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Abstract  9 
Protein synthesis is the most expensive process in fast-growing bacteria1,2. The economic 10 
aspects of protein synthesis at the cellular level have been investigated by estimating 11 
ribosome activity3–5 and the expression of ribosomes3,6, tRNA7–9, mRNA2, and elongation 12 
factors10,11. The observed growth-rate dependencies form the basis of powerful 13 
phenomenological bacterial growth laws5,12–16; however, a quantitative theory allowing us to 14 
understand these phenomena on the basis of fundamental biophysical and biochemical 15 
principles is currently lacking. Here, we show that the observed growth-rate dependence of 16 
the concentrations of ribosomes, tRNAs, mRNA, and elongation factors in Escherichia coli 17 
can be predicted accurately by minimizing cellular costs in a detailed mathematical model of 18 
protein translation; the mechanistic model is only constrained by the physicochemical 19 
properties of the molecules and requires no parameter fitting. We approximate the costs of 20 
molecule species through their masses, justified by the observation that cellular dry mass 21 
per volume is roughly constant across growth rates17 and hence represents a limited 22 
resource. Our results also account quantitatively for observed RNA/protein ratios and 23 
ribosome activities in E. coli across diverse growth conditions, including antibiotic stresses. 24 
Our prediction of active and free ribosome abundance facilitates an estimate of the 25 
deactivated ribosome reserve14,18,19, which reaches almost 50% at the lowest growth rates. 26 
We conclude that the growth rate dependent composition of E coli’s protein synthesis 27 
machinery is a consequence of natural selection for minimal total cost under 28 
physicochemical constraints, a paradigm that might generally be applied to the analysis of 29 
resource allocation in complex biological systems. 30 

Introduction 31 
Protein translation is central to the self-replication of biological cells. It is the energetically 32 
most expensive process in fast growing E. coli cells, accounting for up to 50% of the 33 
proteome2 and 2/3 of cellular ATP consumption1. It is likely that natural selection acted to 34 
optimize the efficiency of this central process. But what exactly is “efficiency” in the 35 
evolutionary context? In the late 1950s, it was hypothesized that ribosomes operate at a 36 
constant, maximal rate3,4, consistent with the observed linear dependence of ribosome 37 
concentration on growth rate3,12,20,21. This hypothesis was later proven untenable, as the 38 
activity of ribosomes was observed to increase with growth rate8. Klumpp et al.5 suggested 39 
that optimal translational efficiency corresponds to the parsimonious usage of translation-40 
associated proteins, most notably ribosomal proteins, elongation factor Tu, and tRNA 41 
synthetases. While these authors were able to fit a coarse-grained phenomenological model 42 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 11, 2019. ; https://doi.org/10.1101/802470doi: bioRxiv preprint 

https://doi.org/10.1101/802470


2 
 

to the data, their suggested evolutionary objective could also not explain the observed 43 
growth rate dependencies quantitatively (see Supplementary Notes 1 for a discussion of 44 
Ref. 5). Thus, it is currently unclear to what extent translation has indeed been optimized by 45 
natural selection, and – if such optimization indeed occurred – whether its action can be 46 
expressed in terms of a simple objective function.  47 

Here, we propose an entirely different evolutionary objective, based on the experimental 48 
observation that cellular dry mass per cell volume is approximately constant across 49 
environments and growth rates in E. coli17, as is the total mass concentration in the cytosol22. 50 
If the cell allocates more of this limited mass concentration “budget” to one particular 51 
process, less is available to other processes. The upper bound for the cytosolic mass 52 
concentration, beyond which diffusion becomes inefficient, is a fundamental constraint on 53 
cellular growth23,24, and we thus use the cytosolic mass concentration of a particular 54 
molecule type as an approximation to its cost.  55 

We hypothesize that to maximize the E. coli growth rate in a given environment, natural 56 
selection minimizes the total cost of translation components utilized to achieve the required 57 
protein production rate. An analogous optimality principle has been used to understand the 58 
relationship between enzyme and substrate concentrations, explaining the scaling of E. coli 59 
proteome sectors with growth rate34. We emphasize that the optimal efficiency of the 60 
translation machinery is not based on the maximization of ribosome activity, but on the 61 
minimization of the combined cost of the complete translation machinery at a given protein 62 
production rate.  63 

Results and Discussion 64 
To test our hypothesis, we constructed a translation model consisting of 276 biochemical 65 
reactions, including 119 reactions with non-linear kinetics (Fig. 1; for details see Methods). 66 
This mechanistic model accounts for the concentrations of mRNA, the ribosome, the 67 
different charged tRNAs, and the elongation factors Ts (EF-Ts) and Tu (EF-Tu). We fully 68 
parameterized the model with molecular masses and kinetic constants measured 69 
experimentally 25–27; the only exceptions are the initiation parameters, which were 70 
previously estimated from gene expression data25, and the ribosomal Michaelis constant for 71 
the ternary complexes, which was estimated based on the diffusion limit5 and hence 72 
represents a lower bound. The model is based purely on biochemical and biophysical 73 
considerations; it contains no free parameters for fitting, nor does it include any explicit 74 
growth-rate dependencies. For E. coli growing under different experimental conditions, we 75 
used measured growth rates and protein concentrations28 to determine the required 76 
translation rate and the proportions of the different amino acids incorporated into the 77 
elongating proteins. At this required protein production rate, we minimized the combined 78 
cost of the translation machinery in our model, treating the concentrations of all 79 
components as free variables; the values of individual reaction fluxes result deterministically 80 
from these concentrations according to the respective rate laws (Methods).  81 

We first compared our predictions to experimental data for exponentially growing E. coli in 82 
different conditions7–9,28,29 (see Fig. 2 for growth in a glucose-limited chemostat at growth 83 
rate μ = 0.35 h-1; for other conditions, see Extended Data Fig. 1). The mechanistic model 84 
accurately predicts the absolute concentrations of ribosomes, EF-Tu, EF-Ts, mRNA, and total 85 
tRNA in each condition. Predictions for individual tRNA concentrations are less accurate but 86 
are still mostly within a 2-fold error (Fig. 2, Extended Data Fig. 1); the discrepancies may be 87 
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due to the simplifying assumption of a single ribosomal Michaelis constant Km for all tRNA 88 
types5.  89 

We next tested if this systems-level view on the total cost of translation explains the 90 
observed growth rate-dependencies of the expression of translation machinery 91 
components7–9,14,28, of the elongation rate14, and of the RNA/protein ratio12,14, considering 92 
experimental data across 20 diverse conditions (14 minimal media, including 3 stress 93 
conditions; 4 chemostats; and 2 rich media)28. The predicted concentrations of ribosomes, 94 
EF-Tu, and EF-Ts increase with growth rate in line with experimental observations (Fig. 3). At 95 
low growth rates (µ<0.3h-1; Fig. 3a), observed ribosome concentrations exceed those 96 
predicted from cost minimization, a deviation consistent with a substantial reserve of 97 
deactivated ribosomes at low growth rates14. Such deactivated ribosomes may provide 98 
fitness benefits in changing environments18,19, but cannot be optimally efficient in a constant 99 
environment and thus cannot be predicted by our optimization strategy.  100 

To allow a meaningful comparison between predictions and experiment, we thus estimated 101 
the experimental concentration of ribosomes actively involved in elongation (Methods). 102 
Cost minimization predicts these experimental estimates with high accuracy across the full 103 
range of assayed growth rates; observed values deviate from predictions on average by 11% 104 
(Fig. 3b).  105 

The remaining, non-active ribosome fraction comprises two parts: the deactivated ribosome 106 
reserve currently unavailable for translation14, and free, potentially active ribosomes not 107 
currently bound to mRNA (see Supplementary Note 2 for the nomenclature on ribosome 108 
states). As our model quantifies the abundance of both active and free ribosomes, their 109 
subtraction from observed total ribosome concentrations provides an estimate of the 110 
deactivated ribosome reserve as a function of growth rate (Fig. 4). While this reserve makes 111 
up less than 20% of total ribosomes at moderate to fast growth, it reaches almost 50% at the 112 
lowest growth rate assayed in Ref.28. 113 

The predicted absolute abundances of EF-Tu (Fig. 3c), EF-Ts (Fig. 3d), and mRNA (Extended 114 
Data Fig. 2a) also account quantitatively for the experimental data7–9,28,29, with average 115 
deviations ≤21% in each case. At low growth rates, experimentally observed concentrations 116 
of EF-Tu (Fig. 3c) and tRNA (Extended Data Fig. 2b) are higher than predicted. The model 117 
only includes charged (aminoacyl-) tRNA concentrations, and it is likely that the unknown 118 
fraction of uncharged tRNA explains at least part of this deviation.  119 

A linear correlation between the RNA/protein ratio and growth rate was discovered in the 120 
1950s3,20,21,30 and forms the basis of phenomenological bacterial growth laws5,12,14. Relating 121 
the predicted total RNA (ribosomal RNA + tRNA + mRNA) with measured protein 122 
concentrations28 indeed results in a near-linear relationship, accurately matching observed 123 
values at high to intermediate growth rates (µ > 0.3 h-1; Fig. 5a). At lower growth rates, 124 
model predictions are slightly too low, likely because of the deactivated ribosome reserve14 125 
(Fig. 4). At low growth rates (µ = 0.12 h-1), RNA and proteins allocated to an optimally 126 
efficient translation machinery (including deactivated ribosomes) account for 12% of total 127 
dry mass, rising almost linearly to ~45% at high growth rates (µ = 1.9 h-1; Extended Data Fig. 128 
3).  129 

The concentrations of the individual components of the translation machinery determine 130 
the average translation elongation rate (ribosomal activity), defined as the total cellular 131 
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translation rate divided by the total active ribosome content19. The predicted elongation 132 
rates closely match the experimental data14 over a broad range of growth rates (Fig. 5b).  133 

The expression of E. coli’s translation machinery reacts strongly to the exposure to 134 
antibiotics that inhibit the ribosome, such as chloramphenicol12,14,15. The details of these 135 
changes can also be understood from our hypothesis of cost minimization. The 136 
concentrations of ribosomes and EF-Tu, the RNA/protein ratio, and the elongation rate of 137 
active ribosomes increase under chloramphenicol stress (Extended Data Fig. 4); these 138 
changes partially compensate for the reduced fraction of active ribosomes. The 139 
concentration of EF-Ts instead decreases with increasing chloramphenicol concentration 140 
(Extended Data Fig. 4c). EF-Ts contributes to translation by converting EF-Tu·GDP to EF-141 
Tu·GTP, which then forms a ternary complex with charged tRNA. Under chloramphenicol 142 
stress, fewer ternary complexes are turned over, and hence less EF-Ts is needed. 143 

In sum, cost minimization in a mechanistic bottom-up model of optimal translation 144 
efficiency, fully parameterized with known kinetic constants and molecular masses, accounts 145 
quantitatively for the concentrations of all molecule species involved. The optimal 146 
concentrations of different components change differentially with growth rate, explaining 147 
the observed scaling of E. coli’s translation machinery composition, RNA composition, and 148 
elongation rate. We conclude that E. coli’s translation machinery works close to optimal 149 
efficiency in terms of the fraction of total dry mass it occupies. This fraction comprises all 150 
molecule species involved in translation, not only the protein part as suggested earlier5,31. 151 
Our results further support the idea that phenomenological growth laws of proteome 152 
composition5,12,14,15 may have their root in the costs associated with the non-protein 153 
molecules involved in particular processes, and that their explicit inclusion in systems 154 
biology models of cellular growth5,25,32,33 may eventually allow these models to abandon any 155 
reliance on phenomenological parameters.   156 
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Figures 251 
 252 

 253 

Figure 1. Schematic overview of the translation model. Translation initiation converts 254 
the free ribosome to active ribosome by combining it with mRNA. Next, the active 255 
ribosome enters elongation, and the codon label is added to limit translation to the 256 
cognate ternary complex (TC). The codon-labeled ribosome catalyzes the new peptide 257 
bond formation with the TC (EF-Tu·GTP·aa-tRNA) as substrate. EF-Tu·GDP and free 258 
tRNA are released after the formation of peptide bond. At the same time with peptide 259 
bond formation, the codon labeled ribosome is re-converted to active ribosome, 260 
which will be labeled again for the next round of elongation or will go to termination. 261 
EF-Tu·GDP is converted to EF-Tu·GTP with the help of EF-Ts. Next, EF-Tu·GTP binds 262 
with the charged tRNA (aa-tRNA) to form TC, which is fed into the next round of 263 
elongation. Ribosome states are indicated by color: grey=free ribosome; orange= 264 
active ribosome; brown=active ribosome with codon label. 265 
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 267 

 268 

Figure 2. Optimal concentrations of the translation machinery components agree with 269 
experimentally measured concentrations in a glucose-limited chemostat (μ = 0.35 h-1; 270 
for other conditions, see Extended Data Fig. 1). The solid line shows the expected 271 
identity, whereas the upper and lower dashed lines show prediction errors of 2x and 272 
0.5x, respectively. Predictions for ribosome, EF-Tu, EF-Ts, mRNA, and total tRNA are 273 
highly accurate, with Pearson’s R2 = 0.99 and geometric mean fold-error GMFE = 1.16, 274 
i.e., predictions based purely on a physico-chemical model and the assumption of cost 275 
minimization are on average 16% off. Predictions for individual tRNA species are 276 
somewhat less accurate, with GMFE = 1.68. Experimentally determined 277 
concentrations of the ribosome (averaged over all ribosomal proteins), EF-Tu, and EF-278 
Ts are from Ref. 28. mRNA 29 and tRNA 9 concentrations are interpolated values based 279 
on growth rates.   280 
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 281 

Figure 3. The growth rate dependence of the concentrations of translation machinery 282 
components28 is consistent between predictions (red lines) and experimental 283 
observations. (a) Total ribosome concentration (arithmetic means across ribosomal 284 
proteins). (b) Actively elongating ribosomes, estimated from data in panel (a) 285 
according to Ref. 14 (see Methods), with R2 = 0.95 and GMFE = 1.11. (c) EF-Tu, R2 = 286 
0.80, GMFE = 1.17.  (d) EF-Ts, R2 = 0.79, GMFE = 1.21. Circles indicate normal 287 
conditions, triangles indicate stress conditions.  288 
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 289 

Figure 4. The estimated fraction of deactivated ribosomes increases sharply with 290 
decreasing growth rate, reaching almost 50% for the lowest growth rate assayed in 291 
Ref. 28 and rapidly dropping towards zero at higher growth rates.  292 

 293 

  294 
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 295 

 296 

Figure 5. The growth rate dependences of the total RNA/protein ratio and ribosome 297 
activity are consequences of translation machinery cost minimization. (a) Predicted 298 
total RNA concentration (mRNA + tRNA + rRNA) relative to observed total protein 299 
concentration at different cellular growth rates (red line) compared to experimental 300 
observations12,14; R2 = 0.97, GMFE = 1.10. (b) Predicted (red line) and experimentally 301 
determined14 elongation rates of actively translating ribosomes (ribosome activities); 302 
R2 = 0.93, GMFE = 1.03. At the lowest assayed growth rates, non-growth related 303 
translation – which is not included in the model – may become comparable to growth-304 
related translation; at these growth rates, the numerical optimization of our model 305 
did not converge, and thus the red lines are not extended into this region.  306 
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Extended Data Figures 307 
 308 

 309 

Extended Data Figure 1. Translation machinery at optimal state at 20 growth conditions on 310 
different media and in chemostats with a minimal glucose medium, sorted by ascending 311 
growth rate. The conditions are those under which protein concentrations were measured in 312 
Ref. 28. mRNA 29 and tRNA 9 were assayed at different growth rates; in order to compare all 313 
data at the same growth rates, we chose the growth rate at which protein concentrations 314 
(ribosome, EF-Tu, EF-Ts) were measured as the reference and used quadratic regression 315 
models across the available data to estimate corresponding mRNA and tRNA concentrations. 316 
As absolute mRNA concentration is only available from low to intermediate growth rates 317 
(0.11 to 0.49)29, we did not attempt to infer mRNA concentration outside of this range.  318 

  319 
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 320 

Extended Data Figure 2. The concentrations of the major non-ribosomal RNA pools 321 
predicted from cost minimization are consistent with experimental observations. (a) mRNA 322 
29, R2 = 0.97, GMFE = 1.06. (b) Total tRNA data from Dong et al. 9 (summed over individual 323 
tRNAs), Forchhammer et al. 8, and Skjold et al. 7; combined R2 = 0.27, GMFE = 1.30.  324 
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 325 

Extended Data Figure 3. Theoretically optimal resource allocation to the translation 326 
machinery as a fraction of total dry mass increases almost linearly with growth rate. The 327 
solid red line indicates the model predictions, without accounting for deactivated ribosomes. 328 
The dashed line indicates the predicted optimal mass fraction when we additionally include 329 
the fraction of deactivated ribosomes, which cannot be predicted by a steady-state model 330 
but which we estimated from experimental observations (see Methods for details). 331 
Experimental data (points) sums the observed concentrations of translation associated 332 
proteins28 (ribosomal proteins, EF-Tu, EF-Ts) and RNA12,14 (ribosomal RNA, tRAN, mRNA; 333 
interpolated to the same growth rates as in the protein measurements, see Methods). Note 334 
that the mass fraction of the translation machinery does not include GDP, GTP, free tRNA, 335 
tRNA-synthetases, and elongation factor G (fusA). Mass fractions are calculated based on the 336 
assumption of a constant proteome mass fraction of 50% of the total dry mass. Some 337 
experimental data shows that the mass fraction of protein in total dry weight decreases 338 
slightly with growth rate19,29, and thus at high growth rates the translation machinery mass 339 
fraction may be slightly lower than shown.  340 
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Extended Data Figure 4. Optimality of the translation machinery under 342 
chloramphenicol stress. Model predictions (red lines) of relative changes in the 343 
concentrations of (a) ribosome, (b) EF-Tu, and (c) EF-Ts under increasing 344 
chloramphenicol stress are qualitatively consistent with experimental data15. 345 
Predicted (d) elongation rates and (e) RNA/protein ratios under chloramphenicol 346 
stress are also qualitatively consistent with experimental data14. Grey dots indicate 347 
experimental elongation rates without chloramphenicol stress; the black line marks 348 
the corresponding (non-stressed) predictions. Different symbols indicate varying 349 
chloramphenicol concentrations, while colours indicate growth conditions (different 350 
nutrients). Dashed lines connect experimental elongation rates (open symbols) under 351 
chloramphenicol stress on the same nutrient; solid lines connect the corresponding 352 
elongation rate predictions (filled symbols). Chloramphenicol concentrations were 353 
varied from 0mM to 9mM. In both predictions and experiment, elongation rates 354 
increase with growing chloramphenicol stress, with faster increases under 355 
progressively poorer nutrient conditions. The overestimated RNA/protein ratio on rich 356 
defined medium (RDM) likely reflects the fact that ribosome is inhibited less by 357 
chloramphenicol in vivo than theoretical calculations predict (see Fig. N1 in Ref.14). 358 
The predictions are functions of the growth rate and of chloramphenicol 359 
concentration; the non-smoothness of the prediction lines likely arise from 360 
experimental uncertainties in the corresponding values.  361 
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