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Abstract

Open data has two principal uses: (i) to reproduce original findings and (ii) to
allow researchers to ask new questions with existing data. The latter enables
discoveries by allowing a more diverse set of viewpoints and hypotheses to
approach the data, which is self-evidently advantageous for the progress of
science. However, if many researchers reuse the same dataset, multiple statistical
testing may increase false positives in the literature. Current practice suggests
that the number of tests to be corrected is the number of simultaneous tests
performed by a researcher. Here we demonstrate that sequential hypothesis
testing on the same dataset by multiple researchers can inflate error rates. This
finding is troubling because, as more researchers embrace an open dataset, the
likelihood of false positives (i.e. type I errors) will increase. Thus, we should
expect a dataset’s utility for discovering new true relations between variables
to decay. We consider several sequential correction procedures. These solutions
can reduce the number of false positives but, at the same time, can prompt
undesired challenges to open data (e.g. incentivising restricted access).

Introduction
In recent years, there has been a push to increase the adoption of open research
practices, which includes making scientific datasets accessible (Nosek et al.,
2015). Open data allow researchers to both reproduce published analyses and
ask new questions of the existing data (Molloy, 2011; Pisani et al., 2016). The
value attributed to the latter is that it makes discoveries and the advancement
of knowledge more efficient. After all, data often can be useful for investigating
and discovering phenomena beyond its initial purpose. The proliferation and
use of open data will increase over time as funders mandate and reward data
sharing and open research practices (McKiernan et al., 2016).

While open data undoubtedly provides these benefits, a problem emerges re-
garding multiple hypothesis testing on a single dataset. At present, researchers
reusing data generally do not take into account the previous studies that have
performed tests on the dataset; instead, they only correct for the number of
statistical tests that they perform. We will show that multiple reuses of the
same dataset will compound type I error rates just as if the multiple tests were
performed as part of a single analysis.
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In statistics, a distinction is made between simultaneous and sequential correction
procedures when correcting for multiple tests. Simultaneous procedures correct
for all tests at once, while sequential procedures correct for the latest in a
non-simultaneous series of tests. Several solutions have been proposed to address
multiple sequential analyses, namely α-spending and α-investing procedures
(Aharoni & Rosset, 2014; Foster & Stine, 2008). Here we will also propose a
third, α-debt, which does not maintain a constant false positive rate but allows
it to grow controllably.

Sequential correction procedures are harder to implement than simultaneous
procedures as they require keeping track of the total number of tests that have
been performed by others. Further, in order to ensure data is still shared, the
sequential correction procedures should not be antagonistic with current data
sharing incentives and infrastructure. Thus, we have identified several desiderata
regarding open data and multiple hypothesis testing:

Sharing incentive: Data producers should be able to share their data without
negatively impacting their initial statistical tests. Otherwise, this reduces the
incentive to share data.

Open access: Minimal to no restrictions should be placed on accessing open
data, other than those necessary to protect the confidentiality of human subjects.
Otherwise, the data are no longer open.

Stable false positive rate: The false positive rate (i.e. type I error) should not
increase due to reusing open data. Otherwise, scientific results become less
reliable with each reuse.

We will show that obtaining all three of these desiderata is not possible. We will
demonstrate below that the current practice of ignoring sequential tests leads to
an increased false positive rate in the scientific literature. Further, we show that
sequentially correcting for data reuse can reduce the number of false positives
compared to current practice. However, all the proposals considered here must
still compromise (to some degree) on one of the above desiderata.

Results
Families of tests through time

Procedures to correct for multiple statistical tests predated open data as promoted
today. These procedures were designed for situations in which a researcher
performs multiple statistical tests within the same experiment. In general,
statistical decisions involve a trade-off between the rate of false positives (type I
errors) and the rate of false negatives (type II errors) (Hochberg & Tamhane,
1987; Ryan, 1962). These error rates can relate to an individual statistical test
(Wilson, 1962) or an entire experiment (Ryan, 1959, 1962). Typically, error
rates are considered for neither of these two extremes but rather for a family
of tests, a set which includes some related statistical tests. Unfortunately, the
term family has been challenging to precisely define, and only guidelines – often
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containing additional imprecise terminology – exist (e.g. Cox, 1965; Hancock &
Klockars, 1996; Hochberg & Tamhane, 1987; Miller, 1981). Generally, tests are
considered part of a family when: (i) multiple variables are being tested with no
definitive hypothesis, or (ii) multiple prespecified tests together help support the
same or associated research questions (Hancock & Klockars, 1996; Hochberg &
Tamhane, 1987).

The crucial question for the present purpose is whether the reuse of data con-
stitutes a new family of tests. If sequential analyses create a new family of
tests, then there is no need to perform a sequential correction procedure in order
to maintain control over familywise error. Alternatively, if a new family has
not been created simply by reusing data, then we need to consider sequential
correction procedures.

There are two ways in which sequential tests with open data differ from simulta-
neous tests (where correction is needed): a time lag between tests and different
individuals performing the tests. Neither of these two properties is sufficient to
justify the emergence of a new family of tests. First, the temporal displacement
of statistical tests can not be considered sufficient reason for creating a new
family of statistical tests, as the speed with which a researcher analyzes a dataset
is not relevant to the need to control for multiple statistical tests. If it were, then
a simple correction procedure would be to wait a specified length of time before
performing the next statistical test. Second, it should not matter who performs
the tests; otherwise, one could correct for multiple tests by crowd-sourcing
the analysis. Thus if we were to decide that either of the two differentiating
properties of sequential tests on open data creates a new family, undesirable
procedures would be allowable. To prevent this, statistical tests on open data,
which can be run by different people, and at different times, can be part of the
same family of tests. Since they can be in the same family, sequential tests on
open data need to consider correction procedures to control the rate of false
positives across the family.

We have demonstrated the possibility that families of tests can belong to se-
quential analyses. However, in practice, when does this occur? Due to the fuzzy
nature of “family”, we propose a simple rule-of-thumb: if the sequential tests
would be considered within the same family if performed simultaneously, then
they are part of the same family in sequential tests. Applying this rule indicates
that t many sequential tests should be considered part of the same family when
reusing open data (see Supplementary Material for examples of sequential fami-
lies). We therefore suggest that researchers should apply corrections for multiple
tests when reusing data or provide a justification for the lack of such corrections
(as they would need to in the case of simultaneous tests belonging to different
families).
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The consequence of not taking multiple sequential testing seriously

In this section, we consider the consequences of uncorrected sequential testing
and several procedures to correct for them. We start with a simulation to
test the false positive rate of the different sequential correction procedures
by performing 100 sequential univariate tests where the simulated covariance
between all variables was 0 (see Methods for additional details). The simulations
ran for 1,000 iterations, and the familywise error was calculated using a two-tailed
statistical significance threshold of p < 0.05.

We first consider what happens when the sequential tests are uncorrected.
Unsurprisingly, the results are identical to not correcting for simultaneous tests
(Figure 1A). There will almost always be at least one false positive any time
one performs 100 sequential analyses with this simulation. This rate of false
positives is dramatically above the desired familywise error rate of at least one
false positive in 5% of the simulation’s iterations. Uncorrected sequential tests
will lead to more false positives.

The first sequential procedure we consider is α-debt. For the ith sequential
test, this procedure considers there to be i simultaneous tests that should be
corrected. This procedure effectively performs a Bonferroni correction – i.e. the
threshold of statistical significance becomes α1

i where α1 is the first statistical
threshold (here 0.05). Thus, on the first test α1 = 0.05, then on the second
sequential test α2 = 0.025, α3 = 0.0167, and so on. While each sequential test
is effectively a Bonferroni correction considering all previous tests, this does not
retroactively change the inference of any previous statistical tests. When a new
test is performed, the previous test’s α is now too lenient considering all the
tests that have been performed. Thus, when considering all tests together, the
false positive rate will increase, accumulating a false positive “debt”. This debt
entails that method does not ensure the type I error rate remains under a specific
value, instead allows it to controllably increase under a “debt ceiling” with each
sequential test (the debt ceiling is the sum of all α1 to αt at t). The rate of the
increase in debt always decreases. Both the increase in false positives and the
decrease in debt increase were confirmed in the simulations (Figure 1B). Finally,
the method can mathematically ensure that the type II error (i.e. the false
negative rate) is equal to or better than simultaneous correction with Bonferroni
(See Methods).

The next two procedures we consider have previously been suggested in the
literature α-spending and α-investing (Aharoni & Rosset, 2014; Foster & Stine,
2008). The first has a total amount of “α wealth”, and the sum of all the
statistical thresholds for all sequential tests can never exceed this amount (i.e. if
the alpha wealth is 0.05 then the sum of all thresholds on sequential tests must
be less than 0.05). Here, for each sequential test, we spend half the remaining
wealth (i.e. α1 is 0.025, α2 is 0.0125 and so on). In the simulations, the sequential
tests limit the probability of there being at least one false positive to less than
0.05 (Figure 1C). Finally, α-investing allows for the significance threshold to
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increase or decrease as researchers perform additional tests. Again there is a
concept of α-wealth. If a test rejects the null hypothesis, there is an increase in
the remaining α-wealth that future tests can use and, if the reverse occurs, the
remaining α-wealth decreases (see methods). α-investing ensures control of the
false discovery rate at an assigned level. Here we invest 50% of the remaining
wealth for each statistical test. In the simulations, this method also remains
under 0.05 familywise error rate in the simulations as the sequential tests increase.
(Figure 1D).

The main conclusion from this set of simulations is that the current practice of
not correcting for open data reuse results in a substantial increase in the number
of false positives presented in the literature.

Sensitivity to the order of sequential tests

The previous simulation did not consider any true positives in the data (i.e. cases
where we should reject the null hypothesis). Since the statistical threshold
for significance changes as the number of sequential tests increases, it becomes
crucial to evaluate the sensitivity of each method to both type I and type II errors
in regards to the order of sequential tests. Thus, we simulated true positives
(between 1-10) where the covariance of these variables and the dependent variable
were set to p (p ranged between 0 and 1). Further, λ controls the sequential
test order determining the probability that a test was a true positive. When
λ is positive, it entails a higher likelihood that earlier tests will be one of the
true positives (and vice versa when λ was negative; see methods). All other
parameters are the same as the previous simulation. Simultaneous correction
procedures (Bonferroni and FDR) of all 100 tests were also included to contrast
the different sequential procedures to these methods.

The results reveal that the order of the tests is pivotal for sequential correc-
tion procedures. Unsurprisingly, the uncorrected and simultaneous correction
procedures do not depend on the sequential order of tests (Figure 2ABC). The
sequential correction procedures all increased their true positive rate (i.e. less
type II errors) when the true positives were earlier in the analysis order (Fig-
ure 2A). We also observe that α-debt had the highest true positive rate of
the sequential procedures and, when the true positives were later in the test
sequence, performed on par with Bonferroni but when the true positives were
earlier, outperformed Bonferroni. α-investing and α-spending cannot give such
assurances when the true positives are later in the analysis sequence (i.e. λ is
negative) there is less sensitivity to true positives (i.e. type II errors). α-debt is
more sensitive to true positives compared to α-spending because the threshold
for the mh sequential test decreases linearly in α-debt and exponentially in
α-spending. This results in a more lenient statistical threshold for α-debt in
later sequential tests.

The false positive rate and false discovery rate are both very high for the
uncorrected procedure (Figure 2BC). α-debt and α-spending both have a decrease
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Figure 1: Simulation results showing the probability of there being at least one
false positive as the number of statistical tests increases. Each panel shows
different correction procedures: (A) uncorrected; (B) α-debt; (C) α-spending;
(D) α-investing. Dotted line indicates 0.05.
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in false positives and false discovery rate when λ is positive (Figure 2BC). The
false discovery rate for α-debt generally lies between the spending (smallest) and
investing procedures (largest and one that aims to be below 0.05). Also, for all
methods, the true positive rate breaks down as expected when the covariance
between variables approaches the noise level. Thus we split the false discovery
rate along four quadrants based on λ and the noise floor (Figure 2D). The
quadrants where true positive covariance is above the noise floor (Q1 and Q2)
has a false discovery rate of less than 0.05 for all procedures except uncorrected
(Figure 2D). Finally, when varying the number of true positives in the dataset,
we found that Q1 and Q2 generally decreases as the number of true positives
grow for α-spending and α-debt, whereas α-investing remains the 0.05 mark
regardless of the number of true positives (Figure 2E).

All three sequential correction procedures performed well at identifying true
positives when these tests were made early on in the analysis sequence. When
the “true” tests are later, α-debt has the most sensitivity for true positives and
α-investing is the only procedure that has a stable false discovery rate regardless
of the number of true positives (the other two methods appear to be more
conservative). The true positive sensitivity and false discovery rate of each of the
three sequential correction methods considered depend on the order of statistical
tests and how many true positives are in the data.

Uncorrected sequential tests will flood the scientific literature with
false positives

We have demonstrated a possible problem with sequential tests on simulations.
We now turn our attention to empirical data from a well known shared dataset
in neuroscience to examine the effect of multiple reuses of the dataset. We used
68 cortical thickness estimates from the 1200 subject release of the HCP dataset
(Van Essen et al., 2012). We then used 182 behavioural measures ranging from
performance during tasks to survey responses (See supplementary table 1) and,
for simplicity, ignore all previous publications using the HCP dataset (of which
there are now several hundred) for our p-value correction calculation.

We fit 182 linear models in which each behaviour (dependent variable) was
modelled as a function of each of the 68 cortical thickness estimates (independent
variables), resulting in a total of 12,376 statistical tests. As a baseline, we cor-
rected all statistical tests simultaneously with Bonferroni and FDR. For all other
procedures, the independent variables within each mode (i.e. cortical thickness)
had simultaneous FDR correction while considering each linear model (i.e. each
behaviour) sequentially. The procedures considered were: uncorrected sequential
analysis with both Bonferroni and FDR simultaneous correction procedures;
all three sequential correction procedures with FDR simultaneous correction
within each model. For the sequential tests, the orders were randomized in two
ways: (i) uniformly; (ii) weighting the earlier tests to be the significant findings
found during the baseline conditions (see Methods). The latter considers how
the methods perform if we ask the “right” questions first. Sequential analyses
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Figure 2: Results of simulations showing that the order of sequential tests can
impact true positive sensitivity. (A) The true positive rate after 100 tests for
different sequential correction procedures (for 1,000 iterations). Each procedure
shows the effect of simulation parameters λ (when positive, it increases the
probability of the true positives being an earlier test) and the simulated covariance
of the true positives. The results showed simulations when there were ten true
positives in the data. (B) Same as A, but shows the false positive rate. (C)
Same as A, but shows the false discovery rate. (D) The panels in C split into
four quadrants. The first split was the probability of true positives being an
earlier test (Q2, Q4, λ > 0) and later tests (Q1, Q3, λ < 0). The second split
was the covariance of the correlated variables (Q1, Q2, > 0.25; Q3, Q4 < 0.25).
Panels show the average FDR for various quadrants from D. (E) Same as D but
showing the varying number of true positives that existed in the simulations.
The dotted line in D and E marks the 0.05 threshold.
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had the order of tests randomized 100 times.

We asked two questions with these models. First, we identified the number of
significant findings (p < 0.05, two tail) for the different correction methods.
Second, we asked how many additional scientific articles (assuming that at least
one positive finding is equal to a publication) would result with the different
correction methods. Importantly, in this evaluation of empirical data, we are not
necessarily concerned with the number of “true” relationships with this analysis.
We care about identifying the number of statistically significant findings within
a specified statistical threshold given the different correction procedures. The
simultaneous correction procedures act as a baseline. Bonferroni is known to
be a conservative procedure. FDR is known to maintain a tolerable ratio of
false positives in relation to the number of findings. Thus any procedure that
is more stringent than the Bonferroni baseline will be too conservative (more
type II errors). Any procedure that is less stringent than FDR will have an
increased false discovery rate, implying more false positives (relative to the true
positives). Note that, we are tackling only issues regarding correction procedures
to multiple hypothesis tests; determining the truth of any particular outcome
would require additional replication.

Figure 3 shows the results for all correction procedures. Using sequentially uncor-
rected tests leads to an increase in significant findings (30/44 Bonferroni/FDR),
compared to a baseline of 2 findings when correcting for all tests simultaneously
(for both Bonferroni and FDR procedures). Assuming only positive findings are
published, this would result in 29/30 (Bonferroni/FDR) publications instead
of the baseline 2 (both Bonferroni and FDR), reflecting a 1,400% increase in
publications that would primarily reflect false positives.

The sequential correction procedures were closer to baseline but saw divergence
based on the order of the statistical tests. If the order was completely random,
then α-debt found, on average, 2.77 findings (min/max: 2/6) and 2.53 studies
(min/max: 2/4) would be published, which is an increase in the number of
false positives compared to baseline but considerably less than the sequentially
uncorrected procedure. In contrast, α-spending found 0.33 (min/max: 0/5) and
0.22 studies (min/max: 0/2) and α-investing found 0.48 (min/max: 0/8) findings
and 0.37 (min/max 0/4) studies; both of which are below the conservative
baseline of 2. When the order is informed by the baseline findings, the sequential
corrections procedures increase in the number of findings (findings [min/max]:
α-debt: 3.49 [2/7], α-spending: 2.58 [1/4], α-investing: 3.54 [1/10]; studies
[min/max]: α-debt: 2.38 [2/4], α-spending: 1.97 [1/3], α-investing: 2.54 [1/5]).
All procedures now increase their number of findings above baseline (on average
α-debt with a random order has a 19% increase in the number of published
studies, substantially less than the increase in the number of uncorrected studies).
Two conclusions emerge. First, α-debt remains sensitive to the number of findings
found regardless of the sequence of tests (fewer type II errors) and can never fall
above the Bonferroni in regards to type II errors while the other two sequential
procedures can be more conservative than Bonferroni. Second, while α-debt
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does not ensure the false positive rate remains under a specific level (more type I
errors), it dramatically closes the gap between the uncorrected and simultaneous
number of findings and studies.

Figure 3: Summary of the number of findings and studies for different correction
procedures performed on the empirical dataset. The dotted line shows the
baseline form the simultaneous corrections. (A) The number of significant
statistical tests for the different correction procedures; (B) Number of studies
that had at least one significant finding (and can be considered a possible
scientific publication). Error bars show the standard deviation and circles mark
min/max number of findings/studies for the sequential correction procedures
with a randomly permuted test order.

Discussion
We have shown with both simulation and an empirical example how sequential
statistical tests, if left uncorrected, will lead to a rise of false positive results. Fur-
ther, we have explored different sequential correction procedures and shown their
susceptibility to both false negatives and false positives. Broadly, we conclude
that a dataset’s potential to identify new statistically significant relationships will
decay over time as the number of sequential statistical tests increases. In the rest
of the discussion section we first discuss the implications the different sequential
procedures have in regards to the desiderata outlined in the introduction. Then
we discuss other possible solutions that could potentially mitigate dataset decay.

Consequence for sequential tests and open data

We stated three desiderata for open data in the introduction: sharing incentive,
open access, and a stable false positive rate. Having demonstrated some proper-
ties of sequential correction procedures, we revisit these aims and consider how
the implementation of sequential correction procedures in practice would meet
these desiderata. The current practice of leaving sequential hypothesis tests
uncorrected leads to a dramatic increase in the false positive rate of the scientific
literature. While our proposed sequential correction techniques would mitigate
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this problem, all three require compromising on one or more of the desiderata
(summarized in Table 1).

Implementing α-spending would violate the sharing incentive desideratum as
it forces the initial analysis to use a smaller statistical threshold to avoid using
the entire wealth of α. This change could potentially happen with appropriate
institutional change, but placing restrictions on the initial investigator (and
increased type II error rate) would likely serve as a disincentive for those
researchers to share their data. It also places incentives to restrict access
to open data (violating the open access desideratum) as performing additional
tests would lead to a more rapid decay in the ability to detect true positives in
a given dataset.

Implementing α-investing, would violate the open access desideratum for two
reasons. First, like α-spending there is an incentive to restrict incorrect statistical
tests due to the sensitivity to order. Second, α-investing would require tracking
and time-stamping all statistical tests made on the dataset. Given known issues
within science, such as the file drawer problem (Rosenthal, 1979), this is currently
problematic to implement. Also, publication bias for positive outcomes would
result in statistical thresholds becoming more lenient over time, which might
lead to even more false positives (thus violating no increase in false positives
desideratum). Unless all statistical tests are time-stamped, which is possible but
would require significant institutional change, this procedure might be hard to
implement.

Implementing α-debt would improve upon current practices but will compromise
on the stable false positive rate desideratum. However, it will have little effect
on the sharing incentive desideratum as the original study does not need to
account for any future sequential tests. The open access desideratum is also less
likely to be compromised as it is less critical to ask the “correct” questions first
(i.e. it has the lowest type II error rate of the sequential procedures). HHowever,
calculating the correct number of statistical tests performed on a dataset may
be practically difficult, given the file drawer problem, and underestimating this
number will result in an increased number of false positives. Compared to
α-investing, estimating the number of tests is a considerably easier task as
α-debt does not need the order of previous tests and there are conceivable ways
of estimating the actual number of sequential tests performed on a dataset.
Nevertheless, if a researcher underestimates this number, it will further increase
the false positive rate of the method — however will still be better than current
practice.

Sharing incentive Open access Stable false positive rate
α-spending No No Yes
α-investing Yes No Yes
α-debt Yes Yes No
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Table 1 : Summary of the different sequential correction methods and the open
data desiderata. Yes indciates that the method is compatible with the desidera-
tum.

Other possible procedures

We have only considered frequentist correction procedures to deal with sequential
hypothesis testing. There are a few other solutions that are worth exploration,
three of which we discuss here. Any of these possible avenues may be superior to
the ones we have considered in this article, but they are not readily applicable
without some additional consideration.

The first alternative is Bayesian statistics. Multiple comparisons in Bayesian
frameworks are often circumnavigated by partial pooling and regularizing priors
(Gelman et al., 2013). These techniques should allow for the sequential evaluation
of different independent variables against a single dependent variable when using
regularizing priors, especially as these different models could also be contrasted
explicitly to see which model fits the data best. However, sequential tests could
be problematic when the dependent variable changes across experiments. In these
multivariate sequential cases, partial pooling cannot be done and regularizing
priors may not be sufficient to correct for this. If uncorrected, this could create a
similar sequential problem as outlined in this article when inferring relationships
between variables in the data. But there are multiple avenues where this could
be fixed (e.g. sequentially adjusting the prior odds in Bayes-factor inferences).
The extent of sequential analysis on open dataset within the Bayesian hypothesis
testing frameworks, and possible solutions, is an avenue of future investigation.

The second alternative is using reusable held-out data. Within machine learning,
there have been advances towards having a reusable holdout set in order to
query held-out data multiple times (Dwork et al., 2015; Dwork, Hardt, & Roth,
2017; Rogers et al., 2019). This avenue is promising, but there appear to be
some drawbacks for sequential reuse. First, this line of work within “adaptive
data analysis” generally considers a single user querying the holdout test data
multiple times while optimizing their model/analysis. Second, this is ultimately
a cross-validation technique which is not necessarily the best tool in datasets
where sample sizes are small, (Varoquaux, 2018) which is often the case with
open data and thus not a general solution to this problem. Third, additional
assumptions exist in these methods (e.g. there is still a “budget limit” in Dwork
et al. (2015) and requires “mostly guessing correctly” in Rogers et al. (2019)).
However, this avenue of research has the potential to provide a better solution
than what we have proposed here.

The third and perhaps most radical alternative is to reconsider what analyzing
open data means. One possible way to handle this problem is to treat all
studies using open datasets as a case of exploratory data analysis (EDA), where
their primary utility becomes generating hypotheses and testing assumptions of
methods (Donoho, 2017; Tukey, 1977, 1980). Some may consider this reframing
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problematic, as it could make findings based on open data seem less important.
However, accepting that all analysis on open data is EDA would involve less
reliance on results from confirmatory statistical inference: the sequential multiple
hypothesis test problem disappears. This would lead to an increase of EDA
results which may not replicate. However, this is not necessarily problematic; this
will not lead to an increase of false positive rate of confirmatory studies within
the scientific literature but rather would provide a fruitful guide about which
confirmatory studies to undertake. Those who consider open data’s value to be
more than exploratory will naturally disagree with this perspective. Implementing
this suggestion would require little infrastructural or methodological change;
however, it would require an institutional shift in how researchers interpret open
data results.

Conclusion

One of the benefits of open data is that it allows multiple perspectives to approach
a question, given a particular sample. The trade-off of this benefit is that more
false positives will enter the scientific literature. We remain strong advocates
of open data and data sharing, but researchers using openly shared data must
be sensitive to the accumulation of false positives and ensuing dataset decay
that will occur with repeated reuse. Ensuring findings are replicated using
independent samples will greatly decrease the false positive rate, since the chance
of two identical false positives relationships occurring, even on well explored
datasets, is small.

Methods
Simulations

The first simulation sampled data for one dependent variable and 100 independent
variables from a multivariate Gaussian distribution (mean: 0, standard deviation:
1, covariance: 0). We conducted 100 different pairwise sequential analyses in
a random order. For each analysis, we quantified the relationship between an
independent variable and the dependent using a Pearson correlation. If the
correlation had a two-tailed p-value less than 0.05, we considered it to be a false
positive. The simulation was repeated for 1,000 iterations. The probability of at
least one false positive is the average number of iterations where there was at
least one false positive analysis.

The second simulation had three additional variables. First, a variable that
controlled the number of true positives in the data. This variable varied between
1-10. Second, the selected true positive variables, along with the dependent
variable, had their covariance assigned as p. p varied between 0 and 1 in steps
of 0.025. Finally, we wanted to test the effect of the analysis order to identify
true positive variables. Each sequential analysis, (m1, m2, m3 . . . ), could be
assigned to be a “true positive” (i.e. covariance of p with the dependent variable)
or a “true negative” (covariance of 0 with dependent variable). First, m1 would
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be assigned one of the trials, then m2 and so forth. This procedure continued
until there were only true positives or true negatives remaining. The procedure
assigns the ith analysis to be randomly assigned, weighted by λ. If λ was 0,
then there was a 50% chance that mi would be a true positive or true negative.
If λ was 1, a true positive was 100% more likely to be assigned to mi (i.e. an
odds ratio of 1+λ:1), The reverse occurred if λ was negative (i.e. -1 meant a
true negative was 100% more likely at mi).

Empirical example

Data from the Human Connectome Project (HCP) 1200 subject release was
used (Van Essen et al., 2012). We selected 68 estimates of cortical thickness to
be the indepndent variables for 182 continuous behavioural and psychological
variables dependent variables. Whenever possible, the age-adjusted values were
used. Supplementary Table 1 shows the variables selected in the analysis.

For each analysis, we fit an ordinary least squares model was fit using statsmod-
els (0.10.0-dev0+1579, https://github.com/statsmodels/statsmodels/). For all
statistical models, we first standardized all variables to have a mean of 0 and a
standard deviation of 1. We dropped any missing values for a subject for that
specific analysis. Significance was considered for any independent variable if it
had a p-value < 0.05, two-tailed for the different correction methods.

We then quantified the number of findings and the number of potential published
studies that the different correction methods would present. The number of
findings is the sum of significant independent variables. The number of potential
studies is the number of dependent variables that had at least one significant
finding. The rationale for the second metric is to consider how many potential
findings would exist in the literature if a separate group conducted each analysis,
and only significant findings were published.

For the sequential correction procedures, we used two different sequential tests
orderings. The first was with a uniformly random order. The second was an
“informed” order that pretends we somehow a priori knew which variables will
be correlated. The “informed” order was created by identifying the significant
statistical tests when using simultaneous correction procedures (FDR and Bon-
ferroni, see below) which acted as a baseline to identify analyses which were
considered “baseline positives” (i.e. significant with simultaneous FDR. These
were two analyses) and the other analyses that were “baseline negatives”. Then,
as in simulation 2, the first analysis m1 was randomly assigned to be positive or
negative with equal probability. This “informed” ordering means that the “base-
line positives” would usually appear in an earlier order than when the sequence
order was sequentially randomized. All sequential correction procedures were
applied 100 times with the sequence order randomized.
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Simultaneous correction procedures

We used the Bonferroni method and the Benjamini & Hochberg FDR method
for simultaneous correction procedures (Benjamini & Hochberg, 1995). Both
correction methods were run using multipy (v0.16, https://github.com/puolival/
multipy). In the simulations over multiple iterations, the false discovery rate
calculation was based on the average false positives and the average true positives
over the iterations.

Sequential correction procedures

Uncorrected. This procedure is to not correct for any sequential analysis. This
analogous to reusing open data with no consideration for any sequential tests
that occur due to data reuse. For all sequential hypothesis tests, p<0.05 signified
statistical significance.

α-debt. A sequential correction procedure that, to our knowledge, has not
previously been proposed. At the first hypothesis tested, α1 sets the statistical
significance threshold (here 0.05). At the ith hypothesis tested the statistical
threshold is αi = α1

i . The rationale here is that at the ith test, a Bonferroni
correction is applied that considers there to be i number of tests performed.
This method lets the false positive rate increase (i.e. the debt of reusing the
dataset) as each test corrects for the overall number of tests, but all earlier tests
have a more liberal threshold. The total possible “debt” incurred for m number
of sequential tests can be calculated by

∑m
i=1 αi and will determine the actual

false positive rate.

α-spending. A predefined α0 is selected which is called the α-wealth. At the
ith test the statistical threshold, αi, a value is selected to meet the condition
that

∑i
j=1 αj < α0. The ith test select αi that spends part of the remaining

“α-wealth”. The remaining α-wealth at test i is α0 −
∑i−1
j=1 αj . Like, α-debt, this

method effectively decreases the p-value threshold of statistical significance at
each test. However, it can also ensure that the false positive rate of all statistical
tests is never higher than α0. Here, at test i we always spend 50% of αi−1 and
α0 is set to 0.05. See (Foster & Stine, 2008) for more details.

α-investing. The two previous methods only allow for the statistical threshold to
decrease over time and are more akin to familywise error correction procedures.
An alternative approach, which is closer to false discovery rate procedures, is to
ensure the false discovery rate remains below a predefined α0 value (Foster &
Stine, 2008). If the sequentially indexed test i− 1 was considered “statistically
significant” (i.e. rejecting the null hypothesis), then αi = I(αi−1 + ω), where I
is the portion of the remaining wealth you want to invest. This step entails that
the next test will have a higher statistical threshold, after successfully rejecting
a null hypothesis. If the null hypothesis cannot be rejected at i − 1, then αi
decreases: αi = I

(
αi−1 − αi−1

1−αi−1

)
. We set ω to α0, which is the convention, α0

to 0.05, and I to 0.5 (i.e. the next test used half the remaining wealth). See
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(Foster & Stine, 2008) for more details.

When combining the simultaneous and sequential correction procedures in the
empirical example, we used the sequential correction procedure to derive αi,
which we then used as the threshold in the simultaneous correction.

Data/Code availability statement

Code for the simulations and analyses is available at https://github.com/wiheto/
datasetdecay. The data is openly available at the Human Connectome Project
at https://db.humanconnectome.org.
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Supplementary Materials
Sequential family examples

Recall that there are two definitions when tests are part of the same family: (i)
to prevent data-dredging, and (ii) for “confirmatory” analyses when tests are
a “conceptual family” by supporting “similar research questions” (Hancock &
Klockars, 1996). Recall also that our rule-of-thumb that sequential tests are
part of the same family if they would be considered part of the same family in a
simultaneous test.

We have to consider that all data reuse could be considered a type of data
dredging as, for some, pre-specifying a hypothesis is always before data collection
(Tukey, 1991). If we consider a study that, after some initial analyses, makes a
new hypothesis and analyses this, this would be considered secondary, post hoc,
or data dredging. The only difference in data reuse is that a different researcher
has performed the analysis/hypothesis. Some may argue that confirmatory
work is possible with open data, especially if the research question is different
enough (see an example of separated families below). However, others may argue
that, especially if the researchers know of a paper using that data, it should be
exploratory. Thus, it appears that many cases of data reuse should fall within
the exploratory category.

However, if a researcher can justify that their analysis is “confirmatory” research,
the next question is whether they are helping to answer “associated research
question” as previous research. This answer is not always clearcut and can be
challenging to determine. There are some clear cut cases and examples where it
is not always apparent when the hypothesis is considered confirmatory:

A clear example of the same family

In the empirical demonstration in the main text, we test multiple personality
and behavioural variables. If all these tests were considered confirmatory, there
is substantial overlap in the research question here which ultimately boils down
to what can cortical thickness explain.

A clear example of separated families

Many datasets have variables that will be used in most analyses using that
dataset, but this is not always the case. The PubMed Central Open Access
Subset dataset contains hundreds of thousands of academic articles. This dataset
can be used in many ways different ways to approach multiple very different
research questions stretching from the gender of authors, readability of writing,
or the semantic similarity of research topics. These are all very different research
questions and become different families. If presented in the same article, there is
little to no overlap of the research questions being part similar; thus, these are
different families.

Gray-area when families are not clear
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Consider an fMRI dataset analysed in multiple different ways (e.g. a mass
univariate analysis or a connectivity analysis that transforms voxel time series
into an adjacency matrix). Let us assume these two different ways of representing
fMRI data correlate with the same variable (task performance). Are these the
same research questions? It depends, (Hochberg & Tamhane, 1987) noted that
different families could share statistical dependence with each other, which is
the case here, so they are not necessarily the same family just because the data
shares some statistical relationship. The question boils down to if they are
answering the same research question or not. If both analyses are trying to
explain task performance, they are the same family as it is a similar research
question. Whereas if the research is about how to quantify brain data (as a
network or as regions), it can be argued that they are different families.

It seems pertinent that researchers must at least reflect on why their sequential
tests are not part of the same family as previous tests if they decide to not
correct for them. This reflection should: (i) justify that their study meets the
requirements for being confirmatory, and (ii) justify how their particular set of
tests should be considered a different family of tests from any previous studies
using the data. The second will depends on whether the dataset has a variable
that most analyses will use in a similar way to tackle a similar set of research
questions. For example, polling data will use “voting intention” in most analyses,
and neuroimaging datasets will generally study the same cognitive process/task
(and not ask questions about representations). In many instances, these two
criteria will be hard to meet.
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