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ABSTRACT 
 
Data dependent acquisition (DDA) and data independent acquisition (DIA) are traditionally 

separate experimental paradigms in bottom-up proteomics.  In this work,  we developed a 

strategy combining the two experimental methods into a single LC-MS/MS run.  We call the 

novel strategy, data dependent-independent acquisition proteomics, or DDIA for short.  Peptides 

identified by conventional and robust DDA identification workflow provide useful information for 

interrogation of DIA scans.  Deep learning based LC-MS/MS property prediction tools, 

developed previously can be used repeatedly to produce spectral libraries facilitating DIA scan 

extraction.  A complete DDIA data processing pipeline, including modules for iRT vs RT 

calibration curve generation, DIA extraction classifier training, FDR control has been developed. 

A key advantage of the DDIA method is that it requires minimal information for processing its 

data. 

 

SHORT TITLE 

 

DDIA: DDA and DIA in a single LC-MS/MS run 
 
 
ABBREVIATIONS:  

 

DDA data dependent acquisition 

DDIA data dependent-independent acquisition 

DIA data independent acquisition 

FDR false discovery rate 

iRT indexed retention time 

RT retention time 

QDA quadratic discriminant analysis 

ROC receiver operating characteristic 

 

  

1 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/802231doi: bioRxiv preprint 

https://doi.org/10.1101/802231


GRAPHIC ABSTRACT 
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INTRODUCTION 

High performance mass spectrometry based bottom-up proteomics offers in-depth 

analysis of proteins in samples of complex mixtures, by identifying and quantifying 

corresponding peptides.  Two general classes of bottom-up or shotgun proteomics experiments 

are data dependent acquisition (DDA) and data independent acquisition (DIA) methods.  

 

The DDA (data dependent acquisition) methods have been extensively practiced in the 

proteomics field since its inception.  One widely used implementation of DDA experiments is the 

top N method, in which the N most abundant precursor ions were selected for fragmentation. 

Dynamic exclusion and other techniques allow for achieving deeper precursor coverage and 

avoiding repeated acquisition of most abundant precursor ions.  Peptide identification in DDA 

experiments is generally realized by protein sequence database search of fragment spectra. 

Target-decoy sequence database search can be used effectively for false discovery rate control 

of DDA peptide identification.  

 

In DIA (data independent acquisition) experiments, a set of predetermined wide (often 

overlapping) isolation windows is systematically used to send precursor ions in an isolation 

window for fragmentation.  With sufficiently wide isolation window coverage, all precursor ions 

are subjected for analysis.  

 

Due to multiplexing nature of DIA ms2 spectra, DIA data analysis is challenging.  The robust 

protein sequence database search methods and target/decoy strategies in DDA experiments 

cannot be applied directly.  Several DIA data processing algorithms have been developed. 

MSPLIT-DIA​(1)​ uses spectral similarity to extract DIA data.  DIA-Umpire ​(2)​ extracts pseudo 

spectra from DIA data and identifies the pseudo spectra with DDA-like protein sequence 

database search engines.  Group-DIA​(3)​ generates pseudo spectra by deconvolution of 

precursor-fragment pairs from several DIA data files.  The most widely used DIA data analysis 

methods are still the use of a spectral library constructed from DDA experiments to extract ion 

chromatograms from DIA data.  OpenSWTH​(4)​, Spectronaut​(5)​, and Skyline ​(6)​ are a few widely 

used software packages.   For in-depth interrogation of a DIA experiment, the spectral library 

needs to be sufficiently large and retention times of peptide ions in spectral library should 

correlate well with the DIA data of interest.  To address these issues, we have developed deep 
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learning based tools​(7)​ to predict LC-MS/MS properties from peptide sequence for DIA data 

analysis.  LC-MS/MS properties of peptides, such as indexed retention times (iRT), ms1 charge 

state distributions, and HCD spectra can be predicted accurately from their sequences.  

 

Leveraging on the capabilities of our LC-MS/MS property prediction tools, we introduce here 

DDIA: a data dependent-independent acquisition method, a new MS instrument method 

combined with a novel data analysis strategy.  In a DDIA experiment, both DDA and DIA are 

combined in a single LC-MS/MS run.  A DDIA cycle of scans includes a survey scan followed by 

both DDA ms2 scans and DIA ms2 scans.  A major portion of cycle time is spent on DIA scans 

and a small number of high quality DDA scans can be obtained with a small portion of cycle 

time.  The DDA scans can be identified by conventional sequence database search. 

Identification of peptides in the DDA scans provides useful information for interrogation of the 

DIA scans.  The following information can be obtained from analysis of DDA identified peptide 

ions:  (a) an indexed retention time (iRT) vs retention time (RT) calibration curve, and (b) a 

classifier for DIA extraction FDR control.  A larger spectral library, for example for high 

detectability peptides​(8)​ in human proteome, can then be constructed by spectral prediction 

tools for in depth interrogation of the DIA scans.  

 

We demonstrated the DDIA strategy with analysis of a HeLa lysate digest sample.  The DDIA 

mass spectrometry method has a cycle time of 3.6 seconds, in which 0.6 second is on a survey 

scan and DDA scans and the rest of 3.0 seconds on DIA scans.  A complete data processing 

pipeline was built to process DDIA data from raw files to DIA extraction identification with false 

discovery control.  The LC-MS/MS property prediction tools​(7)​ were repeatedly used in the 

pipeline to generate spectral libraries for DIA extraction.  False discovery rate (FDR) control was 

realized using a decoy spectral library created from a decoy sequence database. 

 

The core advantage of the DDIA method is that minimal amount of information needs to be fed 

into the data processing pipeline.  Indeed, the only assumption made for the sample is its 

species of origin.  Therefore, the DDA identification and the high detectability peptide list 

generation can use the same proteome sequences of the species.  There is no need to spike in 

iRT standard peptides into samples for retention time calibration and to prepare experimental 

spectral libraries from separated DDA experiments. 
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EXPERIMENTAL PROCEDURES 

1.5 𝛍g of Pierce HeLa Protein Digest Standard (PN:88328,Waltham, Massachusetts) for 

each run was used. 

 

The DDIA experiment was carried out on an Orbitrap Fusion™ Tribrid™mass spectrometer from 

ThermoFisher Scientific (San Jose, California) interfaced with an Easy nLC 1000 nanoflow liquid 

chromatography (also from ThermoFisher Scientific).  The peptides were separated on a 50 cm 

long Easy-Spray Acclaim PepMap column with 100 ​Å​ pore size and 75 ​µm​ ID.  The nLC was 

running at 250nL/min and with a gradient  program of 1) 5%B at 0 min to 34%B at 106 min; 2) 

90%B for 14 mins.  Solvent A was 0.1% formic acid in water and solvent B was 0.1% formic acid 

in acetonitrile.  The Easy-Spray column was kept at 60 ​°​C. 

 

The MS instrument method was constructed with two concurrent cycle experiments.  The 

experiment 1 with cycle time of 0.6sec consists of a ms1 or survey scan and data dependent 

(DDA) scans.  The survey scans were acquired with a resolution of 60k with a scan range of 

400 - 1600.  The  The DDA scans were acquired in the orbitrap with 15k resolution, 30% HCD 

collision energy, and an isolation window width of 1.6.  The experiment 2 with 3sec cycle time 

has 55 data independent (DIA) scans, with an isolation widow width of 12 and window center 

spacing of 10.  So there is 1 m/z unit overlapping at the boundary of two adjacent scans.  The 

DIA scans were acquired at 15k resolution, scan range 250 - 2000, and 30% HCD collision 

energy.  The lowest and the highest DIA scan centers are 455.4775 and 995.7475, respectively.  

 

DDIA data processing pipeline 
The DDIA raw data files were processed using home-developed data processing 

pipeline, which incorporates several published software modules.  The major portion of the 

pipeline was written in Python. It’s architecture and major modules are described in the Results 

section and supplemental materials.  Five components of the pipeline were published modules 

described below. 

 

Data access  

The survey scans, DDA ms2 scans, DIA ms2 scans, and the instrument method were 

extracted from the raw data files and saved separately using previously developed PAVA 

code ​(9)​.  
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De Bruijn decoy protein sequence generation 

Decoy protein sequences were generated from normal protein databases using the de 

Bruijn decoy generation tool ​(10)​, which creates a decoy protein sequence from a target protein 

sequence, preserving repeating peptides in a normal (target) sequence database. 

 

Sequence database search of DDA ms2 scans 

The  sequences of human proteome (Uniprot Proteome ID: UP000005640 with 71778 

entries) were downloaded on February 6, 2018.  The corresponding de Bruijn decoy sequences 

were concatenated by use of the target sequences.  The DDA ms2 peaklists were searched 

with the MSGF+ search engine ​(11)​ against the concatenated sequence database.  Trypsin 

specificity with up to 5 missed cleavages were allowed (filtered after search). Cysteine 

carbamidomethylation was the fixed modification. Variable modifications were oxidation of 

methionine, pyro-glu from peptide n-terminal glutamine, and protein n-terminal acetylation with 

or without loss of methionine, and deamidation of glutamine and asparagine.  Precursor m/z 

tolerance was 10ppm and fragment ion detection instrument was set to “Q Exactive”. The 

peptide EValue cutoff of 0.65 was used to obtain the peptide ion FDR of 1.0%. 

 

Peptide LC-MS/MS property prediction tools 

LC-MS/MS properties, indexed retention time (iRT), ms1 or survey scan charge state 

distribution, and HCD spectral intensities of peptides of interest were predicted from their 

sequences (and precursor charge state for HCD spectral prediction) using deep learning 

models​(7)​.  For prediction performance comparison, predicted spectral libraries of peptides of 

interest were also obtained from the Prosit web service ​(12)​.  

 

Peptide detectability prediction 

Peptide detectabilities were computed by the AP3 program​(8)​.  

 

 

RESULTS 
Although the instrument method and the data processing algorithms have not been 

extensively optimized, the data dependent-independent acquisition (DDIA) experiment clearly 
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demonstrated its capability: significant numbers of protein groups can be identified with minimal 

assumptions about the sample.  The only assumption was the sample of human species.  The 

data processing pipeline was able to learn all necessary information, from the raw data file. 

 

DDIA instrument method 
As illustrated in Figure 1, the DDIA instrument method consists of a survey or ms1 scan 

followed by data dependent (DDA) scans, and then by data independent (DIA) scans.  The 

cycle time of the survey scan and the DDA scans was set to 0.6 seconds.  The cycle time for the 

55 DIA scans was 3.0 seconds.  Therefore, it takes 3.6 seconds to complete one whole cycle 

and the instrument spent about 2% of time on survey scans, 15% on DDA scans, and 83% on 

DIA scans. 

In the present method, ions in all scans were detected in Orbitrap.  High mass resolution and 

accuracy of the Orbitrap detection are useful for survey and DIA scans.  Detection of DDA scans 

in Orbitrap was only useful to allow for spectral similarity comparison between DDA spectra and 

DIA pseudo spectra and between spectral prediction models in this study.  A more optimized 

DDIA method should have DDA scans be detected in ion trap to provide higher sensitivity and 

speed.  

 

 

7 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/802231doi: bioRxiv preprint 

https://doi.org/10.1101/802231


Figure 1. A portion of retention time vs ms1 m/z space targeted by the DDIA 

method.  Two complete cycles of scans are shown.  Each vertical line segment indicates 

the retention time (the horizontal axis) and the length of scan range (survey) or ms2 

isolation window width of a scan.  The green, red, and blue vertical line segments  are 

for survey, DDA, and DIA scans, respectively. 

 

DDIA Data Processing Pipeline 
The architecture of data processing pipeline is shown in Figure 2 and the central scheme 

is the backbone of four processing modules of (a) the previously published LC-MS/MS property 

prediction tools​(7)​, (b) spectral library construction module, (c) DIA extraction module, and (d) 

DIA feature classifier. 

 

 

Figure 2. Flow chart of DDIA data processing pipeline.  Rectangular shapes are 

data blocks and round corner blocks are processing modules.  The light green shaded 

blocks are previously published processing tools.  

 

The information flows through the DDIA data processing pipeline in four logical stages.  

 

Processing stage 1 (supplemental figure S1):  The iRT vs RT calibration curve and target DIA 

features for DDA identified peptides were obtained.  The target spectral library was constructed 

using predicted HCD spectra.  Retention time for each of the spectral library entry was 
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calibrated through its predicted iRT value via the iRT vs RT calibration curve .  The target DIA 

features were extracted from the DIA scans and they would be used to train a DIA extraction 

classifier. 

  

Processing stage 2 ( supplemental figure S2):  The decoy DIA features were obtained by 

extraction from DIA scans with downsampled (matching the number of the target peptides) high 

detectability peptides of the decoy protein sequences (de Bruijn decoy).  

 

Processing stage 3 (supplemental figure S3): The DIA extraction classifier was trained using the 

target DIA features for DDA identified peptides (output of Processing stage 1) and the decoy 

features from the de Bruijn peptides (output of Processing stage 2).  

 

Processing stage 4 supplemental figure S4):  The DIA features for high detectability peptides 

were extracted and classified by the DIA extraction classifier to obtain positive identifications. 

 

Identification of DDA peptide ions 

A DDIA raw data file of two hour run was chosen to illustrate the processing pipeline. 

The workflow starts with separation of the raw data file into the instrument method, survey scans 

(1870), DDA scans (15336), and DIA scans (102850).  The DDA ms2 scans were subjected to 

sequence database search against the human proteome sequences and the corresponding de 

Bruijn decoy sequences​(10)​.  8217 peptide ions were identified with the false discovery rate 

(FDR) of 1%.  

 

Construction of iRT vs RT calibration curve 
Accurate retention times (RT) of the DDA identified peptides can be obtained by 

extraction of precursor chromatograms.  For example, the isotope ion chromatograms of the 

precursor ion may be extracted from survey scans and the XIC was fitted with a polynomial 

variance Gaussian function ​(9)​.  But this seems not necessary, since the median 

chromatographic peak widths of 0.255 mins is less than an order of magnitude of the retention 

time extraction window width determined by iRT prediction accuracy.  The retention times of the 

identified DDA scans were directly used instead. 
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Indexed retention times (iRT) of the DDA identified peptides were predicted from their sequence 

using the LC-MS/MS property prediction tools​(7)​.  The iRT vs RT calibration curve was 

constructed using a moving median method with a window width of 4 iRT unit.  Figure 3 is a 

scatter plot of iRT vs RT with the calibration curve and ±3 min boundary bands. 

 

 

Figure 3. Scatter plot of iRT vs RT for the DDA identified peptides.  The 

calibration curve (red) was obtained using a moving median method with window width 

of ±4 iRT unit.  Yellow line is the upper boundary band(+3 RT min from the calibration 

curve).  Green line is the lower boundary band(-3 RT min from the calibration curve).  

 

There are many points in the plot are higher than the median calibration curve, especially in the 

upper right corner.  Those peptides may reside on the column during the normal gradient and 

may be washed out in the final rapid ramp of the gradient.  The data aggregation using moving 
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median allows for rejection of those outliers.  The accuracy of iRT prediction can be estimated 

by the tightness of iRT vs RT points around the calibration curve.  

 

Construction of three spectral libraries 
Target spectral library of DDA identified peptide ions for training DIA extraction classifier 

For each of the 5884 DDA identified peptides, which reside in the ±3 mins boundary 

bands of the iRT vs RT calibration curve, the preferred targeted charge states were determined 

by the predicted charge state distribution by the LC-MS/MS property prediction tools​(7)​, if the 

precursor m/z is in the range of DIA scans (455.4775 - 5 to 995.7475 + 5).  The resultant 8124 

peptide ions were filtered (remove modified peptides) and the filtered list of peptide ions were 

submitted for HCD spectral prediction ​(7)​.  The predicted HCD spectra and their retention time 

obtained from the iRT vs RT calibration curve were combined into the target spectral library 

(7781) for DDA identified peptides.  Ten most abundant ions were selected. 

 

Decoy spectral library for training DIA extraction classifier 

Human proteome sequences (71,778 protein entries) were converted to de Bruijn decoy 

sequences​(10)​.  The AP3 program​(8)​ was used to provide a list of peptides with their 

detectability from the de Bruijn decoy database .  568,117 peptides were selected with the 

detectability greater and equal than 0.6.  As discussed in the section for DDA identified spectral 

library construction, the peptide’s charge state can be selected in the range of DIA scans.  HCD 

spectra were predicted for the 704,063 peptide ions and their retention times were obtained 

from their predicted iRT values using the iRT vs RT calibration curve.  7781 entries of the de 

Bruijn decoy spectral library were randomly selected as the decoy spectral library for training the 

DIA extraction classifier. 

 

Construction of High Detectability Peptide Spectral Library 

High detectability target peptide spectral library was constructed similarly as for the de 

Bruijn decoy spectral library, except this time the human proteome sequences were directly 

used.  There are 551,628 peptides with the detectability greater and equal than 0.6 in the 

human proteome sequences according to the AP3 program​(8)​.  The final high detectability 

peptide spectral library has 704,609 entries. 

 

DIA Extraction 
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Ion chromatograms from survey scans and DIA scans were extracted using the spectral 

libraries described early.  For a precursor, its isotope distribution was calculated and isotope 

fine structures were centroided to give mass and intensity pair for each nominal mass above an 

intensity threshold of 20% of maximum.  After adjusting for its charge state, isotope ion 

chromatograms from survey scans were collected.  Fragment ion chromatograms were 

extracted for upto 10 fragment ions in a spectral library entry from DIA scans with the 

corresponding isolation window.  The m/z tolerances were 10ppm and 25ppm for survey and 

ms2 extractions, respectively.  The retention time extraction window was ±3mins determined by 

the iRT vs Rt calibration plot (figure 3). 

 

Extraction and aggregation of DIA chromatograms is described in detail in Supplemental 

Material.  Briefly, the extraction module extracts isotope ion chromatograms from survey scans 

and aggregate them into dot product and pairwise distance  (against theoretical isotope 

distribution) chromatograms and extract fragment ion chromatograms from DIA ms2 scans and 

aggregate them also into dot product and pairwise distance (against spectral library product ion 

intensities) chromatograms.  The four chromatograms were then aggregated together into a 

peptide ion chromatogram, from which the peak duration was determined and 6 features for the 

peptide ion were computed within the peak duration. 

 

DIA Extraction Classifier Training 
 

7781 feature vectors for the DDA identified target spectral library and 7781 feature 

vectors for the downsampled de Bruijn decoy spectral library were given label of class 1 and 0, 

respectively.  The 13221 vectorts of features were randomly split into the training set (11347) 

and testing set (3783).  The training set was used to train a Quadratic Discriminant Analysis 

(QDA) classifier.  For the testing set, the false discovery rate of 1.06% was achieved with the 

classification probability threshold of 0.996.  
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Table 1. Confusion matrix of the QDA DIA extraction classifier. 

 

The performance of the DIA extraction classifier is shown in the confusion matrix format in Table 

1 and the receiver operating characteristic (ROC) curve in supplemental figure S5.  

 

Spectral comparison among experimental DDA spectra, experimental DIA pseudo 
spectra, and predicted spectra from Prosit and LC-MS/MS property prediction tools 
 The iRT vs RT scatter plot of Figure 3 showed that the calibrated retention through the 

predicted iRT can be used effectively for DIA extraction.  In supplemental figure S6, 

performance for iRT prediction for both Prosit​(12)​ and LC-MS/MS property prediction ​(7)​ tools 

were compared. 

. 

We are now in a position to show in Table 2 that the predicted spectral library is suitable for 

extraction of chromatograms for the fragment ions.  The DDA spectra referred to in Table 2 are 

the identified experimental spectra from DDA scans.  The DIA spectra are pseudo spectra 

obtained by sum of all intensities in the DIA RT extraction peak windows.  As expected, both 

predicted spectra from Prosit​(12)​ or LCMSMS Property Prediction tools​(7)​ match experimental 

DDA spectra well since both models were trained with DDA generated spectra.  Although the 

30% collision energy was specified in the Prosit prediction, the LC-MS/MS Property Prediction 

tools (without collision energy specification) matches to the DDA spectra better.   LCMSMS 

Property Prediction tools correlates well with Prosit.  The pseudo spectra from DIA extraction 

have a poorer correlation with the DDA spectra.  
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 DIA pseudo spectra Prosit LC-MS/MS 
Prediction tools 

DDA spectra 0.893 0.978 0.987 

DIA pseudo spectra  0.825 0.867 

Prosit   0.981 

 

 

Table 2. Comparison between DDA, DIA experimental spectra and predicted 

spectra from Prosit and LCMSMS Property Prediction tools.  Median Pearson 

Correlation Coefficient (median PCC) values are shown. 

 

DIA Extraction of High Detectability Peptide Ions 
The process to generate the high detectability spectral library is the same as that for the 

de Bruijn decoy spectral library, except this time the target human proteome sequences were 

used.  Briefly, 551,628 peptides with detectability (computed by the AP3 program) greater than 

or equal to 0.6 were selected and their charge states were expanded by their survey charge 

state distributions.  The high detectability spectral library of 704,609 peptide ions was 

constructed for interrogation of the DIA scans.  The extracted features were classified using the 

QDA classifier trained with the DDA identified peptides and the downsampled high detectability 

de Bruijn decoy peptides.  

 

Since the spectral libraries for both the DDA identified peptides and the high detectability 

peptides are generated from the same HCD spectral prediction tool and the same retention time 

calibration, the statistical behavior should be the same.  Use of the same classifier and the 

same classification probability threshold to control the false discovery rate (1%) is justified.  The 

total number of peptide ion identifications is 17,796, corresponding to 16,901 unique peptides, 

and 6,204 protein groups.  When the whole de Bruijn decoy spectral library (577,487 entries) 

was used to extract DIA scans, 4,876 were declared as positive.  The number of entries for the 

whole de Bruijn decoy spectral library per false positive hit (188 = 577,487/4,876) is smaller than 

that (152 = 7,781/51) for the downsampled decoy spectral library, indicating that the actual 

peptide FDR rate may be lower than 1.06%.  
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Although 16,901 of unique peptides identified here is a rather small number due to the factors 

discussed earlier, such suboptimal instrument method, inadequate extraction algorithms, and 

the high detectability selection algorithm, the number of 6,204 proteins inferred is respectable. 

Protein inference from peptide identification may be realized by classifying protein groups using 

peptide identification features, such as DeepPep ​(13)​, a deep learning based method.  Here we 

can provide an upper bound of protein FDR of 2.4%, obtained by the following argument: 

1.06% FDR for unique peptides results in 146 falsely identified peptide.  Assuming all the 146 

peptides represent 146 unique protein groups, the protein group FDR is 2.4% (=146/5673). 

 

DISCUSSION 
Advancement in mass spectrometry instrumentation development continuously improves DDA 

and DIA experiment performance.  As shown in Figure 1, the utilization of precursor RT-m/z 

space is poor even in the DIA portion.  In the conventional ion isolation method, precursor ions 

of interest are isolated by a quadrupole (or ion trap) and other ions outside of isolation window 

are lost.  The currently developed Online Parallel Accumulation–Serial Fragmentation (PASEF) 

method ​(14, 15)​, realized on a trapped ion mobility (TIMS) device allows for nearly 100% of 

precursor ion utilization.  The high precursor utilization efficiency is achieved by storing ions in 

the TIMS device, effectively introducing a new ion mobility dimension in the RT-m/z space.  With 

each splice of a given ion mobility, the isolation windows can occupy different regions.  The 

projected final RT-m/z space can be filled up.  Running in the DDIA mode, the PASEF method 

is expected to achieve unpreceded performance.  

 

Neither MS instrument method nor data processing algorithms for theDDIA experiment 

presented here has been optimized.  The product ions of the DDA scans should be detected 

with higher sensitivity and higher speed in an ion trap.  The portion of time spent on DDA 

relative to that for DIA is a trade off between DDA and DIA performances.  More DDA peptide 

identification gives a more accurate iRT vs RT calibration curve and a more accurate classifier 

for distinction between false and true DIA identifications.  With a faster detection device, the 

DDA portion may be reduced.  The DIA isolation window design was not optimal and a better 

design ​(5)​ should be implemented.    The data processing algorithms are also primitive.  The 

function for aggregation of extracted ion chromatograms with different power factors and their 

values were selected rather empirically without thorough investigation.  In addition, the DIA 
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extraction window width of ±3mins is quite wide, due to inaccuracy in iRT prediction. 

Nonetheless, we have demonstrated the usefulness for combining the two traditionally 

separated paradigms into a single LC-MS/MS experiment.  

 

Interrogation of DIA scans with a large spectral library may result in more identification. 

However, the false discovery rate (FDR) control is more challenging.  The machine learning field 

has developed many strategies to deal with the problem of “finding a needle in a haystack”, 

generally called anomaly detection.  Deep learning based anomaly detection methods has been 

recently reviewed ​(16)​.  In this work, random samples from the large decoy spectral library 

extraction should have reasonable statistical representation of that from the large decoy library. 

The False discovery rate (FDR) control with the de Bruijn decoy spectral library may also be 

highly conservative.  We speculate that the high detectability decoy peptides were selected and 

many of them may have the same DIA behavior as real peptides: have the same precursor m/z 

(within the m/z tolerance) and the same fragment ions (also within the m/z tolerance).  But the 

speculation needs to be rigorously investigated.  

 

Traditionally, a large spectral library is prepared using (a) previously acquired experimental DDA 

spectra and (b) spiked-in iRT standard peptide for retention time calibration.  As illustrated in 

Table 1, the predicted HCD spectra (from both Prosit​(12)​ and LC-MS/MS property prediction 

tools​(7)​) are highly similar to the experimental DDA spectra.  Although the iRT prediction 

accuracy is still far from optimal, it will be improved with more sophisticated deep learning 

models to incorporate different experimental conditions.  The proof of concept DDIA experiment 

presented here suggests that it is possible to achieve high performance without the need for 

tedious spectral library preparation and experimental retention time calibration. 
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