   subset   of   timepoints   within   the   stated   behavioral   phase   of   the   trial.   Bottom   
row:   Analogous   to    Fig. 5 E,   proportion   of   sessions   for   which   various   entries   of   the   encoding   
geometry   in   the   corresponding   top   plot   are   signi�icantly   different   from   chance   (   after  .011p ≤ 0  
controlling   for   false   discovery   rate).   Hatched   rows/columns:   task   variable   not   de�ined   in   this   
behavioral   phase.     (B)		  Inverse   noisy   task   variable   covariance   matrix,   with   signal   strength      and   
noise   parameters      �itted   to   the   estimated   encoding   geometry   for   each   timepoint   and   recording   
session   as   in    Fig. 5 D.     (C)		  Encoding   geometry   during   the   cue   period,   averaged   across   visual   area   
datasets   for   the   top   plot,   vs.   average   across   RSC   datasets   in   the   bottom   plot.   The   reward   variable   
(hatched   row   and   column)   is   not   de�ined   in   the   cue   period.     (D)		  Coef�icients   from   an   L1-regularized   
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linear   regression   model   for   how   the   similarity   of   (A)   to   (B)   depended   on   factors   like   cortical   
region/layer   and   number   of   recorded   neurons.   Each   imaging   session   contributed   one   data   point   to   
this   model,   the   predicted   variable   being   the   time-average   cross-validated   cosine   similarity   of   the   
encoding   geometry   to   the   inverse   noisy   task   covariance   hypothesis   (as   histogrammed   in    Fig. 5 G).   
For   each   session,   cortical   region   regressors   were   de�ined   as   indicator   variables   that   were   1   if   and   
only   if   that   session   was   recorded   from   the   stated   region,   and   the   layer   regressor   was   1   for   
recordings   from   layer   5   and   0   for   layers   2/3.   Error   bars:   95%   C.I.   of   1000   bootstrap   experiments.   
Signi�icant   factors   are   indicated   in   green.     (E)		  Estimated   proportion   of   signal   variance     for   each  (i)ξ  
task   variable     in   the   best-�it   inverse   noisy   task   covariance   matrix   (B).   Since      is   the   task  i  
variable   covariance   matrix,   the    th    diagonal   entry      can   be   thought   of   as   the   signal   variance  i  
for   task   variable   ,   which   is   plotted   here   as   a   function   of   time   and   relative   to   the   total   variance  i  

  for   that   variable.   Lines:   average   across   sessions.   Bands:   S.E.M.   

  

Neural   responses   are   parsimoniously   explainable   by   a   mul�plica�ve   
�me-dependence   model   

How   can   a   neural   circuit   implement   an   encoding   geometry   that   adjusts   at   every   timepoint   
in   the   trial   ( Fig. 6 A),   so   as   to   cancel   out   the   different   structure   of   behavioral   correlations   at   
different   timepoints   ( Fig. 6 B)?   While   recurrently   connected   neural   networks   are   
theoretically   powerful   enough   dynamical   systems   to   produce   such   dynamic   encoding   
functions,   we   point   out   a   particularly   simple   and   robust   candidate   implementation   inspired   
by   how   the   encoding   of   task   variables   occurred   in   conjunction   with   sequential   dynamics   
across   the   neural   population   ( Fig. 2 E,    Fig. 4 G).   Here,   we   �irst   demonstrate   that   neural   
sequences   in   posterior   cortex   can   be   parsimoniously   described   as   having   time-modulations   
of   neural   activity   levels   that   approximately   factorizes   from   their   task-variable   
dependencies.   As   hypothesized   in   the   next   (theory)   section,   this   factorization   allows   
time-speci�ic   encoding   geometries   to   be   stored   in   static   task-input   synapses,   and   moreover   
in   a   robust   way   that   does    not		  require   careful   coordination   with   neural   dynamics   across   the   
network.   

In   the   previous   sections,   we   �itted   encoding   models   separately   to   the   data   for   each   
timepoint     in   the   trial.   This   means   that   the   activity   of   neuron     in   trial     was   hypothesized   t i j  
to   have   the   form   ,   where     is   the   neuron’s   trial-average   activity,  (t) (t) (t) (t)  f ij = μi + w→i · x→j (t)  μi  

  are   task   variable   values   in   trial   ,   and   the   encoding   weights     can   potentially   be  (t)  x→j j (t)  w→i  
different   at   every   timepoint   .   We   alternatively   proposed   a   multiplicative   time-modulation   t  
model,   where   the   neuron’s   activity   has   the   form   .   In   the   latter  (t) (t) (t) v (t)  f ij = μi + gi

→
i · x→j  

model,   the   time-dependence   of   a   neuron’s   activity   is   completely   described   by   functions   that   
do   not   depend   on   task   conditions:   a   trial-average   baseline   ,   and   a   neuron-speci�ic  (t)  μi  
time-modulation   function     that   applies   to   all   trials.   The   task-variable   dependence   of  (t)  gi  
such   a   neuron’s   activity   arises   from   the   scaling   of     by   ,   where     are  (t)  gi (t)  v→i · x→j  v→i  
time-independent   encoding   weights   for   the   task   variables.   As   opposed   to   the   per-timepoint   
encoding   model   which   has   (13   task   variables)⨉(11   timepoints)=143   free   parameters,   the   
multiplicative   time-modulation   model   has   only   13+11=24   free   parameters.   Nevertheless,   
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the   cross-validated   variance   explained   in    Fig. 7 A   shows   that   the   much   simpler   
multiplicative   time-modulation   model   predicted   all   single-neuron   activities   almost   as   well   
as   the   per-timepoint   encoding   models.   Furthermore,   an   even   simpler   model   with   constant   

  could    not		  model   neural   activities   well:   neural   responses   varied   more   in   time   than  (t)  gi  
could   be   explained   by   dependencies   on   time-varying   task   variables   on   top   of   a   time-varying   
baseline   ( Fig. 7 B).   In   fact,   equivalent   to   the     functions   of   most   neurons   being   near-zero  (t)  gi  
(inactive)   for   at   least   some   portion   of   the   trial,   we   previously   showed   in    Fig. 4 G   and    Fig. S2 C   
that   the   subset   of   active   neurons   changed   substantially   across   time   according   to   a   
neural-population-level   measure.   The   multiplicative   time-modulation   model   thus   provides   
a   parsimonious   description   of   single-neuron   activities,   and   we   refer   to   this   pattern   of   
activity   that   we   observed   across   posterior   cortex   as   “multiplicative   neural   sequences”.   

Mul�plica�ve   neural   sequences   as   a   robust   design   for   neural   implementa�ons   
of   �me-specific   encoding   geometries  

From   a   neural   circuit   design   standpoint,   multiplicative   neural   sequences   have   two   
interesting   theoretical   properties   that   we   can   show   via   simulations   and   mathematically   
explain.   One,   because   different   timepoints   in   the   trial   correspond   to   different   subsets   of   
active   neurons,    time-speci�ic		  encoding   geometries   can   be   implemented   via    neuron-speci�ic	  
(but   time-independent)   task-input   weights.   Two,   given   a   suf�iciently   large   neural   
population,   multiplicative   time-modulations   act   essentially   like   binary   on/off   functions   that   
determine   the   subset   of   active   neurons,   i.e.   details   of   individual   neural   activation   levels   
have   net   little   effect.   We   argue   that   these   two   properties   make   for   a   biologically   plausible   
design   where   task-   and   time-speci�ic   encoding   geometries   can   be   learned   with   minimal   
requirements   on   inter-neuron   coordination   and   little   sensitivity   to   the   exact   form   of   neural   
dynamics   across   the   population.   We   demonstrate   this   quantitatively   by   describing   how   to   
design   encoding   geometries   that   vary   systematically   with   time   in   the   trial   (as   seen   in   our   
data    Fig. 6 A,D),   using   the   above   two   properties   of   multiplicative   neural   sequences.   

First   to   recap   the   multiplicative   time-modulation   model   at   the   neural   population   level   
( Fig. 7 C),   the   neural   state      at   time     in   the   trial   arises   from   responses   to   task   variables:   t  

.   Here       is   a   trial-by-variable   matrix   of   task   variable   values,      is   a   
variable-by-neuron   matrix   of   static   encoding   weights,   and   the   time-modulation   matrix     
is   diagonal   with   entries   being   the   activation   level   of   each   neuron.   We   explore   circuit   design   
in   this   context   by   specifying   how   to   generate      (interpretable   as   strengths   of   task-input   
synapses,    Fig. 7 D-left)   as   well   as      (e.g.   sequential   activations   illustrated   in   
Fig. 7 D-right),   so   as   to   produce   encoding   geometries   with   various   properties   discussed   
below.   
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Figure	7.		    Neural			activity			is			well			explained			by			a			multiplicative			sequential			encoding			model,			
which			suggests			a			simple			implementation			of			time-speci�ic			encoding			geometries			by			a			neural			
population			with			static			task-variable			encoding			weights.		    (A)		  Cross-validated   variance   explained   
for   a   multiplicative   time-dependence   model   vs.   a   fully   �lexible   model   with   task-variable   encoding   
weights   that   can   be   arbitrarily   different   per   timepoint   (ridge   regression   per   neuron,   see   Methods).   

  is   the   activity   of   neuron     vs.   time     in   trial   ,   and     is   the   empirical   mean   of     across  (t)f ij i t j (t)μi (t)f ij  
trials.   In   the   multiplicative   time-dependence   model     is   a   11-parameter   time-dependence  (t)gi  
function   and     is   a   vector   of   constant   encoding   weights   for   the   13   task   variables,   totaling   24   free  v→i  
parameters.   In   the   per-timepoint   model     has     free   parameters.   Each   point   in   the  (t)w→i 3 1 431 × 1 = 1  
plot   corresponds   to   a   single   neuron.   Inset:   distribution   across   neurons   of   differences   in   variances   
explained   for   the   two    models   (   minus     coordinates   of   the   left   scatter   plot).     (B)		  Same   as   (A),   but  x y  
for   a   model   with   constant   encoding   weights   per   neuron   (13   free   parameters)   vs.   the   per-timepoint   
encoding   model.     (C)		  Correspondence   between   the   single-neuron   multiplicative   time-modulation   
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model   parameters   in   (A)   and   the   notation   for   the   same   model   at   the   neural-population   level.   Each   
column   of   the   time-independent   encoding   matrix      corresponds   to   the   encoding   weights     of   v→i  
one   neuron   ,   and   the   time-modulation   matrix      is   diagonal   with   each   entry   being   the  i  
activation   level     of   neuron     at   time    .     (D)		  Conceptualization   of   how   a   multiplicative   neural  (t)gi i  t  
sequence   (C)   can   have   an   encoding   geometry   that   changes   with   time   in   the   trial.   At   a   given   time   ,  t  
the   encoding   directions   are   the   rows   of   the   matrix    .   For   a   sequentially   active   
neural   population,      has   contributions   from   only   those   columns   of      corresponding   to   
neurons   that   are   active   at   time     (dashed   rectangles).   Thus,   columns   of      corresponding   to  t  
different   subsets   of   neurons   active   in   (say)   times     vs.     can   produce   different   encoding  t1 t2  
geometries      vs.    .     (E)		  Middle   plot:   angle   between   two   encoding   
directions,   in   three   example   simulations   where   a   population   of     neurons   responds   to   two   task  n  
variables   according   to   the   multiplicative   sequential   encoding   model   in   (C).      functions   were   
randomly   generated   such   that   neurons   each   have   a   preferred   activation   time   that   is   uniformly   
distributed   across   the   population   (Methods),   thus   forming   a   sequence   as   illustrated   in   the   left   plot.   
The     matrix      was   constructed   so   that   the   columns   of       corresponding   to   neurons   with  2 × n  
maximal      at   time     have   rows   that   form   an   angle     (dash-dotted   line).   The   angle   between  t (t)ψ  
the   two   encoding   directions   (colored   lines)   have   �luctuations   away   from     due   to   the   randomly  (t)ψ  
simulated    .   Right   plot:   distribution   across   simulation   experiments   and   time   of   differences   in   
the   angle   between   encoding   directions   vs.   ,   as   a   function   of   neural   population   sizes   in   the  (t)ψ  
simulations.     (F)		  Same   as   (E),   but   the   time-modulations      in   these   simulations   were   converted   
to   binary   functions   via   thresholding,   i.e.   each   neuron   is   only   either   “on”   or   “off”.     (G)		  Simulated   
time-modulation   functions      for   10   (out   of   a   population   of   200)   sequentially   active   neurons,   
each   of   which   had   time-modulations   that   were   localized   around   a   characteristic   time   preference   for   
that   cell   (dots),   but   otherwise   randomly   drawn   per   trial   (colored   lines;   shown   as   gray   when   the   
neuron   is   inactive).     (H)		  Left   plot:   angle   between   encoding   directions   vs.   time   for   the   5   simulated   
trials   in   (G),   where   in   each   trial     the   neural   time-modulations      multiply   the    same		  time-  k  
(and   trial-)   independent   encoding   weight   matrix    .      was   constructed   so   that   the   columns   of   

  corresponding   to   neurons   with   time   preference     have   rows   that   form   an   angle     as   shown  t
︿

(t)ψ
︿

 
in   the   plot   (dash-dotted   line).   Note   that   unlike   (E),      depends   only   on   the   generative   time   
preference   of   neurons,   and   not   the   trial-speci�ic   instance   of    .   Right   plot:   same   as   (E-right),   
but   for   these   simulations   where      depends   only   on   the   generative   time   preference   of   neurons.   

  

Assuming   that   each   neuron   is   only   active   at   a   few   timepoints   in   the   trial,   how   can   we   design   
the   time- independent		     to   produce   a   time- dependent		  encoding   geometry?   Because   the   
encoding   directions   at   time     are   given   by    ,   inactive   neurons   (zeros   in   t  

)   are   zeroed   out   in      and   thus   do   not   contribute   to   the   population-level   
encoding   geometry   .   As   illustrated   in    Fig. 7 D,   we   can   thus   use   the   
subset   of   columns   of     corresponding   to   only   active   neurons   to   specify   the   desired    .   
If   two   timepoints     and     have   non-overlapping   subsets   of   active   neurons,   then   the   t1  t2  
encoding   geometries   at   these   two   timepoints   can   be   completely   different   because   they   are   
determined   by   two   disjoint   subsets   of   columns   of    .   In   the   extreme   (but   pedagogically   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)%20%3D%20%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D%20%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BU%7D(t_1)%5Cequiv%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t_1)%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t_1)%5E%5Ctop#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BU%7D(t_2)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D%5E%7B(k)%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D%5E%7B(k)%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)%20%3D%20%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D%5C%2C%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BG%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BU%7D(t)%20%5Cequiv%20%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)%5E%5Ctop#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BU%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BV%7D_%7B%5Cmathsf%7Benc%7D%7D#0
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


26   

illustrative)   case   where   each   neuron   is   active   at   exactly   one   timepoint   in   the   trial,   every   
timepoint     corresponds   to   a   unique   subset   of   columns   of      that   can   be   freely   chosen   to   t  
produce   any   desired   encoding   geometry   at   time   .   In   the   more   realistic   case   where   neurons   t  
have   some   range   of   time   in   which   they   are   active,   the   duration   of   their   activities   constrain   
how   quickly   the   encoding   geometry   can   change   vs.   time.   In   this   way,   the   continuously   
changing   subsets   of   active   neurons   in   a   multiplicative   neural   sequence   (cf.   neural   state   
change   measures   in    Fig. 4 G,F)   enables   different   encoding   geometries   vs.   time   to   be   
implemented   via   different   columns   (neurons)   of   the   static   “synaptic   weights”   matrix    .   

Although   the   encoding   matrix      has   no   explicit   time   dependence,   in   the   above   design   
  depends   implicitly   on   the   time-modulation   functions      through   which   columns   of   
  contribute   at   which   times.   How   exactly   should   the   designs   of      and      be   

coordinated   to   produce   a   particular   encoding   geometry    ?   Mathematically,   because   the   
encoding   geometry   is   ,   we   may   in   principle   need   to   (a)   adjust   the   
entries   of     to   the   speci�ic   neural   activation   levels   in    ;   and/or   to   (b)   coordinate   the   
time-modulations   across   neurons   (entries   of    ).   Conceptually,   the   in�luence   of     
re�lects   how   if   neural   activity   levels   constitute   information   in   the   brain   about   particular   
task   variables,   then   any   unrelated   time-modulations   of   these   activities   can   be   confused   as   
changes   in   task   variable   values   even   when   there   was   no   such   change.   We   might   thus   
wonder   if   careful   tuning   of   the   circuit   is   required   to   coordinate   encoding   and   neural   
dynamics   in   a   way   that   ensures   reliable   representation   of   task   information   through   time.   
Remarkably,   we   can   show   via   simulations   that   for   multiplicative   neural   sequences,   precise   
coordination   is    not		  required   (i.e.   neither   (a)   nor   (b)).   Instead,   random   time-modulations   
across   neurons   will   average   out   in   a   large   enough   neural   population,   enabling   the   encoding   
geometry   to   vary   smoothly   according   to   the   structure   of      on   timescales   longer   than   
that   of   individual   neural   time-modulations.   

Per   the   de�inition   of   multiplicative   neural   sequences,   we   simulated   neural   states   of   the   form   
  in   response   to   two   randomly   generated   task   variables    .   As   illustrated   in   

Fig. 7 D-right   (see   Methods   for   details),   we   �irst   generated      functions   such   that   each   
neuron   had   randomly   shaped   time-modulations   roughly   con�ined   to   a   preferred   time   
window   (also   randomly   determined   per   neuron),   which   then   formed   a   sequential   activation   
pattern   across   the   population.   We   then   constructed      so   that   the   subset   of   its   columns   
corresponding   to   neurons   with   maximal      at   time     had   an   angle     between   their   t (t)  ψ  
rows   (encoding   directions).    Fig. 7 E-middle   shows   the   encoding   geometry   in   three   example   
simulation   experiments   with   small   to   large   neural   population   sizes.   Here,   to   make   
comparisons   across   neural   populations   of   different   sizes   more   intuitive,   we   measure   the   
encoding   geometry   in   terms   of   the    angle		  between   encoding   directions   (the   unnormalized   
dot   product   depends   on   the   total   number   of   neurons).   Since   the      were    not		  coordinated   
across   neurons,   the   encoding   geometry   randomly   deviated   from     across   time  (t)  ψ  
(difference   between   solid   colored   and   dashed   gray   lines   in    Fig. 7 E-middle).   However,   these   
deviations   became   progressively   smaller   for   simulations   with   larger   neural-population   
sizes,   and   with   a   few   hundred   neurons   different   simulations   i.e.   different   instantiations   of   

  all   produced   encoding   geometries   that   closely   approximated     ( Fig. 7 E-right).   The  (t)  ψ  
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convergence   of      to     at   large   population   sizes   is   insensitive   to   details   of      such  (t)  ψ  
as   the   shapes   of   time-modulation   functions.   For   example,    Fig. 7 F   shows   qualitatively   similar   
results   when   the   simulated      were   converted   to   binary   on/off   functions   via   
thresholding.     

The   above   random   design   for      has   a   limitation   and   an   extension   that   we   now   discuss,   
before   lastly   providing   a   theoretical   explanation   for   why   it   works.   First,   without   �ine-tuning   

  to   exploit   the   speci�ic   neural   timecourses   in   a   given    ,   the   timescale   of   
single-neuron   activities   limits   how   quickly   the   encoding   geometry      can   track   changes   
in   .   For   the   simulations   in    Fig. S7 A-F,   we   designed     to   be   constant   except   for   two  (t)  ψ (t)  ψ  
abrupt   switches   between   low   and   high   values,   and   used     to   de�ine      in   the   same  (t)  ψ  
way   as   before.   If   we   then   generated      such   that   each   neuron   was   active   for   longer   
(shorter)   periods,      transitioned   slowly   (quickly)   vs.   time   between   the   low   and   high   
values   of     ( Fig. S7 A   vs.    Fig. S7 D).   The   ability   of   populations   of   fast-timescale   neurons   to  (t)  ψ  
implement   fast   changes   in     trades   off   with   a   need   for   larger   population   sizes   to   average  (t)  ψ  
out   random   deviations   from     ( Fig. S7 B-C   vs.    Fig. S7 E-F).   Within   these   limitations,   that  (t)  ψ  
the   designs   of     and     do   not   need   to   be   carefully   coordinated   has   an   interesting   
extension   to   how   the   encoding   geometry   can   be   robust   to   variability   in    ,   e.g.   
trial-to-trial   stochasticity   present   in   our   data   and   often   reported   by   others.    Fig. 7 G   
illustrates   �ive   simulated   trials     with   different   generated    ,   but   where   each   neuron    k i  
has   a   �ixed,   characteristic   preferred   time     (black   dots)   around   which   they   are   active.   We   t︿i  
then   designed   a    single		     with   structure   across   columns   set   by   ,   i.e.      depends   on  (t )  ψ︿i  
the   characteristic     of   neurons   and    not		  on   the   trial-speci�ic   instances   of    .   For   large   t︿i  
enough   neural   sequences,    Fig. 7 H   shows   that   the   encoding   geometry   still   tracks     up   to  (t)  ψ  
small   trial-to-trial   �luctuations,   and   in   fact   the   rate   of   convergence   vs.   population   size   is   
essentially   the   same   as   before   when      was   designed   using   the   precise   time   order   of   
neural   activations   in   a   given      ( Fig. 7 E-right).     

The   reason   why   we   did   not   need   to   carefully   select   the      functions   or   coordinate   them   
with   details   of     can   be   understood   via   a   mathematical   property   of   high-dimensional   
spaces.   We   can   think   of   multiplicative   neural   sequences   as   characterized   by   an   underlying   
set   of   time-independent   encoding   directions      in   the   high-dimensional   neural   state   
space   ( Fig. 8 b-top),   with   geometry    .   At   each   timepoint,   random   
time-modulation   functions     approximately   act   to   randomly   project      onto   a   
low-dimensional   subspace   of   active   neurons,   producing   the   observed   encoding   directions   

  ( Fig. 8 b-bottom).   If   the   underlying      directions   are   randomly   
oriented   in   the   neural   state   space,   the   encoding   geometry     
approximates   the   constant      at   all   times     ( Fig. S7 G-H).   This   is   because   random   t  
projections   in   a   high-dimensional   space   are   likely   to   preserve   the   relative   distances   
between   points,   and   thus   the   relative   geometry   of   encoding   directions   ( Fig. S7 I;   a   
constructive   proof   of   the   Johnson-Lindenstrauss   lemma    (Dasgupta   and   Gupta   2003) ;   see   
also   extensions   to   entire   manifolds    (Baraniuk   and   Wakin   2009;   Clarkson   2008;   Yap,   Wakin,   
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and   Rozell   2013) ).   Our   observation   that      in   the   neural   data   varies   gradually   across   time   
( Fig. 6 A)   can   be   thought   of   as   originating   from      directions   that   are    not		  fully   randomly   
oriented,   but   instead   have   systematic   structure   w.r.t.    .   Assuming   without   loss   of   
generality   that   the   rows   of      (and   thus   columns   of    )   are   ordered   by   the   activation   
times   of   neurons,   this   means   that   the   �irst   few   columns   of      should   have   rows   with   a  
different   geometry   than   the   next   few   columns,   and   so   forth.   The   Johnson-Lindenstrauss   
lemma   then   applies   to   each   submatrix   of      de�ined   by   columns   corresponding   to   an   
interval   of   time   over   which   the   encoding   geometry      is   approximately   constant.   Within   
such   a   submatrix   ,   the   sub-sequence   of   fast-timescale   activations   of   neurons    i  
to     produce   a   near-constant   approximation   of    ,   whereas   the   systematic  j  
change   of     across   submatrices   produces   a   gradual   change   in      over   longer   
timescales.     

To   summarize   our   proposal   for   how   multiplicative   neural   sequences   can   implement   
time-dependent   encoding   geometries,   the   key   requirement   for   the   time-modulation   
functions     is   that   each   neuron   should   have   a   characteristic   preferred   activation   time   
(cf.   high   reliability   within   their   activity   �ields,    Fig. 2 H),   but   can   otherwise   have   stochastic   
�luctuations   in   activity   levels   whether   across   neurons   or   across   trials   per   neuron.   At   time     t  
in   the   trial,   a   hypothetical   neural   circuit   may   then   slowly   adjust   the   strengths   of   task-input   
synapses   for   the   subset   of   neurons   active   at   time   ,   which   corresponds   to   storing   t  
time-speci�ic   task   information   in   a   subset   of   columns   of   the   time-independent    .   This   
kind   of   “writing”   into      at   different   times   vs.     will   not   mutually   interfere   if   there   is   t1  t2  
no   overlap   in   the   subpopulations   of   neurons   active   at   vs.   ,   which   argues   for   why     t1  t2  
should   have   a   sequential   design   i.e.   systematic   turnover   in   active   neurons   vs.   time   in   the   
trial   (as   seen   in   our   data,    Fig. 4 G,F).   Multiplicative   neural   sequences   may   thus   suggest   a   
particularly   robust   way   for   neural   circuits   to   encode   the   time   structure   of   dynamic   
behaviors   that   exploits   mathematical   properties   of   high-dimensional,   random   designs:   
updates   to   synaptic   connectivity   can   be   made   independently   for   subsets   of   neurons   active   
at   different   times   in   the   trial,   and   the   resulting   encoding   geometry   is   insensitive   to   details   
of   the   neural   dynamics   beyond   its   role   in   determining   which   neurons   are   active   at   a   given   
time.   

Discussion   
In   this   work,   we   described   some   geometrical   structures   of   neural-population   activity   across   
posterior   cortical   areas   as   mice   performed   a   complex,   dynamic   task.   How   were   neural   
representations   of   the   many   task-related   variables   organized   relative   to   each   other   and   
maintained/updated   through   time?   We   answered   in   three   parts.   First,   neurons   were   
sequentially   active   vs.   place/time   in   the   trial   ( Fig. 2 E),   and   in   fact   had   time   modulations   
that   did   not   depend   on   task   conditions   ( Fig. 7 A),   corresponding   to   a   neural   manifold   with   
global   time   order   ( Fig. 4 ).   Second,   neural   populations   across   the   posterior   cortex   
represented   different   task   variables   with    related		  encoding   directions,   in   particular   with   
encoding   geometries   that   approximated   the   inverse   task   variable   covariance   matrices.   This   
supports   the   hypothesis   that   the   brain’s   encoding   scheme   approximately   whitens   the   
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correlated   task   information,   i.e.   representing   task   variables   with   less   correlated   neural   
modes.   Third,   this   encoding   function   was   not   static   but   reliably   followed   changes   in   
task-variable   correlations   across   time   in   the   trial   ( Fig. 6 A-B),   which   we   propose   can   be   
implemented   in   a   simple   way   by   multiplicative   neural   sequences   ( Fig. 7 C-H).   Below,   we   
discuss   some   implications   of   our   �indings   in   regards   to   the   two   questions   posed   in   the   
Introduction:   how   neural   populations   simultaneously   encode   multiple   variables,   and   how   
this   neural   code   is   dynamically   coordinated   and   represents   temporal   context.   

  

Figure	8.						Conceptual			summary:			multiplicative			neural			sequences			hypothesized			to			implement			
time-speci�ic			ef�icient			neural-population			coding			of			task-speci�ic			variables	.				(A)		   Neurons   were   
sequentially   active,   with   the   response   of   each   neuron     well-described   by   static   task-variable  i  
encoding   weights     multiplied   by   a   behavior-independent   time-modulation   function   .   Vertical  v→i (t)gi  
colored   bands   indicate   neurons   that   contribute   signi�icantly   to   the     encoding   direction   at   various  x  
timepoints   in   the   trial,   each   band   corresponding   to   a   different   illustrated   timepoint.     (B)		  At   each   
timepoint   ,   the   observed   encoding   geometry      approximates   a   projection   of   a   hypothesized  t  
underlying   encoding   structure      onto   a   low-dimensional   subspace   of   active   neurons.   The   
underlying   encoding   directions   (black   arrows)   are   speci�ied   by   the   set   of   constant   encoding   weights   

  in   (A),   and      is   the   matrix   of   dot   products   between   all   pairs   of   these   encoding   directions.   In  v→i  
high   dimensions   (many   neurons),   the   observed   encoding   geometry      is   likely   to   be   nearly   equal   
to   the   underlying      up   to   an   overall   scale.   See   text   for   an   explanation   of   how   systematic   
structure   in      w.r.t.   the   preferred   activation   times   of   neurons   (time   sequence   of   projections)   can   
generate   a   time-dependent    .     (C)		  With   many   sequentially   active   neurons,   the   projection   effect   
in   (B)   can   be   insensitive   to   details   of   single-neuron   time-modulation   functions.   Speci�ically,   for   a   
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�ixed		  set   of   static   task-encoding   weights     i.e.   underlying    ,   the   observed   encoding   geometry  v }{→
i  

still   approximates      for   different   instances   of   the   time-modulation   functions:   left   traces   same   as   
(B),   vs.   right   traces   which   were   different   randomly   generated   instances   but   maintaining   a   
characteristic   activity   time   window   per   neuron   (e.g.   stochasticity   across   trials).     (D)		  Local   regions   of   
the   neural   manifold   could   be   ordered   by   time   in   the   trial,   and   at   each   timepoint/local   region   there   
was   a   different   information-coding   subspace   spanned   by   encoding   directions   (brown   arrows).     (E)	  
At   each   timepoint,   task   variables   were   correlated   across   trials   (top   plot),   and   part   of   the   variance   in   
neural   states   could   be   explained   as   dependence   on   these   task   variables   (bottom   plot).     (F)		  The   
distribution   of   neural   states   in   (E)   was   approximately   uncorrelated   within   the   information-coding   
subspace   (bottom   plot),   but   there   can   be   signal   correlations   between   pairs   of   neurons   and   w.r.t.   
other   directions   orthogonal   to   this   subspace   (top   plot).     (G)		  Since   the   time-modulations   of   neurons   
in   (A)   do   not   depend   on   task   conditions,   neuron   identities   can   be   used   to   select   neurons   with   
particular   time   preferences   (colors).   The   subset   of   neurons   with   time   preference     can   then   be   used  t  
to   encode   a   task   variable     (as   well   as   other   task   variables   and   the   behavioral   relationships  x  
between   task   variables),   speci�ic   to   time   .     (H)		  Neuron   identities   in   (G)   can   be   used   to   selectively  t  
and   stably   read   out   task   information   at   speci�ic   timepoints   in   the   trial,   i.e.   a   simple   weighted   sum   of   
upstream   neural   activities   (static   synapses)   can   produce   a   read-out   signal   that   is   undistorted   by   
individual   neural   time-modulations   unrelated   to   task   variable   changes.     (I)		  The   union   of   synaptic   
weights   for   the   time-speci�ic   readouts   in   (H)   can   be   used   to   read   out   task   information   stably   
through   time.   

  

How    should		  the   brain   encode   information?   Theories   of   ef�icient   coding   propose   that   to   
minimize   resource   usage   (e.g.   signal   bandwidth),   an   ef�icient   code   should   utilize   
statistically   independent   neural   representations    (Attneave   1954;   Horace   B.   Barlow   1961) .   
Our   results   support   these   theories,   but   with   three   distinctions:   

1. We   did   not   observe   that   individual   neurons   have   statistically   independent   responses   
( Fig. S5 E-G),   so   in   a   strict   sense   our   �indings   differ   from   being   a   fully   ef�icient   code,   
as   well   as   the   focus   of   a   large   body   of   related   work    (Rieke,   Bodnar,   and   Bialek   1995;   
Laughlin   1981;   Dan,   Atick,   and   Reid   1996;   Baddeley   et   al.   1997;   Vinje   and   Gallant   
2000;   Olshausen   and   Field   1996;   Marsat   and   Maler   2010;   Onken   et   al.   2014;   Weliky   
et   al.   2003;   Atick   and   Redlich   1992) .   Rather,   the   population-level   encoding   
directions   can   be   thought   of   as   spanning   an   information-coding   subspace   of   the   
neural   state   space   ( Fig. 8 D).   We   showed   mathematically   that   the   observed   geometry   
of   these   encoding   directions   implies   that   task   variables   were   represented   by   
approximately   uncorrelated   modes   within   the   information-coding   subspace   
( Fig. 8 E-F).   In   a   high-dimensional   neural   state   space,   this   information-coding   
subspace   can   be   oriented   in   such   a   way   that   we   can   observe   a   spectrum   of   signal   
correlations   between   pairs   of   neurons   ( Fig. 8 F-top;   see    Fig. 5 L,    Fig. S5 F,I).   

2. Although   the   encoding   geometry   was   similar   to   the   inverse   task   variable   covariance   
matrix     ( Fig. 5 C,F),   it   much   better   matched   an   alternate   hypothesis   

  ( Fig. 5 D,G).   The   distinction   is   that      assumes   that   perfect   
information   about   the   task   variables      is   available   for   computing   the   inverse   
covariance   matrix,   whereas       allows   for   different   task   variables   to   have   different   
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signal-to-noise   ratios   (SNR)   as   speci�ied   by   the   free   parameters      and    .   
Intriguingly,   all   posterior   cortical   regions   were   well-characterized   as   having   
encoding   geometries   that   matched    ,   but   with   systematic   differences   in   
variable-speci�ic   SNR   such   as   reduced   sensitivity   to   visual-related   task   variables   in   
higher-order   cortical   regions   compared   to   V1   ( Fig. 6 E).     

3. As   opposed   to   purely   sensory   responses,   we   report   a   correspondence   between   the   
encoding   geometry   and   the   inverse   covariance   of   a   set   of   external   and   internally   
computed   task   variables,   which   were   (only)   interrelated   through   a   learned   
behavioral   task.     

One   possibility   is   that   our   three   �indings   above   arose   from   a   learning   process   that   
optimized   computational   utility   of   the   neural   code,   more   so   than   low-level   resource   
constraints.   For   example,    (H.   B.   Barlow   1989;   H.   Barlow   2001)    pointed   out   that   utilizing   a   
neural   representation   that   has   canceled   out    expected		  statistical   regularities   of   the   world   
permits   easy   detection   of    unexpected		  coincidences,   as   is   relevant   for   survival.     

As   emphasized   in   the   design   of   our   task,   another   major   computational   challenge   brains   face   
is   that   the   information   they   represent   and   process   is   not   static,   but   changes   in   time   
depending   on   the   environment   and   the   animal’s   own   behavior.   We   accounted   for   the   
dynamic   and   nonlinear   nature   of   neural   responses   by   computing   the   encoding   geometry   as   
a   function   of   time   in   the   trial,   equivalent   to   a   locally-linear   approximation   of   the   structure   
of   the   neural   manifold   ( Fig. 1 ).   We   found   that   locally-linear   encoding   models   could   predict   
neural   activities   nearly   as   well   as   models   with   higher-order   (nonlinear)   dependencies   on   
task   variables   ( Fig. S3 A-B).   Complementary   to   this,   we   could   accurately   predict  			the   majority   
of   task   variables   from   neural-population   activity   using   linear    decoders		  trained   on   
seconds-long   temporal   phases   of   the   task,   i.e.   with   accuracies   comparable   to   per-timepoint   
decoders   ( Fig. S8 B,   blue   vs.   black   traces).   Accuracy   comparable   to   per-timepoint   decoders   
also   holds   when   a   single   linear   decoder   per   task   variable   was   trained   using   data   from   all   
timepoints   ( Fig. S8 B,   red   vs.   black   traces),   albeit   not   for   all   variables   because   some   
variables   such   as   position   are   highly    non	linearly   coded   when   viewed   at   a   global   as   opposed   
to   local   level.   Our   results   are   compatible   with   previous   reports   of   long-timescale   structure   
in   neural   state   transitions   in   mouse   posterior   parietal   cortex    (Morcos   and   Harvey   2016b) ,   
long-timescale   order   in   single-trial   neural   state   trajectories   in   mouse   premotor   cortex    (Wei   
et   al.   2019) ,   and   timescales   of   stability   of   neural   representations   in   monkey   orbitofrontal   
cortex    (Kimmel   et   al.   2020)    (discussed   further   below).   Strikingly,   we   observed   that   the   
ef�icient-coding-like   function   of   the   neural   encoding   geometry   changed   in   time   to   
approximately   cancel   out   task   variable   correlations   that   were   speci�ic   to   each   timepoint   in   
the   trial   ( Fig. 6 A-B).   This   dynamic   encoding   function   was   not   implemented   by   dynamical   
changes   in   neuron-neuron   correlations,   but   instead   involved   a   sequence   of   different   
neurons   across   time.   We   introduced   a   model-agnostic   measure   of   sequentiality   at   the   
population   level,   i.e.   the   rate   of   angular   change   in   the   neural   state,   which   has   the   intuitive   
interpretation   that   a   90°   change   corresponds   to   a   complete   change   in   active   neurons.   This   
is   complementary   to   model-based   methods   in   the   literature   that   aim   to   �it   low-dimensional   
dynamical   systems   to   the   neural-population   data   (e.g.    (Churchland   et   al.   2012) ,   but   see   also   
(Lebedev   et   al.   2019) ).   The   angular   change   in   neural   state   showed   that   the   subset   of   active   
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neurons   changed   continuously   vs.   time   in   the   trial   ( Fig. 4 G,    Fig. S2 C),   and   provides   a   
quantitative   measure   of   the   sequential   neural   activation   patterns   seen   in    Fig. 2 E.   

Our   observations   of   sequential   dynamics   in   all   areas   are   amongst   a   growing   number   of   such   
reports   for   the   mouse   neocortex    (Harvey,   Coen,   and   Tank   2012;   Saleem   et   al.   2018;   Krumin   
et   al.   2018;   Morcos   and   Harvey   2016a;   Driscoll   et   al.   2017;   Runyan   et   al.   2017) .   These   
phenomena   are   reminiscent   of   place    (O’keefe   and   Nadel   1978)    or   time    (Pastalkova   et   al.   
2008;   MacDonald   et   al.   2011,   2013)    cells   in   the   hippocampus,   which   are   also   known   to   
jointly   encode   a   variety   of   other   spatial   and   nonspatial   factors.   An   interesting   idea   that   has   
arisen   in   the   �ield   concerns   how   sequential   activity   could   act   as   a   temporal   scaffold   upon   
which   other   information   can   be   imprinted,   i.e.   multiplexing   this   information   with   
“timestamps”   to   indicate    when		  they   occurred    (Eichenbaum   2017;   Lisman   1999;   Pastalkova   
et   al.   2008;   Howard   et   al.   2014;   Jin,   Fujii,   and   Graybiel   2009) .   How   can   such   multiplexing   be   
designed   so   that   information   can   be   read   out   without   confounding   the   timestamp   with   the   
imprinted   information?   We   point   out   a   simple,   robust,   and   interpretable   design   inspired   by   
what   we   call   multiplicative   neural   sequences   in   our   data   ( Fig. 8 A),   where   the   response   of   
each   neuron     to   task   variables   was   well   described   as   a   product   of   two   functions,   i (x) g (t)  v→i

→
i

.   Here     is   a   behavioral   response   function   that   depends   on   the   time-dependent   task  [x(t)]  v→i
→  

variables     but   does   not   otherwise   depend   explicitly   on   time,   and     is   a  (t)  x→ (t)  gi  
time-modulation   function   that   depends   only   on   time     in   the   trial.   In   other   words,   the   t  
nominally   high-dimensional   neural   population   activity   in   all   surveyed   cortical   regions   could   
be   parsimoniously   described   by   a   low-dimensional   set   of   multiplicative   factors.   This   type   of   
factorizable   neural   responses   seems   intriguingly   ubiquitous,   as   similar   �indings   have   been   
reported   for   mouse   prefrontal   cortex   and   nonhuman-primate   motor   cortex    (Williams   et   al.   
2018) .     

Perhaps   contrarily   to   intuition,   the   activity   of   individual   neurons   can   be   time-modulated   on   
fast   timescales   and   yet   not   preclude   stable   encoding   and   readouts   on   longer   timescales.   For   
neuron     in   a   multiplicative   neural   sequence,   the   proportion   of   activity   variance   explained  i  
by   each   task   variable   in     is   determined   by   the   task-variable   response   function   ,   x→ (x)  v→i

→  
which   has   no   explicit   time   dependence.   This   is   consistent   with   how   the   selectivity   of   neural   
representations   can   appear   stable   on   longer   timescales   than   the   individual   neural   
time-variations      (Kimmel   et   al.   2020)    (assuming   that   the   measure   of   selectivity   used   is  (t)  gi  
insensitive   to   overall   activity   scales   as   set   by   ).   Population-level   information   about   one  (t)  gi  
task   variable    relative		  to   another,   e.g.   the   encoding   geometry,   can   be   stable   on   even   longer   
timescales.   This   is   because   neural   population   outputs   sum   over   the   contributions   of   
individual   neurons,   so   contributions   from   one   subset   of   neurons   can   be   replaced   by   
contributions   from   another   subset,   even   if   the   subsets   of   active   neurons   change.   The   
timescale   of   single-neuron   activities   can   therefore   be   thought   of   more   as   limiting   how   
quickly   the   neural   code   can   change   rather   than   how   stable   it   can   remain,   subject   to   the   
trade-off   that   a   shorter   activity   time   window   per   neuron   requires   a   larger   population   size   
in   order   to   sustain   stable   output   ( Fig. S7 A-F).   In   fact   as   we   next   discuss,   random   and   
heterogeneous     will   for   mathematical   reasons   average   out   in   suf�iciently   large   neural  (t)  gi  
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populations,   and   can   thus   in   a   simple,   neurobiologically   plausible   way   be   used   to   
implement   neural   representations   that   vary   smoothly   over   long   timescales.   

As   each   neuron   in   a   multiplicative   neural   sequence   has   a   characteristic   time-preference   
that   does   not   depend   on   task   conditions,   static   task-input   synapses   onto   a   subset   of   
neurons   with   a   given   time-preference   can   be   used   to   encode   task   information   at   just   that   
speci�ic   time   in   the   trial   ( Fig. 8 G;   i.e.   near-independently   for   distal   timepoints).   From   a   
circuit   design   perspective,   the   use   of   different   neural   subpopulations   to   encode   information   
at   different   times   allows   for   the   neural   code   at   any    one		  timepoint   to   be   learned   via   
modifying   the   synapses   of   the   fewest   number   of   neurons.   This   is   a   special   choice   out   of   the   
many   ways   that   low-dimensional   (relative   to   the   number   of   neurons)   representations   can   
be   constructed,   which   we   speculate   re�lects   the   special,   universal   role   of   time   in   behavior.   
While   the   restricted   subset   of   active   (i.e.   coding)   neurons   mirrors   ideas   in   sparse   coding   
(e.g.   see    (Olshausen   and   Field   1996;   Vinje   and   Gallant   2000;   Willmore   and   Tolhurst   2001) ),   
unlike   previous   work   on   sparse   codes,   the   phenomenon   here   does   not   appear   optimized   to   
produce   particular   representations   of   high-dimensional   information   such   as   visual   stimuli.   
Instead,   we   think   of   multiplicative   neural   sequences   as   implementing   a   general   temporal   
scaffold   that   permits   the   time   structure   of   task   variable   relationships   to   be   encoded   in   
mechanistically   the   same   way   across   a   variety   of   behaviors.     

Also   of   particular   interest   to   circuit   design   is   that   with   large   enough   neural   populations,   the   
encoding   geometry   can   be   robustly   constructed   to   vary   slowly   according   to   the   time   
structure   of   the   behavior,   i.e.   without   careful   tuning   to   the   details   of   more   rapid   
time-modulations   of   individual   neurons.   We   demonstrated   this   using   simulations   where   
neural   time-modulations   were   randomly   generated,   up   to   requiring   each   neuron   to   only   be   
active   within   one   (randomly   determined)   time   window   in   the   trial.   In   these   simulations,   the   
encoding   geometry   approximated   the   design   truth   even   though   the   time-modulations   were   
not   coordinated   across   neurons   ( Fig. 7 E-F),   and   even   if   activity   levels   �luctuated   
stochastically   across   trials   per   neuron   ( Fig. 7 G-H).   Since   details   of   the   neural   
time-modulations   do   not   matter,   we   can   think   of   them   as   functionally   equivalent   to   simple   
on/off   functions   per   neuron   ( Fig. 7 E   vs.   F).   Mathematically,   this   means   that   the   
time-modulations   approximately   act   to   randomly   project   the   underlying   encoding   structure   
determined   by   static   input   synapses   (  ,    Fig. 8 B-top)   onto   a   
low-dimensional   subspace   corresponding   to   the   active   neurons   ( Fig. 8 B-bottom).   The   
relevance   of   the   projection   effect   is   that   according   to   the   Johnson-Lindenstrauss   lemma   
(Dasgupta   and   Gupta   2003) ,   random   projections   are   likely   to   preserve   the   relative   
geometry   of   the   underlying    .   Due   to   this   mathematical   property,   the   observed   encoding   
geometry     at   each   timepoint     can   closely   follow   the   structure   of   the   static   t  

,   with   little   dependence   on   the   fast   time-modulations   of   individual   neurons   
(within   a   band   in   the   schematic    Fig. 8 A)   beyond   how   the   slower   turnover   in   active   neurons   
(across   bands   in    Fig. 8 A)   selects   different   subsets   of      to   be   re�lected   in    .   Abrupt   
changes   in     can   also   be   implemented   via   rapid   changes   in   the   subset   of   active   neurons   
( Fig. S7 D-F).   Our   point   here   about   the   theoretical   utility   of   random   sequential   neural   codes   
extends   the   literature   on   how   neural   circuits   can   exploit   random   designs   to   perform   
interesting   computational   functions,   such   as   separable   neural   representations    (Fusi,   Miller,   
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and   Rigotti   2016;   Rigotti   et   al.   2013;   Babadi   and   Sompolinsky   2014;   Lindsay   et   al.   2017) ,   
short   term   memory   of   input   patterns   and   dynamics    (S.   Ganguli   and   Sompolinsky   2010;   
Charles,   Yin,   and   Rozell   2017;   Jaeger   and   Haas   2004;   Bouchacourt   and   Buschman   2019) ,   
and   unsupervised   learning   of   the   structure   of   input   signals    (Maoz   et   al.   2020) .   

To   summarize,   utilizing   a   complex   mouse   behavior   that   involved   a   set   of   interrelated   
sensorimotor,   memory-   and   decision-related   variables,   we   observed   that   the   encoding   
geometry   of   neural   populations   across   the   posterior   cortex   implied   a   time-speci�ic   
whitening   of   these   correlated   task   information   ( Fig. 6 A-B).   The   multiplicative   neural   
sequences   observed   in   our   data   suggest   a   form   of   time-behavior   multiplexing   that   enables   
large   neural   populations   to   implement   this   kind   of   time-dependent   encoding   function   in   a   
mechanistically   simple   way   ( Fig. 8 G).   This   multiplexing   does   not   require   careful   
coordination   of   neural   dynamics   to   ensure   that   time   modulations   are   not   confounded   for   
changes   in   task   variables,   but   rather   can   exploit   a   random   design   to   average   out   the   time   
dependence   given   a   suf�iciently   large   neural   population.   For   the   same   reason,   task   
information   contained   in   neural   activity   can   be   stable   against   trial-to-trial   variations   in   
activity   levels,   e.g.   due   to   biophysical   sources   of   stochasticity   and/or   other   (task-unrelated)   
neural   processes.   Complementary   to   this   encoding   function,   computing   a   weighted   sum   of   
activities   of   a   subpopulation   of   neurons   with   time   preferences   around     can   allow   a   t  
readout   circuit   to   detect   that   a   behavioral   signal   has   occurred   speci�ically   at   time   around     t  
( Fig. 8 H),   or   task   information   can   also   be   read   out   in   a   time-independent   way   by   sampling   
neurons   with   a   range   of   time   preferences   ( Fig. 8 I).   We   propose   that   the   above   
computational   properties   of   multiplicative   neural   sequences   underlie   dynamic   ef�icient   
coding   by   neural   modes   across   posterior   cortex,   and   may   in   general   be   a   useful   design   
principle   for   temporal   scaffolds   in   the   brain.   

Online   Methods   

Animals   

All   procedures   were   approved   by   the   Institutional   Animal   Care   and   Use   Committee   at   
Princeton   University   (protocol   #1910)   and   were   performed   in   accordance   with   the   Guide   
for   the   Care   and   Use   of   Laboratory   Animals    (National   Research   Council   et   al.   2011) .   We   
used   11   mice   aged   2-16   months   of   both   genders,   and   from   two   transgenic   strains   that   
express   the   calcium-sensitive   �luorescent   indicator   GCamp6f    (Chen   et   al.   2013)    in   
excitatory   neurons   of   the   neocortex.   6   mice   were   of   the   Thy1-GP5.3    (Dana   et   al.   2014)   
strain   (Jackson   Laboratories,   stock   #028280),   and   5   were   crosses   of   the   Ai93-D;CaMKII α
-tTA    (Madisen   et   al.   2015)    and   Emx1-IRES-Cre    (Gorski   et   al.   2002)    strains   (Jackson   
Laboratories,   stocks   #024108   and   #005628).   All   the   data   analyzed   in   this   work   were   from   
fully-trained   mice   as   described   in   the   following   sections.   

Surgery   

Young   adult   mice   (2-3   months   of   age)   underwent   aseptic   stereotaxic   surgery   to   implant   an   
optical   cranial   window   and   a   custom   lightweight   titanium   headplate   under   iso�lurane   
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anesthesia   (2.5%   for   induction,   1-1.5%   for   maintenance).   Mice   received   one   pre-operative   
dose   of   meloxicam   subcutaneously   for   analgesia   (1   mg/kg)   and   another   one   24   h   later,   as   
well   as   peri-operative   intraperitoneal   injection   of   sterile   saline   (0.5cc,   body-temperature)   
and   dexamethasone   (2–5   mg/kg).   Body   temperature   was   maintained   throughout   the   
procedure   using   a   homeothermic   control   system   (Harvard   Apparatus).   After   asepsis,   the   
skull   was   exposed   and   the   periosteum   removed   using   sterile   cotton   swabs.   A   5mm   
diameter   craniotomy   approximately   centered   over   the   parietal   bone   was   made   using   a   
pneumatic   drill.   The   cranial   window   implant   consisted   of   a   5mm   diameter   round   #1   
thickness   glass   coverslip   bonded   to   a   steel   ring   (0.5mm   thickness,   5mm   diameter)   using   a   
UV-curing   optical   adhesive.   The   steel   ring   was   glued   to   the   skull   with   cyanoacrylate   
adhesive.   Lastly,   a   titanium   headplate   was   attached   to   the   cranium   using   dental   cement   
(Metabond,   Parkell).    

Behavioral   task   

After   at   least   three   days   of   post-operative   recovery,   mice   were   started   on   water   restriction   
and   the   Accumulating-Towers   training   protocol    (Pinto   et   al.   2018) ,   summarized   here.   Mice   
received   1-2mL   of   water   per   day,   or   more   in   case   of   clinical   signs   of   dehydration   or   body   
mass   falling   below   80%   of   the   pre-operative   value.   Behavioral   training   started   with   mice   
being   head-�ixed   on   an   8-inch   Styrofoam®   ball   suspended   by   compressed   air,   and   ball   
movements   were   measured   with   optical   �low   sensors.   The   VR   environment   was   projected  
at   85Hz   onto   a   custom-built   Styrofoam®   toroidal   screen   and   the   virtual   environment   was   
generated   by   a   computer   running   the   Matlab   (Mathworks)   based   software   ViRMEn    (Aronov   
and   Tank   2014) ,   plus   custom   code.   

For   historical   reasons,   3   out   of   11   mice   were   trained   on   mazes   that   were   slightly   longer   
(30cm   pre-cue   region   +   250cm   cue   region   +   100-150cm   delay   region)   than   the   rest   of   the   
cohort   (30cm   pre-cue   region   +   200cm   cue   region   +   100cm   delay   region).   No   qualitative   
differences   were   observed   in   the   results   of   this   paper   across   these   ranges   of   maze   lengths,   
and   the   data   were   thus   analyzed   on   equal   footing   as   described   in   the   “Time   binning”   
section   below.   In   VR,   as   the   mouse   navigated   down   the   stem   of   the   maze,   tall,   high-contrast   
visual   cues   appeared   along   either   wall   of   the   cue   region   when   the   mouse   arrived   within   
10cm   of   a   predetermined   cue   location.   These   locations   were   drawn   randomly   per   trial   
according   to   a   spatial   Poisson   process   with   12cm   refractory   period   between   consecutive   
cues   on   the   same   wall   side.   Cues   were   made   to   disappear   after   200ms.   The   mean   number   of   
majority:minority   cues   was   8.5:2.5   for   the   250cm   cue   region   maze   and   7.7:2.3   for   the   
200cm   cue   region   maze.   Mice   were   rewarded   with    of   a   sweet   liquid   reward   (10%  μL  ≥ 4  
diluted   condensed   milk,   or   15%   sucrose)   for   turning   down   the   arm   on   the   side   with   the   
majority   number   of   cues.   Correct   trials   were   followed   by   a   3s-long   inter-trial-interval   (ITI),   
whereas   error   trials   were   followed   by   an   indication   sound   and   an   additional   9s   time-out   
period.   To   discourage   a   tendency   of   mice   to   systematically   turn   to   one   side,   we   used   a   
de-biasing   algorithm   that   adjusts   the   probabilities   of   sampling   right-   vs.   left-rewarded   
trials    (Pinto   et   al.   2018) .     
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Func�onal   iden�fica�on   of   visual   areas   

We   adapted   methods    (Garrett   et   al.   2014;   Kalatsky   and   Stryker   2003;   Zhuang   et   al.   2017)  to   
functionally   delineate   the   primary   and   secondary   visual   areas   using   wide�ield   imaging   of   
calcium   activity   paired   with   presentation   of   retinotopic   stimuli   to   awake   and   passively   
running   mice.   We   used   custom-built,   tandem-lens   wide�ield   macroscopes   consisting   of   a   
back-to-back   objective   system    (Ratzlaff   and   Grinvald   1991)    connected   through   a   �ilter   box   
holding   a   dichroic   mirror   and   emission   �ilter.   One-photon   excitation   was   provided   using   a   
blue   (470nm)   LED   (Luxeon   star)   and   the   returning   green   �luorescence   was   
bandpass-�iltered   at   525   nm   (Semrock)   before   reaching   a   sCMOS   camera   (Qimaging,   or   
Hamamatsu).   The   LED   delivered   about   2-2.5mW/cm 2    of   power   at   the   focal   plane,   while   the   
camera   was   con�igured   for   20-30Hz   frame   rate   and   about   5-10µm   spatial   resolution.   Visual   
stimuli   were   displayed   on   either   a   32"   AMVA   LED   monitor   (BenQ   BL3200PT),   or   the   same   
custom Styrofoam®   toroidal   screen   as   for   the   VR   rigs.   The   screens   were   placed   to   span   
most   of   the   visual   hemi�ield   on   the   side   contralateral   to   the   mouse’s   optical   window   
implant.   The   space   between   the   headplate   and   the   objective   was   covered   using   a   custom   
made   cone   of   opaque   material.    

The   software   used   to   generate   the   retinotopic   stimuli   and   coordinate   the   stimulus   with   the   
wide�ield   imaging   acquisition   was   a   customized   version   of   the   ISI   package    (Juavinett   et   al.   
2017)    and   utilized   the   Psychophysics   Toolbox    (Brainard   1997) .   Mice   were   presented   with   
a    wide   bar   with   a   full-contrast   checkerboard   texture   (   squares)   that   inverted   in  0°  2 5°  2  
polarity   at   12   Hz,   and   drifted   slowly   ( /s)   across   the   extent   of   the   screen   in   either   of   four  °9  
cardinal   directions    (Zhuang   et   al.   2017) .   Each   sweep   direction   was   repeated   15   times,   
totaling   four   consecutive   blocks   with   a   pause   in   between.   Retinotopic   maps   were   computed   
similarly   to   previous   work    (Kalatsky   and   Stryker   2003)    with   some   customization   that   
improved   the   robustness   of   the   algorithms   for   preparations   with   low   signal-to-noise   ratios   
(SNR).   Boundaries   between   the   primary   and   secondary   visual   areas   were   detected   using   a   
gradient-inversion-based   algorithm    (Garrett   et   al.   2014) ,   again   with   some   changes   to   
improve   stability   for   a   diverse   range   of   SNR.   

Two-photon   imaging   during   VR-based   behavior   

The   virtual   reality   plus   two-photon   scanning   microscopy   rig   used   in   these   experiments   
follow   a   previous   design    (Dombeck   et   al.   2010) .   The   microscope   was   designed   to   minimally   
obscure   the     horizontal   and    vertical   span   of   the   toroidal   VR   screen,   and   also   to  70°  ~ 2 0°  ~ 8  
isolate   the   collection   of   �luorescence   photons   from   the   brain   from   the   VR   visual   display.   
Two-photon   illumination   was   provided   by   a   Ti:Sapphire   laser   (Chameleon   Vision   II,   
Coherent)   operating   at   920nm   wavelength,   and   �luorescence   signals   were   acquired   using   a   
40x   0.8   NA   objective   (Nikon)   and   GaAsP   PMTs   (Hamamatsu)   after   passing   through   a   
bandpass   �ilter   (542/50,   Semrock).   The   amount   of   laser   power   at   the   objective   used   ranged   
from   ~40-150mW.   The   region   between   the   base   of   the   objective   lens   and   the   headplate   was   
shielded   from   external   sources   of   light   using   a   black   rubber   tube.   Horizontal   scans   of   the   
laser   were   performed   using   a   resonant   galvanometer   (Thorlabs),   resulting   in   a   frame   
acquisition   rate   of   30Hz   and   con�igured   for   a   �ield   of   view   of   approximately    in  00 00μm  5 × 5  
size.   Microscope   control   and   image   acquisition   were   performed   using   the   ScanImage   
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software    (Pologruto,   Sabatini,   and   Svoboda   2003) .   Data   related   to   the   VR-based   behavior   
were   recorded   using   custom   Matlab-based   software   embedded   in   the   ViRMEn   engine   loop,   
and   synchronized   with   the   �luorescence   imaging   frames   using   the   I2C   digital   serial   bus   
communication   capabilities   of   ScanImage.   A   single   �ield   of   view   at   a   �ixed   cortical   depth   and   
location   relative   to   the   functional   visual   area   maps   was   continuously   imaged   throughout   
the   1-1.5   hour   behavioral   session. The   vasculature   pattern   at   the   surface   of   the   brain   was   
used   to   locate   a   two-photon   imaging   �ield   of   view   (FOV)   of   interest.     

Iden�fica�on   of   puta�ve   neurons   

All   imaging   data   were   �irst   corrected   for   rigid   brain   motion   by   using   the   Open   Source   
Computer   Vision   (OpenCV)   software   library   function    cv::matchTemplate() .   
Fluorescence   timecourses   corresponding   to   individual   neurons   were   then   extracted   using   a   
deconvolution   and   demixing   procedure   that   utilizes   the   Constrained   Non-negative   Matrix   
Factorization   algorithm   (CNMF    (Pnevmatikakis   et   al.   2016) ).   A   custom,   Matlab   Image   
Processing   Toolbox   (Mathworks)   based   algorithm   was   used   to   construct   initial   hypotheses   
for   the   neuron   shapes   in   a   data-driven   way.   In   brief,   the   3D   �luorescence   movie   was   
binarized   to   mark   signi�icantly   active   pixels,   then   connected   components   of   this   binary   
movie   were   found.   Each   of   these   components   arose   from   a   hypothetical   neuron,   but   a   
neuron   could   have   contributed   to   multiple   components.   A   shape-based   matching   procedure   
was   used   to   remove   duplicates   before   using   these   as   input   to   CNMF.   The   “�inalized”   
components   from   CNMF   were   then   selected   post-hoc   to   identify   those   that   resembled   
neural   somata,   using   a   multivariate   classi�ier   with   a   manual   vetting   step.   

Dataset   selec�on   

Per   session,   we   computed   the   percent   of   correct   choices   using   a   sliding   window   of   100   
trials   and   included   the   dataset   for   analysis   if   the   maximum   performance   was  .   All  5%  ≥ 6  
trials   where   the   mouse   performed   the   Accumulating-Towers   task   at   the   abovementioned   
dif�iculty   levels   were   used   for   the   results   in   this   paper,   excluding   trials   where   the   mouse’s   
navigational   trajectory   grossly   deviated   from   running   down   the   maze   (view   angle   
magnitude     anywhere   in   the   cue   region,   or   if   the   mouse   backtracked   in     position 2  > π/ y  
and   re-entered   the   delay   region   after   �irst   crossing   the   midpoint   of   the   delay   region).   

For   stability   of   regression   models,   we   excluded   a   further     of   trials   that   had   outlying  .4%  0  
leverage   scores   according   to   the   following   algorithm.   Leverage   measures   how   much   the   
regressor   values   of   a   single   trial   can   in�luence   a   linear   regression   prediction   

,   where      are   the   predicted   values   of   the   observations      across   trials,   
and     is   a   trial-by-variable   matrix   of   regressors   (task   variables).   The   leverage   score   for   
trial     is   de�ined   as    ,   and   notably   depends   only   on   the  i  
regressor   values   and   not   the   observations.   We   therefore   eliminate   high-leverage   trials   
because   they   cause   instabilities   i.e.   a   large   change   in   predictions   depending   on   whether   a   
single   trial   was   included   or   omitted   from   the   dataset.   Importantly,   selecting   trials   based   on   
leverage   does    not		  bias   the   distribution   of   observations   (neural   responses).   To   detect   
outliers   in   leverage   scores   for   a   given   set   of   trials,   we   �irst   computed   a   histogram   of   the   
scores   (using   the   Freedman-Diaconis   rule   for   selecting   bin   widths    (Freedman   and   Diaconis   
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1981) ).   We   used   this   histogram   density   estimate   to   �ind   the   modal   (maximum   density)   
leverage   score   ,   and   estimated   the   range   of   typical   values   as   the   score     at   which  hi

mode hi
(0.1)  

the   density   falls   to     the   modal   density   (with   ).   All   trials   with   score  .1  0 × hi
(0.1) > hi

mode  
  or     were   then   eliminated   from   the   dataset.   Because   these  0 h )hi ≥ 1 × ( i

(0.1) − hi
mode .8  hi ≥ 0  

criteria   depend   on   the   current   set   of   trials   used   to   evaluate   them,   the   entire   procedure   was   
then   iterated   until   no   additional   trials   were   eliminated.   

Time   binning   and   task   variable   defini�ons   

To   compare   data   across   mice   and   trials/mazes   of   uneven   durations,   we   resampled   the   
neural   and   behavioral   data   according   to   a   time-like   coordinate   that   measured   progression   
through   spatially   de�ined   epochs   of   the   task   (as   indicated   in   the   T-maze   in    Fig. 2 A).   These   
�ive   epochs   of   the   trial   are:   (1)   the   pre-cue   period   from   the   start   of   the   trial   until   the   mouse   
reaches   the   cue   region;   (2)   the   cue   period   which   then   lasts   until   the   mouse   exits   the   cue   
region;   (3)   the   delay   period   until   the   mouse   reaches   the   end   of   the   T-maze   stem;   (4)   the   
“turn”   period   up   to   the   end   of   the   trial;   and   (5)   the   �irst   3s   of   the   inter-trial   interval   (i.e.   
ignoring   the   additional   9s   time-out   for   incorrect   trials).   For   each   trial,   the   subset   of   the   
(neural   and   behavioral)   time-series   data   within   a   given   epoch   was   then   divided   into   
equally-sized   time   bins,   and   averaged   within   each   of   these   disjoint   bins.   Different   numbers   
of   equally-spaced   time   bins   were   used   for   the   �ive   different   epochs,   so   as   to   have   
approximately   the   same   duration   for   all   time   bins   throughout   the   trial.   For    Fig. 2 E   and   
Fig. S8    the   time-bins   were   ~200ms   (72   bins)   and   for   all   other   analyses   ~1.1s   (11   bins)   in   
duration.   

Because   it   is   possible   for   neural   responses   to   have   laterality   preferences,   we   consistently   
expressed   all   variables   relative   to   the   brain   hemisphere   that   was   recorded   from   for   a   given   
mouse.   That   is,   we   de�ined   choice,   view   angle,   and   treadmill   velocity   variables   such   that   a   
positive   sign   corresponds   to   the   mouse   turning   to   the   side   ipsilateral   to   the   recorded   
hemisphere.   View   angle   is   a   circular   variable   that   we   represented   in   the   range    π,+ π]  [− 2 2  
radians,   where   0   corresponds   to   straight   down   the   stem   of   the   T-maze   and   values   with   
magnitude     means   that   the   mouse   has   rotated   the   VR   view   around   (this   essentially   only   > π  
happens   after   the   mouse   makes   a   left/right   turn   and   has   entered   the   T-maze   arms,   where   
further   rotations   of   the   VR   view   have   little   behavioral   consequences).   

Cross-validated   sequences   

These   analyses   utilized   only   correct   trials   and   followed   previous   work    (Harvey,   Coen,   and   
Tank   2012) ,   but   with   cross-validation,   i.e.   the   following   neuron   categorization   and   sorting   
criteria   were   performed   using   half   the   trials   in   a   given   imaging   session.   First,   for   a   given   
neuron,   we   identi�ied   all   timepoints   during   which   its   trial-average   activity   was     of  5%  ≥ 2  
the   trial-average   maximum   for   a   minimum   duration   of   .   The   neuron   was   de�ined   as  00ms  ~ 4  
choice-speci�ic   if   the   distribution   across   trials   of   its   activity   in   these   active   periods   was   
signi�icantly   different   in   right-   vs.   left-choice   trials   (two-sample   t-test,   two   tailed   ).  .05  p < 0  
A   ridge-to-background   excess   was   then   de�ined   using   the activity   averaged   over   only   
preferred-choice   trials   (or   all   trials,   for   non-choice-speci�ic   neurons),   as   the   maximum   
minus   the   modal   value   across   time.   A   neuron   was   determined   to   have   signi�icantly   
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task-localized   activity   if   no   more   than   5%   of   1000   null   hypothesis   pseudo-datasets   have   a   
larger   ridge-to-background   excess.   Each   of   these   pseudo-datasets   was   generated   by   
selecting   a   random   imaging   frame     in   the   session,   and   then   de�ining   a    cyclically   permuted  k  
pseudo   activity   time-series   as     where   is  f (k), f (k ), .., (n), f (1), .., (k )]  [ i  i + 1 . f i  i . f i − 1 (1...n)  f i  
the   original   time-series   data   for   neuron   .  i  

Using   half   of   the   trials   in   a   given   session,   the   preferred   time   of   a   neuron   was   de�ined   as   the   
time   in   the   trial   when   its   trial-average   activity   was   maximal,   and   its   activity   �ield   was   
de�ined   as   all   contiguous   time-points   around   this   preferred   time   that   have   trial-average   
activity     of   the   maximum.   For   the   sequence   display    Fig. 2 E,   neurons   were   sorted   by  0%  ≥ 5  
preferred   time   to   determine   the   order   of   rows,   but   the   displayed   trial-average   activity   was   
computed   using   only   the   left-out   half   of   trials.   Also   using   left-out   trials,   the   reliability   index   
for   neuron     was   de�ined   as   the   fraction   of   preferred-choice   trials   in   which   the   activity  i  
averaged   in   the   neuron’s   activity   �ield   is    times   noise   ( ).   For   this,   the   average   noise   ≥ 3 σi

f ield  
level     was   estimated   �irst   by   histogramming   the   distribution   of   the   neuron’s   activity   σi

f ield f i
,   computing   a   per-imaging-frame   noise   estimate     where     is   the  2  σi ≡ σi

FWHM / √ln(2) σi
FWHM  

full-width-at-half-max   of   the     distribution,   and   then   scaling     to   account   for   averaging  f i σi  

within   the   time-binned   neural   activity   �ield:   .     is   the   average   σi
f ield ≡ σi/√n nbin i

f ield  nbin  

number   of   imaging   frames   per   time-bin   (see   “Time   binning”   section),   and     is   the  ni
f ield  

neuron-speci�ic   number   of   time   bins   in   the   identi�ied   activity   �ield.   Only   signi�icantly   
task-localized   neurons   with   reliability    were   included   in    Fig. 2 E-G,   and   only  0%  ≥ 5  
signi�icantly   task-localized   neurons   were   included   in    Fig. 2 H.   See    Fig. S1    for   additional   
statistical   summaries   of   these   measures.   

Cross-validated   distribu�on   of   projected   neural   states   

Let     be   the   trial-average   neural   state   at   time     in   the   trial,   computed   using   half   of   the  (t)  F  t  
trials   for   a   given   dataset.   We   de�ined   the   projection   axis   between   two   timepoints     and     t1  t2  
as   the   unit   vector   .   Using   the   other   (left-out)   half   of  (t , ) F (t ) (t )] ∣∣F (t ) (t )∣∣  e 1 t2 ≡ [ 1 − F 2 / 1 − F 2  
trials,   the   neural   state     projected   onto   this   axis   was   de�ined   as  (t)  F  

,   i.e.   with   the   origin   of   this   projection   at   .   The  roj [F (t)] F (t) (t )] (t , )p t →t1 2
≡ [ − F 1 · e 1 t2 (t )  F 1  

distance   along   this   projection   axis   depends   on   the   number   and   activity   scale   of   neurons,   
which   we   do   not   attempt   to   interpret.   Thus   for    Fig. 4 D   we   scaled   the   projected   distributions   
per   dataset   such   that     and   ,   before   pooling   data  roj [F (t )]  p t →t1 2 1 = 0 roj [F (t )]  p t →t1 2 2 = 1  
across   sessions.   

As   a   measure   of   overlap   between   the   above   projected   distributions,   we   compute   the   
Bhattacharyya   coef�icient    (Comaniciu,   Ramesh,   and   Meer,   n.d.)    ,   where     Σi√p (i) p (i)1 2 (i)  p1  
is   the   probability   density   of     in   bin   ,   and   analogously     is   the  roj [F (t )]  p t →t1 2 1 i (i)  p2  
probability   density   of     in   bin   .   101   bins   in   the   range     were   used   for  roj [F (t )]  p t →t1 2 2 i , ]  [− 5 5  
evaluating   the   density   histogram   for   this   metric.   
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Correc�on   for   false   discovery   rate   (FDR)   

In   all   cases,   we   used   the   Benjamini-Hochberg   procedure    (Benjamini   and   Hochberg   1995)    to   
control   FDR   at   an     level,   as   follows.   We   sorted   the   -values   of   a   given   set   of  .05  α = 0  p  
hypothesis   tests   in   ascending   order,   ,   and   found   the   �irst   rank     such   that  p , , .., ]  [ 1 p2 . pn iα  

.   Tests   were   then   considered   to   be   signi�icantly   above   chance   (rejecting   null  .05 n  piα ≤ iα × 0 /  
hypotheses)   for   all   .   p ≤ piα  

Per-�mepoint   encoding   models   

All   encoding   models   used   neural   and   behavioral   data   that   were   z-scored   per   timepoint   in   
the   trial,   i.e.   the   time-dependent   mean   was   subtracted   and   then   the   data   divided   by   the   
time-dependent   standard   deviation.   Models   were   �itted   separately   per   timepoint,   and   all   
utilize   the   same   linear   regression   framework   that   we   will   �irst   explain,   but   with   variations   
on   regularization   and   choice   of   regressors   that   we   will   explain   next.   The   basic   linear   
regression   model   is    ,   for   which   the   point   estimate   of      is   

.   For   each   timepoint     in   the   trial,   we   computed   the   Singular   Value   t  
Decomposition   (SVD;   e.g.   see    (William   H.   Press   et   al.   2007) )   of   the   trial-by-variable   matrix   
of   task   variable   values    ,   then   used   the   pseudo-inverse   to   solve   for   encoding   
directions      where      is   a   trial-by-neuron   matrix   of   neural   
activity   levels.   Singular   values     of   the   largest   singular   value   were   set   to   0   in    .  0  ≤ 1 5−  

For   assessing   how   well   encoding   models   could   predict   the   activity   of   individual   neurons   
( Fig. S3 ,    Fig. 7 A-B),   we   regularized   the   above   linear   regression   solution   independently   per   
neuron   using   ridge   regression.   Speci�ically,   the   ridge-regularized   encoding   weights   for   
neuron     is      where      is   the    th    column   of    .   The  i i  
regularization   hyperparameter      was   chosen   per   neuron   to   maximize   the   10-fold   

cross-validated   variance   explained,    .   Here      was   computed   using   a   
randomly   selected   1/10 th    of   trials,   and   the   sum   is   over   all   trials     in   the   left-out   9/10 th    of  j  
trials.   The   average   variance   explained   across   2   resamplings   of   10   cross-validation   folds   (i.e.   
20   computations   in   total)   was   used   to   select    .   After      had   been   chosen,   another   (i.e.   
independent)   draw   of     cross-validation   folds   were   used   to   compute   all   reported  0  2 × 1  
goodness-of-�it   scores   for   the   model.   

For   models   with   higher-order   dependencies   on   task   variables,   we   augmented   the   regressor   
matrix   with   2 nd -order   terms      ( Fig. S3 A)   or   up   to   3rd-order   terms     
( Fig. S3 B-E).   Here    ,   where      are   the   columns   of      corresponding   

to   non-binary   variables,   and      were   computed   by   taking   the    th    power   of   the   entries   of  k  

,   then   orthogonalizing     w.r.t.      (modi�ied   Gram-Schmidt   procedure).   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://paperpile.com/c/GcgyJl/GxzyJ
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BF%7D%20%3D%20%5Cmathbf%7BX%7D%5Cmathbf%7BW%7D%20%2B%20%5Cmathsf%7Bnoise%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D%20%3D%20(%5Cmathbf%7BX%7D%5E%5Ctop%20%5Cmathbf%7BX%7D)%5E%7B-1%7D%20%5Cmathbf%7BX%7D%5E%5Ctop%5Cmathbf%7BF%7D#0
https://paperpile.com/c/GcgyJl/Kvr1I
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D(t)%20%3D%20%5Cmathbf%7BU%7D%5Cmathbf%7BS%7D%5Cmathbf%7BV%7D%5E%5Ctop#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BW%7D_%7B%5Cmathsf%7Benc%7D%7D(t)%20%5Cequiv%20%5Cmathbf%7BV%7D%5Cmathbf%7BS%7D%5E%7B-1%7D%5Cmathbf%7BU%7D%5E%5Ctop%5Cmathbf%7BF%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BF%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BS%7D%5E%7B-1%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7Bw%7D_i%5E%7B(%5Clambda)%7D(t)%20%5Cequiv%20%5Cmathbf%7BV%7D(%5Cmathbf%7BS%7D%5E%7B-1%7D%20%2B%20%5Clambda_i%5Cmathbf%7BI%7D)%5Cmathbf%7BU%7D%5E%5Ctop%5Cvec%7Bf%7D_i(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7Bf%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BF%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_i#0
https://www.codecogs.com/eqnedit.php?latex=1%20-%20%5Csum_j%20%5B%5Cvec%7Bf%7D_i%20-%20%5Cmathbf%7BX%7D%5Cvec%7Bw%7D_i%5E%7B(%5Clambda)%7D%5D_j%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7Bw%7D_i%5E%7B(%5Clambda)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_i#0
https://www.codecogs.com/eqnedit.php?latex=%5B%5Cmathbf%7BX%7D~~%5Cmathbf%7BX%7D%5E%7B%5B2%5D%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5B%5Cmathbf%7BX%7D~~%5Cmathbf%7BX%7D%5E%7B%5B2%5D%7D~~%5Cmathbf%7BX%7D%5E%7B%5B3%5D%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D%5E%7B%5Bk%5D%7D%20%5Cequiv%20%5B%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_1%7D%5Ek~%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_2%7D%5Ek~%5Ccdots%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_j%7D%5Ek#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_j%7D%5Ek#0
https://www.codecogs.com/eqnedit.php?latex=%5B%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_j%7D~%5Ccdots~%5Cmathbf%7BX%7D_%7B%5Ccdot%20i_j%7D%5E%7Bk-1%7D%5D#0
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


41   

Encoding   geometry   es�mates   

To   robustly   estimate   the   geometrical   relationships   between   encoding   directions,   we   
developed   a   procedure   that   optimally   determines   a   geometry-level   regularization,   as   well   
as   corrects   for   a   �inite-sample   noise   offset   which   would   not   otherwise   average   to   zero   
across   experiments.   Suppose   that   in   a   given   experiment,   the   trial-by-neuron   population   
activity   data   matrix      came   from   a   generative   process   such   that    ,   where      is   
a   trial-by-variable   matrix   of   task   variable   values,      is   a   variable-by-neuron   matrix   of   true   
encoding   weights,   and      is   a   random   noise   matrix   unrelated   to    .   The   unregularized   
regression   weights      is   an   asymptotically   unbiased   estimator   of    ,   
but   the   variance   of      across   experiments   (i.e.   different   instances   of    )   can   be   large   in   
the   realistic   case   where   the   number   of   trials   is    not		  order(s)   of   magnitude   greater   than   the   
number   of   free   parameters.   Regularization   is   a   standard   way   of   reducing   variability   at   the   
cost   of   introducing   some   bias   into   estimators.   However,   if   we   independently   regularize   the   
encoding   weights   for   each   neuron,   this   leads   to   a   net   bias   on   the   naıv̈e   population-level   
encoding   geometry   estimator      that   is   dif�icult   to   intuit,   and   likely   
suboptimal   compared   to   optimizing   a   geometry-speci�ic   regularizer   (“no   free   lunch”   
theorem    (Wolpert   and   Macready   1997) ).   In   the   following,   we   thus   describe   an   algorithm   for   
selecting   an   encoding   geometry   regularizer   based   on   explicitly   modeling   the   bias-variance   
tradeoff   to   be   optimized.   Furthermore,   the   naıv̈e   estimator      has   contributions   from   
second-order   statistics   of   the   neural   noise   �luctuations,    ,   which   we   must   also   correct   
for.   These   noise   contributions   are   also   a   form   of   bias   in    ,   but   for   clarity   we   refer   to   
them   as   a   “noise   offset”   to   distinguish   them   from   the   (unrelated)   regularization-induced   
bias.   The   following   procedure   mitigates   both   of   the   above   issues   with    ,   and   we   present   
some   simulation   tests   at   the   end   of   this   section.   

We   �irst   address   the   noise   offset,   which   arises   from   neural   noise      contributions   to   the   
estimated   encoding   directions    ,   where   for   brevity,    .   
The   noise   offset   in   the   naıv̈e   encoding   geometry   estimator   is   the   average   deviation   of     
from   the   true   encoding   geometry      over   many   experiments   (indicated   by    ):   

  

We   assume   that   the   neural   noise   comes   from   a   distribution   with   zero   mean,       (recall   
that   the   neural   and   behavioral   data   were   z-scored   so   that   we   did   not   need   to   include   a   
constant   term   in   the   encoding   models).   This   gives:   

    where                ( 1	)   

The   noise   offset      can   be   thought   of   as   arising   from   random   coincidences   of   the   
neural   noise      with   the   task   variable   values    .   Although   we   do   not   know   what      is   for   a   
particular   experiment,   we   can   nevertheless   estimate   the   experiment   average    .   The   
idea   is   that   instead   of   taking      to   be   �ixed   and   calculating   random   coincidences   with   
different   possible    ,   we   can   keep   the   unknown     �ixed   and   calculate   random   coincidences   
with   different   randomly   generated      that   preserves   the   structure   of   the   original   problem.   
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To   do   this,   we   generated   an   ensemble   of   100   random   matrices      with   normally  
distributed   entries   subject   to   two   constraints:    ,   i.e.      are   unrelated   to   the  
original   task   variables;   and    ,   i.e.      has   the   same   covariance   as   the   
original   task   variables.   Using   the   neural   data,   we   then   computed   100   linear   regression   
estimates   for   the   encoding   of    ,   which   theoretically   have   the   noise-only   form:   

  

We   used    ,   where      indicates   
averaging   across   the   randomly   generated    ,   as   an   estimator   of   the   experiment-average   

.   That   is,   we   de�ined   a   noise-offset-corrected   encoding   
geometry   estimator    ,   which   in   simulations   where   the   “neural”   data   
consisted   solely   of   noise   produces    .   

Beyond   subtracting   the   experiment-average   noise   offset,   we   also   wished   to   reduce   
noise-induced   contributions   to   the   estimated   encoding   geometry   in   any   one   experiment.   
We   achieved   this   in   analogy   to   Tikhonov-Miller   regularization    (Tikhonov   et   al.   1977) ,   
where   instead   of   using   the   inverse   task   covariance   matrix   to   estimate    ,   a   
regularized   inverse   is   used   to   estimate   regression   weights   as   

,   where      for   some   user-speci�ied   choice   of   
the   symmetric   regularizer   matrix    .   Similarly,   we   de�ine   a   regularized   and   
noise-offset-subtracted   estimate   of   the   encoding   geometry   as:   

                                  ( 2	)   

In   the   ideal   world   where   we   could   repeat   the   same   experiment   many   times,   we   would   
select   the   hyperparameters      to   minimize   �luctuations   of   these   per-experiment   estimates   
from   the   true   encoding   geometry:      where      is   the   
Frobenius   norm   of   matrix    .   To   obtain      in   practice,   we   need   to   make   two   
approximations.   First,   we   approximate   the   unknown   true   encoding   geometry      with   
our   best   guess   so   far,    .   Second,   we   approximate   the   distribution   across   
experiments		  of    ,   with   the   distribution   across    noise			�luctuations		     of   a   
noise-contaminated   encoding   geometry.   Speci�ically,   we   optimized:   

            ( 3	)   

In   order   to   make   this   optimization   program   well-de�ined,   we   have   to   constrain   the   form   of   
.   We   tried   three   fairly   standard   forms:   
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where      is   a   scalar   and      a   diagonal   matrix   of   free   parameters.   For   each   dataset,   we   
selected   the   best   form   of      as   that   which   produced   the   smallest      after   
minimization.   We   note   that    Eq. 3    was   used   only   to   determine   the   hyperparameters    ,   
which   was   then   plugged   into    Eq. 2    for   the   actual   encoding   geometry   estimate.   In   our   
simulations,   the   �inal   results   were   actually   fairly   robust   to   how   we   chose   to   model   the   
distribution   of   ,   e.g.   bootstrapping   worked   comparably   well.   

Lastly,   the   estimator    Eq. 2    is   by   design   biased,   and   we   wished   to   improve   it   by   correcting   for   
an   approximate    expected		  bias,   as   inspired   by    (Shen,   Xu,   and   Li   2012) .   Bias   is   de�ined   as   the   
experiment-average   deviation   of   a   given   estimator   from   the   true   encoding   geometry,   

  for   a   particular   choice   of      as   explained   above.   Plugging   in   
Eq. 1    and    Eq. 2 ,   we   get:   

  

Although   (as   suggested   by   the   notation)   the   bias   is   a   function   of   the   unknown   truth    ,   
we   can   estimate   it    (Shen,   Xu,   and   Li   2012)    by   replacing      with   our   best   guess   so   far,   

.   This   means   that   our   �inal,   bias-reduced   estimator   for   the   encoding   geometry   (as   used   
throughout   the   text)   is:   

         ( 4	)   

For   the   interested   reader   who   is   looking   for   structure   in   very   few   datasets,   it   can   be   
preferable   to   use   more   aggressive   regularization   so   that   results   averaged   across   the   small   
number   of   datasets   are   less   likely   to   deviate   from   the   truth;   this   of   course   comes   at   a   cost   of   
not   being   able   to   resolve   weakly   encoded   signals.   For   this   purpose,   the   above   procedure   of   
determining   the   regularizer   matrix      can   be   iterated   by   replacing   the   initial   guess      for   
the   “true”   encoding   geometry   in    Eq. 3 ,   with   the   best   estimate      at   the   end   of   the   previous   
iteration   ( Eq. 4 ).   Here,   use   of   the   bias-corrected   estimate   in    Eq. 4    is   crucial   because   if   the   
pre-correction    Eq. 2    (  )   is   used   instead,   the   bias-induced   shrinkage   will   accumulate   with   
more   and   more   iterations,   eventually   resulting   in   a   near-zero   estimated    .   In   contrast,   in   
our   simulation   tests   iterating   the   optimization   in    Eq. 3    while   setting      after   each   
iteration   converges   to   a   nonzero   encoding   geometry   estimate   for   all   but   the   most   weakly   
encoded   task   variables,   with   low   variance   across   repeated   simulations   as   desired.   To   detect   
convergence   in   this   iterative   procedure   we   checked   for   

,   where      is   the   estimated   encoding   
geometry   at   the   end   of   iteration   ,   and     is   a   small   tolerance   threshold   (a   smaller   value   of  k η  

  will   result   in   more   aggressive   regularization).   For   simplicity   and   in   light   of   the   large  η  
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number   of   datasets   in   our   hands,   we   did    not		  use   an   iterated   procedure   for   the   results   
described   in   the   text.   

In    Fig. S4 ,   we   illustrate   how   well   the   above   encoding   geometry   estimation   algorithm   works   
to   recover   the   simulated   ground   truth   in   scenarios   where   (1)   neurons   linearly   encoded   task   
variables,   and   also   explore   what   we   might   have   found   if   (2)   neurons   randomly   but   
nonlinearly		  encoded   task   variables.   To   stay   close   to   conditions   in   our   data,   for   these   
simulations   we   used   the   same   behavioral   data      and   neural   population   sizes   as   in   our   
actual   experiments.   Speci�ically,   for   each   experimental   dataset   of     simultaneously   n  
recorded   neurons   across     trials,   we   de�ined   11   simulated   experiments   where   in   each  m  
simulation,   we   generated   a   -by-   “neural”   matrix      (in   ways   described   next)   and   asked   n m  
what   its   encoding   geometry   is   w.r.t.      from   the   data   (where     is   one   of   11   timepoints   t  
that   de�ine   the   data).   The   total   number   of   simulations   is   thus     (datasets 43 1  1 × 1  ×
timepoints,   because   each   timepoint   was   treated   like   a   different   dataset).   For   the   linear   
encoding   scenario,   we   simulated     ,   where   each   entry   of      was   
drawn   from   the   normal   distribution   except   that   the   columns   of      corresponding   to   
choice   and   past-choice   task   variables   were   set   to   0,   and   each   entry   of   the   noise   matrix     
was   also   drawn   from   the   normal   distribution.   An   example   of   such   a   simulated      is   
shown   in   the   top   row   of    Fig. S4 A,   where   each   column   corresponds   to   a   different   setting   of   
the   scalar   parameter      so   that   the   neuron-average   signal-to-noise   (SNR)   variance   has   a   
prespeci�ied   value   (10%   vs.   40%).   The   bottom   row   of    Fig. S4 A   shows   the   estimated   
encoding   geometry     ( Eq. 4 )   in   these   examples,   from   which   we   see   that      can   
qualitatively   capture   the   true   encoding   geometry    ,   albeit   low-magnitude   entries   
of     (particularly   if   they   correspond   to   highly   correlated   task   variables)   are   
harder   to   resolve   at   lower   SNR.   Importantly,   the   near-zero   columns   and   rows   of     
corresponding   to   choice   and   past-choice   variables   illustrate   that   our   procedure   correctly   
estimates   near-zero   encoding   directions   for   non-encoded   variables.   This   is   the   case   even   
though   choice   (past-choice)   is   highly   correlated   to   view   angle   (past-view-angle),   the   latter   
of   which   are   encoded   and   are   nonzero   in    .    Fig. S4 B   shows   the   estimated   encoding   
geometry     averaged   across     simulations,   for   various   choices   of      including   a  43 1  1 × 1  
pure   noise   scenario.   Because      were   randomly   generated   for   each   simulation,   we   
expect   the   off-diagonal   entries   of      to   average   to   zero   across   enough   simulations,   and   this   
is   what   we   see   in    Fig. S4 B.   Importantly,   the   zero-signal   scenario   ( Fig. S4 B-left)   produces   

,   with   none   of   the   entries   being   statistically   signi�icantly   different   from   the   null   
hypothesis   (see   next   section).   At   higher   SNR   (other   columns   of    Fig. S4 B),   we   see   that   there   
are   no   signi�icantly   nonzero   choice   and   past-choice   encoding   directions,   as   per   simulation   
truth.   Lastly,    Fig. S4 C-F   show   simulation-average   encoding   geometries   for   scenarios   where   
we   generated   neurons   that   were   tuned   to   random   combinations   of   task   variables,   in   the   
sense   of   having   gaussian-shaped   tuning   curves   for   their   responses   to   task   variables   (see   
caption   of    Fig. S4 C-F   for   a   more   detailed   explanation).   Notably,   as   seen   in   the   nonzero   
off-diagonal   entries   of    Fig. S4 D,F,   this   kind   of   nonlinear   neural   code   can   exhibit   structure   in   
the   linear   encoding   geometry     that   is   consistent   across   random   instantiations   
(simulations),   due   to   the   structure   in   the   encoded   task   variables    .   However   insofar   as   we   
can   tell,   this   depends   on   details   of   the   nonlinear   code   ( Fig. S4 C   vs.    Fig. S4 E),   and   does   not   in   
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some   evident   way   explain   our   observations   in   data   that   the   encoding   geometry   ( Fig. 5 A)   
resembles   the   inverse   of   a   noisy   task-variable   covariance   matrix   ( Fig. 5 D).   

Null   hypothesis   for   the   encoding   geometry   

For   each   timepoint     in   the   trial   and   given   a   trial-by-neuron   neural   state   data   matrix    ,   t  
we   wished   to   generate   null   hypothesis   pseudo-experiments   that   preserved   (1)   the   
time-speci�ic   distribution   across   trials   of   neural   activity   levels   (which   were   positively   
skewed   in   our   data);   (2)   inter-neuron   activity   correlations;   (3)   neural   state   correlations   
across   timepoints   in   the   trial;   and   (4)   inter-trial   temporal   autocorrelations   (observed   to   fall   
to   zero   after   ~5   trials   in   the   data).   Although   the   typical   procedure   of   cyclically   permuting   
the   neural   state   across   trials   can   satisfy   all   of   these   three   requirements,   given   only   about   
70-350   trials   per   session   we   could   not   use   it   to   generate     distinct   pseudo-datasets   as  0  ~ 1 5  
required   to   evaluate   -values   reported   in   the   text.   Furthermore,   cyclic   permutations   p  
applied   in   this   way   are   overly   conservative   in   that   when   we   cyclically   permuted   the   
behavioral		  data,   it   preserves   some   level   of   correlations   between   the   permuted   vs.   original   
behavioral   data,   and   thus   could   not   break   the   relationship   between   behavior   and   neural   
activity   as   required   for   a   null   hypothesis.   Instead   we   devised   a   procedure   ( Algorithm 1 ),   
sketched   conceptually   below,   that   uses   random   row   (trial)   permutations   to   completely   
break   relationships   between   the   neural   state   and   behavior,   and   then   restores   the   
trial-autocorrelations   (4)   by   applying   a   row-convolution   operation.   To   mitigate   any   possible   
�inite-sample   effects   due   to   generating   null   hypotheses   from   a   limited   number   of   data   trials,   
we   further   add   a   small   amount   of   stochasticity   to   the   generated   pseudo-data   in   a   way   that  
preserves   (1),   (2),   and   (3).   

Algorithm 1    assumes   that   the   rows   of      are   ordered   according   to   the   sequence   of   trials   
in   a   given   experimental   session.   First   we   randomly   permute   the   rows   (trials)   of      to   
generate   the   pseudo-data   matrix    ,   using   the   same   permutation   for   every   timepoint   .   t  
This   preserves   inter-neuron   and   cross-timepoint   correlations,   but   destroys   any   
autocorrelations   across   trials.   However,   we   can   restore   the   row-autocorrelations   in      to   

,   by   convolving   the   rows   of      with   a   symmetric   kernel   or   equivalently   
left-multiplying      by   a   band-diagonal   matrix    .   Assuming   that   we   seek   a   solution   with   
minimal   amount   of   mixing   of   the   rows   of    ,   i.e.      with   small   off-diagonal   entries,   we   
can   obtain   an   optimal     to   equate   the   autocorrelation   of      to   that   of      by   solving   a   
system   of   linear   equations   as   given   in    Algorithm 3 .   This   algorithm   requires   speci�ication   of   
how   many   lags     up   to   which   we   should   constrain   the   autocorrelation   function,   which   we  L  
chose   to   be     based   on   the   empirical   observation   that   the   trial   autocorrelation   of   the  0  L = 2  
data   was   nonzero   for   only   up   to   ~5-10   trials.   We   also   wish   to   add   a   small   amount   of   
randomness   to   the   pseudo-data    ,   analogous   to   “smoothed   bootstrap”   procedures   
(Shakhnarovich,   El-Yaniv,   and   Baram   2001)    which   can   be   thought   of   as   drawing      from   
a   kernel   density   estimate   of   the   empirical   distribution   of   neural   activity   levels   speci�ied   by   

.   In   order   to   preserve   temporal   correlations   under   this   procedure,   the   noise   added   to   
  must   have   the   same   temporal   correlations   as   the   neural   data.   This   is   achieved   by   
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drawing   the   noise   from   a   multivariate   gaussian   distribution   with   covariance   matrix   
speci�ied   by   the   data   ( Algorithm 2 ),   after   which   the   generated   noise   for   time     was   t  
provided   for   use   in    Algorithm 1    to   produce   a   noise-added   version    .   Lastly   in   order   to   
exactly   preserve   the   inter-neuron   covariance   structure,   we   whiten      using   polar   
decomposition    (Higham   1988) ,   and   then   multiplying   by   the   polar   factor   of     to   impose   
the   desired   covariance   structure.   Because   modifying   the   column   covariance   of   a   matrix   
does   not   generally   leave   unchanged   its   row   autocorrelations,   we   then   iterate   the   
adjustments   for    row-autocorrelation   and   column-covariances   twice,   which   in   our   data   are   
suf�icient   for   the   procedure   to   converge   to   the   target   structure.   

Our   algorithm   is   a   variant   of   the   Corrected   Fisher   Randomization   method   in    (Elsayed   and   
Cunningham   2017) ,   which   in   our   hands   did   not   seem   to   preserve   the   distribution   across   
trials   of   neural   activity   levels,   particularly   if   strongly   skewed   or   approximately   bounded   
from   below   (since   �luorescence   contrast   cannot   fall   far   below   baseline   for   sparsely   active   
neurons).   We   empirically   found   that   using   our   procedure,   performing   the   noise   addition   
step   on   a   logarithmic   scale   (see    Algorithm 1 )   is   suf�icient   to   qualitatively   preserve   the   
shape   of   activity   distributions,   including   the   bounded   support.   

Algorithm	1.		    Generate			one			instance			of			null			hypothesis			pseudo-neural-data			by			randomly			
permuting			the			neural			state			across			trials,			with			an			added			small			amount			of			noise.			     is   a   -by-1  k  
vector   with   all   entries   being   1.   IQR( )   is   the   interquartile   range   of   set   .  S S  

Input    -by-   matrix     n m  
-by-   matrix     n m  

positive   integer    L  

neural   data   at   one   timepoint  
noise   from    Algorithm 2   
row-autocorrelation   length   

Output    -by-   matrix     n m    
Functions      output   random   permutation   

of   integers    1...k}  {  
    
       is   unitary   
       is   positive-semide�inite     

output   polar   decomposition   
  ,   given   the   

Singular   Value   
Decomposition   

Compute   features   of      to   be   preserved   
1      mean   across   rows   
2      subtract   mean   per   column   
3      covariance   to   be   preserved   
4      activity   lower   bounds   
5      

Permutation   and   noise   addition   (bandwidth   using   Scott’s   rule-of-thumb    (Scott   2012) )   
6      randomly   permute   rows   
7      Algorithm 3   
8      add   noise   in   log   scale   
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Algorithm	2.		    Generate			temporally			correlated			noise.	   

  
Algorithm	3.		    Adjust			the			row			autocorrelation			(up			to			 		lags)			of			matrix			 			to			match			that			of			 	.	  L  

Constrain   column-covariance   and   row-autocorrelations   
9      remove   noise   covariance   

10      set   covariance   to   same   as    
11    Repeat   a   small   number   of   times   (e.g.   2):     

          Algorithm 3   
          
            

12      set   mean   to   be   same   as     

Input    -by-   matrices      for    m l 1, .., }  i ∈ { . n  neuron-by-timepoint   neural   state   
data   for   each   trial    i  

Output    -by-   matrices      for     n m 1, .., }  t ∈ { . l  trial-by-neuron   noise   for   each   
timepoint     t  

Functions      output   -by-   matrix   of   normally a b  
distributed   random   numbers   

1      subtract   mean   per   column   

2      trial   average   temporal   covariance  
3      singular   value   decomposition   
4      square   root   of   matrix   
5      correlated   noise   for   neurons    j  
6      

Input    -by-   matrix     n m  
-by-   matrix     n m  

positive   integer    L  

  
  

row-autocorrelation   lags   to   adjust  
Output    -by-   matrix     n m    

Functions      autocorrelation   of   series   data     v→ 
   (0 )  f · · ·L  convert   function     to   vector   of  (τ )  f  

values   at    , ,  τ = 0 1 . . . ,L  
1      average   across   columns   of   row   

autocorrelation   functions   2      
3      
4      †   indicates   pseudoinverse   
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Sta�s�cal   significance   for   encoding   geometry   

To   compute   a   2-sided   p-value   for   each   entry     of   the   encoding   geometry   matrix   ( Fig. 5 E,  U ij  
Fig. 6 A-bottom,    Fig. S4 ),   we   accounted   for   both   the   �inite   number   of   permutation   samples   
as   well   as   the   asymmetric   distribution   of   the   corresponding   null   hypotheses   .   First,   we  U *

ij  
estimated   the   1-sided   p-value   for   the   observed     to   be   larger   than   null   hypotheses:  U ij  

,   where     is   the   number   of   sampled   null  N (U ) ] (N )  p+
ij ≡ [ *

*
ij ≥ U ij + 1 / null + 1 (U )  N *

*
ij ≥ U ij  

hypotheses   experiments   where   ,   and     is   the   total   number   of   sampled   U *
ij ≥ U ij 0  N null = 1 5  

null   hypotheses   experiments.   The   addition   of   the   pseudo-count   1   to   both   the   numerator   
and   denominator   of   this   p-value   estimate   prevents   the   reported   p-value   from   being   0   when   
insuf�icient   permutations   were   performed,   and   produces   a   conservative   estimate   because   it   
can   be   thought   of   as   including     from   the   actual   experiment   as   part   of   the   distribution   of  U ij  
null-hypotheses      (Phipson   and   Smyth   2010) .   Similarly,   we   de�ined   another   1-sided  U *

ij  
p-value   for   the   observed     being   smaller   than   null   hypotheses:  U ij  

.   Lastly,   we   computed   the   2-sided   p-value   for   the  N (U ) ] (N )  p−
ij ≡ [ *

*
ij ≤ U ij + 1 / null + 1  

observed     being   more   extreme   than   null   hypotheses   as   ,   i.e.  U ij (p , )  pij ≡ 2 min
 

+
ij p

−
ij  

performing   two   1-sided   tests   and   then   combining   the   p-values   according   to   Bonferroni’s   
correction   for   multiple   comparisons    (Abdi   2007) .   

Mul�plica�ve   �me-modula�on   and   sta�c-encoding   models   

For   the    th    neuron   with   activity     in   trial   ,   we   �it   two   alternative   encoding   models   with  i (t)  f ij j  
constrained   changes   in   encoding   weights   vs.   time     in   the   trial.   Here     are   the   values   of   t (t)  x→j  
the   task   variables   at   time     in   trial   ,   and   have   their   time-dependent   means   across   trials   t j  
subtracted,   but   only   scaled   such   that   the   standard   deviation   of   each   variable,   computed   
across   all   timepoints   as   well   as   trials,   are   1.   This   is   in   contrast   to   the   per-timepoint   
encoding/decoding   models,   where   the   task   variables   were   scaled   differently   per   timepoint.   
We   note   that   according   to   these   models,   the   sensitivity   of   the   neural-population   encoding   to   
the    time-dependent		  scales   of   task   variables   ( Fig. S6 A-C)   should   be   ascribed   to   differences   in   
static   task-variable   encoding   weights    across		  individual   neurons   in   the   population.   

The   �irst,   multiplicative   time-modulation   model   ( Fig. 7 A)   predicts   that   a   neuron’s   activity   
has   the   form   ,   where     is   a   time-dependent   baseline   that   does  (t) (t) (t) v (t)  f ij = μi + gi

→
i · x→j (t)  μi  

not   depend   on   task   variables,     is   a   piecewise-constant   function   with   11   free  (t)  gi  
parameters   for   the   11   time-bins,   and     are   13   free   parameters   for   linear   dependencies   on   v→i  

5    

  
6      
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each   of   the   13   task   variables.   Since     has   zero   mean   across   trials   for   a   �ixed   time   ,  (t)  x→  t  
without   loss   of   generality     is   just   the   trial-average   mean   activity   level   of   the   neuron.   We  (t)  μi  
estimated   the   11+13   free   parameters   for   the   model   by   minimizing   an   L2-regularized   
least-squares   cost   function,   where   the   regularization   hyperparameter   was   selected   using   
10-fold   cross-validation,   same   as   for   the   per-timepoint   encoding   models.   After   selecting   
hyperparameters,   a   different   draw   of   10   cross-validation   folds   were   used   to   evaluate   the   
goodness-of-�it   for   this   model.   

The   second,   static-encoding   model   ( Fig. 7 B)   is   a   special   case   of   the   �irst   model   where   we   
constrained     for   all   timepoints,   i.e.   predicts   neural   activity   of   the   form  (t)  gi = 1  

.   The   �itting   procedure   for   both   models   are   otherwise   identical.  (t) (t) (t)  f i = μi + v→i · x→  

Why   we   call      an   (effec�vely)   whitening   opera�on   

Given   a   trial-by-variable   data   matrix      with   non-singular   covariance   matrix,   and   the   
transformed   data    ,   we   call      a   whitening   transformation   if   the   transformed   
covariance   is    .   Below,   we   show   that   constraining   the   encoding   geometry   to   be   

  corresponds   to   such   a   whitening   transformation   for    ,   where      is   an   
orthonormal   basis   ( )   for   the   brain’s   encoding   matrix    .      is   the   projection   of   
the   neural   state      onto   the   information-coding   subspace   (spanned   by   basis   vectors    )   as   
discussed   in   the   text.   

For   the   following   derivations,   we   will   need   the   fact   that   applying   the   projection   operator   
  to      does   nothing:    ,   because   the   columns   of      are   by   

construction   vectors   that   live   in   the   subspace   spanned   by    .   No   other   properties   of      are   
required,   i.e.      can   be   any   orthonormal   basis   for   the   information-coding   subspace.   We   call   
the   projected   coordinates   of   encoding   directions   in   the   information-coding   subspace   

  (a   variable-by-variable   matrix).   

Assuming   that   the   neural   activity      depends   on   task   variables      in   the   form   
,   the   covariance   of   the   neural   data   is      where      is   the   noise   
covariance.   In   the   presumably   typical   case   where   there   are   more   neurons   than   encoded   
variables,   specifying   the   variable-by-variable   matrix      will   not   fully   constrain   the   
variable-by-neuron   matrix    ,   and   is   therefore   insuf�icient   to   completely   whiten   the   neural   
data   in   the   sense   of   achieving      even   with   neural   noise   covariance    .   This   is   
the   reason   why   there   can   still   be   signal   correlations   between   pairs   of   neurons,   as   explained   
in   the   text   regarding    Fig. 5 K-L.   

To   understand   how   the   encoding   structure   affects   the   covariance   of    ,   we   �irst   note   that   
although   the   encoding   directions      are   vectors   in   the   high-dimensional   neural   state   
space,   the   encoding   geometry     depend   only   on   the   projected   coordinates   of   these   
encoding   directions   in   the   information-coding   subspace,    .   This   is   because   
plugging   in     to      gives    .   Our   claim   is   
that    any		  invertible      that   satis�ies      will   whiten      (up   to   an   overall   scale,   which   
we   ignore).   To   see   this,   start   from    ,   left-multiply   by      and   
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right-multiply   by      to   get    .   The   covariance   of   the   projected   neural   state   is   
.   Again   assuming    ,   we   get   

,   as   claimed.   In   sum,   we   call      a   whitening   
operation   because   it   is   the   constraint   that   if   exactly   satis�ied,   will   whiten      ( Fig. 5 K).   

Decoding   models     

All   decoding   models   used   neural   and   behavioral   data   that   were   z-scored   per   timepoint   in   
the   trial,   i.e.   the   time-dependent   mean   was   subtracted   and   then   the   data   divided   by   the   
time-dependent   standard   deviation.   Unless   otherwise   speci�ied,   models   were   �itted   
separately   per   timepoint.   The   exceptions   are   in    Fig. S8 B,   where   phase-speci�ic   decoders   
included   data   from   all   timepoints   within   the   stated   phases   of   the   trial   as   if   they   were   
additional   trials,   and   where   time-independent   decoders   included   data   from   all   timepoints   
as   if   they   were   additional   trials.   

We   trained   an   L2-regularized   Support   Vector   Machine   classi�ier    (Fan   et   al.   2008)    (or   
L2-regularized   Support   Vector   Regression   for   continuous   variables)   to   predict   a   given   task   
variable   from   the   neural   population   state.   For   categorical   variables,   performance   was   
de�ined   as   the   proportion   of   correct   classi�ications   of   test   trials,   averaged   across   categories   
(i.e.   to   balance   the   in�luence   of   all   categories).   For   continuous   variables,   performance   was   
de�ined   as   the   Pearson’s   correlation   coef�icient   between   predicted   and   actual   variable   
values.   10-fold   cross-validation   was   used   to   optimize   the   regularization   and   support   vector   
hyperparameters,   and   another   set   of   10-fold   cross-validation   folds   was   used   to   evaluate   
decoder   performances.   Null   hypotheses   were   the   same   as   for   the   encoding   models   (see   
above   section),   and   -values   were   de�ined   as   the   fraction   of   null   hypothesis   p  
pseudo-datasets   for   which   the   decoding   performance   was   greater   or   equal   than   the   actual   
experiment,   with   an   added   pseudocount   to   conservatively   prevent   zero   empirical   -values   p  
(Phipson   and   Smyth   2010) .   

Simula�ons   of   mul�plica�ve   neural   sequences   

For   each   simulated   neuron   ,   we   generated   a   time-modulation   function     by   �irst  i (t)  gi  
drawing   a   uniformly   random   time   preference   within   .     was   then   de�ined   as  0, ]  t︿i ∈ [ 1 (t)  gi  
the   sum   of   5   gaussian   bumps   with   peaks   randomly   distributed   around   this  ∣k , .., }{ti

(k) = 1 . 5  
time   preference   ( ).   The   width     of   each   bump   was   drawn  (μ , .05){ti

(k) ~ N = t︿i σ = 0 σ }{ i
(k)  

randomly:     with   minimum   value   .   The   neural   population  (μ .04, .02)σi
(k) ~ N = 0 σ = 0 .02  0  

  was   then   composed   as   a   diagonal   matrix   the   entries   of   which   are   the     of  (t)  gi  
individual   neurons.   

To   construct      given   a   simulation   truth     as   described   in   the   text,   we   �irst   ordered  (t)  ψ  
the   simulated   neurons   in   ascending   order   of   either   the   empirical   maximal   response   time   

  ( Fig. 7 E-F),   or   the   generative   time   preference     ( Fig. 7 G-H).   This   means  rgmax  g (t)  t̃i = a t i  t︿i  
that   the   rows/columns   of      are   in   temporal   order,   as   are   by   implication   the   columns   of   
the   to-be-de�ined    .   As   a   procedurally   simple   (albeit   approximate)   way   of   producing   
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structure     across   the   columns   of    ,   we   �irst   initialized   the   entries   of   the   2-by-  (t)  ψ  n  
matrix     to   normally   distributed   random   numbers,   i.e.   generating   two   randomly   
oriented   encoding   directions   (rows)   for   a   population   of     neurons.   Then   for   each   pair   of   n  
adjacent   columns,   i.e.   the   submatrices     for   ,   let     and  , ,  i = 1 3 . . . , n − 1  t(i)  

  be   the   respective   nominal   activation   times   for   the   two   associated   neurons   (either     or   t(i+1)  t̃i  
  as   de�ined   above,   after   sorting   the   neurons).   We   orthogonalize   the   two   rows   of  t︿i  

,   producing   unit   vectors     and   ,   and   then   set   them   to   have   the   desired   e→1  e→2  
cosine   angle   via   linear   combination:    ,   where   

  and   .   Note   that   although   by   construction   1 ) ψ  α ≡ ( − √1 − ψi
2 / i ([t ] 2)  ψi ≡ ψ (i) + t(i+1) / (t)  ψ  

speci�ies   the    cosine		  angle   between   encoding   directions,   for   clarity   we   convert   it   to   the   angle   
in   degrees   for   display   in    Fig. 7 E-H   and    Fig. S7 .   
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Abdi,   Hervé.   2007.   “Bonferroni   and   S� idák   Corrections   for   Multiple   Comparisons.”   
Encyclopedia			of			Measurement			and			Statistics		  3:   103–7.   

Aksay,   Emre,   Guy   Major,   Mark   S.   Goldman,   Robert   Baker,   H.   Sebastian   Seung,   and   David   W.   
Tank.   2003.   “History   Dependence   of   Rate   Covariation   between   Neurons   during   
Persistent   Activity   in   an   Oculomotor   Integrator.”    Cerebral			Cortex			  13   (11):   1173–84.   

Aronov,   Dmitriy,   and   David   W.   Tank.   2014.   “Engagement   of   Neural   Circuits   Underlying   2D   
Spatial   Navigation   in   a   Rodent   Virtual   Reality   System.”    Neuron		  84   (2):   442–56.   

Atick,   Joseph   J.,   and   A.   Norman   Redlich.   1992.   “What   Does   the   Retina   Know   about   Natural   
Scenes?”    Neural			Computation		  4   (2):   196–210.   

Attneave,   F.   1954.   “Some   Informational   Aspects   of   Visual   Perception.”    Psychological			Review	 
61   (3):   183–93.   

Averbeck,   Bruno   B.,   and   Daeyeol   Lee.   2006.   “Effects   of   Noise   Correlations   on   Information   
Encoding   and   Decoding.”    Journal			of			Neurophysiology		  95   (6):   3633–44.   

Babadi,   Baktash,   and   Haim   Sompolinsky.   2014.   “Sparseness   and   Expansion   in   Sensory   
Representations.”    Neuron		  83   (5):   1213–26.   

Baddeley,   Roland,   L.   F.   Abbott,   Michael   C.   A.   Booth,   Frank   Sengpiel,   Tobe   Freeman,   Edward   
A.   Wakeman,   and   Edmund   T.   Rolls.   1997.   “Responses   of   Neurons   in   Primary   and   
Inferior   Temporal   Visual   Cortices   to   Natural   Scenes.”    Proceedings			of			the			Royal			Society			of			
London.			Series			B:			Biological			Sciences	.   https://doi.org/ 10.1098/rspb.1997.0246 .   

Baraniuk,   Richard   G.,   and   Michael   B.   Wakin.   2009.   “Random   Projections   of   Smooth   
Manifolds.”    Foundations			of			Computational			Mathematics			  9   (1):   51–77.   

Barlow,   H.   2001.   “Redundancy   Reduction   Revisited.”    Network		  12   (3):   241–53.   
Barlow,   H.   B.   1989.   “Unsupervised   Learning.”    Neural			Computation		  1   (3):   295–311.   
Barlow,   Horace   B.   1961.   “Possible   Principles   Underlying   the   Transformation   of   Sensory   

Messages.”    Sensory			Communication		  1:   217–34.   
Bastos,   Andre   M.,   W.   Martin   Usrey,   Rick   A.   Adams,   George   R.   Mangun,   Pascal   Fries,   and   Karl   

J.   Friston.   2012.   “Canonical   Microcircuits   for   Predictive   Coding.”    Neuron		  76   (4):   
695–711.   

Benjamini,   Yoav,   and   Yosef   Hochberg.   1995.   “Controlling   the   False   Discovery   Rate:   A   
Practical   and   Powerful   Approach   to   Multiple   Testing.”    Journal			of			the			Royal			Statistical			
Society.			Series			B,			Statistical			Methodology		  57   (1):   289–300.   

Beyeler,   Michael,   Emily   L.   Rounds,   Kristofor   D.   Carlson,   Nikil   Dutt,   and   Jeffrey   L.   Krichmar.   
2019.   “Neural   Correlates   of   Sparse   Coding   and   Dimensionality   Reduction.”    PLoS			
Computational			Biology		  15   (6):   e1006908.   

Bouchacourt,   Flora,   and   Timothy   J.   Buschman.   2019.   “A   Flexible   Model   of   Working   Memory.”   
Neuron		  103   (1):   147–60.e8.   

Brainard,   David   H.   1997.   “The   Psychophysics   Toolbox.”    Spatial			Vision		  10   (4):   433–36.   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

http://paperpile.com/b/GcgyJl/5n7W
http://paperpile.com/b/GcgyJl/5n7W
http://paperpile.com/b/GcgyJl/5n7W
http://paperpile.com/b/GcgyJl/xrEW
http://paperpile.com/b/GcgyJl/xrEW
http://paperpile.com/b/GcgyJl/xrEW
http://paperpile.com/b/GcgyJl/xrEW
http://paperpile.com/b/GcgyJl/xrEW
http://paperpile.com/b/GcgyJl/pqTG0
http://paperpile.com/b/GcgyJl/pqTG0
http://paperpile.com/b/GcgyJl/pqTG0
http://paperpile.com/b/GcgyJl/pqTG0
http://paperpile.com/b/GcgyJl/M6Fur
http://paperpile.com/b/GcgyJl/M6Fur
http://paperpile.com/b/GcgyJl/M6Fur
http://paperpile.com/b/GcgyJl/M6Fur
http://paperpile.com/b/GcgyJl/QG74Y
http://paperpile.com/b/GcgyJl/QG74Y
http://paperpile.com/b/GcgyJl/QG74Y
http://paperpile.com/b/GcgyJl/QG74Y
http://paperpile.com/b/GcgyJl/XiWiG
http://paperpile.com/b/GcgyJl/XiWiG
http://paperpile.com/b/GcgyJl/XiWiG
http://paperpile.com/b/GcgyJl/XiWiG
http://paperpile.com/b/GcgyJl/mcIa
http://paperpile.com/b/GcgyJl/mcIa
http://paperpile.com/b/GcgyJl/mcIa
http://paperpile.com/b/GcgyJl/mcIa
http://paperpile.com/b/GcgyJl/KWtKD
http://paperpile.com/b/GcgyJl/KWtKD
http://paperpile.com/b/GcgyJl/KWtKD
http://paperpile.com/b/GcgyJl/KWtKD
http://paperpile.com/b/GcgyJl/KWtKD
http://paperpile.com/b/GcgyJl/KWtKD
http://dx.doi.org/10.1098/rspb.1997.0246
http://paperpile.com/b/GcgyJl/KWtKD
http://paperpile.com/b/GcgyJl/DNEY
http://paperpile.com/b/GcgyJl/DNEY
http://paperpile.com/b/GcgyJl/DNEY
http://paperpile.com/b/GcgyJl/DNEY
http://paperpile.com/b/GcgyJl/yJPf
http://paperpile.com/b/GcgyJl/yJPf
http://paperpile.com/b/GcgyJl/yJPf
http://paperpile.com/b/GcgyJl/fV9gn
http://paperpile.com/b/GcgyJl/fV9gn
http://paperpile.com/b/GcgyJl/fV9gn
http://paperpile.com/b/GcgyJl/dqrJm
http://paperpile.com/b/GcgyJl/dqrJm
http://paperpile.com/b/GcgyJl/dqrJm
http://paperpile.com/b/GcgyJl/dqrJm
http://paperpile.com/b/GcgyJl/pPsqP
http://paperpile.com/b/GcgyJl/pPsqP
http://paperpile.com/b/GcgyJl/pPsqP
http://paperpile.com/b/GcgyJl/pPsqP
http://paperpile.com/b/GcgyJl/pPsqP
http://paperpile.com/b/GcgyJl/GxzyJ
http://paperpile.com/b/GcgyJl/GxzyJ
http://paperpile.com/b/GcgyJl/GxzyJ
http://paperpile.com/b/GcgyJl/GxzyJ
http://paperpile.com/b/GcgyJl/GxzyJ
http://paperpile.com/b/GcgyJl/BAbBe
http://paperpile.com/b/GcgyJl/BAbBe
http://paperpile.com/b/GcgyJl/BAbBe
http://paperpile.com/b/GcgyJl/BAbBe
http://paperpile.com/b/GcgyJl/BAbBe
http://paperpile.com/b/GcgyJl/OnuY
http://paperpile.com/b/GcgyJl/OnuY
http://paperpile.com/b/GcgyJl/OnuY
http://paperpile.com/b/GcgyJl/fi8V6
http://paperpile.com/b/GcgyJl/fi8V6
http://paperpile.com/b/GcgyJl/fi8V6
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


53   

BRAIN   CoGS   Collaboration.   n.d.   “BRAIN   Circuits   of   coGnitive   Systems.”   BRAIN   Circuits   of   
coGnitive   Systems.    https://www.braincogs.org/ .   

Brinkman,   Braden   A.   W.,   Alison   I.   Weber,   Fred   Rieke,   and   Eric   Shea-Brown.   2016.   “How   Do   
Ef�icient   Coding   Strategies   Depend   on   Origins   of   Noise   in   Neural   Circuits?”    PLoS			
Computational			Biology		  12   (10):   e1005150.   

Cai,   Ming   Bo,   Nicolas   W.   Schuck,   Jonathan   W.   Pillow,   and   Yael   Niv.   n.d.   “Representational   
Structure   or   Task   Structure?   Bias   in   Neural   Representational   Similarity   Analysis   and   a   
Bayesian   Method   for   Reducing   Bias.”   https://doi.org/ 10.1101/347260 .   

Charles,   Adam   S.,   Dong   Yin,   and   Christopher   J.   Rozell.   2017.   “Distributed   Sequence   Memory   
of   Multidimensional   Inputs   in   Recurrent   Networks.”    Journal			of			Machine			Learning			
Research:			JMLR		  18   (1):   181–217.   

Chen,   Tsai-Wen,   Trevor   J.   Wardill,   Yi   Sun,   Stefan   R.   Pulver,   Sabine   L.   Renninger,   Amy   Baohan,   
Eric   R.   Schreiter,   et   al.   2013.   “Ultrasensitive   Fluorescent   Proteins   for   Imaging   Neuronal   
Activity.”    Nature		  499   (7458):   295–300.   

Churchland,   Mark   M.,   John   P.   Cunningham,   Matthew   T.   Kaufman,   Justin   D.   Foster,   Paul   
Nuyujukian,   Stephen   I.   Ryu,   and   Krishna   V.   Shenoy.   2012.   “Neural   Population   Dynamics   
during   Reaching.”    Nature		  487   (7405):   51–56.   

Clarkson,   Kenneth   L.   2008.   “Tighter   Bounds   for   Random   Projections   of   Manifolds.”   In   
Proceedings			of			the			Twenty-Fourth			Annual			Symposium			on			Computational			Geometry	,   
39–48.   SCG   ’08.   New   York,   NY,   USA:   Association   for   Computing   Machinery.   

Comaniciu,   D.,   V.   Ramesh,   and   P.   Meer.   n.d.   “Real-Time   Tracking   of   Non-Rigid   Objects   Using   
Mean   Shift.”    Proceedings			IEEE			Conference			on			Computer			Vision			and			Pattern			Recognition.			
CVPR			2000			(Cat.			No.PR00662)	.   https://doi.org/ 10.1109/cvpr.2000.854761 .   

Dana,   Hod,   Tsai-Wen   Chen,   Amy   Hu,   Brenda   C.   Shields,   Caiying   Guo,   Loren   L.   Looger,   
Douglas   S.   Kim,   and   Karel   Svoboda.   2014.   “Thy1-GCaMP6   Transgenic   Mice   for   
Neuronal   Population   Imaging   in   Vivo.”    PloS			One		  9   (9):   e108697.   

Dan,   Y.,   J.   J.   Atick,   and   R.   C.   Reid.   1996.   “Ef�icient   Coding   of   Natural   Scenes   in   the   Lateral   
Geniculate   Nucleus:   Experimental   Test   of   a   Computational   Theory.”    The			Journal			of			
Neuroscience:			The			Of�icial			Journal			of			the			Society			for			Neuroscience		  16   (10):   3351–62.   

Dasgupta,   Sanjoy,   and   Anupam   Gupta.   2003.   “An   Elementary   Proof   of   a   Theorem   of   Johnson   
and   Lindenstrauss.”    Random			Structures			&			Algorithms		  22   (1):   60–65.   

Diamantaras,   K.   I.,   K.   Hornik,   and   M.   G.   Strintzis.   1999.   “Optimal   Linear   Compression   under  
Unreliable   Representation   and   Robust   PCA   Neural   Models.”    IEEE			Transactions			on			
Neural			Networks			/			a			Publication			of			the			IEEE			Neural			Networks			Council		  10   (5):   1186–95.   

Doi,   Eizaburo,   Doru   C.   Balcan,   and   Michael   S.   Lewicki.   2006.   “A   Theoretical   Analysis   of   
Robust   Coding   over   Noisy   Overcomplete   Channels.”   In    Advances			in			Neural			Information			
Processing			Systems			18	,   edited   by   Y.   Weiss,   B.   Schölkopf,   and   J.   C.   Platt,   307–14.   MIT   
Press.   

Doi,   Eizaburo,   and   Michael   S.   Lewicki.   2014.   “A   Simple   Model   of   Optimal   Population   Coding   
for   Sensory   Systems.”    PLoS			Computational			Biology		  10   (8):   e1003761.   

Dombeck,   D.   A.,   C.   D.   Harvey,   L.   Tian,   and   L.   L.   Looger.   2010.   “Functional   Imaging   of   
Hippocampal   Place   Cells   at   Cellular   Resolution   during   Virtual   Navigation.”    Nature	.   
https://www.nature.com/neuro/journal/v13/n11/abs/nn.2648.html .   

Driscoll,   Laura   N.,   Noah   L.   Pettit,   Matthias   Minderer,   Selmaan   N.   Chettih,   and   Christopher   D.   
Harvey.   2017.   “Dynamic   Reorganization   of   Neuronal   Activity   Patterns   in   Parietal   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

http://paperpile.com/b/GcgyJl/Am2dE
http://paperpile.com/b/GcgyJl/Am2dE
https://www.braincogs.org/
http://paperpile.com/b/GcgyJl/Am2dE
http://paperpile.com/b/GcgyJl/2H9HT
http://paperpile.com/b/GcgyJl/2H9HT
http://paperpile.com/b/GcgyJl/2H9HT
http://paperpile.com/b/GcgyJl/2H9HT
http://paperpile.com/b/GcgyJl/2H9HT
http://paperpile.com/b/GcgyJl/ycRKX
http://paperpile.com/b/GcgyJl/ycRKX
http://paperpile.com/b/GcgyJl/ycRKX
http://dx.doi.org/10.1101/347260
http://paperpile.com/b/GcgyJl/ycRKX
http://paperpile.com/b/GcgyJl/Lana
http://paperpile.com/b/GcgyJl/Lana
http://paperpile.com/b/GcgyJl/Lana
http://paperpile.com/b/GcgyJl/Lana
http://paperpile.com/b/GcgyJl/Lana
http://paperpile.com/b/GcgyJl/ISajX
http://paperpile.com/b/GcgyJl/ISajX
http://paperpile.com/b/GcgyJl/ISajX
http://paperpile.com/b/GcgyJl/ISajX
http://paperpile.com/b/GcgyJl/ISajX
http://paperpile.com/b/GcgyJl/uvJJc
http://paperpile.com/b/GcgyJl/uvJJc
http://paperpile.com/b/GcgyJl/uvJJc
http://paperpile.com/b/GcgyJl/uvJJc
http://paperpile.com/b/GcgyJl/uvJJc
http://paperpile.com/b/GcgyJl/Ytan
http://paperpile.com/b/GcgyJl/Ytan
http://paperpile.com/b/GcgyJl/Ytan
http://paperpile.com/b/GcgyJl/Ytan
http://paperpile.com/b/GcgyJl/iK41H
http://paperpile.com/b/GcgyJl/iK41H
http://paperpile.com/b/GcgyJl/iK41H
http://paperpile.com/b/GcgyJl/iK41H
http://paperpile.com/b/GcgyJl/iK41H
http://dx.doi.org/10.1109/cvpr.2000.854761
http://paperpile.com/b/GcgyJl/iK41H
http://paperpile.com/b/GcgyJl/koPtg
http://paperpile.com/b/GcgyJl/koPtg
http://paperpile.com/b/GcgyJl/koPtg
http://paperpile.com/b/GcgyJl/koPtg
http://paperpile.com/b/GcgyJl/koPtg
http://paperpile.com/b/GcgyJl/J4KAy
http://paperpile.com/b/GcgyJl/J4KAy
http://paperpile.com/b/GcgyJl/J4KAy
http://paperpile.com/b/GcgyJl/J4KAy
http://paperpile.com/b/GcgyJl/J4KAy
http://paperpile.com/b/GcgyJl/ilXwD
http://paperpile.com/b/GcgyJl/ilXwD
http://paperpile.com/b/GcgyJl/ilXwD
http://paperpile.com/b/GcgyJl/ilXwD
http://paperpile.com/b/GcgyJl/p8lgb
http://paperpile.com/b/GcgyJl/p8lgb
http://paperpile.com/b/GcgyJl/p8lgb
http://paperpile.com/b/GcgyJl/p8lgb
http://paperpile.com/b/GcgyJl/p8lgb
http://paperpile.com/b/GcgyJl/YLOqX
http://paperpile.com/b/GcgyJl/YLOqX
http://paperpile.com/b/GcgyJl/YLOqX
http://paperpile.com/b/GcgyJl/YLOqX
http://paperpile.com/b/GcgyJl/YLOqX
http://paperpile.com/b/GcgyJl/YLOqX
http://paperpile.com/b/GcgyJl/wc8cG
http://paperpile.com/b/GcgyJl/wc8cG
http://paperpile.com/b/GcgyJl/wc8cG
http://paperpile.com/b/GcgyJl/wc8cG
http://paperpile.com/b/GcgyJl/1p0ch
http://paperpile.com/b/GcgyJl/1p0ch
http://paperpile.com/b/GcgyJl/1p0ch
http://paperpile.com/b/GcgyJl/1p0ch
https://www.nature.com/neuro/journal/v13/n11/abs/nn.2648.html
http://paperpile.com/b/GcgyJl/1p0ch
http://paperpile.com/b/GcgyJl/ODGDe
http://paperpile.com/b/GcgyJl/ODGDe
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


54   

Cortex.”    Cell		  170   (5):   986–99.e16.   
Eichenbaum,   Howard.   2017.   “On   the   Integration   of   Space,   Time,   and   Memory.”    Neuron		  95   

(5):   1007–18.   
Elsayed,   Gamaleldin   F.,   and   John   P.   Cunningham.   2017.   “Structure   in   Neural   Population   

Recordings:   An   Expected   Byproduct   of   Simpler   Phenomena?”    Nature			Neuroscience		  20   
(9):   1310–18.   

Erem,   Burak,   Ramon   Martinez   Orellana,   Damon   E.   Hyde,   Jurriaan   M.   Peters,   Frank   H.   Duffy,   
Petr   Stovicek,   Simon   K.   War�ield,   Rob   S.   MacLeod,   Gilead   Tadmor,   and   Dana   H.   Brooks.   
2016.   “Extensions   to   a   Manifold   Learning   Framework   for   Time-Series   Analysis   on   
Dynamic   Manifolds   in   Bioelectric   Signals.”    Physical			Review.			E		  93   (4):   042218.   

Fan,   Rong-En,   Kai-Wei   Chang,   Cho-Jui   Hsieh,   Xiang-Rui   Wang,   and   Chih-Jen   Lin.   2008.   
“LIBLINEAR:   A   Library   for   Large   Linear   Classi�ication.”    Journal			of			Machine			Learning			
Research:			JMLR		  9   (Aug):   1871–74.   

Freedman,   David,   and   Persi   Diaconis.   1981.   “On   the   Histogram   as   a   Density   Estimator:   L   2   
Theory.”    Zeitschrift			Für			Wahrscheinlichkeitstheorie			Und			Verwandte			Gebiete		  57   (4):   
453–76.   

Fusi,   Stefano,   Earl   K.   Miller,   and   Mattia   Rigotti.   2016.   “Why   Neurons   Mix:   High   
Dimensionality   for   Higher   Cognition.”    Current			Opinion			in			Neurobiology		  37   (April):   
66–74.   

Gallego,   Juan   A.,   Matthew   G.   Perich,   Lee   E.   Miller,   and   Sara   A.   Solla.   2017.   “Neural   Manifolds   
for   the   Control   of   Movement.”    Neuron		  94   (5):   978–84.   

Ganguli,   Deep,   and   Eero   P.   Simoncelli.   2014.   “Ef�icient   Sensory   Encoding   and   Bayesian   
Inference   with   Heterogeneous   Neural   Populations.”    Neural			Computation		  26   (10):   
2103–34.   

———.   2016.   “Neural   and   Perceptual   Signatures   of   Ef�icient   Sensory   Coding.”    arXiv			
[q-bio.NC]	.   arXiv.    http://arxiv.org/abs/1603.00058 .   

Ganguli,   Surya,   and   Haim   Sompolinsky.   2010.   “Short-Term   Memory   in   Neuronal   Networks   
through   Dynamical   Compressed   Sensing.”   In    Advances			in			Neural			Information			Processing			
Systems	,   edited   by   J.   Lafferty,   C.   Williams,   J.   Shawe-Taylor,   R.   Zemel,   and   A.   Culotta,   
23:667–75.   Curran   Associates,   Inc.   

———.   2012.   “Compressed   Sensing,   Sparsity,   and   Dimensionality   in   Neuronal   Information   
Processing   and   Data   Analysis.”    Annual			Review			of			Neuroscience		  35   (April):   485–508.   

Garrett,   Marina   E.,   Ian   Nauhaus,   James   H.   Marshel,   and   Edward   M.   Callaway.   2014.   
“Topography   and   Areal   Organization   of   Mouse   Visual   Cortex.”    The			Journal			of			
Neuroscience:			The			Of�icial			Journal			of			the			Society			for			Neuroscience		  34   (37):   12587–600.   

Gorski,   Jessica   A.,   Tiffany   Talley,   Mengsheng   Qiu,   Luis   Puelles,   John   L.   R.   Rubenstein,   and   
Kevin   R.   Jones.   2002.   “Cortical   Excitatory   Neurons   and   Glia,   but   Not   GABAergic   
Neurons,   Are   Produced   in   the   Emx1-Expressing   Lineage.”    The			Journal			of			Neuroscience:			
The			Of�icial			Journal			of			the			Society			for			Neuroscience		  22   (15):   6309–14.   

Harvey,   Christopher   D.,   Philip   Coen,   and   David   W.   Tank.   2012.   “Choice-Speci�ic   Sequences   in   
Parietal   Cortex   during   a   Virtual-Navigation   Decision   Task.”    Nature		  484   (7392):   62–68.   

Helmholtz,   Hermann   von.   n.d.   “Concerning   the   Perceptions   in   General,   1867.”   In    Readings			in			
the			History			of			Psychology.	,   214–30.   

Higham,   Nicholas   J.   1988.    Matrix			Nearness			Problems			and			Applications	.   Citeseer.   
Hop�ield,   J.   J.,   and   D.   W.   Tank.   1986.   “Computing   with   Neural   Circuits:   A   Model.”    Science		  233   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

http://paperpile.com/b/GcgyJl/ODGDe
http://paperpile.com/b/GcgyJl/ODGDe
http://paperpile.com/b/GcgyJl/ODGDe
http://paperpile.com/b/GcgyJl/XgtNa
http://paperpile.com/b/GcgyJl/XgtNa
http://paperpile.com/b/GcgyJl/XgtNa
http://paperpile.com/b/GcgyJl/XgtNa
http://paperpile.com/b/GcgyJl/bpgC
http://paperpile.com/b/GcgyJl/bpgC
http://paperpile.com/b/GcgyJl/bpgC
http://paperpile.com/b/GcgyJl/bpgC
http://paperpile.com/b/GcgyJl/bpgC
http://paperpile.com/b/GcgyJl/jBDD
http://paperpile.com/b/GcgyJl/jBDD
http://paperpile.com/b/GcgyJl/jBDD
http://paperpile.com/b/GcgyJl/jBDD
http://paperpile.com/b/GcgyJl/jBDD
http://paperpile.com/b/GcgyJl/jBDD
http://paperpile.com/b/GcgyJl/0pjZg
http://paperpile.com/b/GcgyJl/0pjZg
http://paperpile.com/b/GcgyJl/0pjZg
http://paperpile.com/b/GcgyJl/0pjZg
http://paperpile.com/b/GcgyJl/0pjZg
http://paperpile.com/b/GcgyJl/UigZ
http://paperpile.com/b/GcgyJl/UigZ
http://paperpile.com/b/GcgyJl/UigZ
http://paperpile.com/b/GcgyJl/UigZ
http://paperpile.com/b/GcgyJl/UigZ
http://paperpile.com/b/GcgyJl/r5DP
http://paperpile.com/b/GcgyJl/r5DP
http://paperpile.com/b/GcgyJl/r5DP
http://paperpile.com/b/GcgyJl/r5DP
http://paperpile.com/b/GcgyJl/r5DP
http://paperpile.com/b/GcgyJl/sTMg7
http://paperpile.com/b/GcgyJl/sTMg7
http://paperpile.com/b/GcgyJl/sTMg7
http://paperpile.com/b/GcgyJl/sTMg7
http://paperpile.com/b/GcgyJl/tSBsO
http://paperpile.com/b/GcgyJl/tSBsO
http://paperpile.com/b/GcgyJl/tSBsO
http://paperpile.com/b/GcgyJl/tSBsO
http://paperpile.com/b/GcgyJl/tSBsO
http://paperpile.com/b/GcgyJl/jJPnF
http://paperpile.com/b/GcgyJl/jJPnF
http://paperpile.com/b/GcgyJl/jJPnF
http://paperpile.com/b/GcgyJl/jJPnF
http://arxiv.org/abs/1603.00058
http://paperpile.com/b/GcgyJl/jJPnF
http://paperpile.com/b/GcgyJl/BdSK
http://paperpile.com/b/GcgyJl/BdSK
http://paperpile.com/b/GcgyJl/BdSK
http://paperpile.com/b/GcgyJl/BdSK
http://paperpile.com/b/GcgyJl/BdSK
http://paperpile.com/b/GcgyJl/BdSK
http://paperpile.com/b/GcgyJl/6NOQT
http://paperpile.com/b/GcgyJl/6NOQT
http://paperpile.com/b/GcgyJl/6NOQT
http://paperpile.com/b/GcgyJl/6NOQT
http://paperpile.com/b/GcgyJl/1NvY1
http://paperpile.com/b/GcgyJl/1NvY1
http://paperpile.com/b/GcgyJl/1NvY1
http://paperpile.com/b/GcgyJl/1NvY1
http://paperpile.com/b/GcgyJl/1NvY1
http://paperpile.com/b/GcgyJl/LSRNH
http://paperpile.com/b/GcgyJl/LSRNH
http://paperpile.com/b/GcgyJl/LSRNH
http://paperpile.com/b/GcgyJl/LSRNH
http://paperpile.com/b/GcgyJl/LSRNH
http://paperpile.com/b/GcgyJl/LSRNH
http://paperpile.com/b/GcgyJl/sPwTr
http://paperpile.com/b/GcgyJl/sPwTr
http://paperpile.com/b/GcgyJl/sPwTr
http://paperpile.com/b/GcgyJl/sPwTr
http://paperpile.com/b/GcgyJl/C8vzQ
http://paperpile.com/b/GcgyJl/C8vzQ
http://paperpile.com/b/GcgyJl/C8vzQ
http://paperpile.com/b/GcgyJl/C8vzQ
http://paperpile.com/b/GcgyJl/zw15
http://paperpile.com/b/GcgyJl/zw15
http://paperpile.com/b/GcgyJl/zw15
http://paperpile.com/b/GcgyJl/i5BC
http://paperpile.com/b/GcgyJl/i5BC
http://paperpile.com/b/GcgyJl/i5BC
https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


55   

(4764):   625–33.   
Howard,   Marc   W.,   Christopher   J.   MacDonald,   Zoran   Tiganj,   Karthik   H.   Shankar,   Qian   Du,   

Michael   E.   Hasselmo,   and   Howard   Eichenbaum.   2014.   “A   Uni�ied   Mathematical   
Framework   for   Coding   Time,   Space,   and   Sequences   in   the   Hippocampal   Region.”    The			
Journal			of			Neuroscience:			The			Of�icial			Journal			of			the			Society			for			Neuroscience		  34   (13):   
4692–4707.   

Jaeger,   Herbert,   and   Harald   Haas.   2004.   “Harnessing   Nonlinearity:   Predicting   Chaotic   
Systems   and   Saving   Energy   in   Wireless   Communication.”    Science		  304   (5667):   78–80.   

Jazayeri,   Mehrdad,   and   Arash   Afraz.   2017.   “Navigating   the   Neural   Space   in   Search   of   the   
Neural   Code.”    Neuron		  93   (5):   1003–14.   

Jin,   Dezhe   Z.,   Naotaka   Fujii,   and   Ann   M.   Graybiel.   2009.   “Neural   Representation   of   Time   in   
Cortico-Basal   Ganglia   Circuits.”    Proceedings			of			the			National			Academy			of			Sciences			of			the			
United			States			of			America		  106   (45):   19156–61.   

Juavinett,   Ashley   L.,   Ian   Nauhaus,   Marina   E.   Garrett,   Jun   Zhuang,   and   Edward   M.   Callaway.   
2017.   “Automated   Identi�ication   of   Mouse   Visual   Areas   with   Intrinsic   Signal   Imaging.”   
Nature			Protocols		  12   (1):   32–43.   

Kalatsky,   Valery   A.,   and   Michael   P.   Stryker.   2003.   “New   Paradigm   for   Optical   Imaging:   
Temporally   Encoded   Maps   of   Intrinsic   Signal.”    Neuron		  38   (4):   529–45.   

Keller,   G.   B.,   and   T.   D.   Mrsic-Flogel.   2018.   “Predictive   Processing:   A   Canonical   Cortical   
Computation.”    Neuron		  100   (2):   424–35.   

Kennerley,   Steven   W.,   Aspandiar   F.   Dahmubed,   Antonio   H.   Lara,   and   Jonathan   D.   Wallis.   
2009.   “Neurons   in   the   Frontal   Lobe   Encode   the   Value   of   Multiple   Decision   Variables.”   
Journal			of			Cognitive			Neuroscience		  21   (6):   1162–78.   

Kimmel,   Daniel   L.,   Gamaleldin   F.   Elsayed,   John   P.   Cunningham,   and   William   T.   Newsome.   
2020.   “Value   and   Choice   as   Separable   and   Stable   Representations   in   Orbitofrontal   
Cortex.”    Nature			Communications	.   https://doi.org/ 10.1038/s41467-020-17058-y .   

Krumin,   Michael,   Julie   J.   Lee,   Kenneth   D.   Harris,   and   Matteo   Carandini.   2018.   “Decision   and   
Navigation   in   Mouse   Parietal   Cortex.”    eLife		  7   (November).   
https://doi.org/ 10.7554/eLife.42583 .   

Laughlin,   S.   1981.   “A   Simple   Coding   Procedure   Enhances   a   Neuron’s   Information   Capacity.”   
Zeitschrift			Fur			Naturforschung.			Teil			C:			Biochemie,			Biophysik,			Biologie,			Virologie		  36   
(9-10):   910–12.   

Lebedev,   Mikhail   A.,   Alexei   Ossadtchi,   Nil   Adell   Mill,   Núria   Armengol   Urpı,́   Maria   R.   Cervera,   
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Table	S1.		   Number   of   imaging   sessions   and   mice   that   contributed   imaging   sessions,   for   recordings   
of   various   cortical   regions   and   layers.   
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Movie	S1.		   Animation   of    Fig. 3    to   show   3D   layout   of   data   points   and   alternative   viewing   
perspectives.   

  

  Layers			2/3	 		 Layer			5	 		

  V1	 		 AM	 		 PM	 		 MMA		 MMP		 RSC		 V1	 		 AM	 		 PM	 		 MMA		 MMP		 RSC		
#			sessions	 		 9   18   11   15   8   30   8   12   5   8   7   12   

#			mice			imaged	 		 4   8   6   9   4   8   4   7   3   8   4   6   
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Figure	S1.		    Statistics			for			choice-speci�ic			sequences			vs.			cortical			regions			and			layers,			and			
cross-strain			comparisons.		   (A)		  Percents   of   neurons   that   had   signi�icant   ridge-to-background   excess   
vs.   a   permutation   test   (left   plot),   and   additionally   were   active   within   their   �iring   �ields   in    of  0%≥ 5  
their   (preferred-choice,   if   any)   trials   (middle   plot),   and   additionally   had   different   activity   levels   in   
right-   vs.   left-choice   trials   (right   plot).   Error   bars:   std.   dev.   across   imaging   sessions.   Rectangles:   
S.E.M.   Stars:   signi�icant   differences   in   means   (Wilcoxon   rank-sum   test).   (B)		  Like   (A),   but   comparing   
two   strains   of   mice.   Data   were   pooled   across   layers.   Double-stars   indicate   areas   for   which   there   was   
a   signi�icant   difference   in   means   (Wilcoxon   rank-sum   test).   (C)		  Average   reliability   of   choice-speci�ic   
neurons   in   a   given   area/layer,   de�ined   as   the   fraction   of   trials   in   which   the   neuron   was   signi�icantly   
active   within   its   putative   �iring   �ield   .   Error   bars   as   in (A).     (D)		  Like   (C),   but   comparing   two   strains   of   
mice.   Data   were   pooled   across   layers.   Double-stars   indicate   areas   for   which   there   was   a   signi�icant   
difference   in   means   (Wilcoxon   rank-sum   test).     (E)		  Distribution   of   the   numbers   of   simultaneously   
imaged   neurons,   for   various   brain   regions   and   layers.   Error   bars:   std.   dev.   across   imaging   sessions.   
Rectangles:   S.E.M.     (F)		  Like   (E),   but   comparing   datasets   for   two   strains   of   mice.     (G)		  Sigmoid   curve   
�its   to   behavioral   data   for   how   frequently   mice   turned   to   the   side   ipsilateral   to   the   recording   
hemisphere,   for   a   given   difference   in   total   ipsilateral   vs.   total   contralateral   cue   counts   for   the   trial.   
Points:   Percent   of   trials   in   which   mice   turned   to   the   ipsilateral   side,   for   trials   with   various   tallies   of   
ipsilateral   vs.   contralateral   cue   counts   (data   pooled   across   all   mice).   Error   bars:   95%   binomial   C.I.   
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Figure	S2.		    Neural			manifold			geometry			metrics			for			all			pairs			of			timepoints,			and			differences			vs.			
navigational			choice.		    (A)		  Illustration   of   a   case   where   the   neural   states   across   trials   at   time     are  t + 1  
an   overall   scaling   of   the   neural   states   at   time     (i.e.   by   the   same   scale   factor   for   the   activity   of   each  t  
neuron).   This   results   in   zero   angular   difference   between   the   centers   of   the   two   point   clouds   (black   
vs.   purple   arrows),   because   the   vector   to   the   center   of   the     point   cloud   is   also   just   a   scaling   of  t + 1  
the   vector   to   the   center   of   the     point   cloud.     (B)		  Two   vectors     and     with   nonnegative  t (t )f

→
1 (t )f

→
2  

entries   are   orthogonal   (zero   cosine   angle   between   vectors)   if   and   only   if   they   have    no		  nonzero   
coordinates   in   common.   This   is   because   the   cosine   angle   between   these   vectors   is   proportional   to   
the   sum   over   coordinates     of   the   product   of   their   entries,   .   If   any   ,   then   the  i (t ) f (t )  f i 1 i 2 (t ) f (t ) =  f i 1 i 2 / 0  
nonnegativity   of   the   vectors   means   that   .   In   this   case,   since   all   terms   in   the   sum   are  (t ) f (t )  f i 1 i 2 > 0  
nonnegative   and   cannot   cancel   each   other   out,   the   cosine   angle   is   nonzero.     (C)		  Angles   between   
time-average   neural   state   vectors     and   ,   for   all   possible   pairs   of   timepoints     and   .  (t )F 1 (t )F 2 t1 t2  
Data   were   averaged   across   all   imaging   sessions   for   each   stated   cortical   region.   Shuf�led:   
Pseudo-data   with   the   neural   state   randomly   cyclically   permuted   across   imaging   frames   in   the   
session.    (D-E)		  Same   as    Fig. 4 B,D,   but   plotted   separately   for   trials   where   the   mouse   makes   a   choice   
to   turn   to   the   direction   contra-   or   ipsi-lateral   to   the   recording   brain   hemisphere.   The   same   
projection   axes   (cross-validated   and   de�ined   as   for    Fig. 4 B,D)   were   used   for   data   of   both   trial   types.   
(F)		  Illustration   of   how   manifolds   with   global   time   order   can   have   sub-structure   that   depends   on   
trial-speci�ic   details,   in   this   case   the   mouse’s   navigational   choice.   In   these   two   examples,   trials   of   
different   choices   approximately   follow   trajectories   that   bifurcate   mid-trial,   remain   well-separated   
until   the   end   of   the   trial,   and   then   gradually   converge   in   the   ITI.   See    Fig. 3 B-C   for   data   examples.   
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Figure	S3.		    Nonlinear			encoding			models			are			only			a			little			better			at			predicting			neural			activity			
compared			to			linear			models.		    (A)		  Cross-validated   variance   explained   for   regression   models   with   up   
to   2 nd -order   dependencies   on   task   variables,   vs.   models   with   linear   dependence   on   task   variables   
(as   used   throughout   the   text).   For   each   neuron   and   timepoint   in   the   trial,   ridge   regression   was   
performed   to   predict   the   activity   of   that   neuron   as   a   weighted   sum   of   task   variable   values,   and   the   
nonlinear   vs.   linear   models   differ   only   in   the   set   of   considered   regressors.   For   the   linear   model,   the   
trial-by-   matrix   for     task   variables      was   used   as   regressors,   and   for   the   2 nd -order   model  k 3k = 1  
the   regressors   were      where      is   the    th    column   of   the      matrix.   Each   point   in   this i  
plot   corresponds   to   the   score   for   one   neuron   (including   all   imaging   sessions),   evaluated   using   all   
timepoints   and   trials.   Inset:   Distribution   of   differences   in   variances   explained   for   the   linear   vs.   
2 nd -order   regression   model.     (B)		  Same   as   (A)   but   for   a   3 rd -order   regression   model   with   regressors   

.     (C)		  Same   as   (B)   but   for   simulated   neurons   that   respond   linearly   to   
the   task   variables   in   the   behavioral   data.   See    Fig. S4 A-B   for   how   these   simulations   were   constructed.   
Note   that   because   the   true   response   model   is   linear,   cross-validation   penalizes   the   nonlinear   model   
for   having   excess   parameters   and   thus   the   nonlinear   model   almost   never   outperforms   the   linear   
model.     (D-E)		  Same   as   (B)   but   for   simulated   neurons   that   have   multivariate   gaussian   tuning   curves   
for   their   responses   to   the   task   variables   in   the   behavioral   data.   See    Fig. S4 C,E   for   how   the   
corresponding   two   types   of   gaussian-tuning   simulations   were   constructed.     
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Figure	S4.		    Encoding			geometry			in			simulations			of			linear			and			nonlinear			neural			coding			schemes			
for			the			correlated			task			variables			in			actual			experiments.		    (A)		  Encoding   geometry   for   a   simulated   
neural   population   (63   neurons)   that   responded   linearly   to   task   variables,   

  where      is   the   task   variable   data   vs.   trials   and   time   from   an   
experimental   session,   and      is   a   randomly   generated   (time-independent)   encoding   matrix   for   
that   session   (228   trials).   The   neural   population   size   and   number   of   trials   were   selected   to   be   
around   average   for   the   data   in   our   hands.   Top   row:   the   simulated   encoding   geometry    .   
Each   entry   of      was   drawn   from   a   random   gaussian   distribution   centered   around   0,   except   for   
choice   and   past-choice   variables   which   were   set   to   zero   for   all   simulated   neurons.   Only   the   overall   
scale   of      differs   between   the   two   scenarios   that   have   low   (left   column)   vs.   higher   (right   
column)   signal   variance.   Bottom   row:   time-average   encoding   geometry   (see   text   and   Methods)   for   
the   corresponding   two   simulated   datasets   in   the   top   row.     (B)		  Top   row:   Estimated   encoding   
geometry   averaged   across   time   and   simulated   sessions,   where   neural   data   were   simulated   as   
described   in   (A)   using   the   behavioral   data   in   all   143   experimental   sessions.   Because   the   simulated   
encoding   matrix      was   randomly   drawn   for   each   dataset,   the   session-average   encoding   
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geometry   should   theoretically   tend   towards   a   multiple   of   the   identity   matrix,   except   for   choice   and   
past-choice   variables,   which   should   be   zero.   Note   that   the   reward   variable   is   also   partially   zero   in   
this   time-average   report,   because   reward   was   not   de�ined   until   the   end   of   the   trial   (and   the   
corresponding   encoding   geometry   entries   were   set   to   zero   in   unde�ined   periods).   Bottom   row:   
Proportion   of   simulated   sessions   for   which   various   encoding   geometry   entries   were   signi�icantly   
different   from   chance   (controlled   for   false   discovery   rate   per   simulation   signal   strength   scenario).   
(C)		  Illustration   for   how   simulations   with   gaussian-tuned   neural   responses   were   constructed.   Top   
plot:   example   trials   from   a   simulation   with   two   correlated   task   variables     and   ,   with   points  x1 x2  
colored   according   to   the   activity   level   of   one   simulated   neuron   that   has   a   2D   gaussian   tuning   curve   
for   its   responses   to   these   task   variables.   This   neuron   has   maximum   response   at    , ) 1, .5)(x1 x2 = ( 0  
and   the   tuning   curve   has   width     for   both   variables.   Bottom   plot:   the   same   example   simulated  σ = 1  
trials   as   in   the   top   plot,   but   overlaid   with   the   locations   of   maximum   response   for   a   population   of   
simulated   neurons   (green   crosses).   These   maximum-response   locations   were   randomly   drawn   from   
a   2D   gaussian   distribution   with   covariance   matrix   being   the   covariance   matrix   of   the   simulated   task   
variables,   i.e.   so   that   the   neural   tuning   preferences   tend   to   fall   within   parameter   combinations   that   
are   actually   sampled   in   the   “behavior”.     (D)		  Time-   and   session-average   encoding   geometry   (top   
row)   and   proportion   of   sessions   in   which   the   encoding   geometry   was   signi�icantly   different   from   
chance   (bottom   row),   same   as   in   (B)   but   for   simulations   of   gaussian-tuned   neural   responses   as   
described   in   (C).   The   two   columns   correspond   to      (E)		  Illustration   of   an   alternative   construction   of   
gaussian-tuned   neural   responses,   where   the   maximum-response   locations   of   the   simulated   neural   
population   were   randomly   drawn   from   a   2D   gaussian   distribution   with   variance   being   twice   the   
variance   of   the   behavioral   data   (and   zero   off-diagonal   terms   in   the   covariance   matrix).   This   means   
that   neural   tuning   preferences   for   each   task   variable   was   independent   of   the   tuning   preferences   for   
other   task   variables.     (F)		  As   in   (D),   but   for   the   alternative   construction   of   gaussian-tuned   simulated   
responses   as   described   in   (E).   

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2021. ; https://doi.org/10.1101/801654doi: bioRxiv preprint 

https://doi.org/10.1101/801654
http://creativecommons.org/licenses/by-nc-nd/4.0/


65   

  

Figure	S5.		    Additional			metrics			for			comparing			the			encoding			geometry			to			an			inverse			noisy			task			
covariance,			and			correlations			between			pairs			of			neurons.		    (A)		   Sketch   of   the   null   hypothesis   
generation   procedure   (see   Methods   for   details)   starting   from   a   given   trial-by-neuron-by-time   neural   
dataset    .   First   we   permute   each   neuron-by-time   “slab”   of   the   neural   data   
across   trials,   i.e.   using   the   same   trial   permutations   for   each   neuron   and   timepoint   in   the   trial.   This   
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permuted   pseudo-data      is   then   row-convolved   with   a   symmetric   kernel   designed   to   make   the   

row-autocorrelation   function   of      the   same   as   that   of    .   A   small   amount   of   noise   is   then   
added   with   the   same   temporal   correlations   as   the   data,   and   on   a   logarithmic   scale   so   as   to   preserve   
the   bounded   domain   of   the   data.   Lastly,   a   small   number   of   iterative   residual   adjustments   are   made   

to   constrain   both   the   column-covariance   structure   and   row-autocorrelation   function   of      to   be   

the   same   as    .     (B)		  Analogous   to    Fig. 5 F,   but   for   the   cross-validated   Euclidean   distance   between   
the   encoding   geometry      and   the   inverse   noisy   task   variable   covariance   matrix   

.   The   Euclidean   distance   between   matrices      and      is   de�ined   as   

,   where   the   Frobenius   norm   of   matrix      is    .   
Colored   lines:   distribution   across   sessions   for   data   in   various   phases   of   the   trial   (see   caption   of   
Fig. 5 F).   Gray   histogram:   distribution   across   sessions   and   phases,   for   the   null   hypothesis   as   
explained   in   the   text.     (C)		  Same   as   (B),   but   where   the   Euclidean   distance   was   computed   using   only   

off-diagonal   entries   of   the   two   matrices:    .     (D)		  Left   plot:   same   as    Fig. 5 F,   

but   for   the   cross-validated   cosine   similarity   between      and      computed   using   

only   off-diagonal   entries   of   the   two   matrices:    .   Colored   lines:   
distribution   across   sessions   for   data   in   various   phases   of   the   trial   (see   caption   of    Fig. 5 F).   Gray   
histogram:   distribution   across   sessions   and   phases   for   simulations   where   neurons   randomly   
linearly   encode   task   variables   (with   10%   signal   variance,   as   explained   in   the   Methods   and   caption   
of    Fig. S4 A).   Right   plot:   distribution   across   sessions   and   phases   for   the   random   linear   encoding  
simulations,   with   10%   vs.   40%   signal   variance   (gray   vs.   green).     (E)		  Pairwise   correlation   
coef�icients   for   the   activities   of   neurons   across   trials,   evaluated   at   a   �ixed   timepoint   at   the   end   of   the   
cue   region.   The   various   plots   are   for   three   example    imaging   sessions    in   the   stated   brain   areas,   
selected   to   have   the   median   number   of   neurons   across   all   imaging   sessions   for   that   region.   Neurons   
(i.e.   the   displayed   order   of   rows   and   columns)   were   sorted   using   hierarchical   clustering   of   this   
matrix.     (F)		  Same   format   and   order   of   neurons   as   (E),   but   for   signal   correlations   between   neurons,   
de�ined   as   correlations   between   the   predicted   activities   of   neurons   according   to   the   per-timepoint   
behavioral   encoding   models.     (G)		  Same   format   and   order   of   neurons   as   (E),   but   for   estimated   noise   
correlations   between   neurons,   where   “noise”   was   estimated   as   the   residual   activity   of   neurons   after   
subtracting   the   behavior-based   signal   prediction   in   (F).     (H-J)		  Distributions   of   correlation   
coef�icients   as   in   (E-G),   for   neurons   pooled   across   all   sessions   but   restricted   to   the   stated   time   
periods   in   the   trial.   
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Figure	S6.		    Time-dependence			of			task-variable			encoding			weights,			and			comparisons			between			
various			types			of			encoding			models.		    (A-C)		  Dependence   of   encoding   weights   on   the   time-dependent   
scale   of   the   respective   task   variables   (insets).   11   encoding   models   were   �it   separately   per   timepoint   
for   each   neuron,   which   yields   11   encoding   weights   per   neuron,   for   a   given   variable.   The   colored   
lines   are   distributions   of   these   encoding   weights   restricted   to   timepoints   in   the   trial   where   the  
time-dependent   scale   (standard   deviation)   of   the   task   variable   fell   within   the   indicated   bins   
(vertical   colored   bars   in   the   inset   plot).   For   comparability   across   neurons   and   task   variables,   
encoding   weights   were   expressed   in   units   of   ,   where     is   the   standard   deviation   of   the  σ  σF / x σF  
activity   level   of   a   given   neuron   across   all   timepoints   in   the   imaging   session,   and     is   the   standard  σx  
deviation   of   the   task   variable   again   across   all   timepoints.     (D)		  Cross-validated   variance   explained   
for   a   model   where   ridge   regression   was   used   to   predict   the   activity   of   each   neuron   (y-axis),   vs.   the   
neural-population-geometry   regularized   regression   model   used   in    Fig. 5 - Fig. 7    (x-axis,   see   text   and   
Methods).   Each   point   in   the   left   plot   is   for   one   neuron   in   an   imaging   session   (including   all   sessions),   
where   the   variance   explained   is   computed   using   all   timepoints   and   trials   in   the   data   for   that   neuron.   
Inset:   Distribution   across   neurons   of   differences   in   geometry-regularized   vs.   ridge-regularized   
variances   explained,   i.e.   x   minus   y   coordinates   of   points   in   the   left   plot.     (E-F)		  Same   as    Fig. 7 A-B,   but   
using   the   geometry-regularized   regression   models   (Methods)   instead   of   ridge   regression.   
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Figure	S7.						Convergence			of			simulated			multiplicative			sequential			encoding			geometries			to			
different			forms			of			design			truth,			as			a			function			of			neural			population			size	.				(A)		  Same   as    Fig. 7 E,   
except   that     was   designed   to   be   a   function   with   two   abrupt   steps   as   shown   in   the   plot  (t)ψ  
(dash-dotted   gray   line),   and   the   generation   parameters   of     (Methods)   were   scaled   by   a   factor   of  (t)gi  
2   to   create   neural   activities   that   were   longer   in   duration   than   the   simulations   discussed   in   the   text.   
(B)		  Distribution   across   simulation   experiments   of   the   time-dependent   angle   between   encoding   
directions,   for   the   simulation   scenario   in   (A).   The   left   and   right   plots   correspond   to   simulations   
with   neural   population   sizes   of   100   and   1000   respectively.     (C)		  Distribution   across   simulation   
experiments   and   time   of   differences   between     vs.   the   angle   between   encoding   directions,   for  (t)ψ  
the   simulation   scenario   in   (A)   and   as   a   function   of   the   simulated   neural   population   size.     (D-F)		  As   in   
(A-C),   but   the   generation   parameters   of     were   scaled   by   a   factor   of   0.5   instead   to   create   neural  (t)gi  
activities   that   were   shorter   in   duration   than   the   simulations   discussed   in   the   text.     (G-H)		  Same   as   
Fig. 7 E-F,   but   where     was   designed   to   be   a   constant   130°.     (I)		  Illustration   of   two  (t)ψ  
transformations   that   preserve   distances   (rotation)   and   relative   distances   (uniform   scaling)   between   
points.   Also   shown   is   an   angle   between   two   vectors   (dashed   lines),   which   remains   the   same   if   
distances   are   preserved,   and   also   if   relative   distances   are   preserved,   as   angles   do   not   depend   on   
lengths   of   vectors.   The   dot   product   between   two   vectors   depends   on   both   the   cosine   angle   between   
the   vectors   as   well   as   their   magnitudes,   and   thus   do   change   under   uniform   scaling.   However   if   all   
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coordinates   are   uniformly   scaled   by   a   factor   of   ,   then   the   dot   products   between   all   pairs   of   vectors  s  
are   scaled   by   same   factor   ,   and   thus   the   relative   magnitudes   of   dot   products   are   unchanged.  s2  

  

Figure	S8.		    Cross-validated			decoding			accuracies			for			different			variables			and			decoding			methods.	   
(A)		  Cross-validated   performance   for   decoding   thirteen   task   variables   (individual   plots),   vs.   time   in   
the   trial.   For   each   variable,   a   different   linear   decoder   (L2-regularized   support   vector   machine)   was   
trained   per   timepoint.   For   categorical   variables,   the   performance   measure   is   the   cross-validated   
classi�ication   accuracy,   where   chance   level   is   0.5.   For   continuous   variables,   the   performance   
measure   is   the   cross-validated   correlation   between   decoded   and   actual   variable   values,   where   
chance   level   is   0.   Performance   was   averaged   across   imaging   sessions   for   a   given   area   (lines),   with   
points   blanked   out   if     of   sessions   had   signi�icant   decoding   performance   vs.   a   permutation   test  %< 5  
(   post   correction   for   multiple   comparisons).     (B)		  Decoding   performance   for   per-timepoint  .036p ≤ 0  
decoders   in   (A),   vs.   phase-speci�ic   decoders   (blue   lines),   and   decoders   trained   using   data   from   all   
timepoints   (red   lines).   The   phase-speci�ic   decoders   were   trained   using   data   in   2   separate   phases   of   
the   trial.   The   �irst   phase   included   all   timepoints   from   the   start   of   the   trial   to   the   end   of   the   delay   
region,   and   these   timepoints   were   treated   like   additional   trials   when   training   decoders.   The   second   
phase   included   the   remaining   timepoints   from   the   start   of   the   turn   region   to   the   end   of   the   ITI.   
Decoding   performance   were   evaluated   at   each   timepoint,   as   in   (A).   Lines:   mean   across   imaging   
sessions   (i.e.   including   all   cortical   regions   in   (A)).   Band:   S.E.M.   
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