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Abstract. Reproducibility, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility.
Troublingly, we are in the midst of a reproducibility crisis. A key to reproducibility is that multiple measurements
of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are rela-
tively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations—such
as measurement error—as compared to systematic deviations—such as individual differences—are critical. We
demonstrate that existing reproducibility statistics, such as intra-class correlation coefficient and fingerprinting, fail
to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore pro-
pose a novel statistic, discriminability, which quantifies the degree to which an individual’s samples are relatively
similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statis-
tic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that
optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated
and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability
improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing
experiments and analyses to optimize discriminability may be a crucial step in solving the reproducibility crisis, and
more generally, mitigating accidental measurement error.

1 Introduction Understanding variability, and the sources thereof, is fundamental to all of data sci-
ence. Even the first papers on modern statistical methods concerned themselves with distinguishing
accidental from systematic variability [1]. Accidental deviations correspond to sources of variance that
are not of scientific interest, including measurement noise and artifacts from the particular experiment
(often called “batch effects” [2]). Quantifying systematic deviations of the variables of interest, such as
variance across items within a study, is often the actual goal of the study. Thus, delineating between
these two sources of noise is a central quest in data science, and failure to do so, has been problematic
in modern science [3].

Scientific reproducibility, repeatability, and reliability are key in data science, whether applied to
basic discovery or clinical utility [4]. As a rule, if results do not reproduce, we can not justifiably trust
them. The concept of reproducibility is closely related to the statistical concepts of stability [5] and
robustness [4]. Engineering and operations research have been concerned with reliability for a long
time, as they require that their products are reliable under various conditions. Very recently, the general
research community became interested in these issues, as individuals began noticing and publishing
failures to reproduce across fields, including neuroscience and psychology [6–8].

A number of strategies have been suggested to resolve this “reproducibility crisis.” For example, the
editors of “Basic and Applied Social Psychology” have banned the use of p-values [9]. Unfortunately,
an analysis of the publications since banning indicates that studies after the ban tended to overstate,
rather than understate, their claims, suggesting that this proposal possibly had the opposite effect [10].
More recently, the American Statistical Association released a statement recommending banning the
phrase “statistically significant” for similar reasons [11, 12].

A different strategy has been to quantify the reproducibility, or reliability, of ones’ data by measuring
each sample (or individual) multiple times. Such test-retest reliability experiments quantify the relative
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similarity of multiple measurements of the same item, as compared to different items [13]. This practice
has been particularly popular in brain imaging, where many studies have been devoted to quantifying
the reproducibility of different univariate properties of the data [14–17]. In practice, however, these
approaches have severe limitations. The Intraclass Correlation Coefficient (ICC) is an approach that
quantifies the ratio of within item variance to across item variance. The ICC is univariate, with limited
applicability to high-dimensional data, and its interpretation suffers from limitations due to its motivating
Gaussian assumptions. Previously proposed generalizations of ICC, such as the Image Intraclass
Correlation Coefficient (I2C2), generalize ICC to multivariate data, but require large sample sizes to
estimate high-dimensional covariance matrices. Further, motivating intuition of I2C2 makes similar
Gaussian parametric assumptions as ICC, and therefore exhibits similar limitations. The Fingerprinting
Index (Fingerprint) provides a nonparametric and multivariate technique for quantifying test-retest
reliability, but its greedy assignment leads it to provide counter-intuitive results in certain contexts. A
thorough discussion and analysis of these and similar is provided in Appendix A.

Perhaps the most problematic aspect of these approaches is clear from the popular adage, “garbage
in, garbage out” [18]. If the measurements themselves are not sufficiently reproducible, then scalar
summaries of the data cannot be reproducible either. This primacy of measurement is fundamental
in statistics, so much so that one of the first modern statistics textbook, R.A. Fisher’s, “The Design of
Experiments” [19], is focused on taking measurements. Motivated by Fisher’s work on experimental
design, and Spearman’s work on measurement, rather than recommending different post-data acquisi-
tion inferential techniques, or computing the reproducibility of data after collecting, we take a different
approach. Specifically, we advocate for explicitly and specifically designing experiments to en-
sure that they provide highly reproducible data, rather than hoping that they do and performing
post-hoc checks after collecting the data. Experimental design has a rich history, including in psy-
chology [20] and neuroscience [21, 22]. The vast majority of work in experimental design, however,
focuses on designing an experiment to answer a particular scientific question. In this big data age,
experiments are often designed to answer many questions, including questions not even considered at
the time of data acquisition. How can one even conceivably design experiments to obtain data that is
particularly useful for those questions?

Specifically, we propose to design experiments to optimize the inter-item discriminability of indi-
vidual items (for example, participants in a study, or samples in an experiment). This idea is closely
inspired by and related to ideas proposed by Cronbach’s “Theory of Generalizability” [23, 24]. To do so,
we leverage our recently introduced Discr statistic [25]. Discr quantifies the degree to which multiple
measurements of the same item are more similar to one another than they are to other items [26],
essentially capturing the desiderata of Spearman from over 100 years ago. This statistic has several
advantages over existing statistics that one could potentially use to optimize experimental design. First,
it is nonparametric, meaning that its validity and interpretation do not depend on any parametric as-
sumptions, such as Gaussianity. Second, it can readily be applied to multivariate Euclidean data, or
even non-Euclidean data (such as images, text, speech, or networks). Third, it can be applied to any
stage of the data science pipeline, from data acquisition to data wrangling to data inferences. Finally,
and most uniquely, one of the main advantages of ICC, is that under certain assumptions, ICC can pro-
vide an upper bound on predictive accuracy for any subsequent inference task. Specifically, we present
here a result generalizing ICC’s bound on predictive accuracy to multivariate settings. Thus, Discr is
the only non-parametric multivariate measure of test-retest reliability with formal theoretical guarantees
of convergence and upper bounds on subsequent inference performance.

An important clarification is that high test-retest reliability does not provide any information about
the extent to which a measurement coincides with what it is purportedly measuring (construct validity).
Even though reproducible data are not enough on their own, reproducible data are required for stable
subsequent inferences.

This manuscript provides the following contributions:
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1. Demonstrates that Discr adequately quantifies the relative contribution of various accidental
and systematic deviations, where previously proposed statistics fail.

2. Formalizes hypothesis tests to assess discriminability of a dataset, and whether one dataset or
approach is more discriminable than another. This is in contrast to previously proposed non-
parametric approaches to quantify test-retest reliability, that merely provide a test statistic, but
no valid test per se.

3. Provides sufficient conditions for Discr to provide a lower bound on predictive accuracy. Discr is
the only multivariate measure of reliability that has been explicitly related to criterion validity,
both parametric and non-parametric.

4. Illustrates on 28 neuroimaging datasets from Consortium for Reliability and Reproducibility
(CoRR) [27] and 2 genomics datasets which preprocessing pipelines maximize Discr, and
demonstrate that maximizing Discr is significantly associated with maximizing the amount of
information about multiple covariates, in contrast to other related statistics.

5. Replicates the above on multiple ultrahigh-dimensional genomics datasets.
6. Provides all source code and data derivatives open access at https://neurodata.io/mgc.

2 Methods

2.1 The inter-item discriminability statistic Testing for inter-item discriminability is closely related
to, but distinct from, k-sample testing. In k-sample testing we observe k groups, and we want to deter-
mine whether they are different at all. In inter-item discriminability, the k groups are in fact k different
items (or individuals), and we care about whether replicates within each of the k groups are close to
each other, which is a specific kind of difference. As a general rule, if one can specify the kind of dif-
ference one is looking for, then tests can have more power for that particular kind of difference. The
canonical example of this would be an t-test, where if only looks at whether the means are different
across the groups, one obtains higher power than if also looking for differences in variances.

To give a concrete example, assume one item has replicates on a circle with radius one, with random
angles. Consider another item whose replicates live on another circle, concentric with the first, but with
a different radius. The two items differ, and many nonparametric two-sample tests would indicate so
(because one can perfectly identify the item by the radius of the sample). However, the discriminability
in this example is not one, because there are samples of either item that are further from other samples
of that item than samples from the other item.

On this basis, we developed our inter-item discriminability test statistic (Discr), which is inspired
by, and builds upon, nonparametric two-sample and k-sample testing approaches called “Energy statis-
tics” [28] and “Kernel mean embeddings” [29] (which are equivalent [30]). These approaches compute
all pairwise similarities (or distances) and operate on them. Discr differs from these methods in two
key ways. First, rather than operating on the magnitudes of all the pairwise distances directly, Discr op-
erates on the ranks of the distances, rendering it robust to monotonic transformations of the data [31].
Second, Discr only considers comparisons of the ranks of pairwise distances between different items
with the ranks of pairwise distances between the same item. All other information is literally discarded,
as it does not provide insight into the question of interest.

Figure 1 shows three different simulations illustrating the differences between Discr and other reli-
ability statistics, including the fingerprinting index (Fingerprint) [32], intraclass correlation coefficient
(ICC) [33], and Kernel [29] (see Appendix A for details). All four statistics operate on the pairwise dis-
tance matrices in column (B). However, Discr, unlike the other statistics, only considers the elements
of each row whose magnitudes are smaller than the distances within an item. Thus, Discr explicitly
quantifies the degree to which multiple measurements of the same item are more similar to one another
than they are to other items.

Definition 1 (Inter-Item Discriminability). Assuming we have n items, where each item has si
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measurements, we obtain N =
∑n

i i × si total measurements. For simplicity, assume si = 2 for the
below definition, and that there are no ties. Given that, Discr can be computed as follows (for a more
formal definition and pseudocode, please see Appendix B):

1. Compute the distance between all pairs of samples (resulting in an N ×N matrix), Figure 1(B).
While any measure of distance is permissible, for the purposes of this manuscript, we perform
all our experiments using the Euclidean distance.

2. Identify replicated measurements of the same individual (green boxes). The number of green
boxes is g = n× 2.

3. For each measurement, indentify measurements that are more similar to it than the other mea-
surement of the same item, i.e., measurements whose magnitude is smaller than that in the
green box (orange boxes). Let f be the number of orange boxes.

4. Discriminability is defined as fraction of times across-subject measurements are smaller than
within-subject measurements: Discr = 1− f

N(N−1)−g .

A high Discr indicates that within-item measurements tend to be more similar to one another than
across-item measurements. See Wang et al. [34] for a theoretical analysis of Discr as compared
to these and other data reliability statistics. For brevity, we use the term “discriminability” to refer to
inter-item discriminability hereafter.

2.2 Testing for discriminability Letting R denote the reliability of a dataset with n items and s mea-
surements per item, and R0 denote the reliability of the same size dataset with zero item specific
information, test for reliability is

H0 : R = R0, HA : R > R0.

One can use any ‘data reliability’ statistic for R and R0 [34]. We devised a permutation test to obtain
a distribution of the test statistic under the null, and a corresponding p-value. To evaluate the different
procedures, we compute the power of each test, that is, the probability of correctly rejecting the null
when it is false (which is one minus type II error; see Appendix E.1 for details).

2.3 Testing for better discriminability Letting R(1) be the reliability of one dataset or approach, and
R(2) be the reliability of the second, we have the following comparison hypothesis for reliability:

H0 : R(1) = R(2), HA : R(1) > R(2).

Again, we devised a permutation test to obtain the distribution of the test statistic under the null, and
p-values (see Appendix E.2 for details).

2.4 Simulation settings To develop insight into the performance of Discr, we consider several dif-
ferent simulation settings (see Appendix D for details). Each setting includes between 2 and 20 items,
with 128 total measurements, in two dimensions:

1. Gaussian Sixteen items are each distributed according to a spherically symmetric Gaussian,
therefore respecting the assumptions that motivate intraclass correlations.

2. Cross Two items have Gaussian distributions with the same mean and different diagonal co-
variance matrices.

3. Ball/Circle One item is distributed in the unit ball, the other on the unit circle; Gaussian noise
is added to both.

4. XOR Each of two items is a mixture of two spherically symmetric Gaussians, but means are
organized in an XOR fashion; that is, the means of the first item are (0, 1) and (1, 0), whereas
the means of the second are (0, 0) and (1, 1). The implication is that many measurements from
a given item are further away than any measurement of the other item.

5. No Signal Both items have the same Gaussian distribution.

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2020. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


(i
) 

D
is

c
ri

m
in

a
b
le

(i
i)
 O

ff
s
e

t
(i
ii)

 O
u

tl
ie

r

−1 0 1

1

10

1

10

1

10

Value

In
d
iv

id
u
a
l I

D

(A) Simulation

1 20

1

20

1

20

1

20

Measurement ID

M
e
a
s
u
re

m
e
n
t 
ID

small

large
Distance

Closer
Match

(B) Distance Matrices

1.001.00 1.00 1.00

0.99

0.77

0.10
0.21

−0.12

0.84
0.75

0.10

Discr. Finger. ICC Kernel

0

1

0

1

−0.5

0

1

S
ta

ti
st

ic

(C) Reproducibility Statistic

Figure 1: Discr provides a valid discriminability statistic. Three simulations with characteristic notions
of discriminability are constructed with n = 10 items each with s = 2 measurements. (A) The 20 samples,
where color indicates the individual associated with a single measurement. (B) The distance matrices between
pairs of measurements. Samples are organized by item. For each row (measurement), green boxes indicate
measurements of the same item, and an orange box indicates a measurement from a different item that is more
similar to the measurement than the corresponding measurement from the same item. (C) Comparison of four
reproducibility statistics in each simulation. Row (i): Each item is most similar to a repeated measurement from
the same item. All discriminability statistics are high. Row (ii): Measurements from the same item are more similar
than measurements from different individuals on average, but each item has a measurement from a different item
in between. ICC is essentially unchanged from (i) despite the fact that observations from the same individual
are less similar than they were in (i), and both Fingerprint and Kernel are reduced by about an order of
magnitude relative to simulation (i). Row (iii): Two of the ten individuals have an “outlier” measurement, and the
simulation is otherwise identical to (i). ICC is negative, and Kernel provides a small statistic. Discr is the only
statistic that is robust and valid across all of these simulated examples.

3 Results

3.1 Theoretical properties of Discriminability Under reasonably general assumptions, if within-
item variability increases, predictive accuracy will decrease. Therefore, a statistic that is sensitive to
within-item variance is desirable for optimal experimental design, regardless of the distribution of the
data. Carmines and Zeller [35] introduces a univariate parametric framework in which predictive accu-
racy can be lower-bounded by a decreasing function of ICC; as a direct consequence, a strategy with a
higher ICC will, on average, have higher predictive performance on subsequent inference tasks. Unfor-
tunately, this valuable theoretical result is limited in its applicability, as it is restricted to univariate data,
whereas big data analysis strategies often produce multivariate data. We therefore prove the following
generalization of this theorem:

Theorem 1. Under the multivariate Gaussian mixture model plus additive Gaussian noise setting,
Discr provides a lower bound on the predictive accuracy of a subsequent classification task. Conse-
quently, a strategy with a higher Discr provably provides a higher bound on predictive accuracy than
a strategy with a lower Discr.

See Appendix C for proof. Correspondingly, this property motivates optimizing experiments to obtain
higher Discr.
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3.2 Properties of various reliability statistics In Figure 1, we highlight the properties of different
statistics across a range of basic one-dimensional simulations, all of which display a characteristic
notion of reproducibility: samples of the same item tend to be more similar to one another than samples
from different items. In three different univariate simulations we observe two samples from ten items
(Figure 1A), and the construct in which reliability statistics will be evaluated:

(i) Discriminable has each item’s samples closer to each other than any other items. The reliabil-
ity statistic should attain a large value to reflect the high within-item similarity compared to the
between-item similarity.

(ii) Offset shifts the second measurement a bit, so that it is further from the first measurement than
another item. Reliability statistic should still be high, but lower than the offset simulation.

(iii) Outlier is the same as discriminable but includes two items with an outlier measurement. This
is another highly reliable setting, so we hope outliers do not significantly reduce the reliability
score.

We compare Discr to intraclass correlation coefficient (ICC), fingerprinting index (Fingerprint) [32],
and k-sample kernel testing (Kernel) [36] (see Appendix A for details). ICC provides no ability for
differentiating between discriminable and offset simulation, despite the fact that the data in discrim-
inable is more reproducible than offset. While this property may be useful in some contexts, a lack of
sensitivity to the offset renders users unable to discern which strategy has a higher test-retest reliability.
Moreover, ICC is uninterpretable in the case of even a very small number of outliers, where ICC is
negative. On the other hand, Fingerprint suffers from the limitation that if the nearest measurement
is anything but a measurement of the same item, it will be at or near zero, as shown in offset. Kernel
also performs poorly in offset and in the presence of outliers. In contrast, across all simulations, Discr
shows reasonable construct validity under the given constructs: the statistic is high across all simula-
tions, and highest when repeated measurements of the same item are more similar than measurements
from any of the other items.

3.3 The power of reliability statistics in multivariate experimental design We evaluate Discr,
PICC (which applies ICC to the top principal component of the data), I2C2, Fingerprint, and
Kernel on five two-dimensional simulation settings (see Appendix A for details). Figure 2A shows
a two-dimensional scatterplot of each setting, and Figure 2B shows the Euclidean distance matrix be-
tween samples, ordered by item.

Discriminability empirically predicts performance on subsequent inference tasks Figure 2C
shows the impact of increasing within-item variance on the different simulation settings. For the top
four simulations, increasing variance decreases predictive accuracy (green line). As desired, Discr
also decreases nearly perfectly monotonically with decreasing variances. However, only in the first
setting, where each item has a spherically symmetric Gaussian distribution, do I2C2, PICC, and
Fingerprint drop proportionally. Even in the second (Gaussian) setting, I2C2, PICC, and Fingerprint
are effectively uninformative about the within-item variance. And in the third and fourth (non-Gaussian)
settings, they are similarly useless. In the fifth simulation they are all at chance levels, as they should
be, because there is no information about class in the data. This suggests that of these statistics,
only Discr and Kernel can serve as satisfactory surrogates for predictive accuracy under these quite
simple settings.

A test to determine reliability A prerequisite for making item-specific predictions is that items are
different from one another in predictable ways, that is, are discriminable. If not, the same assay applied
to the same individual on multiple trials could yield in unacceptably highly variable results. Thus, prior
to embarking on a machine learning search for predictive accuracy, one can simply test whether the
data are discriminable at all. If not, predictive accuracy will be hopeless.

Figure 2D shows that Discr achieves approximately the highest power among all competing ap-
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Figure 2: Multivariate simulations demonstrate the value of optimizing reliability for experimental design.
All simulations are two-dimensional, with 128 samples, with 500 iterations per setting (see Appendix D for de-
tails). (A) For each setting, class label is indicated by shape, and color indicates item identity. (B) Euclidean
distance matrix between samples within each simulation setting. Samples are organized by item. Simulation
settings in which items are discriminable tend to have a block structure where samples from the same item are
relatively similar to one another. (C) Reproducibility statistic versus variance. Here, we can compute the Bayes
accuracy (the best one could perform to predict class label) as a function of variance. Discr and Kernel are
mostly monotonic relative to within-item variance across all settings, suggesting that one can predict improved
performance via improved Discr. (D) Test of whether data are discriminable. Discr typically achieves highest
power among the alternative statistics in all cases. (E) Comparison test of which approach is more discriminable.
Discr typically achieves highest power for all settings and variances.

proaches in all settings and variances. This result demonstrates that despite the fact that Discr does
not rely on Gaussian assumptions, it still performs as well or better than parametric methods when the
data satisfy these assumptions (row (i)).. In row (ii) cross, only Discr and Kernel correctly identify
that items differ from one another, despite the fact that the data are Gaussian, though they are not
spherically symmetric gaussians. In both rows (iii) ball/disc and (iv) XOR, most statistics perform well
despite the non-Gaussianity of the data. And when there is no signal, all tests are valid, achieving power
less than or equal to the critical value. Non-parametric Discr therefore has the power of parametric
approaches for data at which those assumptions are appropriate, and much higher power for other
data. Kernel performs comparably to Discr in these settings, though with somewhat less power in
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row (iv) XOR.

A test to compare reliabilities Given two experimental designs—which can differ either by acqui-
sition and/or analysis details—are the measurements produced by one method more discriminable than
the other? Figure 2D shows Discr typically achieves the highest power among all statistics considered.
Specifically, only Fingerprint achieves higher power in the Gaussian setting, but it achieves almost
no power in the cross setting. Kernel achieves extremely low power for all settings, as does PICC.
I2C2 achieves similar power to Discr only for the Gaussian and ball/disc setting. All tests are valid
in that they achieve a power approximately equal to or below the critical value when there is no signal.
Note that these comparisons are not the typical “k-sample comparisons” with many theoretical results,
rather, they are comparing across multiple disparate k-sample settings. Thus, in general, there is a lack
of theoretical guarantees for this setting. Nonetheless, the fact that Discr achieves nearly equal or
higher power than the statistics that build upon Gaussian methods, even under Gaussian assumptions,
suggests that Discr will be a superior metric for optimal experimental design in real data.

3.4 Optimizing experimental design via maximizing reliability in human brain imaging data

Human brain imaging data acquisition and analysis Consortium for Reliability and Repro-
ducibility (CoRR) [37] has generated functional, anatomical, and diffusion magnetic resonance imaging
(dMRI) scans from >1,600 participants, often with multiple measurements, collected through 28 differ-
ent studies (22 of which have both age and sex annotation) spanning over 20 sites. Each of the sites
use different scanners, technicians, and scanning protocols, thereby representing a wide variety of dif-
ferent acquisition settings with which one can test different analysis pipelines. Figure 3A shows the six
stage sequence of analysis steps for converting the raw fMRI data into networks or connectomes, that
is, estimates of the strength of connections between all pairs of brain regions. At each stage of the
pipeline, we consider several different “standard” approaches, that is, approaches that have previously
been proposed in the literature, typically with hundreds or thousands of citations [38]. Moreover, they
have all been collected into an analysis engine, called Configurable Pipeline for the Analysis of Connec-
tomes (C-PAC) [39]. In total, for the six stages together, we consider 2×2×2×2×4×3 = 192 different
analysis pipelines. Because each stage is nonlinear, it is possible that the best sequence of choices
is not equivalent to the best choices on their own. For this reason, publications that evaluate a given
stage using any metric, could result in misleading conclusions if one is searching for the best sequence
of steps. The dMRI connectomes were acquired via 48 analysis pipelines using the Neurodata MRI
Graphs (ndmg) pipeline [40]. Appendix F provides specific details for both fMRI and dMRI analysis, as
well as the options attempted.

Different analysis strategies yield widely disparate stabilities The analysis strategy has a large
impact on the Discr of the resulting fMRI connectomes (Figure 3B). Each column shows one of 64
different analysis strategies, ordered by how significantly different they are from the pipeline with highest
Discr (averaged over all datasets, tested using the above comparison test). Interestingly, pipelines
with worse average Discr also tend to have higher variance across datasets. The best pipeline,
FNNNCP, uses FSL registration, no frequency filtering, no scrubbing, no global signal regression, CC200
parcellation, and converts edges weights to ranks. While all strategies across all datasets with multiple
participants are significantly discriminable at α = 0.05 (Discr goodness of fit test), the majority of
the strategies (51/64 ≈ 80%) show significantly worse Discr than the optimal strategy at α = 0.05
(Discr comparison test).

Discriminability identifies which acquisition and analysis decisions are most important for
improving performance While the above analysis provides evidence for which sequence of analysis
steps is best, it does not provide information about which choices individually have the largest impact on
overall Discr. To do so, it is inadequate to simply fix a pipeline and only swap out algorithms for a single
stage, as such an analysis will only provide information about that fixed pipeline. Therefore, we evaluate
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Figure 3: Different analysis strategies yield widely disparate stabilities. (A) Illustration of analysis options for
the 192 fMRI pipelines under consideration (described in Appendix F). The sequence of options corresponding
to the best performing pipeline overall are in green. (B) Discr of fMRI Connectomes analyzed using 64 different
pipelines. Functional correlation matrices are estimated from 28 multi-session studies from the CoRR dataset
using each pipeline. The analysis strategy codes are assigned sequentially according to the abbreviations listed
for each step in (A). The mean Discr per pipeline is a weighted sum of its stabilities across datasets. Each
pipeline is compared to the optimal pipeline with the highest mean Discr, FNNNCP, using the above comparison
hypothesis test. The remaining strategies are arranged according to p-value, indicated in the top row.

each choice in the context of all 192 considered pipelines in Figure 4A. The pipeline constructed by
identifying the best option for each analysis stage is FNNGCP (Figure 4A). Although it is not exactly the
same as the pipeline with highest Discr (FNNNCP), it is also not much worse (Discr 2-sample test,
p-value ≈ 0.14). Moreover, except for scrubbing, each stage has a significant impact on Discr after
correction for multiple hypotheses (Wilcoxon signed-rank statistic, p-values all < 0.001).

Another choice is whether to estimate connectomes using functional or diffusion MRI (Figure 4B).
Whereas both data acquisition strategies have known problems [41], the Discr of the two experi-
mental modalities has not been directly compared. Using four datasets from CoRR that acquired both
fMRI and dMRI on the same subjects, and have quite similar demographic profiles, we tested whether

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2020. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


fMRI or dMRI derived connectomes were more discriminable. The pipelines being considered were
the best-performing fMRI pre-processing pipeline (FNNNCP) against the dMRI pipeline with the CC200
parcellation. For three of the four datasets, dMRI connectomes were more discriminable. This is not
particularly surprising, given the susceptibility of fMRI data to changes in state rather than trait (e.g.,
amount of caffeine prior to scan [39]).

The above results motivate investigating which aspects of the dMRI analysis strategy were most
effective. We focus on two criteria: how to scale the weights of connections, and how many regions
of interest (ROIs) to use. For scaling the weights of the connections, we consider three possible cri-
teria: using the raw edge-weights (“Raw”), taking the log of the edge-weights (“Log”), and ranking the
non-zero edge weights in sequentially increasing order (“Rank”). Figure 4C.i shows that both rank and
log transform significantly exceed raw edge weights (Wilcoxon signed-rank statistic, sample size= 60,
p-values all < 0.001). Figure 4C.ii shows that parcellations with larger numbers of ROIs tend to have
higher Discr. Unfortunately, most parcellations with semantic labels (e.g., visual cortex) have hun-
dreds not thousands of parcels. This result therefore motivates the development of more refined se-
mantic labels.
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Figure 4: Parsing the relative impact on Discr of various acquisition and analytic choices. (A) The pipe-
lines are aggregated for a particular analysis step, with pairwise comparisons with the remaining analysis options
held fixed. The beeswarm plot shows the difference between the overall best performing option and the second
best option for each stage (mean in bigger black dot); the x-axis label indicates the best performing strategy. The
best strategies are FNIRT, no frequency filtering, no scrubbing, global signal regression, the CC200 parcellation,
and ranks edge transformation. A Wilcoxon signed-rank test is used to determine whether the mean for the best
strategy exceeds the second best strategy: a ∗ indicates that the p-value is at most 0.001 after Bonferroni cor-
rection. Of the best options, only no scrubbing is not significantly better than alternative strategies. Note that the
options that perform marginally the best are not significantly different than the best performing strategy overall, as
shown in Figure 3. (B) A comparison of the stabilities for the 4 datasets with both fMRI and dMRI connectomes.
dMRI connectomes tend to be more discriminable, in 14 of 20 total comparisons. (C.i) Comparing raw edge
weights (Raw), ranking (Rank), and log-transforming the edge-weights (Log) for the diffusion connectomes, the
Log and Rank transformed edge-weights tend to show higher Discr than Raw. (C.ii) As the number of ROIs
increases, the Discr tends to increase.
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Optimizing Discriminability improves downstream inference performance We next examined
the relationship between the Discr of each pipeline, and the amount of information it preserves about
two properties of interest: sex and age. Based on the simulations above, we expect that analysis
pipelines with higher Discr will yield connectomes with more information about covariates. Indeed,
Figure 5 shows that, for virtually every single dataset including sex and age annotation (22 in to-
tal), a pipeline with higher Discr tends to preserve more information about both covariates. The
amount of information is quantified by the effect size of the distance correlation DCorr (which is ex-
actly equivalent to Kernel [31, 42]), a statistic that quantifies the magnitude of association for both
linear and nonlinear dependence structures. In contrast, if one were to use either Kernelor I2C2
to select the optimal pipeline, for many datasets, subsequent predictive performance would degrade.
Fingerprint performs similarly to Discr, while PICC provides a slight decrease in performance on
this dataset. These results are highly statistically significant: the slopes of effect size versus Discr and
Fingerprint across datasets are significantly positive for both age and sex in 82 and 95 percent of
all studies, respectively (robust Z-test, α = 0.05). Kernel performs poorly, basically always, because
k-sample tests are designed to perform well with many samples from a small number of different pop-
ulations, and questions of reproducibility across repeated measurements have a few samples across
many different populations.

3.5 Reliability of genomics data The first genomics study aimed to explore variation in gene expres-
sion across human induced pluripotent stem cell (hiPSC) lines with between one and seven replicates
[43]. This data includes RNAseq data from 101 healthy individuals, comprising 38 males and 63 fe-
males. Expression was interrogated across donors by studying up to seven replicated iPSC lines from
each donor, yielding bulk RNAseq data from a total of 317 individual hiPSC lines. While the pipeline
includes many steps, we focus here for simplicity on (1) counting, and (2) normalizing. The two count-
ing approaches we study are the raw hiPSC lines and the count-per-million (CPM). Given counts, we
consider four different normalization options: Raw, Rank, and Log-transformed (as described above),
as well as to mean-centering (normalizing each sample to have an average count of 0). The task of
interest was to identify the sex of the individual.

The second genomics study [44] includes 331 individuals, consisting of 135 patients with non-
metastatic cancer and 196 healthy controls, each with eight DNA samples. The study leverages a PCR-
based assay called Repetitive element aneuploidy sequencing system to analyze ∼750,000 amplicons
distributed throughout the genome to investigate the presence of aneuploidy (abnormal chromosome
counts) in samples from cancer patients (see Appendix F.1 for more details). The possible processing
strategies include using the raw amplicons or the amplicons downsampled by a factor of 5× 104 bases,
5 × 105 bases, 5 × 106 bases, or to the individual chromosome level (the resolution of the data),
followed by normalizing through the previously described approaches (Raw, Rank, Log-transformed)
yielding 5× 3 = 15 possible strategies in total. The task of interest was to identify whether the sample
was collected from a cancer patient or a healthy control.

Across both tasks, slope for discriminability is positive, and for the first task, the slope is significantly
bigger than zero (robust Z-test, p-value = .001, α = .05). Fingerprint and Kernel are similarly
only informative for one of the two genomics studies. For PICC, in both datasets the slope is positive
and the effect is significant. I2C2 does not provide value for subsequent inference.
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Figure 5: Optimizing Discr improves downstream inference performance. Using the connectomes from the
64 pipelines with raw edge-weights, we examine the relationship between connectomes vs sex and age. The
columns evaluate difference approaches for computing pipeline effectiveness, including (i) Discr, (ii) PICC, (iii)
Average Fingerprint Index Fingerprint, (iv) I2C2, and (v) Kernel. Each panel shows reference pipeline
reliability estimate (x-axis) versus effect size of the association between the data and the sex, age, or cancer
status of the individual as measured by DCorr (y-axis). Both the x and y axes are normalized by the minimum
and maximum statistic. These data are summarized by a single line per study, which is the regression of the
normalized effect size onto the normalized reliability estimate as quantified by the indicated reference statistic.
(I) The results for the neuroimaging data, as described in Section 3.4. Color and line width correspond to the study
and number of scans, respectively (see Figure 3B). The solid black line is the weighted mean over all studies.
Discr is the only statistic in which nearly all slopes are positive. Moreover, the corrected p-value [45, 46] is
significant across most datasets for both covariates ( 3944 ≈ .89 p-values < .001). This indicates that pipelines with
higher Discr correspond to larger effect sizes for the covariate of interest, and that this relationship is stronger
for Discr than other statistics. A similar experiment is performed on two genomics datasets, measuring the
effects due to sex and whether an individual has cancer. (III) indicates the fraction of datasets with positive
slopes and with significantly positive slopes, ranging from 0 (“None”, red) to 1 (“All”, green), at both the task and
aggregate level. Discr is the statistic where the most datasets have positive slopes, and the statistic where the
most datasets have significantly positive slopes, across the neuroimaging and genomics datasets considered.
Appendix F.2 details the methodologies employed.
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4 Discussion We propose the use of the Discr statistic as a simple and intuitive measure for ex-
perimental design featuring multiple measurements. Numerous efforts have established the value of
quantifying reliability, repeatability, and replicability (or discriminability) using parametric measures such
as ICC and I2C2. However, they have not been used to optimize reproducibility—that is, they are only
used post-hoc to determine reproducibility, not used as criteria for searching over the design space—nor
have non-parametric multivariate generalizations of these statistics been available. We derive goodness
of fit and comparison (equality) tests for Discr, and demonstrate via theory and simulation that Discr
provides numerous advantages over existing techniques across a range of simulated settings. Our
neuroimaging and genomics use-cases exemplify the utility of these features of the Discr framework
for optimal experimental design.

An important consideration is that quantifying reliability and reproducibility with multiple measure-
ments may seem like a limitation for many fields, in which the end derivative typically used for inference
may be just a single sample for each item measured. However, a single measurement may often con-
sist of many sub-measurements for a single individual, each of which are combined to produce the
single derivative work. For example in brain imaging, a functional Magnetic Resonance Imaging (fMRI)
scan consists of tens to thousands of identical scans of the brain at numerous time points. In this case,
the image can be broken into identical-width time windows. In another example taken directly from
the cancer genomics experiment below, a genomics count table was produced from eight independent
experiments, each of which yielded a single count table. The last step of their pre-processing proce-
dure was to aggregate to produce the single summary derivative that the experimenters traditionally
considered a single measurement. In each case, the typical “measurement” unit can really be thought
of as an aggregate of multiple smaller measurement units, and a researcher can leverage these smaller
measurements as a surrogate for multiple measurements. In the neuroimaging example, the fMRI scan
can be segmented into identical-width sub-scans with each treated as a single measurement, and in
the genomics example, the independent experiments can each be used as a single measurement.

Discr provides a number of connections with related statistical algorithms worth further consider-
ation. Discr is related to energy statistics [47], in which the statistic is a function of distances between
observations [28]. Energy statistics provide approaches for goodness-of-fit (one-sample) and equality
testing (two-sample), and multi-sample testing [48]. However, we note an important distinction: a good-
ness of fit test for discriminability can be thought of as a K-sample test in the classical literature, and
a comparison of discriminabilities is analogous to a comparison of K-sample tests. Further, similar to
Discr, energy statistics make relatively few assumptions. However, energy statistics requires a large
number of measurements per item, which is often unsuitable for biological data where we frequently
have only a small number of repeated measurements. Discr is most closely related to multiscale gen-
eralized correlation (MGC) [31, 42], which combines energy statistics with nearest neighbors, as does
Discr. Like many energy-based statistics, Discr relies upon the construction of a distance matrix.
As such, Discr generalizes readily to high-dimensional data, and many packages accelerate distance
computation in high-dimensionals [49].

Limitations While Discr provides experimental design guidance for big data, other considerations may
play a role in a final determination of the practical utility of an experimental design. For example, the
connectomes analyzed here are resting-state, as opposed to task-based fMRI connectomes. Recent
literature suggests that the global signal in a rs-fMRI scan may be correlated heavily with signals of
interest for task-based approaches [50, 51], and therefore removal may be inadvisable. Thus, while
Discr is an effective tool for experimental design, knowledge of the techniques in conjunction with the
constructs under which successive inference will be performed remains essential. Further, in this study,
we only consider the Euclidean distance, which may not be appropriate for all datasets of interest. For
example, if the measurements live in a manifold (such as images, text, speech, and networks), one may
be interested in dissimilarity or similarity functions other than Euclidean distance. To this end, Discr
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readily generalizes to alternative comparison functions, and will produce an informative result as long
as the choice of comparison function is appropriate for the measurements.

It is important to emphasize that Discr, as well the related statistics, are neither necessary, nor
sufficient, for a measurement to be practically useful. For example, categorical covariates, such as sex,
are often meaningful in an analysis, but not discriminable. Human fingerprints are discriminable, but
typically not biologically useful. In this sense, while discriminability provides a valuable link between
test-retest reliability and criterion validity for multivariate data, one must be careful to consider other
notions of validity prior to the selection of a measurement. In addition, none of the statistics studied
here are immune to sample characteristics, thus interpreting results across studies deserves careful
scrutiny. For example, having a sample with variable ages will increase the inter-subject dissimilarity of
any metric dependent on age (such as the connectome). With these caveats in mind, Discr remains
as a key experimental design consideration a wide variety of settings.

Conclusion The use-cases provided herein serve to illustrate how Discr can be used to facilitate
experimental design, and mitigate reproducibility issues. We envision that Discr will find substantial
applicability across disciplines and sectors beyond brain imaging and genomics, such pharmaceutical
research. To this end, we provide open-source implementations of Discr for both Python and R
[52, 53]. Code for reproducing all the figures in this manuscript is available at https://neurodata.io/mgc.
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Appendix A. Data Reproducibility Statistics.

A.1 Intraclass Correlation Coefficient The intraclass correlation coefficient (ICC) is a commonly
used data reproducibility statistic [33]. The absolute agreement ICC, or ICC(1,1), is the fraction of
the total variability that is across-item variability, that is, ICC is defined as the across-item variability
divided by the within-item plus across-item variability. ICC has several limitations. First, it is univariate,
meaning if the data are multidimensional, they must first be represented by univariate statistics, thereby
discarding multivariate information. This potentially makes ICC unsuitable when an informative univari-
ate summary measure is unavailable or unknown, which is frequently the case in the high dimensional
data that is the focus of this manuscript. Second, ICC is based on a Gaussian assumption characteriz-
ing the data. Thus, any deviations from this assumption may render the interpretation of the magnitude
of ICC questionable, because non-Gaussian measurements that are highly reproducible could poten-
tially yield quite low ICC [54–56]. Third, the Intraclass correlation coefficient is highly sensitive to the
design of the study [56, 57]; care must be taken to ensure that the form of ICC chosen accurately
reflects the design of the study of interest. Further, ICC is substantially impacted by the presence of
outliers in measurements [58]. Finally, there are numerous definitions of estimates of ICC[33] designed
for different experimental setups, and researchers regularly use (and misuse) the different estimators in
generic contexts [56, 59]. In practice, it is unclear the extent to which the use of inappropriate estimators
of ICC is impactful [60].

Numerous multivariate generalizations of the ICC attempt to overcome to requirement of ICC to
operate on univariate data. The Image Intra-Class Correlation (I2C2) was introduced to mitigate ICC’s
univariate limitation [61]. Specifically, I2C2 operates on covariances matrices, rather than variances. To
obtain a univariate summary of reproducibility, I2C2 operates on the trace of the covariance matrices,
one of several possible strategies, similar to most multivariate analysis of variance procedures [62].
Thus, while overcoming one limitation of ICC, I2C2 still heavily leverages Gaussian assumptions of
the data to justify its validity. Webb et al. [63] highlight a number of limitations with using estimates of
covariance in the context of assessing multivariate reliability. Chiefly, sampling variance of covariance
components in the high dimensionality; low-sample-size (HDLSS) regime is problematic, which is an
characteristic of increasing prevalence in biological data.

A.2 Fingerprinting Index The fingerprinting index [32, 64] provides a metric for quantifying individ-
ual connectivity profiles in resting-state MRI (fMRI). Specifically, the fingerprinting index operates on
the pairwise correlation of the vectorized connectivity matrices. A high fingerprinting index corresponds
to the connectivity matrices being most strongly correlated within-subject versus between-subject. An
important clarification for fingerprinting is that the connectivity matrices must be more strongly corre-
lated than any other measurement within a particular scanning session, otherwise the fingerprinting
index will be 0, as the fingerprinting index uses only the nearest-neighbor associated with a given item.
Unlike the other strategies employed in this manuscript, the fingerprinting index produces a statistic
for each possible ordering of 2 measurement sessions, that is, if each item is measured s times, fin-
gerprinting produces s(s − 1) statistics. To enable fingerprinting for assessing the effectiveness of a
strategy, we instead averaged across all s(s − 1) statistics, which will henceforth be referred to as
Fingerprinting.

A.3 Kendall’s Coefficient of Concordance Kendall’s Coefficient of Concordance, or Kendall’s W ,
is a univariate non-parametric statistic for assessing the extent to which multiple measurements of the
same item agree. Like inter-item discriminability and the fingerprinting index, estimates of Kendall’s W
operate on the ranks of data. Specifically, Kendall’s W computes the total rank of all measurements
associated with a single item, and compares an item’s total rank to the average value of the total rank.
An important consideration is that Kendall’s W operates directly on the measurements themselves,
rather than on scalar summary measures of the relationships amongst the measurements. As such,
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Kendall’sW cannot be applied directly to data that is inherently multivariate using traditional methods of
ranking. For this reason, we do not formally evaluate Kendall’s W within the context of this manuscript.

A.4 Kernel Methods Maximum mean discrepancy (MMD) [36] provides a non-parametric framework
for comparing whether two samples are drawn from the same distribution. MMD subverts Gaussian
assumptions by embedding the points in a reproducing kernel Hilbert Space (RKHS), and looking for
functions over the unit ball in the RKHS which maximize the difference in the means of the embedded
points. In the two-item regime, MMD can be shown to be equivalent to the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) [30, 65, 66], which provides a natural generalization of MMD when the number
of classes exceeds two. To date, to our knowledge, there does not exist a k-sample variant of MMD.

Distance Components (DISCO) [48] extends the classical Analysis of Variance (ANOVA) framework
to cases where the distributions are not necessarily Gaussian. In contrast to ANOVA which makes
simplifying assumptions of normality, DISCO operates on the dispersion of the samples based on the
Euclidean Distance, comparing the within-class dispersion to the between-class dispersion. DISCO pro-
duces a consistent test against general alternatives as the number of observations s per item goes to
infinity. Shen and Vogelstein [67] shows a closed form relationship between Kernel and other Energy
statistics approaches, such as Distance correlation. The result is that using Distance correlation for
k-sample testing results in a test statistic that has bias relative to the Kernel statistic, but will yield the
same p-value. Further, Shen and Vogelstein [67] shows the equivalence between Distance correlation
and HSIC/MMD. Thus, in this manuscript, we use Kernel to refer to either DISCO or MMD as appropri-
ate. In all cases, we use the default kernel, which is the Gaussian kernel with the typical bandwidth
specification, as implemented in the kernlab package [68] (MMD) and energy (DISCO) package [69].
Note that in many real data scenarios, s is small (particularly, most “repeat measurements” datasets
have s = 2), and the finite-sample performance of Kernel on such a small number of repeat trials is
not known.

Appendix B. Population and Sample Discr.
Suppose that θi ∈ Θ represents a physical property of interest for a particular item i. In a biological

context, for instance, an item could be a participant in a study, and the property of interest could be the
individual’s true brain network, or connectome. We cannot directly observe the physical property, but
rather, we must first measure θi and then “wrangle” it. Call the measurement function, f ∈ F for a fam-
ily of possible measurement functions F That is, g : Θ→WWW . So, measurements of θi are observed as
f(θi) = wi. However,wi may be a noisy, with measurement artefacts. Alternately,wi might not be the
property of interest, for example, if the property is a network, perhaps wi is a multivariate time-series,
from which we can estimate a network. We therefore have another function, f ∈ G : WWW → XXX , which
represents the data wrangling procedure to take the measurement and produce an informative deriva-
tive (for instance, confound removal). The family of possible data wrangling procedures to produce the
informative derivative is G. In this fashion, the output of interest is xi = f(g(θi)).

The goal of experimental design is to choose an f and g that yield high-quality and useful infer-
ences, that is, that yield x’s that we can use for various inferential purposes. When we have repeated
measurements of the same items, we can use those samples to our advantage. Given xxxji , which is the
jth measurement of sample i, we would expect xxxji to be more similar to xxxj

′

i (another measurement of
the same item), than to any measurement of a different item xxxj

′′

i′ . Formally, let δ : XXX ×XXX → [0,∞) be
a distance metric, we define the population Discr:

Dδ,f,g = P
(
δ(xxxji ,xxx

j′

i ) < δ(xxxji ,xxx
j′′

i′ )
)

That is, “population Discr”D represents the average probability that the within-item distance δ(xxxji ,xxx
j′

i )

is less than the between-item distance δ(xxxji ,xxx
j′′

i′ ). Discr depends on the choice of distance δ, as well
as the measurement protocal f and the analysis choices g.
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The population Discr represents a property of the distribution of θi. In real data since we do not
observe the true distribution, we instead rely on the sample Discr. Suppose a dataset consists of
i ∈ {1, . . . , n} items, where each item i has Ji repeat measurements. The sample Discr is defined:

Discr
{
xxxji

}
j∈[Ji],i∈[n]

=

∑
i∈[n]

∑
j∈[Ji]

∑
j′ 6=j

∑
i′ 6=i

∑
j′′∈[Ji′ ]

(
1{

δ(xxxji ,xxx
j′
i )<δ(xxxji ,xxx

j′′
i′ )

})∑
i∈[n]

∑
j∈[Ji]

∑
j′ 6=j

∑
i′ 6=i

∑
j′′∈[Ji′ ]

1
.

It can be shown [26] that the under the multivariate additive noise model in Assumption 2; that is,
xxxji = θi + εεεji where εεεji

ind∼ fε, var
(
εεεji

)
< ∞, and E

[
εεεji

]
= ccc, that the sample Discr, Discr is both a

consistent and unbiased estimator for population Discr.

Appendix C. Discr Provides an Informative Bound for Inference.
During experimental design, the extent of subsequent inference tasks may be unknown. A natural

question may be, what are the implications of the selection of a discriminable experimental design?
Formally, assume the task of interest is binary classification: that is, Y = {0, 1}, and we seek a
classifier h : X → Y . The goal of experimental design in this context is to choose the options (f∗, g∗)
that will minimize the classification loss:

(f∗, g∗) = argmin
(f,g)∈F×G

P(h(f(g(θ))) 6= y).

For a fixed (f, g), the minimal prediction error is achieved by the Bayes optimal classifier [70]:

h∗f,g(θi) , argmax
y∈{0,1}

P
(
yi = y

∣∣f(g(θi))
)
πy(1)

= argmax
y∈{0,1}

logP
(
yi = y

∣∣f(g(θi))
)

+ log πy,(2)

where πy = P(yi = y), and let L∗f,g denote the error of the Bayes optimal classifier; that is, the error
achieved by h∗f,g.

Assumption 2 (Multivariate Additive Noise Setting).
We suppose following the multivariate additive Gaussian noise setting:

yi
iid∼ Bern(π1),

θθθi
iid∼ N (µµµyi ,ΣΣΣθ),

εεεji
iid∼ N (ccc,ΣΣΣε) independent of θθθi,

xxxji = θi + εεεji = f(g(θθθi)).

To connect the above model with Eq. (1), we can let

g(θθθi) = θθθi + ηηηji , f(g(θθθi)) = θθθi + ηηηji + τττ ji , εεεji = ηηηji + τττ ji ,

where we assume that ηηηji ⊥⊥ τττ ji , and both ηηηji and τττ ji are multivariate Gaussian. Using Bayes rule
and Assumption 2, note that the probability that an observation xxxji is from class y is given by:

P
(
yi = y

∣∣xxxji) =
P
(
xxxji
∣∣yi = y

)
P(yi = y)

P
(
xxxji

)
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⇒ logP
(
yi = y

∣∣xxxji) ∝ −1

2
(xxxji −µµµy)

>ΣΣΣx(xxxji −µµµy) + log(πy)

where ΣΣΣx = ΣΣΣθ + ΣΣΣε is constant between the two classes (that is, the variance is homoscedastic), and
y is a generic value in {0, 1} that a realization yi can take. This follows directly by taking the log of the
density function of the multivariate normal distribution, and removing terms not proportional in y. The
Bayes optimal classifier is:

h∗f,g(xxx
j
i ) = argmax

y∈{0,1}

[
−1

2
(xxxji −µµµy)ΣΣΣx(xxxji −µµµy) + log πy

]
.

The Bayes error can be computed explicitly using that:

L∗f,g , E
[
1
h∗f,g(xxxji ) 6=y

]
=

∑
y∈{0,1}

∫
X
P
(
h∗f,g(xxx) 6= y

)
dxxx,

using standard rules of integration.
Importantly, the Bayes error can, in fact, be upper bounded by a decreasing function of Discr,

as shown in the theorem. In words, this theorem specifies the desirability of high Discr: a higher
discriminability results in a lower bound on the error of future inferential tasks. Correspondingly, a
strategy with a higher discriminability will have a lower bound on the error than another strategy with a
lower discriminability.

Theorem 2. Let xxxji follow the multivariate additive noise setting, given in Assumption 2, where
i = 1, . . . , n, and j = 1, . . . , s. Then there exists a decreasing function γ(·) of the discriminability
D where:

L∗f,g ≤ γ(Df,g)

where L∗ is the Bayes error, or the error achieved by the Bayes optimal classifier h∗f,g(θθθi).

Proof of Theorem (2).
Consider the additive noise setting, that is xxxji = θi + εεεji ,

D = P
(
δi,t,t′ < δi,i′,t,t′′

)
= P(‖xxxji − xxx

j′

i ‖ < ‖xxx
j
i − xxx

j′′

i′ ‖)

= P(‖εεεji − εεε
j′

i ‖ < ‖θi + εεεji − θi′ − εεε
j′′

i′ ‖)

≤ P(‖εεεji − εεε
j′

i ‖ < ‖θi − θi′‖+ ‖εεεji − εεε
j′′

i′ ‖)

= P(‖εεεji − εεε
j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖)

=
1

2
P(‖εεεji − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖|‖εεε
j
i − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < 0) +

1

2
P(‖εεεji − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖|‖εεε
j
i − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ > 0)

=
1

2
+

1

2
P(‖εεεji − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ < ‖θi − θi′‖|‖εεε
j
i − εεε

j′

i ‖ − ‖εεε
j
i − εεε

j′′

i′ ‖ > 0)

=
1

2
+

1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ < ‖θi − θi′‖)

= 1− 1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ > ‖θi − θi′‖).
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To bound the probability above, we bound the ‖θi − θi′‖ and
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ separately. We

start with the first term

E(‖θi − θi′‖2) = E(θTi θi + θTi′θi′ − 2θTi θi′) = 2σ2
2.

Here, σ2
2 = tr(ΣΣΣθ) is the trace of covariance matrix of θi. We can apply Markov’s Inequality for any

t > 0:

P(‖θi − θi′‖ < t) ≥ 1− 2σ2
2

t2
.(3)

Let a and b be two constants satisfy:

E(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2) ≥ a2σ2

ε ,

E2(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2)

E(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣)4

≥ b

Furthermore, let t2 =
√

2aσεσθ, and define:

θ =
t2

E(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2)

≤
√

2aσεσθ
a2σ2

ε

=

√
2σθ
aσε

.

If a2σ2
ε ≥ 2σ2

θ , then θ ≤ 1. According to the Paley-Zygmund Inequality [71], that is:

P(Z > θE[Z]) ≥ (1− θ)2E[Z]2

E[Z2]

for all 0 ≤ θ ≤ 1 and Z ≥ 0, we can plug in the θ above to achieve

P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2 > t2) ≥ b

(
1− t2

a2σ2
ε

)2

= b

(
1−
√

2σθ
aσε

)2

.

Plugging t2 into the inequality in Equation (3), we have:

P(‖θi − θi′‖2 < t2) ≥ 1−
2σ2

θ

t2
= 1−

√
2σθ
aσε

.

Given that θi’s and εεεji ’s are independent by supposition, we can combine the two inequalities:

D = P(δi,t,t′ < δi,i′,t,t′′)

= P(‖xxxji − xxx
j′

i ‖ < ‖xxx
j
i − xxx

j′′

i′ ‖)

≤ 1− 1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣ > ‖θi − θi′‖)

≤ 1− 1

2
P(
∣∣‖εεεji − εεεj′i ‖ − ‖εεεji − εεεj′′i′ ‖∣∣2 > t2)P (‖θi − θi′‖2 < t2)

≤ 1− 1

2
b

(
1−
√

2σθ
aσε

)3

Note that the resulted bound holds true even if a2σ2
ε < 2σ2

θ , as the right hand side becomes greater
than 1. This produces a bound for σθσε :

(4)
σθ
σε
≥ a√

2

(
1−

(
2− 2D

b

)1/3
)
.
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To obtain a bound on Bayes error, we apply Devijver and Kittler’s result [72], which is that:

L∗ ≤ 2π0π1

1 + π0π1∆µµµ>ΣΣΣ−1
x ∆µµµ

.

∆µµµ is the difference between means of two classes. Since εεεji is assumed to be independent of yyyi:

∆µµµ = E(xxxji |yyyi = 0)− E(xxxji |yyyi = 1) = E(θi|yyyi = 0)− E(θi|yyyi = 1).

With ΣΣΣx as the weighted covariance matrix of xxx:

ΣΣΣx = π0Var(xxxji |yyyi = 0) + π1Var(xxxji |yyyi = 1)

= π0Var(θi|yyyi = 0) + π1Var(θi|yyyi = 1) + Var(εεεji ).

Denote ΣΣΣ′ = 1
σ2
e
ΣΣΣε. By inequality (4), note that σ2

ε ≤ σ2
ε∗(D), where:

σε∗(D) =

√
2σθ

a(1− (2−2D
b )1/3)

.

Hence, ΣΣΣx � ΣΣΣ∗(D) where:

ΣΣΣ∗(D) = π0Var(θi|yyyi = 0) + π1Var(θi|yyyi = 1) + σ2
ε∗ΣΣΣ
′.

Therefore, ΣΣΣ−1
x � ΣΣΣ−1

∗ (D), and we obtain:

L∗ ≤ 2π0π1

1 + π0π1∆µµµ>ΣΣΣ−1
x ∆µµµ

≤ 2π0π1

1 + π0π1∆µµµ>ΣΣΣ−1
∗ (D)∆µµµ

= γ(D).

where γ(D) = 2π0π1
1+π0π1∆µµµ>ΣΣΣ−1

∗ (D)∆µµµ
is decreasing in D.

As a direct consequence of this theorem, we see:

Corollary 3. Assume (f1, g1) and (f2, g2) are two analysis strategies, and suppose that Df1,g1 >
Df2,g2 . Then the bound on the Bayes error for (f1, g1) is lower than the bound on the Bayes error on
(f2, g2).

Proof. Direct application of Theorem 2, noting that Df1,g1 > Df2,g2 implies that γ(Df1,g1) ≤
γ(Df2,g2) since γ is decreasing in D.

Consequently, under the described setting, the pipeline that achieves a higher Discr has a lower
bound on the Bayes error than competing strategies, despite the fact that the task is unknown during
data acquisition and analysis. Complementarily, note that if we were to instead consider the predictive
accuracy 1−L∗f,g, we can obtain a similar result to obtain a lower bound on the predictive accuracy via
an increasing function of Discr. That is, in the context of the corollary, a more discriminable pipeline
will tend to have a higher bound on the accuracy for an arbitrary predictive task.

Appendix D. Simulations.
The following simulations were constructed, where σmin, σmax are the variance ranges, and settings

were run at 15 intervals in [σmin, σmax] for 500 repetitions per setting. For a simulation setting with
variance σ, the variance is reported as the normalized variance, σ = σ−σmin

σmax−σmin . Dimensionality is 2,
the number of items is K, and the total number of measurements across all items is 128. Typically, i
indicates the individual identifier, and j the measurement index. Notationally, in the below descriptions,
we adopt the convention that zzzji obeys the true distribution for a single observation j of item i, and xxxji
incorporates the controlled error term εεεji , which is the term which is varied the simulation. Further, each
item features n

K measurements.
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D.1 Goodness of Fit Testing and Bayes Error
1. No Signal: K = 2 items, where the true distributions for class 1 and class 2 are the same.

• zzzji
iid∼ N (000, III), i = 1, . . . , 2, t = 1, . . . , 64. Note: 000 ∈ R2 is 000, and likewise for III

• εεεji
iid∼ N

(
000, σ2III

)
, σ ∈ [0, 20]

• xxxji = zzzji + εεεji
iid∼ N

(
000, (((1 + σ2)III

)
2. Cross: K = 2 items, where the true distributions for class 1 and class 2 are orthogonal.

• Σ1 =

[
2 0
0 0.1

]
, Σ2 =

[
0.1 0
0 2

]
• zzzji

iid∼ N (000,ΣΣΣi), i = 1, 2

• εεεji
iid∼ N

(
000, σ2III

)
, σ ∈ [0, 20]

• xxxji = zzzji + εεεji
3. Gaussian: K = 16 items, where the true distributions are each gaussian.

• µµµi
iid∼ π1N (000, 4III), i = 1, . . . , 16

• ΣΣΣ =

[
1 0.1

0.1 1

]
• zzzji

iid∼ N (µµµi,ΣΣΣ)

• εεεji
iid∼ N

(
000, σ2III

)
, σ ∈ [0, 20]

• xxxji = zzzji + εεεji
4. Ball/Circle: K = 2 items, where 1 item is uniformly distributed on the unit ball with gaussian

error, and the second item is uniformly distributed on the unit sphere with gaussian error.

• zzzt1
iid∼ B(r = 1) + N (000, 0.1III) samples uniformly on unit ball of radius 2 with Gaussian

error
• zzzt2

iid∼ S(r = 1.5) +N (000, 0.1III) samples uniformly on unit sphere of radius 2 with Gauss-
ian error
• εεεji

iid∼ N
(
000, σ2III

)
, σ ∈ [0, 10]

• xxxji = zzzji + εεεji
5. XOR: K = 2 items, where:

• zzzt1 =

{
000 t ∈ 1, . . . , 32

111 t ∈ 33, . . . , 64

• zzzt2 =

{
[0, 1]′ t ∈ 1, . . . , 32

[1, 0]′ t ∈ 33, . . . , 64

• εεεji
iid∼N

(
000, σ2III

)
, σ ∈ [0, 0.8]

• xxxji = zzzji + εεεji
Bayes error was estimated by simulating n = 10,000 points according to the above simulation

settings, and approximating the Bayes error through numerical integration. The classification labels for
K = 2 simulations were consistent with the individual labels, and for theK = 16, the first class consists
of the 8 distributions whose means were leftmost, and the rest of the distributions were the other class.

D.2 Comparison Testing Items are sampled with the same true distributions zzzji as before, with the
following augmentation:

xxxji,k =

{
zzzji k = 1

zzzji + εεεji k = 2

That is, the observed data xxxji,k for item i, observation j, and sample k ∈ [2] is such that the first sample
is distributed according to the true item distribution, and the second sample is distributed according to
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the true item distribution with an added noise term, where εεεji
iid∼ N

(
000, σ2III

)
:

1. No Signal: K = 2
σ ∈ [0, 10]

2. Cross: K = 2
σ ∈ [0, 1]

3. Gaussian: K = 16
σ ∈ [0, 1]

4. Ball/Circle: K = 2
σ ∈ [0, 1]

5. XOR: K = 2

xxxji,k =

{
zzzji + τττ ji k = 1

zzzji + τττ ji + εεεji k = 1
where τ ji

iid∼N (000, 0.1III)

σ ∈ [0, 0.2]
By construction, one would anticipate Discr of the first sample to exceed that of the second sam-

ple, as the second sample has additional error. Therefore, the natural hypothesis is:

H0 : D(1) = D(2), HA : D(1) > D(2)

Appendix E. Hypothesis Testing.

E.1 Goodness of Fit Test Recall the goodness of fit test, shown in Equation (2.2). We approximate
the distribution of Ŝ under the null through a permutation approach. The item labels of our N samples
are first permutated randomly, and Ŝ0,N is computed each time given the observed data XXX and the
permuted labels. For a level α significance test, we compare Ŝ to the (1 − α) quantile Q1−α of the
empirical null distribution D̂0,N , and reject the null hypothesis if D̂N < Q1−α. This approach provides
a consistent and valid test under general assumptions.

Note that the permutation-based approach requires r computations of the sample Discr. The
total computational complexity is then O

(
N2 max(p, rs)

)
. This approach is only linear in the number of

desired repetitions, and therefore is sensible for most settings in which the sample Discr can itself be
computed. Moreover, we can greatly speed this computation up through parallelization. With T cores,
the computational complexity is instead O

(
N2 max

(
p, rT s)

))
, as shown in Algorithm 1. We extend this

goodness of fit test to both PICC and I2C2 to provide a robust p-value associated with both statistics of
interest. Note that the permutation approach can be generalized to any statistic quantifying repeatability
based on repeated measurements.
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Algorithm 1 Discr Goodness of Fit Test. Our implementation of the permutation test for the good-
ness of fit test of the hypothesis given in Equation (2.2) requiresO

(
N2 max

(
p, rT s

))
time, where r is the

number of permutations and T is the number of cores available for the permutation test. The Shuffle
function is the function which rearranges all of the data within the dataset, without regard to item nor
measurement index. The output provides a new measurement index for each item i and measurement
j.

Require: (1)
{
xxxji

}
j∈[Ji],i∈[n]

n items of data, each featuring Ji measurements.

(2) r an integer for the number of permutations.

Ensure: p ∈ [0, 1] the p-value associated with the test.
1: function p = GOODNESSOFFITTEST({xxxji}j∈[Ji],i∈[n], r)

2: da = Discr
{
xxxji

}
j∈[Ji],i∈[n]

. compute observed sample Discr

. Note that this for-loop can be parallelized over T cores, as the loops are independent
3: for i in 1, . . . , r do
4: π = Shuffle(n, {Ji}ni=1) . a random shuffling of the measurements
5: di = Discr

{
xxxπ(i,j)

}
j∈[Ji],i∈[n]

. Compute Discr with random order of sample ids
6: end for
7: p = 1

r+1

(∑r
i=1 I{da≥di} + 1

)
. p-value is fraction of times observed is more extreme than under

null
8: return p
9: end function
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E.2 Comparison Test We implement Comparison testing using a permutation approach, similar to
the goodness of fit test. First, compute the observed difference in Discr between two design choices.
The null distribution of the difference in Discr is constructed by first taking random convex combina-
tions of the observed data from each of the two methods choices (the "randomly combined datasets").
Discr is computed for each of the two randomly combined datasets for each permutation. Finally, for
each permutation, the all pairs of observed differences in Discr is computed. Finally, the observed
statistic is compared with the differences under the null of the randomly combined datasets. The p-value
is the fraction of times that the observed statistic is more extreme than the null. Note that we can use
this approach for both one and two-tailed hypotheses for an experimental design having higher Discr,
lower Discr, and equal Discr relative a second approach; we implement all three in the software
implementation of the comparison test. The Algorithm for the comparison test is shown in Algorithm
2, with the alternative hypothesis as specified in Equation (2.3). The computational complexity is then
O
(
r
TN

2 max(p,maxi(si))
)
. Note that for each permutation, the limiting step is the computation of the

Discr in O
(
N2 max(p, s)

)
. This is then offset through parallelization over T cores in the implementa-

tion. We extend this comparison test to all competing approaches to provide a robust p-value associated
with both statistics of interest, for similar reasons to the above. Again, this permutation approach can
be generalized to any statistic quantifying repeatability based on repeated measurements.
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Algorithm 2 Discr Discriminability Comparison Test.Our implementation of the permutation test
for the hypothesis given in Equation (2.3) requires O

(
r
TN

2 max(p, s)
)

time, where r is the number
of permutations and T is the number of cores available for the permutation test. Above, the only
alternative considered is that HA : D(1) > D(2); our code-based implementation provides strategies
for HA : D(1) < D(2) and HA : D(1) = D(2) as well.

Require: (1)
{
xxxji

}
j∈[Ji],i∈[n]

n items of data, each featuring Ji measurements, from the first sample.

(2)
{
zzzji

}
j∈[Ji],i∈[n]

n the observed data, from the second sample.

(3) r an integer for the number of permutations.

Ensure: p ∈ [0, 1] the p-value associated with the test.
1: function p =COMPARISONTEST({xxxji}j∈[Ji],i∈[n], {zzz

j
i}j∈[Ji],i∈[n], r)

2: D̂(1) = Discr
{
xxxji

}
j∈[Ji],i∈[n]

. The Discr of the first sample.

3: D̂(2) = Discr
{
zzzji

}
j∈[Ji],i∈[n]

. The Discr of the second sample.

4: da = D̂(1) − D̂(2) . The observed difference in Discr between samples 1 and 2.
5: . The for-loop below can be parallelized over T cores, as each loop is an independent
6: for i in 1 : r do
7: . Generate a synthetic null dataset for each of the 2 samples, using a convex combination

of the elements of each sample
8: for k in 1 : 2 do
9: π = Shuffle(n, {Ji}ni=1) . a random shuffle of the measurements

10: ψ = Shuffle(n, {Ji}ni=1)

11: λji
iid∼ Unif(0, 1) . for j = 1, . . . , n, where ΛΛΛ = (λj)

n
j=1

12: uuuji = λjixxxπ(i,j) + (1− λji )zzzψ(i,j) . Convex combination of random elements from each
sample

13: d
(k)
i = Discr

{
uuuji

}
j∈[Ji],i∈[n]

. Compute Discr of the convexly combined elements

14: end for
15: end for
16: . Compute all pairs differences in Discr using the convexly-combined samples
17: for i in 1, . . . , r − 1 do
18: for j in i+ 1, . . . , r do
19: dn ← c

(
dn, d

(1)
n,i − d

(2)
n,j , d

(2)
n,j − d

(1)
n,i

)
. Null distribution of the difference

20: end for
21: end for
22: . p-value is fraction of times that observed Discr is more extreme than synthetic datasets
23: p = 2

r(r−1)+1

(∑|dn|
i=1 I{da≤dn,i} + 1

)
24: return p
25: end function

Appendix F. Connectomics Application.

F.1 Data Acquisition and Analysis

fMRI Analysis Pipelines The fMRI connectomes were acquired as follows. Motion correction is per-
formed via mcflirt to estimate the 6 motion parameters (x, y, z translation and rotations). Registra-
tion is performed by first performing a cross-modality registration from the functional to the anatomical
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MRI using flirt-bbr, followed by registration to the anatomical template using either (1) FSL-fnirt
or (2) ANTs-SyN, two techniques for non-linear registration. Frequency filtering was performed by either
(1) not frequency filtering, or (2) bandpass filtering signal outside of the [.01, .1] Hz range. Volumes were
either (1) not scrubbed, or (2) scrubbed if motion exceeded 0.5 mm, in which case the preceding volume
and succeeding two volumes were removed. Global signal regression was either (1) not performed, or
(2) performed by removing the global mean signal across all voxels in the functional timeseries. More-
over, across all analysis pipelines, the top 5 principal components (compcor), Friston 24 parameters,
and a quadratic polynomial were fit and regressed from the functional timeseries. Finally, the voxelwise
timeseries were spatially downsampled using (1) the CC200 parcellation, (2) the AAL parcellation, (3)
the Harvard-Oxford parcellation, or (4) the Desikan-Killany parcellation. Graphs were estimated by (1)
computing the rank of the non-zero raw absolute correlations (zero-weight edges given a value of 0),
(2) log-transforming the raw absolute correlations (the minimum value of the graph is down-scaled by
a factor of 100 and then added to each edge to eliminate taking log of zero-weight edges), or (3) com-
puting the raw absolute correlation between pairs of regions of interest in each parcellation. No mean
centering was performed for functional connectivity estimates. Specific data analysis instructions for
deployment in AWS can be found in the https://neurodata.io/m2g. All data analysis was performed in the
AWS cloud using CPAC version 3.9.2 [41]. All parcellations are available in neuroparc human brain
atlases [73].

dMRI Analysis Pipelines The dMRI connectomes were acquired as follows. The dMRI scans were cor-
rected for eddy currents using FSL’s eddy-correct [74]. FSL’s "standard" linear registration pipeline
was used to register the sMRI and dMRI images to the MNI152 atlas [74–77]. A tensor model is fit
using DiPy [78] to obtain an estimated tensor at each voxel. A deterministic tractography algorithm is
applied using DiPy’s EuDX [78, 79] to obtain streamlines, which indicate the voxels connected by an
axonal fiber tract. Graphs are formed by contracting voxels into graph vertices depending on spatial
[80], anatomical [81–84], or functional [85–88] similarity. Given a parcellation with vertices V and a
corresponding mapping P (vi) indicating the voxels within a region i, we contract our fiber streamlines
as follows. w(vi, vj) =

∑
u∈P (vi)

∑
w∈P (vj)

I {Fu,w} where Fu,w is true if a fiber tract exists between
voxels u and w, and false if there is no fiber tract between voxels u and w. The specific parcellations
leveraged are detailed in Kiar et al. [40], consisting of parcellations defined in the MNI152 space [81–
88]. The graphs are then re-weighted using the afforementioned weighting schemes described in fMRI
Analysis Pipelines Appendix F.1; namely, the raw, ranked, and log edge-weights. All parcellations are
available in neuroparc human brain atlases [73].

PCR RealSeqS Cancer Genomics Pipeline The RealSeqS samples were acquired as follows. PCR
was performed in 25 µL reactions containing 7.25 µL of water, 0.125 µL of each primer, 12.5 µL of
NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 µL of DNA. The cycling
conditions were: one cycle of 98oC for 120 s, then 15 cycles of 98oC for 10 s, 57oC for 120 s, and 72oC
for 120 s. Each plasma DNA sample was assessed in eight independent reactions, and the amount
of DNA per reaction varied from 0.1 µg to 0.25 µg. A second round of PCR was then performed to
add dual indexes (barcodes) to each PCR product prior to sequencing. The second round of PCR
was performed in 25 µL reactions containing 7.25 µL of water, 0.125 µL of each primer, 12.5 µL of
NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 uL of DNA containing
5% of the PCR product from the first round. The cycling conditions were: one cycle of 98ÂřC for
120 s, then 15 cycles of 98oC for 10 s, 65oC for 15 s, and 72oC for 120 s. Amplification products
from the second round were purified with AMPure XP beads (Beckman cat # a63880), as per the
manufacturer’s instructions, prior to sequencing. As noted above, each sample was amplified in eight
independent PCRs in the first round. Each of the eight independent PCRs was then re-amplified using
index primers in the second PCR round. Bowite2 was then used to align reads to the human reference
genome assembly GRC37 [89] for each well. After alignment to ∼ 750, 000 amplicons, the wells were
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downsampled into non-overlapping windows of 5× 104 bases, 5× 105 bases, 5× 106 bases, or to the
individual chromosome level (the resolution of the data).

F.2 Effect Size Investigation In this investigation, we are interested in learning how maximization
based on the observed notion of reliability correlates with real performance on a downstream infer-
ence task. Recalling Corollary (3), we explore the implications of this corollary in a large neuroimaging
dataset provided by the Consortium for Reliability and Reproducibility [27], and demonstrate that selec-
tion of the experimental design via Discr, in fact, facilitates improved downstream inference on both
a regression and classification task. We further extend this to two separate genomics datasets inves-
tigating classification tasks, and again demonstrate that selection of experimental design via Discr
improves downstream inference. This provides strong motivation for leveraging the Discr for experi-
mental design.

Ideally, for a particular summary reference statistic, a high value will generally correlate with a posi-
tive effect size. For datasets i = 1, . . . ,M whereM is the total number of datasets, an analysis strategy
j = 1, . . . , 192 for 192 total analysis strategies, and k = 1, . . . , 3 are our summary reference statistics
of interest (Discr, PICC, Fingerprint, I2C2, Kernel), we fit the standard linear regression model
Y = βX + ε, where we model the effect size Y estimated by DCorr [90] via a linear relationship with
X, the observed reference statistic for approach k, with coefficient β. Note that the interpretation of β is
the expected change in the effect size Y due to a single unit change in the observed reference statistic
X. Both Y and X are uniformly normalized across all strategies within a single dataset to facilitate
intuitive comparison across methods. For each reference statistic k, we pose the following hypothesis:

H0 : β = 0; HA : β > 0

Acceptance of the alternative hypothesis would have the interpretation that an increase in the observed
reference statistic X would tend to correspond to an increase in the observed effect size Y , and the
relevant test is the one-way Z-test. To robustify against model assumptions, we use robust standard
errors [46]. Acceptance of the alternative hypothesis against the null provides evidence that an increase
in the sample statistic corresponds to an increase in the observed effect size, where the responses (age,
sex, cancer status) were not considered at the time the data were analyzed nor when the reference
statistics computed. This provides evidence that the statistic is informative for experimental design
within the context of this investigation. Model fitting for this investigation is conducted using the lm
package in the R programming language [91].

F.3 Human Brain Imaging Dataset Descriptions

Useful Data Links All relevant analysis scripts and data for figure reproduction in this manuscript made
publicly available, and can be found at https://neurodata.io/mgc.
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Dataset Manuf. Model TE (ms) TR (ms) STC #Timepts #Sub #Ses #Scans Discr
KKI2009 NA NA NA NA NA NA 21 1 42 0.93
NKI24 Siemens TrioTim 30 645 inter. 900 24 2 47 0.98
BNU1 Siemens TrioTim 30 2000 inter. 200 50 2 100 0.97
BNU2 Siemens TrioTim 30 variable inter. variable 50 2 100 0.92
DC1 Philips NaN 35 2500 inter. 120 114 4 244 0.95
HNU1 GE MR750 30 2000 inter. 300 30 10 300 0.98
IACAS GE Signa 30 2000 inter. 240 28 3 59 0.83
IBATRT Siemens TrioTim 30 1750 seq. 220 36 2 50 0.95
IPCAS NA NA NA NA NA NA 78 2 156 0.99
IPCAS1 Siemens TrioTim 30 2000 inter. 205 30 2 60 1.00
IPCAS2 Siemens TrioTim 30 2500 inter. 212 35 2 70 0.98
IPCAS5 Siemens TrioTim 30 2000 inter. 170 22 2 44 0.96
IPCAS6 Siemens TrioTim 30 2500 inter. 242 2 15 30 1.00
IPCAS8 Siemens TrioTim 30 2000 inter. 240 13 2 26 0.96
JHNU Siemens TrioTim 30 2000 inter. 250 30 2 60 0.96
LMU3 Siemens TrioTim 30 3000 inter. 120 25 2 50 0.93
MRN1 NA NA NA NA NA NA 53 2 88 0.94
NYU1 Siemens Allegra 25 2000 NaN 197 25 3 75 0.98
NYU2 Siemens Allegra 15 2000 inter. 180 187 3 252 0.96
SWU1 Siemens TrioTim 30 2000 inter. 240 20 3 59 0.97
SWU2 Siemens TrioTim 30 2000 inter. 300 27 2 54 0.96
SWU3 Siemens TrioTim 30 2000 inter. 242 24 2 48 0.98
SWU4 Siemens TrioTim 30 2000 inter. 242 235 2 467 0.97
UM Siemens TrioTim 30 2000 seq. 150 80 2 160 0.99
UPSM1 Siemens TrioTim 29 1500 seq. 200 100 3 230 0.89
Utah1 Siemens TrioTim 28 2000 inter. 240 26 2 52 0.92
UWM GE MR750 25 2600 inter. 231 25 2 50 0.96
XHCUMS Siemens TrioTim 30 3000 inter. 124 24 5 120 0.91

Figure 6: fMRI Dataset Descriptions. In the above table, STC corresponds to slice timing correction. Rows
with NA entries do not have available metadata associated with the scanning protocol. The sample stabilities
correspond to the Discr of the best performing pipeline overall, FNNNCP.

Dataset Manuf. Model TE (ms) TR (ms) #Dir bval s
mm2 #Sub #Ses #Scans Discr

BNU1 Siemens TrioTim 89 8000 30 1000 57 2 113 1.00
HNU1 GE MR750 Min 8600 33 1000 30 10 300 0.99
KKI2009 NA NA NA NA NA NA 21 2 42 1.00
NKI24 Siemens TrioTim 95 2400 137 1500 20 2 40 1.00
SWU4 Siemens TrioTim NaN NaN 93 1000 227 2 454 0.88

Figure 7: dMRI Dataset Descriptions. In the above table, #Dir corresponds to the number of diffusion direc-
tions. Rows with NA entries do not have available metadata associated with the scanning protocol. The sample
stabilities correspond to the Discr of the pipeline with the CPAC200 parcellation and the log-transformed edges.
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