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Abstract 

Several studies have mined short-read RNA sequencing datasets to identify lncRNAs, 

and others have focused on the function of individual lncRNA in abiotic stress 

response. However, our understanding of the complement, function and origin of 

long-non-coding RNA (lncRNAs) response to abiotic stress, especially transposon 

derived lncRNA (TE-lncRNA), is still in its infancy. To discover and study lncRNAs in 

maize (Zea mays ssp. mays), we utilized a dataset of 127 RNA sequencing samples 

that included PacBio fl-cDNA and total RNA-Seq datasets. Overall, we identified 

23,309 candidate lncRNAs, 60% of which were identified in polyadenylated (polyA+) 

samples. The majority (65%) of the 23,309 lncRNAs had sequence similarity to 

transposable elements (TEs). Most had similarity to long-terminal-repeat 

retrotransposons from the Copia and Gypsy superfamilies, representing the high 

proportion of these elements in the genome, but class II, DNA transposons were 

enriched for lncRNAs relative to their genomic representation by 2-fold. By assessing 

the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and 

drought, we identified 1,077 differentially expressed lncRNA transcripts. Their 

expression was correlated (r
2
=0.48) with their nearest gene, suggesting that lncRNAs 

are subject to some of the cis regulatory features as neighboring genes. By inferring 

co-expression networks across our large dataset, we found that 39 lncRNAs act as 

major hubs in co-expression networks, of which 18 appeared to be derived from TEs. 

These results suggest that lncRNAs, especially TE-lncRNAs, may play key regulatory 

roles in moderating abiotic responses. 

 

 

Keywords: Long non-coding RNA, Transposable elements, Abiotic stress, Co-

expression network 
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Background 

The functional component of any genome extends beyond its protein coding 

sequences. Much of the additional function is encoded by RNAs, which vary in size 

from small RNAs (sRNAs) of< 25 nucleotides (nt) in length, to tRNAs of 70 to ~90 nt in 

length, to an even larger class of long non-coding RNAs (lncRNAs). lncRNAs are 

typically defined as being longer than 200 nt and containing no more than one short 

(< 100 amino acids) open reading frame [1]. 

 

lncRNAs represent a stunning proportion of transcriptional products. In mice, for 

example, an early study cataloged ~34,000 lncRNAs, representing one-third of all 

polyadenylated cDNAs[2]. More recent work has annotated ~14,000 lncRNAs in 

humans[3]. Work in plants has lagged somewhat behind, but plant lncRNAs have 

been identified based on various kinds of high throughput expression data. For 

example, microarrays have been used to detect 6,480 lncRNAs from Arabidopsis 

thaliana[4];single-stranded RNA sequence data have led to the identification of 

2,224 lncRNA transcripts in rice (Oryza sativa) [5]; and total RNAseq data have been 

employed to detect 7,245 lncRNAs in maize (Zea mays ssp. mays) [6].  

 

At least three general properties of lncRNAs have become apparent from studies of 

both plants and animals. The first is that many lncRNAs are polyadenylated and 

capped, suggesting that they are transcribed and processed similarly to mRNAs [7]. 

However, lncRNAs can also be non-polyadenylated, and hence robust lncRNA 

discovery requires consideration of both polyadenylated and non-polyadenylated 

RNA samples. The second is that lncRNAs tend to be expressed at lower levels than 

coding genes, but with precise spatio-temporal patterns [3, 7–13]. A third general 

property is that some lncRNAs overlap with coding regions and sometimes contain 

parts of an exon; however, most originate from intergenic spaces (and these are 

sometimes called long intergenic RNAs or lincRNAs). Consistent with their origin 

from intergenic spaces, a large proportion of lncRNAs are either derived from 

transposable elements (TEs) or contain remnants of TEs. For example, Kapusta et al. 
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(2013) determined that 75% of human lncRNAs contained regions that appear to be 

derived from TEs. 

 

Just as the origin and structures of lncRNAs are diverse, they play similarly varied 

functional roles. One major role is to act as templates for sRNA production, which in 

turn often contribute toward the epigenetic silencing of TEs [14, 15]. Some lncRNAs 

perform other key functions, especially regulatory roles in cellular and 

developmental processes [3, 16]. In plants, for example, lncRNAs have been shown 

to affect functions as diverse as phosphate signaling [17], flowering time [18], and 

susceptibility to pathogens [19]. Consistent with the hypothesis that lncRNAs play 

important regulatory roles, some lncRNAs are conserved among species and appear 

to be under purifying selection[3, 20, 21].  

 

A growing body of evidence also points to a potential role for plant lncRNAs in 

responses to abiotic and biotic stresses. A few studies have identified Arabidopsis 

lncRNAs that respond to salt, drought, heat and cold stresses, as well as phosphate 

starvation [22–24]. The expression of 28% (1,832 of 6,480) of Arabidopsis lncRNAs 

was found to be significantly altered under biotic and/or abiotic stresses [4]. These 

findings – i.e., that lncRNAs are associated with stress responses – are particularly 

important in the context of crop species, because abiotic stresses affect crop yield 

and quality [13, 25–29]. However, the identification of lncRNAs during crop stress 

response remains largely unexplored, with a few notable exceptions. For example, 

637 nitrogen-responsive lncRNAs and 664 drought-responsive lncRNAs have been 

identified in maize seedlings [6, 30]. Similarly, 1,010 and 1,503 lncRNAs are known to 

be differentially expressed under abiotic stress in rice and in chickpea [31].An 

important but challenging issue is to discover lncRNAs that are associated with 

abiotic stress responses and then to determine which lncRNAs function as key 

regulators, which serve as sRNA templates and which represent transcriptional 

noise. 
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Here we identify lncRNAs that relate to abiotic stress responses in maize. Our work 

extends previous maize lncRNA studies in at least three ways [6, 8, 30]. First, our 

efforts to detect lncRNAs are based on more expansive data. To perform lncRNA 

discovery, we have amassed 127 RNAseq datasets that were generated by different 

methods, in different tissues and across developmental stages, with a large subset 

generated in abiotic stress experiments, including salt, drought, heat, cold, UV and 

ozone stresses. The data include 89 RNAseq samples based on Illumina sequencing, 

36 RNAseq datasets based on PacbioIsoSeq experiments, and two Illumina RNAseq 

datasets that were based on total RNA to potentially detect non-polyadenylated 

RNAs. Second, we investigate the relationship between TEs and lncRNAs. More than 

85% of the maize genome consists of DNA derived from TEs [32], and we therefore 

expect that many lncRNAs exhibit similarity to TEs. Thus far, however, the 

connection between lncRNA and specific TE superfamilies has not yet been 

investigated for maize. Third, we identify the subset of lncRNAs that are differentially 

expressed under abiotic stress to begin to narrow the set of candidates that function 

in stress response. We futher investigate co-expression of lncRNAs with neighboring 

genes within expression networks to further narrow a candidate list of potentially 

functional lncRNAs [33, 34]. Bringing these diverse analyses together, we identify 

several lncRNAs that are hubs in coexpression networks relative to abiotic stress 

responses, including lncRNAs derived from TEs.  

 

Results 

Construction of transcripts and lncRNA discovery  

To discover lncRNAs and examine their expression during abiotic stress, we used 89 

RNAseq samples, 2 total RNA-Seq samples and 36 Pacbio Iso-Seq samples. For the 

Illumina datasets, we extracted and cleaned ~305 Gb of sequence data; on average 

92.1% of Illumina reads per sample aligned successfully to the maize B73 v4 

reference sequence[35]. Aligned reads from each Illumina sample were merged. We 

also collected and cleaned ~1.98 Gb of IsoSeq sequences, aligned them to the B73 

reference, and collapsed them for a total of 17,673 loci with 43,774 transcripts. We 
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then combined the Illumina RNAseq and PacBio IsoSeq data based on alignment of 

contigs to the reference, ultimately identifying a non-redundant set of 77,172 loci 

with 95,523 transcripts (Figure S1). Among these, 19,449 transcripts that were found 

only in the total RNA sample, representing potential polyA- lncRNAs. The set of 

95,523 transcripts consisted of both coding transcripts and potential lncRNA 

transcripts. To identify the latter, we used a pipeline based on a combination of 

annotation programs and Pfam analyses (see Methods). Of the 95,523 assembled 

transcripts, CPC2 annotation identified 31,967 non-coding transcripts (CPC2 

scoreO<O-1), and 41,839 transcripts were deemed to be noncoding based on CNCI 

analysis. Of these two sets, 26,099 transcripts were longer than 200 bp and were 

predicted to be non-coding by both CPC2 and CNCI. These were further filtered by: i) 

comparing them to the Pfam database, retaining only those transcripts without a 

match (Blast, Evalue>1e-05) and ii) FPKM filtration, based on our requirement that 

FPKM had to exceed 1 in least one sample. The final dataset, which we consider high 

confidence lncRNAs, consisted of 23,309 transcripts (Table 1; Figure S1), 

representing 24% of the total (23,309/95,523). The average length of these 

candidate lncRNAs was 382 bp. None had an ORF > 100 amino acids in length, as per 

our definition of lncRNAs (see Methods), but most (95.15%) had one ORF. Among the 

23,309 lncRNA candidates, 59.3% (or 13,822 transcripts) were identified from 

polyadenylated (polyA+) RNAseq samples, and the remaining 40.7% (or 9,487 

transcripts) were from total RNA samples, representing potential polyA- transcripts 

(Table 1; hereafter we refer to lncRNAs from total RNAs as polyA- for simplicity). A 

file containing all the identified lncRNAs sequences, along with their genomic 

locations, is provided in DataS1. 

 

The 23,309 lncRNAs were widely distributed across the 10 maize chromosomes 

(Figure S2). We also examined their location relative to annotated coding sequences 

within the maize genome. As expected from our search strategy, most lncRNAs 

(87.9%; 20,499 of 23,309) were intergenic, based on the output (a U class code) from 

gff compare. Only 185 lncRNAs were found to be intronic, with 29 and 156 as polyA- 
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and polyA+ (Table 1). The remaining high confidence lncRNAs corresponded to, or 

overlapped with, previously annotated lncRNAs in the B73 v4 reference (Table 1).  

Among the 20,499 lincRNAs, 44.7% (or 9,153 of 20,499) were from total RNA 

datasets (i.e, potentially polyA-), representing a significant enrichment for lncRNAs 

within the total RNA samples (Pearson χ-squared; p < 0.001).  

 

Most lncRNAs are derived from transposable elements  

Although a large fraction of lncRNA derive from TEs [7, 36], leading to the hypothesis 

that TEs have shaped functional domains of lncRNAs [37], this previous paper 

provided few details about the relationship between TEs and lncRNAs, such as the TE 

superfamilies that have contributed to lncRNAs or the proportion length of individual 

lncRNAs that can be attributed to TEs.  

 

To identify which lncRNAs may be derived from a TE, we masked regions of our 

23,309 high-confidence lncRNAs using a species-specific TE library (see Materials and 

Methods). Overall, we found that 65.69% lncRNAs (15,312 of 23,309) overlapped 

with known maize TEs, which is a proportion similar to the previous maize study 

based on fewer lncRNAs [8]. Most (61%, or 9,341 of 15,312) TE-lncRNAs showed 

similarity to TEs over ≥90% of their length (Figure 1A). Perhaps unsurprisingly, the 

proportion of polyA- lncRNAs that were masked by TE sequence was higher than that 

of polyA+ lncRNAs (79.26% vs. 56.37%), which is a significant difference (p< 1e-5) 

(Figure 1B). Hereafter we refer to lncRNAs with sequence similarity to TEs as “TE-

lncRNAs”. 

 

We further investigated the superfamily of TEs that were similar to the 15,312 TE-

lncRNAs. We found that 86% had sequence similarity to Long Terminal Repeat 

retrotransposons of the Gypsy and Copia superfamilies (Table 2) and also that some 

of these TE-lncRNAs exceeded 3,750 bp in length (Figure 1C). A much smaller 

proportion of TE-lncRNAs were derived from DNA transposons (Table 2); the longest 
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of these were shorter than the longest TE-lncRNAs with similarity to Gypsy and Copia 

elements (Figure 1C).  

 

These observations raise an interesting question: Do LTR/Gypsy and LTR/Copia 

elements give rise to lncRNAs more often than expected, given their proportion of 

the genome? To address this question, we estimated the proportion length among 

all annotated TEs that were attributable to LTR/Gypsy, LTR/Copia and other element 

superfamilies, based on RepeatMasker analyses. We then compared these 

percentages to the proportion length among inferred TE-lncRNAs (Table 2). We 

found, for example, that LTR/Gypsy elements produced TE-lncRNAs at roughly the 

expected proportion (61% vs. 59%), relative to their representation in the genome. 

However, LTR/Copia elements contributed TE-lncRNAs at a lower proportion than 

their proportion length among annotated TEs (22% vs. 33%). Particularly notable is 

the fact that class II DNA elements produced TE-lncRNAs in our dataset at ~2-fold 

higher rate (12% vs. 6%) than expected based on their total length among TEs in the 

genome (Table 2).   

 

Differential expression under abiotic stress 

One general feature of lncRNAs is that they are expressed at lower levels than 

protein coding genes, and they are often expressed tissue specifically [3, 6, 8, 23, 38, 

39]. We assessed the expression levels of coding and lncRNA transcripts based on 

their maximum FKPM across all of our 129 datasets and then averaged these 

maximum levels across transcripts. The results indicate that lncRNAs are expressed 

at lower levels than coding RNAs (Figure 2A), with coding regions expressed at three-

fold higher levels, on average, than non-TE-lncRNAs (average FPKM: 12.57 vs. 4.30) 

and six-fold higher levels, on average, than TE-lncRNAs (average FPKM: 12.57 vs. 

2.04). 

We next sought to identify coding genes and lncRNAs that were differentially 

expressed under abiotic stress. To do so, we contrasted treatment versus control 

RNAseq samples. For example, the RNAseq data from V3 consisted of two control 
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samples and two replicated treatment samples from each of four stresses (salt, 

drought, heat and cold) (Table S1). Accordingly, we contrasted each stress treatment 

to the control, for a total of four contrasts in the V3 stage. Extending this approach 

to the V4 and V6 stages across all the RNAseq data, we performed a total of 12 

contrasts (Table S1). These contrasts identified numerous differentially expressed 

coding genes and lncRNAs (Table 3). The various treatments identified ~2000 up- or 

down-regulated coding transcripts, on average, and a set of 1,077 non-redundant 

lncRNAs that were either up- and down-regulated across treatments.  

 

Among the 1,077 non-redundant lncRNA transcripts, many were differentially 

expressed in two or more treatments. For example, 679 lncRNAs were identified as 

differentially expressed across V3-V6 stages under heat treatment (Table 3; Figure 

2C; Table S3, Figure S3). Of these, 29 lncRNAs were differentially expressed in all 

three developmental stages, and 79, 214 and 232 lncRNAs were specific to the V3, 

V4 and V6 stages, respectively. Interestingly, 40.50% (32/79) heat-responsive 

lncRNAs at V3 stage, 26.17% (56/214) heat-responsive lncRNAs at V4 and 42.67% 

(99/232) heat-responsive lncRNAs at V6 were also differentially expressed in 

response to other stress treatments, but not shared among developmental stages. 

These patterns implicate many of the lncRNAs in general abiotic stress responses, 

but they also imply that these responses have temporal (i.e., developmental) 

specificity.  

 

Interestingly, 529 non-redundant TE-lncRNAs were differentially expressed under 

one or fewer conditions. The proportion of differentially expressed TE-lncRNAs was 

lower than the proportion of all lncRNAs; TE-lncRNAs were 65% of the total 

proportion of lncRNAs, but constituted only 45% and 56% of up- and down-regulated 

lncRNAs. Most of the differentially expressed TE-lncRNAs had similarity to LTR/Gypsy 

and LTR/Copia, as expected, but other TE families also contributed to differentially 

expressed TE-lncRNAs. For example, MSTRG.32907 exhibited similarities to LINE 

elements, MSTRG.73329 was similar to DNA/hAT-Ac elements, and MSTRG.37644 
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was an LTR/Gypsy elements. All of these were differentially expressed in the V3 

stage, but in different treatments (heat, cold and salt, respectively) (Figure 4). 

 

lncRNAs have been shown to be involved in cis regulation of neighboring genes. To 

investigate this possibility, we examined the correlation in expression between 

lncRNAs and their closest neighboring gene in either the 5’ or 3’ direction, yielding a 

dataset of 1077 differentially expressed lncRNAs and their neighboring genes. The 

lncRNAs were strongly (r=0.48), and highly significantly (p< 2e-16) correlated with 

the expression of their closest neighboring gene (Figure 2B), suggesting that lncRNAs 

may either be involved in cis regulation or are subject to some of the same cis 

regulatory features as their neighboring genes. 

 

Co-expression modules associated with stress responses 

Compared to coding genes and microRNAs, the function of lncRNAs in abiotic stress 

response remains largely unknown. Computational construction of gene co-

expression networks can be a valuable tool for linking lncRNAs and coding RNAs and 

also for beginning to infer potential biological functions, because  

co-expressed genes are often members of the same pathway or protein complexes, 

are often either functionally related, or are controlled by the same transcriptional 

regulatory program [33, 40–42].  

 

We used the 89 Illumina RNA-seq datasets to build co-expression networks (see 

Methods and Table S1). WGCNA analyses identified 40 modules that comprise 

various nodes in the network. Of the 40 inferred modules, 16 were significantly 

correlated with stress treatments (Figure 3, Figure S4, Table S3, S4). These 16 

contained 7,221 transcripts including 408 lncRNAs, of which 171 were TE-lncRNAs. 

Most of the 16 modules were associated with a single stress and developmental 

stage, but some were correlated with two or more stresses or stages (Figure 3). For 

example, the ME_darkgreen module was highly correlated with drought at the V3 

stage (r
2
=0.76, p<4e-18), but it was also significantly correlated with salt stress at the 
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V3 (r
2
=0.21, p<0.05) and V4 (r

2
=0.29, p<0.005) stages. Similarly, the ME_salmon 

module correlated with drought (r
2
=0.25, p<0.02) and salt stresses (r

2
=0.45, p<1e-05) 

and salt stress at the V4 stage (r
2
=0.38, p<3e-04). Complete correlation information 

between modules and stress conditions and developmental stages are provided in 

Figure S4. 

 

Recent work uncovered a temporal transcriptional logic underlying nitrogen (N) 

signaling in Arabidopsis [43]; we see similar logic based on developmental timing for 

abiotic stress responses. Consider the example of heat stress: the ME_tan module 

was correlated with V3 heat stress (r
2
=0.89, p<4e-32), the ME_yellow module 

correlated with V4 heat stresses (r
2
=0.96, p<1e-49), and the ME_darkturquoise 

(r
2
=0.43, p<2e-05) and ME_pink (r

2
=0.49, p<1e-06) modules were associated with 

heat in the V6 stage. These data suggest a developmental cascade of heat-

responsive modules. To illustrate this graphically, we arranged the 16 associated 

modules by stress and development stage. Like heat stress, cold and drought stress 

were both associated with distinct modules at different developmental stages. There 

were exceptions, however, as both salt and UV stress associated with two modules 

in the V4 stage (Figure 3).  

 

Among the 16 significant modules, the most lncRNAs were associated with the 

ME_yellow module, which correlated with heat stress in the V4 stage (r
2
=0.96, p<1e-

49) and contained 147 lncRNAs and 65 TE-lncRNAs. Figure 4 details the expression 

pattern of this and other stress related modules. Given these modules, it is possible 

to extract the eigengenes from modules to infer function. For example, the 

eigengenes for the ME_yellow module were assigned into GO categories related to 

‘response to heat’, ‘response to high light intensity’, ‘heat acclimation, response to 

radiation’, ‘regulation of seedling development’ and ‘ER-nucleus signaling pathway’. 

The ME_darkturquoise (r
2
=0.43, p<2e-05) and ME_pink (r

2
=0.49, p<1e-06) modules 

were also associated with heat stress but in a later development stage (V6). These 

two modules contained 52 lncRNAs and 16 TE-lncRNAs, and their eigengenes 
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exhibited significant enrichment of the GO terms ‘intracellular ribonucleoprotein 

complex’, ‘HslUV protease complex’, ‘cytoplasmic translation’ and ‘intracellular 

membrane-bounded organelle’ (Table S5-S7). Overall, GO-inferred functions helped 

to verify that the modules reflect aspects of the stress response.  

 

LncRNAs are hubs in modules  

An interesting facet of the 16 stress-associated modules is that each contained both 

lncRNAs and TE-lncRNAs. We have mentioned that the ME_yellow module contained 

the most lncRNAs of the 16 modules, with 147 lncRNAs and 65 TE-lncRNAs, but other 

modules were similar in containing lncRNAs. For example, the ME_tan module, 

which is associated heat stress in V3, contained 26 lncRNAs and 9 TE-lncRNAs. An 

important question concerns the role of these lncRNAs in expression networks. One 

role, which is suggested by our results (Figure 2B), is that some of the lncRNAs in 

modules are co-expressed with genes due to cis interactions. It is also possible, 

however, that lncRNAs regulate genes in trans. To investigate this possibility, we 

screened for key ‘hubs’, which we defined by high connectivity (i.e., intramodular 

connectivity within the top 10% of all members of the module), membership > 0.9 

and high significance (p< 0.01) in the module. Based on these filters, we identified 

670 hubs that included 39 lncRNAs from different stress-responsive modules (Table 

S4), of which 18 were TE-lncRNAs. 

 

Considering the heat-responsive modules as an example, the 3 associated modules 

had 27 lncRNAs as hubs, out of 225 total lncRNAs, with 12 of the 27 categorized as 

TE-lncRNA. The 27 hub lncRNAs included transcript TE-lncRNAs such as 

MSTRG.32907 (TE-lncRNA, LINE/L1, p< 1.78E-04), MSTRG.35709(TE-lncRNA, 

LTR/Gypsy, p< 2.59E-114), MSTRG.44074 (TE-lncRNA, DNA/hAT-Ac, p<2.11E-19) and 

MSTRG.37268 (TE-lncRNA, DNA/CMC-EnSpm, p<1.63E-08). In Figure 4, we illustrate 

the expression patterns of three of the top-ranked hubs within the heat-stress 

associated modules, with the top-ranked hubs for the other five abiotic stresses in 
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Figures S5-9. All of these hubs are expressed under stress and demonstrate high 

intramodular connectivity.  

 

Many hubs in co-expression networks are known to belong to transcription factors 

(TF) of families such as TCP, AP2/EREBP, MYB, WRKY, NAC, bZIP [44–47]. We found 

interactions and potential crosstalk between lncRNAs and stress-responsive TFs from 

these families. In the heat-responsive modules, for example, hub lncRNAs such as 

MSTRG.32907, MSTRG.36825 and MSTRG.30107 and MSTRG.35709 were connected 

to TF families such as TCP, NAC, Dof and bHLH, which are known to respond to 

abiotic stress from previous studies (Figure 5)[48–50].  

 

These results suggest the possibility that lncRNAs – and more specifically, some TE-

lncRNAs – act to regulate abiotic stress responses. If they play a functional role, one 

would expect them to be conserved over evolutionary time. We tested this idea by 

blasting each of the 39 hub lncRNAs to an evolutionary gradient of genomes that 

included sorghum, rice and Arabidopsis (Table S8). Of the 39, 16 had strong hits (e < 

10
-15

) to sorghum, a close relative to maize, and 4 of these 16 were TE-lncRNAs.  

Three of the hub lncRNAs had hits to rice, but zero of the TE-lncRNAs had rice hits. 

None of the 39 hub lncRNAs had significant hits to Arabidopsis. Overall, these results 

suggest that ~10% these lncRNAs have been conserved since the divergence of rice 

and maize, roughly 50 million years ago [51], and that 39% have been conserved 

since the divergence between sorghum and maize, roughly 16 million years ago [52].   

 

Reliability of gene Expression via qRT-PCR 

To verify the reliability of the RNA-seq experiments, a set of independent biological 

replicates of heat treatment in maize B73 at the stage of  three-leaves stage were 

subjected to quantitative real-time PCR (qRT-PCR) to confirm the expression 

changes.  

Ten transcripts including seven lncRNAs and three coding genes were randomly 

selected for qPCR. Among them, six genes were significantly up-regulated, four 
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genes were significantly down-regulated under heat stress. The results showed a 

high degree of consistency for the product sizes between RNA-Seq and qRT-

PCR(Figure6, Table S9).  

 

Discussion 

In this study, we accumulated and mined an expansive dataset to identify lncRNAs in 

maize, particularly those that are expressed in response to abiotic stress. 

Bioinformatic analyses led to the identification of 23,309 lncRNAs, the largest 

collection yet identified from maize. We characterized these lncRNAs with respect to 

three features: i) their prevalence and origins, especially lncRNAs that appear to be 

derived from TEs, ii) their expression levels and patterns, including a detectable cis-

effect, and iii) their potential for functioning in abiotic stress response, as inferred 

from the construction of co-expression networks.  

 

lncRNA identification and characterization 

By its very nature, lncRNA discovery is limited by a number of factors. It is first, of 

course, limited by the definition of lncRNAs that have been used in the literature – 

i.e., an RNA molecular > 200 bp with at most one ORF or overlapping exon of < 100 

codons [1]. Following precedence, we have adopted this definition for lncRNA 

discovery, but it bears remembering that some of these could in fact be translated 

because they contain short ORFs. A second limitation is the fact that our search 

strategy did not include lncRNAs that overlapped with (or contained) an annotated 

exon. We applied this limitation purposefully, to avoid mis-classification based on 

fragmented RNA molecules or contigs. For that reason, however, our work likely 

underrepresents lncRNAs derived from genes and so some of our estimates may be 

inaccurate. For example, if many lncRNAs are derived from genic regions, then our 

estimate of the proportion of lncRNAs that are derived from TE-lncRNAs is an 

overestimate. It is worth noting, however, that our estimate of the proportion of TE-

lncRNAs (65%) is similar to a previous maize study that estimated 68% of lncRNAs 

were derived from TEs [8]. A third limitation is that the completeness of lncRNA 
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discovery relies critically on the number of tissue and developmental samples that 

are available. With the exception of A. thaliana, for which lncRNA discovery was 

based on 2000 microarray transcriptomes, most plant studies have been limited to 

only a handful of samples, suggesting that there is still much to learn about the 

lncRNA complement within and among plant species. To date, the most RNAseq 

samples use for lncRNA discovery in maize has been 30 [8]; hence, our study has 

greatly expanded lncRNA discovery in this important crop. 

 

Our RNA datasets were highly enriched for polyadenylated (polyA+) transcripts, 

because it consisted of 36 PacBio fl-cDNA datasets, 89 RNAseq datasets and only two 

total RNA datasets. Nonetheless, fully 44% of intergenic lncRNAs were identified 

from the total RNA data, representing a disproportionately large number relative to 

polyA+ data. This observation superficially suggests that far more lncRNAs are polyA-

, which is an important point to consider when one considers that most – but not all 

[6, 53, 54] – lncRNA surveys in plants have relied solely on RNAseq samples and not 

total RNA samples. Previous work has also suggested that the ratio of polyA- and 

polyA+ lncRNAs may be a function of growth conditions and external stresses (Yuan 

et al., 2018). A fuller understanding of lncRNAs may require more substantial 

investments in total RNA datasets. 

 

Most lncRNAs are TE-lncRNAs 

Given our identification of 23,309 lncRNAs, we next sought to characterize their loci 

of origin and particularly to identify those that likely originated from TEs. We found 

that ~65% (15,312) of lncRNAs contained similarity to known TEs. Of these, most 

(61%, 9341 of 15312) were similar to TEs over >90% of their length, suggesting they 

were derived solely from TEs. As we noted above, our estimates of the proportion of 

TE-lncRNAs could be too high, based on our search strategy. However, it is also not 

surprising that we identified a high proportion of TE-lncRNAs, for at least three 

reasons. First, previous studies in mammals have demonstrated that most lincRNAs 

derive from TEs [7, 36]. Second, the maize genome is replete with TEs, with >85% of 
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the genome estimated to consist of DNA derived from TEs [32]. Finally, an important 

function of lncRNAs is to be precursors for small RNAs, which in turn contribute to TE 

silencing via sequence homology [8, 55–57]. 

 

We also investigated the TE families from which TE-lncRNAs originated. Most of the 

TE-lncRNAs were derived from LTR/Gypsy and LTR/Copia families (Table 2), reflecting 

their preponderance in the maize genome [32, 57]. lncRNAs derived from LTR/Gypsy 

elements were represented in a similar proportion to their genomic proportion (by 

length) among the TEs we investigated in our study (Table 2). However, LTR/Copia 

elements were underrepresented in the TE-lncRNA dataset relative to their 

combined lengths in the genome, 22% versus 33%. This suggests that LTR/Copia 

elements do not produce lncRNAs as readily as LTR/Gypsy elements, at least within 

our data. The reasons for the difference between LTR/Copia and LTR/Gypsy are 

presently unclear, but one can consider two broad categories: TE age and TE 

location. For the former, older elements might be expected to be in a deeply-

silenced epigenetic state that relies primarily on the maintenance of methylation 

during cell division rather than an active epigenetic response that enlists 

lncRNAs[58]. For the latter, one might expect LTR/Copia elements to be in genomic 

locations that are transcribed. In fact, however, the opposite is true, because 

LTR/Gypsy elements tend to be concentrated in pericentromeric regions [32] where 

there may be less active transcription and less ongoing silencing. In contrast, 

LTR/Copia elements tend to accumulate preferentially in euchromatic regions[32] 

that tend to be more transcriptionally active. Class II DNA elements also tend to be 

located near genes and euchromatic regions, but unlike LTR/Copia elements they 

produce lncRNAs at about a 2-fold higher than implied by their genomic lengths 

(Table 2). To sum: we have shown that TE superfamilies over- and under-produce 

lncRNAs relative to their genomic representation based on our extensive collection 

of datasets, but the ultimate causes of these differences remain unclear.  

 

Levels and patterns of lncRNA expression  
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Several previous papers from both plants and animals have shown that lncRNAs tend 

to be expressed at lower levels than bona fide genes and that they also tend to show 

tissue-specific patterns of expression [3, 7–12]. We have verified the former by 

recording the maximum FPKM for each lncRNA transcript across datasets; on 

average, lncRNAs are expressed at 4-fold lower levels than genic transcripts by this 

metric (Figure 2A). Unfortunately, we cannot verify that lncRNAs have more tissue 

specific expression than genes, because the bulk of our data were isolated from 

leaves. We can, however, verify that they have lower entropy than genes, on 

average (Average Shannon Entropy = 2.10 for coding genes vs. 1.13 for lncRNAS), 

because the lncRNAs consistently lack expression evidence under more conditions.  

 

Of the 13,822 polyA+ lncRNAs, we found that 1,077 (7.79%) were differentially 

expressed under stress conditions, including 529 TE-lncRNAs. These TE-lncRNAs 

provided an opportunity to assess whether they could be linked to the expression of 

nearby genes, indicating some sort of cis-regulatory pattern, as has been observed in 

other species [20, 59, 60]. TE-lncRNAs were significantly correlated (r
2
=0.48; p< 2.0e-

16) with their nearest neighboring genes (Figure 2B), suggesting that TE-lncRNAs 

may either be involved in cis regulation or are subject to some of the same cis 

regulatory features as their neighboring genes, such as open chromatin structure.  

 

lncRNAs, abiotic stress and coexpression modules 

This study was designed specifically to identify stress-responsive lncRNAs. We 

approached this problem in two ways. We first identified differentially regulated 

lncRNAs from a series of controlled experiments for heat, cold, drought and salt 

stress. Comparing the stress treatment to their corresponding control across 12 

different contrasts, we identified 1,077 lncRNAs with evidence for differential 

expression. This observation corroborates previous studies in suggesting that 

lncRNAs may be differentially regulated under stress [6, 22–24, 30, 31], but it 

provides no indication whether the differentially regulated lncRNAs are a byproduct 

of stress responses or play a functional role. There is, however, a large gap between 
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observing differential expression and proving function. As a first step toward 

bridging this gap, we have built co-expression networks based on both coding RNAs 

and lncRNAs from 89 RNAseq datasets, yielding a total of 40 co-expression modules. 

Of these, 16 were significantly associated with stress responses, and GO annotations 

of these modules were generally consistent with their inferred response functions. 

One interesting facet of these 16 modules is that they demonstrate clear patterns 

across developmental time (Figure 3), suggesting that temporal hierarchies are 

important for plant responses to environmental stress. 

 

It is difficult to infer function from co-expression modules [61], but studies have 

shown that genes with high connectedness tend to be functionally essential [62, 

63]. We were therefore particularly interested whether any of our lncRNAs are 

included within co-expression networks and particularly whether they are ‘hubs’ 

within network modules. Of the 16 modules that were significantly associated with 

stress responses, we identified 670 hubs, many of which corresponded to genes 

from known transcription factor families (Figure 5). Of these 670 hubs, 39 were 

lncRNA transcripts. These represent our best candidates for lncRNAs that function in 

stress response, potentially as trans-acting regulatory factors. Consistent with this 

last conjecture, several of these lncRNA hubs were connected to genes from known 

TF factors [48–50]. Moreover, ~10% these lncRNAs yield strong blast hits to rice, 

suggesting some measure of evolutionary conservation consistent with functional 

constraint, at least for this subset.  

 

One somewhat surprising finding is that 18 of the 39 lncRNA hubs are related in 

sequence to – and perhaps derived from - TEs. This observation raises the intriguing 

idea that TE exaptation can occur at the level of lncRNAs. It is now well known that 

TE exaptation contributes to many aspects of genome function, including protein 

coding genes and especially functional regulatory elements [64–66]. The location of 

TE-lncRNAs as hubs, along with their connectedness to known TFs, suggests that a 

small subset of TE-derived lncRNAs may function as trans-acting regulatory factors in 
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maize. If true, these hubs appear to have been recruited recently, given that only 

four of 16 yield strong hits to the sorghum genome. Clearly additional work is 

required to prove that these TE-lncRNAs function as hypothesized in abiotic 

response, but their centrality in co-expression modules is nonetheless an intriguing 

result that is consistent with previous findings showing that most lncRNAs are 

derived from TEs [7] and that lncRNAs can play central regulatory roles in plant and 

animal development [64].  

 

 

Methods 

Sample collection 

In this study, we gathered 36 Pacbio (Pacific Biosciences) Isoseq datasets that were 

sampled from different tissues [67] and 91 illumina RNAseq datasets that were 

sampled from leaves of maize B73 [6, 68–70] (Table S1, Figure S1). Of the Illumina 

datasets, 89 represented polyA+ transcripts and two were based on total RNA, which 

includes putative polyA- transcripts. The datasets were used for three purposes: 

lncRNA discovery, differential gene expression analyses, and the inference of gene 

co-expression networks. All of the 127 datasets were used for lncRNA discovery. A 

subset of 71 of the 91 RNAseq datasets were employed for differential gene 

expression analyses (Table S1); these included replicated control and treatment 

samples from experiments that tested the effects of drought, salt, heat, cold, UV and 

ozone treatments on gene expression. Finally, all of the 89 polyA+ illumine RNAseq 

datasets were used for inferring gene co-expression networks. The 89 Illumina 

datasets represented a developmental series sampled from V3, V4 and V6 seedlings; 

we take advantage of this developmental series in some network analyses (Table S1, 

Figure S1).  

 

Data processing and alignment 

Raw data were converted into the FASTQ-formatted file by the Fastq-dump program 

from the SRA Toolkit (https://github.com/ncbi/sratoolkit). For Illumina data, the 
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SolexaQA++ v3.1 program [71] was employed for quality trimming, using the Q20 

value. After trimming, any reads < 50 bp were removed. Cleaned reads were then 

aligned to the B73 reference genome sequence (v4, http://plants.ensembl.org) using 

the STAR aligner program [72] with default parameters. Aligned reads were 

assembled into transcripts by the StringTie program, using the RABT (reference 

annotation-based transcript) assembly algorithm [73]. For the Pacbio IsoSeq data, 

reads were aligned to the B73 reference genome using the Minimap2 program [74]. 

Unique isoforms were collapsed, based on genome alignment by Cupcake ToFU 

(https://github.com/Magdoll/cDNA_Cupcake). Subsequently, the assembled 

transcripts from Illumina RNAseq and PacbioIsoSeq were merged using StringTie, 

which yielded a non-redundant unified set of transcripts. 

 

Computational identification of intergenic and intronic lncRNAs 

To find lncRNAs, a strict computational strategy was performed as described by Lv 

et. al (2016) that and consisted of four steps. First, non-redundant transcripts were 

submitted to annotation programs to evaluate their coding potential. We used two 

annotation programs – CPC2[75]and CNCI[76] – and focused on transcripts that were 

identified as having no coding potential by both programs as candidate lncRNAs. 

Second, we submitted candidates to the Pfam database using Pfam_scan script 

(ftp://ftp.ebi.ac.uk/pub/databases/Pfam/), which aligns transcripts with Hmmer[77]. 

We filtered out any transcripts that aligned to known protein families at an 

Evalue<1e-05.  Third, we compared the remaining transcripts to reference 

annotations using gffcompare[78], which outputs various codes to designate the 

relationship of transcripts to annotated coding regions. We retained transcripts with 

class codes “i”, which indicates that a transcript is fully contained within a reference 

intron, and “u”, which designates transcripts that are not obviously related to known 

coding regions, for further analyses. This last step is likely to miss some sense and 

anti-sense lncRNAs that derive from coding regions but also limit false positives 

based on incompletely assembled coding transcripts. Finally, we retained transcripts 

as high confidence lncRNAs if they passed all of the previous four steps, if they were 
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longer than 200bp, and if they had an FPKM (fragments per kilobase of exon model 

per million reads mapped) > 1 in at least one of our sample datasets. To determine 

the relationship of high-confidence lncRNAs to TEs, we masked the lncRNA 

sequences to identify TE domains. Masking was based on the maize-specific library 

of Repbase database (www.girinst.org) and was performed by RepeatMasker  

(www.repeatmasker.org). 

 

Gene expression analyses 

We performed two separate types of analyses based on gene and lncRNA expression 

data. The first analysis was differential expression analysis based on comparisons 

between stress and control data (Table S1). To perform these analyses, high quality 

reads were aligned to the B73 reference using the STAR program [72]. For reads that 

mapped to multiple locations, we removed alignment reads with a mapping quality 

<20, based on SAMTools [79]. Raw counts were quantified using the featureCounts 

program [80], and the FPKM value per gene was calculated using a custom Perl 

script. The DESeq2 package [81] was used to perform pairwise comparisons between 

samples to identify differentially expressed transcripts. To identify differentially 

expressed genes (DEG), we relied on two criteria: the Log2(fold change) had to be >1 

and the adjusted p-value from DEseq analyses had to be p-adj<0.05.  

 

The second type of analysis was the inference of co-expression networks. To 

construct networks, expression profiles were extracted from each gene and lncRNA, 

and expression levels were normalized using variance stabilizing transformation in 

DESeq2 [81]. Co-expression correlations among lncRNAs and genes were based on 

Pearson correlations with R
2
O≥O0.8 across the 89 RNAseq datasets.  An unsigned co-

expression network was inferred using the WGCNA package[82] with an optimal soft 

thresholdO=O12. Modules within the network were assigned using Topological 

Overlap Matrix (TOM). The correlations between modules and stress treatments 

were calculated and plotted, and then the significant stress-responsive modules 
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were extracted for further analysis.Co-expressed networks were visualized by the 

Gephi program [83]. 

 

Gene Ontology enrichment analysis 

The eigengene probes of each stress-responsive module were assigned putative 

functions by searching against the UniProt protein database [84].  Searching was 

based on using the Blastx program [85], using a cut-off e-valueO≤O1e-10.  Coding 

eigengenes were then submitted to the AgriGO v2 online toolkit [86] for gene 

ontology term enrichment. A Fisher’s exact test was applied for the enrichment 

analysis and the p value was adjusted using the Bonferroni method, with an 

experiment-wide significance level of 0.05.  

 

Stress treatment, RNA extraction and qRT-PCR analysis 

The maize inbred line B73 was germinated in a greenhouse at  JAAS (Jiangsu 

Academy of Agricultural Sciences).  Seedlings at the three-leaf (V3) stage were then 

incubated at 50℃ for 4 hours for heat stress treatment as described by Makarevitch 

et al. [70]. Leaves with three independent biological replicates were collected and 

processed for RNA extraction and first strand cDNA synthesis according to 

PrimeScriptTM
RT

 Master Mix (TaKaRa).  qPCR was performed using SYBR Premix 

DimerEraser™ kits (Takara) on a Real Time PCR System (Roche LightCyclerR 96, USA), 

according to the manufacturer’s instructions. Quantification results of target 

transcripts were calculated using the comparative 2ΔΔCt method. Primers were 

designed using Primer Primer5 [87] and can be found in Additional file 1: Table S9 
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Figure S1 A schematic showing the data used in this paper, the bioinformatic 

pipeline for lncRNA identification, numbers of genes and identified lcRNAs, and some 

features of downstream lncRNA analyses.  

Figure S2 The chromosomal distribution of lnc RNAs. Density were plotted on each 

chromosome. 

Figure S3 Differential expressed genes under different abiotic stresses. A-D, Venn 

diagram of DEGs under different stresses across different development stage V3-V6. 

E-G, Venn diagram of DEGs under different stress conditions at one stage.  

Figure S4 The correlation values (r) between each of the inferred coexpression 

modules and the specific traits (e.g., Heat, Cold) at different development times 

(e.g., V3 to V6). A subset of these data for the top 16 stress-associated modules is 

provided as a heat map in Figure 3.  

Figure S5-S9 These figures are the same format as that of Figure 4, but represent 

cold (Figure S5), drought (Figure S6), salt (Figure S7), UV (Figure S8) and ozone stress 

(Figure S9). Each figure contains a heat map (top) and graphs of the expression of 

specific TE-lncRNAs (bottom) that were chosen because they overrepresented with 

high interconnectivity.  The heat graph shows transcript expression levels for genes 

and lncRNAs in each module (y-axis) and across conditions (x-axis). The key to 

modules (y-axis) and stress conditions (x-axis) are shown on the right legend, with 

conditions also separated by developmental stage (bottom of x-axis). Warmer colors 

within the heat map indicate high expression, and cooler colors are under-

expression. The bar plots below the heat graph are eigen-lncRNA expression values 

selected from the top overrepresented lncRNAs with high interconnectivity. The x-

axis is the same as the heat map, and the id of the lncRNAs is provided by the color 

key.   

 

TableS1 The summary of pre-processing, alignment of Illumina and Pacbio datasets. 

Table S2 The detail of identified lncRNAs including TE information 

Table S3 Differential expressed lncRNAs and TE-lncRNAs under different abiotic 

stresses across developmental stages. Each sheet represents different stress 
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treatment at the developmental stage. 

Table S4 The information of stress-associated modules. 

Table S5 The detail of stress-responsive modules including member id, TE 

superfamily and TF family classification, membership value, kIM value and p value 

across different stages and stress treatments. 

Table S6 Overrepresented GO terms of stress-responsive modules. 

Table S7 GO enrichment results of different stress-responsive modules. Each sheet 

include enriched GO term under difference abiotic stress such as heat, cold, drought, 

salt, UV and Ozone across V3 to V6 stages. 

Table S8 The similarity of 39 hub lncRNAs with neighboring species 
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Figures and tables 

 

Table 1: A summary of lncRNA discovery 

 Total 
%TE-

lncRNA 
lincRNA intronic 

Fall within 

annotated 

lncRNAs 

Overlap with 

annotated 

lncRNAs 

polyA- 9,487 79.26% 9,153 29 189 116 

polyA+ 13,822 56.37% 11,346 156 1,201 1,119 

Total 23,309 65.69% 20,499 185 1,390 1,235 

 

 

 

Table 2: The proportion of base pairs attributable to different TE superfamilies 

based on the total length of inferred TE-lncRNAs and the B73 reference genome 

TE Class 
Number of TE-

lncRNAs 

% total length of TE-

lncRNAs 

% total length of TEs 

in the genome 

Retroelements    

    SINE 15 0.36% 0.02% 

LINE/L1 151 1.28% 0.96% 

LINE/RTE-BovB 8 0.05% 0.14% 

LTR/Cassandra 47 0.23% 0.10% 

LTR/Copia 3917 22.45% 32.39% 

LTR/Gypsy 9566 61.53% 59.64% 

Total 13,704 85.90% 93.25% 

DNA transposons    

DNA 28 0.28% 0.03% 

DNA/CMC-EnSpm 579 3.97% 3.33% 

DNA/hAT-Ac 234 2.03% 0.73% 

DNA/hAT-Tag1 20 0.56% 0.08% 

DNA/hAT-Tip100 32 0.34% 0.14% 

DNA/MULE-MuDR 213 1.70% 0.93% 

DNA/PIF-Harbinger 291 2.80% 0.64% 

DNA/TcMar-Stowaway 35 0.41% 0.08% 

Total 1,432 12.10% 5.96% 

    

Helitrons 162 1.79% 0.78% 

Unclassified: 14 0.21% 0.02% 

Total 15,312   
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Table 3: Numbers of differentially expressed genes, lncRNAs and TE-lncRNAs in 

maize seedlings under abiotic stress. 

Condition/Stag

e 

Heat Cold Drought Salt UV Ozone 

V3 V4 V6 V3 V4 V3 V6 V3 V4 V6 V4 V6 

Up-regulated 2,051 3,279 2,892 1,273 3,161 1,260 2,560 1,292 2,348 3,114 2,752 1,712 

Coding 1,952 3,030 2,681 1,248 2,976 1,233 2,433 1,264 2,264 3,028 2,703 1,660 

lncRNA 84 223 181 23 159 24 112 22 64 74 36 45 

TE-lncRNA 36 92 86 6 64 8 59 5 21 31 13 19 

Down-

regulated 1,511 3,411 3,407 1,450 2,420 1,543 1,904 1,266 2,944 3,183 2,740 738 

Coding 1,395 3,299 3,209 1,312 2,310 1,414 1,806 1,101 2,894 2,945 2,686 699 

lncRNA 103 97 101 117 93 112 80 150 45 208 42 35 

TE-lncRNA 66 38 118 70 39 63 38 101 15 133 14 15 
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Figure 1: The relationship between lncRNAs and TEs. A) The histogram indicates the 

number of lncRNAs (y-axis) relative to the percentage length (x-axis) of lncRNAs that 

have similarity to TEs. B) The numbers of lncRNAs that are polyA- (i.e., from total 

RNA) or polyA+ with similarity to TEs. The proportion of polyA- lncRNAs is 

significantly enriched for similarity to TEs. C) The length distribution of TE-lncRNAs 

organized by their inferred TE superfamily of origin.  
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Figure 2: Features of the expression dynamics of lncRNAs. A) The Log2(FPKM) expression 

level of coding RNAs, lncRNAs and TE-lncRNAs, based on the maximum expression of each 

lncRNA across datasets. B) The correlation (log2(Fold Change)) of TE -lncRNAs and the 

closest neighboring gene under different stress conditions. The blue curve indicates the best 

fit across all of the plotted points and clearly indicates a strong positive correlation from 

when log2(Fold Change) varies between roughly -5 and 5. The linear correlation of r=0.48 is 

indicated in the graph. C) This figure reports the number of differentially expressed lncRNAs 

under different stress conditions and developmental stages. The blue histogram on the left 

shows how many lncRNAs were differentially expressed under different conditions.  The red 

histogram, coupled with the dot plot below, represent the distribution of differentially 

expressed lncRNAs among stress and stages. For example, the blue graph on the left 

indicates that 187 lncRNAs were differentially expressed under heat stress in V3. Of these, 
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38 were detected only under heat stress, as indicated by the graph in red, while 21 were 

differentially expressed under heat stress at both the V3 and V4 stages and 11 were 

differentially expressed under heat stress at both the V3 and V6 stages.  

 

 

 

 

Figure 3: A visual representation of the 16 modules that were significantly 

correlated with abiotic stress responses. All of the modules were associated with 

one stress condition and developmental stage, such that they exhibit a temporal 

cascade of stress responsiveness under different stresses and across V3 to V6 

developmental stages. The scale of the heat map reflects the level of correlation (r) 

among genes in an expression module for a specific abiotic stress (i.e., Heat, Cold, 

Drought, Salt, UV, Ozone) at a specific development stages (i.e., V3 to V6). 
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Figure 4: lncRNA expression for four modules associated with heat stress. This figure 

consists of a heat map (top) and graphs of the expression of specific TE-lncRNAs (bottom) 

that were chosen because they were top three overrepresented lncRNAs in the four 

modules and had high interconnectivity. Top) The heat graph shows transcript expression 

levels for hub genes and lncRNAs in each module (y-axis) and across conditions (x-axis). The 

key to modules (y-axis) and stress conditions (x-axis) are shown on the right legend, with 

conditions also separated by developmental stage (bottom of x-axis). Warmer colors within 

the heat map indicate high expression, and cooler colors are low (or under) expression. This 

particular heat map illustrates that the four heat-associated modules are, as expected, 

highly expressed under heat stress, but not always at the same developmental stage. 

Bottom) The bar plots below the heat graph are eigen-lncRNA expression values selected 

from the top three overrepresented TE-lncRNAs with high interconnectivity. The x-axis is the 

same as the heat map, and the id of the TE-lncRNAs is provided by the color key. This graphs 

shows, again, that the TE-lncRNAs tend to be more highly expressed under heat stress, but 

with some dependence on developmental stage. Figures S5 to S9 present similar figures for 

modules associated with cold, drought, salt, UV and ozone stress, respectively.  
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Figure 5: The networks of four heat-responsive modules. The four modules are, the 

ME_tan module (top left), the ME_yellow module (top right), the ME_pink module 

(middle), and the ME_darkturquoise module (bottom). In each network diagram, the 

green circles represent TE-lncRNAs; the blue color represents nonTE-lncRNAs; the 
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orange dots represent known transcription factors from various families (e.g., TCP), 

and grey circles represent coding RNAs. The size of the dot represents intramodular 

connectivity, with larger sizes representing higher connectivity. From these 

networks, we can infer that lncRNAs and TE-lncRNAs are sometimes as or more 

interconnected than transcription factors.  

 

 

 

 

 

 

 

 

Figure 6: qRT-PCR validation of differential expressed lncRNAs and coding RNAs  in 

RNA-Seq analysis. The qRT-PCR data represents the mean ± standard error (SE) of 

three independent biological replicates.  
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