1	A dual functioning	g small RNA/Riboswitc	h controls the ex	pression of the	methionine
---	--------------------	-----------------------	-------------------	-----------------	------------

2 biosynthesis regulator SahR in *Desulfovibrio vulgaris* Hildenborough

3 M. L. Kempher^{1, 3}, A. S. Burns^{1, 3}, P. S. Novichkov^{2, 3}, and K. S. Bender^{1, 3*}

- ⁴ ¹ Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
- ⁵ ² Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA,
- 6 94720, USA
- ⁷ ³ ENIGMA– Ecosystems and Networks Integrated with Genes and Molecular Assemblies, Berkeley, CA,
- 8 USA
- 9 *To whom correspondence should be addressed. Tel: 618-453-2868, Fax: 618-453-8036, Email:
- 10 bender@micro.siu.edu
- 11

12 ABSTRACT

13 Riboswitches are *cis*-acting RNA regulatory elements that control expression of a

14 downstream gene(s) by directly binding to a specific metabolite. Here we report a S-

15 adenosylmethionine (SAM)-I riboswitch in the sulfate-reducing bacterium Desulfovibrio

16 vulgaris Hildenborough (DvH) that plays an additional regulatory role as a trans small

17 noncoding RNA (sRNA) targeting the methionine biosynthesis cycle transcriptional

18 regulator SahR. Sequence and expression analyses indicated that DseA (Desulfovibrio

19 SAM element A) is located upstream of a small hypothetical protein DVU1170 and that

20 the two are co-transcribed. Multiple techniques were used to verify the riboswitch

21 activity of DseA and its activity as a transcriptional terminator in response to SAM.

22 While determining a potential role for DseA in the methionine biosynthesis pathway, a

- 23 mRNA target encoding SahR was identified. Subsequent electrophoretic mobility shift
- 24 assays confirmed the ability of DseA to bind the *sahR* transcript and qRT-PCR analysis
- 25 of a DseA deletion strain suggested a negative regulatory role. This study presents the

first regulatory role for a newly discovered sRNA in *Desulfovibrio*. Additionally, this
study suggests that DseA acts not only as a riboswitch, but also as a *trans* regulatory
molecule.

IMPORTANCE Sulfate-reducing bacteria (SRB) are important contributors to global geochemical cycles while also causing major issues for the petroleum and oil industry due to biocorrosion and souring of oil wells. Despite their significance, gene regulatory networks and pathways remain poorly understood in SRB. Here, we report a *trans* acting small noncoding RNA that plays a dual role as a SAM sensing riboswitch that controls the expression of a small hypothetical protein. Our findings provide important insights into the regulatory repertoire of sulfate-reducing bacteria.

36 INTRODUCTION

37 Microorganisms living outside of the laboratory environment encounter an ever-38 changing landscape of nutrient levels and physiological conditions. Bacteria have 39 evolved intricate systems for regulating their internal response to external stimuli to 40 ensure survival. The importance of regulation by protein factors has been known for 41 many decades. However, the extent to which regulation by both *trans* and *cis* acting RNA 42 has recently become more evident as the use of RNA to regulate expression allows for a 43 quick and transient response to environmental cues in comparison to regulatory proteins. 44 Thus, both small noncoding RNAs (sRNAs) and riboswitches have been shown to be 45 extremely important players in many bacterial regulatory pathways (1-8).

The central role played by sRNAs in regulatory networks has become apparent
over the last decade in many types of bacteria. In *E. coli* over 100 sRNAs have been
confirmed (9,10). sRNAs have been identified and characterized in many bacterial

49	genomes including pathogens like Yersinia pestis, Francisella tularensis, and Listeria
50	monocytogenes and environmentally relevant Alphaproteobacteria like Sinorhizobium
51	meliloti, Bradyrhizobium japonicum, and Rhodopseudomonas palustris (11-16). sRNAs
52	have been shown to regulate numerous stress responses in bacteria including oxidative
53	stress, osmotic stress, carbon starvation, iron starvation, photooxidative stress, and
54	glucose-phosphate accumulation (17-22). Most sRNAs act post-transcriptionally by
55	binding to target mRNAs and regulating expression. Often a sRNA base-pairs to the 5'
56	untranslated region (UTR) of a mRNA and blocks ribosome access inhibiting translation
57	(19). Less reported modes of regulation include activation of translation of a mRNA by
58	inducing secondary structure changes or sequestration of a protein target (23-26).
59	Beyond regulation by trans-acting RNA molecules, several cis-regulatory
60	elements are also present in many bacteria. Riboswitches are elements usually found near
61	the 5' end of nascent RNA molecules that can fold into two mutually exclusive secondary
62	structures based on cellular concentrations of certain metabolites (27,28). Which structure
63	is formed determines the fate of a downstream gene(s) by either forming a transcriptional
64	terminator or affecting translation initiation. Many classes of riboswitches are known that
65	sense a number of different small metabolites. The genes that are controlled by
66	riboswitches are generally involved in the synthesis or uptake of the metabolite being
67	sensed (27,28).
68	Six different classes of S-adenosylmethionine (SAM) sensing riboswitches have
69	been implicated to control genes of the methionine biosynthesis cycle in different bacteria
70	(29,30). Methionine is not only important for protein initiation and synthesis, but it is also
71	the precursor to SAM. SAM is important in the bacterial cell as a methyl donor in a

myriad of reactions by methyl transferases that are important in nucleic acid, protein, and lipid modifications. The end product of methylation reactions is s-adenosylhomocysteine (SAH), which binds to methyltransferases with greater affinity than SAM and thereby inhibits their ability to further methylate (31). It is for this reason that it is important to quickly recycle SAH and keep levels of SAM high enough to carry out necessary methylation reactions.

78 Many bacteria can make methionine *de novo* (31,32). This pathway in well-79 studied bacteria is tightly regulated through a complex feedback loop. Some bacteria do 80 not employ any riboswitches to control methionine biosynthesis and instead use both 81 activator and repressor proteins that have been shown to interact with SAM, SAH, or 82 homocysteine (31-33). Despite the breadth of characterized regulators in the methionine 83 pathway, many bacteria lack annotated riboswitches or homologs to any identified 84 methionine regulatory proteins. Of particular importance to this study is the recently 85 identified transcriptional regulator SahR, which seems to play a role in regulation of 86 methionine biosynthesis genes in both Alphaproteobacteria and Deltaproteobacteria (34). 87 Recently, we identified several novel sRNAs in the sulfate-reducing bacterium 88 Desulfovibrio vulgaris Hildenborough (DvH) using high-throughput RNA sequencing. 89 Determining the exact biological roles of these candidates has lagged behind due to 90 limited molecular tools in DvH. While investigating the potential role of one of the 91 candidates it was determined to contain a SAM-I riboswitch domain. Here we report a 92 novel trans-acting sRNA, DseA (Desulfovibrio SAM element A), which was found to not 93 only target the mRNA of the newly discovered transcriptional regulator of SAM cycle 94 genes (SahR), but to also function as a SAM sensing riboswitch for a small hypothetical

95	protein. This is the first report linking a sRNA in <i>Dv</i> H to a regulatory role and a further
96	step in the elucidation of methionine biosynthesis in Desulfovibrio. These findings
97	expand our knowledge of the repertoire of regulatory mechanisms utilized by DvH.
98	RESULTS
99	Identification of DseA sRNA
100	A previous study in this laboratory identified potential sRNA candidates using
101	high-throughput RNA sequencing (manuscript in preparation). The predicted coordinates
102	of candidate DseA were $1,264,233 - 1,264,174$ on the negative strand of the DvH
103	genome. Northern blot analysis using a 30-mer probe targeting this region verified the
104	expression of a transcript around ~150 nt in both exponential and stationary growth
105	phases (Figure 1A). Circular RACE was performed on DvH RNA with primers specific
106	for DseA (Table S2). The majority (90%) of RACE clones sequenced determined DseA
107	to be 164 nt in length with coordinates of $1,264,319 - 1,264,156$ on the negative strand
108	(Figure S1). The 3' end of the determined transcript contains an inverted repeat and a
109	string of uracils, which is common for intrinsic terminators (Figure 1B). Consensus
110	sequences of promoters have been identified for DvH for the sigma factors σ^{70} , σ^{54} , and
111	σ^{28} (35). Upon visual inspection it was determined that DseA contains a promoter for σ^{70}
112	that comprises 9% of the total promoters thus far identified in DvH (Figure 1B; (35)). A
113	small hypothetical protein (DVU1170) and a methyl-accepting chemotaxis protein
114	(DVU1169) are located downstream of DseA, while an integral membrane protein
115	(MviN-1) is located upstream on the opposite strand (Figure 1C; MicrobesOnline (36)).
116	Conservation of DseA and Identification of a SAM-I riboswitch domain

117	The NCBI Basic Local Alignment Search Tool (BLAST) was used to search for
118	conservation of DseA in other organisms. Similar sequences were found in Desulfovibrio
119	alaskensis G20 (82% identical), Desulfovibrio salexigens DSM 2638 (83% identical), and
120	D. vulgaris strains RCH1 (100% identical), DP4 (100% identical), and Miyazaki F (76%
121	identical) (Figure S2). Noncoding RNA elements can often have similar structures
122	regardless of primary structure. Therefore, the Rfam database (37) was used to search for
123	structural homologs of DseA. This search resulted in the identification of a SAM-I
124	riboswitch element within DseA (Figure S3). This predicted SAM riboswitch element
125	contained an intrinsic terminator and suggested the mode of regulation to be that of
126	transcription termination. Therefore, a small transcript would result during the "off" state
127	and a longer transcript would result from read-through of the terminator in the "on" state.
128	Because a small transcript had already been confirmed by Northern blot analysis,
129	but a larger transcript had not been observed using our methods, we further investigated
130	the potential of DseA to act as a SAM-I riboswitch controlling the expression of the
131	downstream gene DVU1170. Reverse-transcriptase PCR (RT-PCR) was used to confirm
132	the presence of a larger transcript corresponding to read-through of the predicted DseA
133	terminator into the 189 nt DVU1170 (located 129 nt downstream of the predicted
134	riboswitch; Figure 1C). Additional primer sets spanning the region between DseA and
135	DVU1170 confirmed co-transcription (Figure S4A). Additionally, DVU1170 was not
136	predicted to be part of an operon and this was confirmed by RT-PCR using primers
137	designed to anneal to the downstream gene DVU1169 (Figure S4B).
138	Expression of DVU1170

139	The read-through transcript of DVU1170 was impossible to visualize via
140	Northern Blot analysis. Therefore, qRT-PCR was used to monitor the presence of the
141	read-through transcript of DVU1170 during growth with or without added methionine.
142	SAM is synthesized from methionine and an increase in methionine levels has been
143	shown in other bacteria to lead to an increase of SAM levels inside of the cell (38).
144	Additionally, it is unknown if DvH can uptake SAM directly from the growth medium
145	despite the computational prediction of a methionine transporter (31). Therefore, qRT-
146	PCR was performed on RNA extracted from <i>Dv</i> H cultures that had been grown to early
147	exponential phase, separated into two, and then either spiked with 1 mM methionine or
148	an equal volume of degassed H_2O . RNA was taken at 5, 15, 30, 60, and 120 min post
149	separation. qRT-PCR was done using RNA from each time-point and normalized using
150	the 16S rRNA transcript. Levels of DVU1170 transcript dropped after the addition of
151	methionine by 2.97-fold at 5 min and up to a 3.47-fold decrease at 15 min compared to
152	the sample without methionine at the same time-point (Figure 2). These data suggest that
153	levels of DVU1170 expression are influenced by concentrations of methionine.
154	Direct binding of SAM to the DseA riboswitch
155	SAM riboswitches directly bind SAM while discriminating against very
156	structurally similar compounds like methionine and SAH. Upon binding by SAM,
157	structural rearrangements occur in the expression platform (39). The first 165 nt of the
158	DVU1170 UTR was in vitro transcribed and subjected to in-line probing which reveals
159	locations of structured versus unstructured RNA based on differing rates of spontaneous
160	cleavage of RNA. RNA phosphodiester linkages are cleaved by the ribose 2' oxygen on
161	the adjacent phosphorus and the rate of this reaction depends on the "in-line" position of

162	the 2' oxygen, phosphorus, and 5' leaving group (40). RNA samples were mixed with 0.1
163	mM, 0.5 mM, and 1 mM SAM and compared to a sample with no additional factors, 1
164	mM methionine, or 1 mM SAH. There were several regions of the RNA where scission
165	either increased or decreased based on the addition of SAM indicating a difference in
166	structural conformation (Figure 3A). The areas indicated with an arrow labeled 1, 2, 4, or
167	5 had increased scission in the presence of SAM based on lane profiles obtained for each
168	sample while arrows marked with 3, 6, or 7 indicated decreased scission in the presence
169	of SAM. No differences were observed between the negative control, the methionine
170	sample, or the SAH sample. The lane profiles were normalized based on total signal and
171	then plotted as intensity versus lane position (Figure 3B). These findings validate that the
172	structural rearrangement is specific to SAM and not affected by methionine or SAH.
173	The data from the in-line probing analysis were used to draw a probable
174	secondary structure using the RNA structure visualization program VARNA (41). The
175	structural model is consistent with other characterized SAM-I structures and indicated an
176	anti-terminator to form in the absence of SAM and a terminator stem loop to form in the
177	presence of SAM (Figure 3C; (42)).
178	SAM promotes transcription termination in vitro
170	Provide studies have indicated that ribes witches can get at the level of

Previous studies have indicated that riboswitches can act at the level of transcription termination or translation initiation (27,43). While the predicted DseA riboswitch region contains a characteristic intrinsic terminator (G + C rich region followed by a series of uracils), suggesting that the riboswitch functions at the level of transcription termination, single-round *in vitro* transcription termination assays were carried out to determine if the addition of SAM affected the amount of transcription

185 termination. These assays were performed by linking the DvH DseA region, including the 186 predicted terminator and ~184 nt downstream, to a T7A1 promoter recognized by E. coli 187 RNAP. If termination does not occur, then the RNA polymerase will continue to 188 transcribe the DNA until it reaches the end of the template and falls off ("read-through" 189 transcription). 190 A single mixture of halted complexes was created before being separated and 191 mixed with various amounts of SAM or methionine. When no additional factors were 192 added to the mixture a termination rate of 52% was observed (Figure 4A, lane 1). The 193 termination frequency increased to 63% and 82% when 0.1 mM and 0.5 mM of SAM 194 was added, respectively (Figure 4A, lanes 2 and 3). When 0.5 mM of methionine was 195 added a termination rate of 55% was observed which was similar to the negative control 196 (Figure 4A, lane 4). These findings indicate that upon SAM binding, the anti-terminator 197 sequence is sequestered, and an intrinsic terminator is formed instead halting 198 transcription. These data also indicate the response to SAM is specific since methionine

199 had no effect on termination.

200 Transcriptional fusion of the DseA promoter and predicted riboswitch to *lacZ*

201 SAM riboswitches have shown a large range of variation in their response to

202 different levels of SAM in vitro (38). Transcriptional lacZ fusions were made to

203 determine if transcription termination also increased in vivo. Currently, no reporter gene

system is available for *Dv*H. Therefore, the fusions were made in an *E. coli* background.

205 The predicted promoter for DseA and the entire riboswitch region were ligated into

206 pRS415 directly in front of a promoterless *lacZ* gene and transformed into *E. coli*. As *E.*

207 coli cells are unable to uptake SAM directly, methionine was used to act as a SAM

208 precursor. The strain containing the DseA-lacZ fusion and a control strain with empty 209 vector were grown in minimal media containing 1 mM methionine to early exponential 210 phase, separated into two different cultures, centrifuged, and resuspended in minimal 211 media with or without 1 mM methionine. After 3 h of growth the samples were assayed 212 for β -galactosidase production. 213 The negative control strain containing the empty pRS415 vector produced 1.09 214 Miller Units (MU) without added methionine and 1.32 MU with added methionine. The 215 strain containing the pRS415-DseA vector produced 230.48 MU without additional 216 methionine and 88.7 MU with added methionine indicating a 2.5-fold decrease in β -217 galactosidase production after the addition of methionine (Figure 4B). These findings 218 provided further evidence that transcription of DVU1170 is regulated in response to 219 methionine concentrations in E. coli. 220 Prediction of a mRNA target of the DseA sRNA 221 In all the conditions tested (rich media, minimal media, H₂O₂ stress, salt stress, 222 and cells grown in a biofilm) the terminated DseA product was abundant, even after 223 several hours of growth (data not shown). This indicated that perhaps the terminated 224 product was playing an additional role. One riboswitch has been shown to also act in

225 *trans* as a sRNA inhibiting a mRNA target (44). Thus we used the computational

226 prediction program IntaRNA to compile a list of potential mRNA targets of DseA (Table

227 S3; (45)). One of the top target candidates was the mRNA for SahR (DVU0606), which

had recently been shown to act as a transcription factor that controls the known

229 methionine biosynthesis and SAM cycle genes in *Dv*H and other Deltaproteobacteria

230 (34).

Since SAM riboswitches are known to play a role in the methionine biosynthesis cycle in other bacteria we decided to investigate the possibility of DseA targeting the *sahR* mRNA. The predicted base pairing between DseA and the *sahR* mRNA blocks the ribosome binding site and the start codon likely inhibiting translation of *sahR* (Figure 5A).

236 DseA sRNA and sahR 5' UTR directly interact in vitro.

237 Full length DseA and the 5' UTR of *sahR* were synthesized to validate a direct 238 interaction between the two molecules using an electrophoretic mobility shift assay 239 (EMSA). The 5' portion of sahR, corresponding to the -31 to +168 nucleotides relative to 240 the start codon of *sahR* mRNA, was *in vitro* transcribed and radiolabeled at the 5' end. 241 DseA was also in vitro transcribed but was not radiolabeled. The two RNA molecules 242 were mixed together and then analyzed by native-PAGE analysis. A sample with only the 243 sahR RNA showed the migration pattern of free sahR. When DseA was added this band 244 shifted up confirming the interaction of the two RNA molecules (Figure 5B). Another 245 sRNA identified in a previous study was used as a control RNA (Dv sRNA2) and no shift 246 was seen when this RNA was added with *sahR* instead of DseA. 247 An additional EMSA analysis was done on smaller portions of the *sahR* mRNA to 248 determine the exact nucleotides involved in binding (Figure S5). An RNA oligo that 249 corresponded to the nucleotide positions of -31 to +46 relative to the start codon of sahR 250 mRNA was sufficient to bind to DseA and show a shift. A region that corresponded to 251 the nucleotide positions +17 to +88 relative to the start codon of *sahR* mRNA did not 252 shift. This confirmed that the predicted region of interaction near the RBS and start codon 253 of *sahR* is required for interaction with DseA.

254 DseA sRNA controls expression of *sahR* mRNA

255 Since DseA was predicted to bind to the RBS of the *sahR* mRNA, it seemed likely 256 that the mode of regulation of the sRNA would be to block translation of *sahR* which can 257 often lead to degradation of the targeted mRNA (46,47). To investigate this, the levels of 258 sahR transcript were evaluated in a DseA deletion mutant ($\Delta dseA$) and compared to wild-259 type levels. qRT-PCR was done on RNA extracted from both exponential growth and 260 stationary growth of wild-type DvH and the $\Delta dseA$ strain. The level of the sahR transcript 261 was higher in the $\Delta dseA$ strain suggesting that the mode of action of DseA is inhibitory 262 (Figure 6A). The expression of *sahR* increased 1.48-fold during exponential growth and 263 almost 20-fold during stationary growth in the $\Delta dseA$ strain. In order to exclude the 264 possibility that the changes in expression were due to inactivation of the downstream 265 gene DVU1170, a complement strain was constructed that expressed only DseA from a 266 constitutive promoter. Expression from this promoter resulted in higher levels of 267 expression of DseA than compared to the wild-type strain. Expression of *sahR* was 268 significantly down regulated in the complement strain further suggesting an inhibitory 269 role for DseA.

270 Additional putative targets of DseA

Typically, sRNA-target interactions are confirmed *in vivo* via systems that link expression of the mRNA target to a reporter gene (either chromosomally or on a plasmid) and then placing the sRNA behind an inducible promoter on a vector (48). Unfortunately, no such system exists for DvH. We, therefore, attempted to heterologously express DseA and *sahR* using a system in *E. coli* where the mRNA target is chromosomally inserted behind an inducible promoter and translationally fused to *lacZ* in strain PM1205 (49,50).

277	The sRNA is then expressed behind an inducible promoter from a vector. However, we
278	were unable to get appreciable levels of expression of the <i>sahR-lacZ</i> fusion ($\sim 12\%$ of the
279	amount we were able to obtain with the 5' end of the <i>E. coli manX</i> mRNA fused to <i>lacZ</i> ;
280	data not shown), possibly due to slight differences in ribosome binding sites between E .
281	coli and DvH. Therefore, to provide further evidence to support the putative role of DseA
282	as a regulatory sRNA, we performed qRT-PCR on additional IntaRNA predicted mRNA
283	targets (Table S3). Eight of the top predicted targets were selected for analysis.
284	Additionally, the entire list of predicted targets was manually searched for any genes that
285	had been identified as part of the methionine biosynthesis pathway. A recent study
286	identified that a DUF39 protein was required for homocysteine formation in
287	Desulfovibrio alaskensis (51). The homolog of this gene in DvH, DVU2398, was a
288	predicted target of DseA and was included in the qRT-PCR analysis. Of the nine genes
289	analyzed, seven showed a significant difference in expression between the wild-type and
290	the $\Delta dseA$ strain (Figure 6B). Furthermore, expression of the affected genes was either
291	restored to similar levels observed in the wild-type strain or down-regulated to a greater
292	extent in the complement strain indicating the observed effect was due to DseA and not
293	the downstream gene DVU1170.
294	DISCUSSION

294 **DISCUSSION**

Regulation of gene expression by both *trans* acting sRNAs and *cis* acting
riboswitch elements has been implicated in numerous nutritional regulatory networks.

- 297 This study is the first in *Desulfovibrio* to both examine the mechanism of a SAM
- riboswitch and suggest a definitive role for a sRNA.

299	While a previous study had predicted the presence of riboswitches such as
300	thiamine and vitamin B12 elements in Desulfovibrio, no SAM riboswitch was identified
301	(33). The DseA element was likely overlooked in this study as only regions linked to
302	genes predicted to be involved in methionine biosynthesis were analyzed. Characterized
303	SAM-I riboswitches from other bacteria have been shown to bind SAM but discriminate
304	against methionine and other similar metabolites (39). Results from the in-line probing
305	assay suggested changes in secondary structure occur when SAM is present but not when
306	methionine or SAH is present (Figure 3). The specificity of the RNA transcript to bind to
307	SAM but not to methionine or SAH agrees with previous evidence that SAM
308	riboswitches are highly specific to SAM as their sole metabolite. Analysis of in vitro
309	transcription termination in the presence or absence of SAM assays also indicated that a
310	significant increase in termination occurred when SAM was added but not in the presence
311	of methionine (Figure 4A). This provides further evidence that the DseA riboswitch is
312	specific for SAM and that it acts at the level of transcription termination.
313	Transcriptional <i>lacZ</i> fusions in <i>E. coli</i> further corroborated that <i>in vivo</i> changes
314	occurred in response to methionine concentrations as samples without methionine
315	showed greater β -galactosidase activity compared to samples with methionine (Figure
316	4B). These data suggest that increased levels of methionine lead to lower levels of the
317	downstream gene. Even with added methionine the complete inhibition of β -
318	galactosidase was not seen. Perhaps tighter control would be seen with greater amounts
319	of methionine or with <i>in vivo</i> studies in <i>Dv</i> H as opposed to <i>E. coli</i> .
320	In this study we showed that DseA can also bind to sahR (DVU0606) mRNA in
321	vitro, providing further support that DseA acts as both a SAM responsive riboswitch and

322	a trans acting sRNA (Figure 5). The region surrounding the RBS and start codon of the
323	sahR transcript is necessary for DseA binding to occur and this suggested the mode of
324	regulation to be inhibitory (Figure S5). Comparison of <i>sahR</i> transcript levels in a DseA
325	deletion mutant to those of the wild-type supported this hypothesis (Figure 6). RNA
326	extracted from the deletion strain of DseA showed an almost 20-fold increase in the level
327	of expression of <i>sahR</i> during stationary phase. Seven additional predicted targets of DseA
328	showed a similar pattern of increased expression in the DseA deletion strain. Of
329	particular interest was the increased expression of DVU2938 in the DseA deletion strain.
330	DVU2938 homologs in two separate Desulfovibrio species have recently been shown to
331	be involved in the methionine biosynthesis pathway (51,52). These recent studies suggest
332	that the corresponding proteins in D. alaskensis G20 (Dde_3007) and D. miyazaki
333	(DVMF_1464) can transfer a sulfur group to O-phosphohomoserine to form
334	homocysteine in the pathway for methionine biosynthesis. Thus, providing further
335	evidence for a regulatory role of DseA related to the methionine biosynthesis pathway.
336	While it remains to be seen whether the change in expression observed for
337	predicted DseA targets is due to direct binding of DseA or from a downstream effect
338	from other regulators controlled by DseA, it is clear that DseA is playing some role in
339	altering the expression of these genes. Whether or not a link between these additional
340	predicted targets and regulation of the methionine biosynthesis cycle exists is beyond the
341	scope of this present study. However, we do aim to explore the global regulatory role of
342	DseA in future studies.
343	It should be noted that in the Desulfovibrio species in which DseA is conserved,

344 the riboswitch is linked to homologs of the hypothetical protein DVU1170 (Figure 1C).

345	We confirmed that DVU1170 is co-transcribed with DseA in DvH and that transcript
346	levels of DUV1170 are higher in the absence of exogenous methionine (Figures 2 and
347	S4A). This longer transcript was only slightly visible in Northern blot analysis compared
348	to terminated DseA under every growth condition tested. It remains to be seen if
349	DVU1170 expression is always low compared to DseA or if the condition in which
350	expression increases was not established in this study. While it is tempting to predict a
351	novel role for DVU1170 in the methionine biosynthesis pathway of Desulfovibrio, a
352	more focused study targeting the activity of DVU1170 will need to be done before a role
353	for the protein <i>in vivo</i> can be determined.
354	Based on this study and previous data showing that SahR negatively regulates
355	genes in the SAM cycle (34), we have constructed the model presented in Figure 7. This
356	model suggests that when SAM concentrations are high, more premature transcription
357	termination occurs before reaching the downstream DVU1170 gene. This would increase
358	the levels of DseA as a trans acting sRNA, allowing DseA to bind to sahR mRNA and
359	alter its expression. When the cell experiences high levels of SAM, it is an indicator that
360	very high levels of SAH will soon follow. SAH is toxic and must be eliminated quickly.
361	Decreasing the amount of the transcription factor SahR leads to derepression of genes
362	(<i>ahcY</i> , <i>metE</i> , and <i>metK</i>) that encode products essential for recycling SAH back to SAM.
363	However, additional experiments will need to be carried out to verify the relationship of
364	DseA and <i>sahR</i> .
365	Overall, new studies are showing a myriad of regulatory roles for riboswitches
366	(5,53). In fact, recent reports have shown that riboswitches can be used to control the

367 downstream expression of non-coding RNAs. In L. monocytogenes, a vitamin B₁₂

368	riboswitch controls the expression of an antisense RNA that targets the mRNA of the
369	PocR transcriptional regulator (54), while in both <i>Enterococcus faecalis</i> and <i>L</i> .
370	monocytogenes a vitamin B ₁₂ riboswitch also controls the transcription of trans-acting
371	sRNAs EutX and Rli55, respectively (55,56). Full-length EutX and Rli55 possess
372	structures that bind antiterminator proteins. When vitamin B_{12} is present, transcriptional
373	termination occurs preventing the synthesis of full-length EutX and Rli55. These
374	truncated sRNAs are unable to sequester antiterminator proteins and thus transcriptional
375	read-through of ethanolamine utilization (<i>eut</i>) genes (whose products require vitamin B_{12}
376	as a cofactor) is allowed. Our work adds to the unique and diverse repertoire of
377	riboswitches and the multiple layers of control bacteria employ to regulate basic
378	metabolic pathways as to our knowledge, this is only the second report of a riboswitch
379	that plays a dual role in <i>trans</i> by inhibiting translation of a mRNA target (44).
380	Interestingly, the other dual-acting riboswitch/sRNA is also a SAM-I riboswitch that is
381	upstream of an ABC transporter operon in Listeria monocytogenes. In trans, the SreA
382	sRNA decreases the level of the PrfA virulence regulator when SAM is present by
383	negatively regulating the translation of the <i>prfA</i> mRNA (44).
384	It is likely that other regulators are involved in Desulfovibrio methionine
385	biosynthesis and the relationship between DseA and $sahR$ is much more intricate than
386	was evaluated in this initial study. It will be necessary to investigate the regulation of the
387	methionine biosynthesis genes in vivo before this pathway will be fully understood.
388	Additionally, identification of the genes responsible for completing the methionine
389	biosynthesis cycle and determining a role for DVU1170 will add insight into the
390	regulation of this complex biosynthesis pathway.

391

392 MATERIALS AND METHODS

393 Bacterial strains and growth conditions

- Bacterial strains and plasmids used in this study are listed in Table S1.
- 395 Desulfovibrio vulgaris Hildenborough (DvH) and strains constructed from DvH were
- 396 grown statically at 34°C in an anoxic chamber (Coy) with an atmosphere composed of
- 397 5% H₂/95% N₂ in defined lactate/sulfate medium (LS4D) reduced with 5 ml per liter of
- an anaerobic titanium citrate solution (57). E. coli strains were grown at 37°C with
- 399 shaking (200 rpm) in LB medium or M9 salts minimal media (58). When necessary,
- 400 media was supplemented with the appropriate antibiotics at the following concentrations:
- 401 ampicillin (50 μg/ml), kanamycin (50 μg/ml), geneticin (G418; 400 μg/ml), or
- 402 spectinomycin (100 μ g/ml).

403 Nucleic Acid Isolation

404 Genomic DNA (gDNA) was extracted from pure cultures grown overnight using

405 the Wizard[®] Genomic DNA purification kit (Promega) following the manufacturer's

406 protocol for Gram-negative bacteria.

407 RNA was extracted from DvH cultures grown to either exponential (OD_{600 nm} 0.30 408 - 0.50) or stationary growth phase (OD_{600 nm} 0.80 - 0.90). Cultures were placed on ice

409 and ice-cold stop solution (95% ethanol/5% phenol) was added at a final concentration of

410 20% (v/v). Total RNA was isolated using TRI Reagent[®] Solution (Ambion) following the

411 manufacturer's guidelines. The concentration and purity of the RNA was calculated by

412 the ND-1000 NanoDrop Spectrophotometer (Thermo Scientific). RNA samples were

413 treated with DNase using the TURBO DNA-free kit (Ambion) following the

414 manufacturer's protocol.

415	RNA transcripts were analyzed by Northern blot analysis. Each sample contained
416	10 μ g of DNase treated RNA mixed with an equal volume of Gel Loading Buffer II
417	(Ambion). Samples were loaded onto a precast Novex [®] 6% or 10% TBE-urea gel and
418	run in a X-cell Surelock TM gel rig with 1X TBE. RiboRuler TM Low Range RNA ladder
419	(Thermo Scientific) was prepared and labeled according to manufacturer's guidelines
420	using [gamma- ³² P]-ATP (6,000 Ci/mmol) (Perkin Elmer) and T4 Polynucleotide Kinase
421	(PNK; NEB). The gel was separated from the cassette and equilibrated in 0.5X TBE
422	buffer along with filter pads and a Nylon Charged Membrane (GE Healthcare).
423	Electroblotting was carried out using a Trans-Blot® SD Semi-Dry Transfer Cell (Bio-
424	Rad) for 2 h at a constant current of 200 mA. The membrane was rinsed and UV-
425	crosslinked.
426	The membrane was hybridized overnight at 50°C with DNA oligo probes labeled
426 427	The membrane was hybridized overnight at 50°C with DNA oligo probes labeled with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was
427	with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was
427 428	with [gamma- 32 P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was mixed with 7 µl of [gamma- 32 P]-ATP, 2 µl of 10X PNK Reaction buffer, 1 µl of T4 PNK
427 428 429	with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was mixed with 7 μ l of [gamma- ³² P]-ATP, 2 μ l of 10X PNK Reaction buffer, 1 μ l of T4 PNK (NEB), and H ₂ O up to 20 μ l. Oligo mixtures were incubated at 37°C for 1 h. The probes
427 428 429 430	with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was mixed with 7 μ l of [gamma- ³² P]-ATP, 2 μ l of 10X PNK Reaction buffer, 1 μ l of T4 PNK (NEB), and H ₂ O up to 20 μ l. Oligo mixtures were incubated at 37°C for 1 h. The probes were heated to 95°C for 5 min before being added. Membranes were washed twice with
427 428 429 430 431	with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was mixed with 7 μ l of [gamma- ³² P]-ATP, 2 μ l of 10X PNK Reaction buffer, 1 μ l of T4 PNK (NEB), and H ₂ O up to 20 μ l. Oligo mixtures were incubated at 37°C for 1 h. The probes were heated to 95°C for 5 min before being added. Membranes were washed twice with 2X SSC/0.1% SDS for 5 min followed by two washes for 15 min with 0.1X SSC/0.1%
427 428 429 430 431 432	with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was mixed with 7 μl of [gamma- ³² P]-ATP, 2 μl of 10X PNK Reaction buffer, 1 μl of T4 PNK (NEB), and H ₂ O up to 20 μl. Oligo mixtures were incubated at 37°C for 1 h. The probes were heated to 95°C for 5 min before being added. Membranes were washed twice with 2X SSC/0.1% SDS for 5 min followed by two washes for 15 min with 0.1X SSC/0.1% SDS. The membranes were exposed to Fuji X-Ray film overnight at -80°C. The film was
 427 428 429 430 431 432 433 	with [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer). 20 pmol of the DNA oligo was mixed with 7 μl of [gamma- ³² P]-ATP, 2 μl of 10X PNK Reaction buffer, 1 μl of T4 PNK (NEB), and H ₂ O up to 20 μl. Oligo mixtures were incubated at 37°C for 1 h. The probes were heated to 95°C for 5 min before being added. Membranes were washed twice with 2X SSC/0.1% SDS for 5 min followed by two washes for 15 min with 0.1X SSC/0.1% SDS. The membranes were exposed to Fuji X-Ray film overnight at -80°C. The film was manually developed using Kodak developer and fixer solutions. Membranes were

437 was labeled as described above. Probes used for Northern blots can be found in Table S2.

438 **Rapid Amplification of cDNA Ends (RACE)**

- 439 The start and stop sites of transcription of DseA were determined by circular
- 440 RACE as described elsewhere (59,60). Briefly, DNase-treated RNA was treated with
- 441 Tobacco Acid Pyrophosphate (TAP) (Epicentre) at 37°C. The 5' monophosphate and 3'
- 442 free –OH ends of the RNA were ligated with T4 RNA ligase (Invitrogen) to make
- 443 circular molecules. The circular transcripts were reverse transcribed using a DseA
- 444 specific primer (DseA CR R; Table S2) into first strand cDNA. PCR was used on the
- 445 cDNA with primers on either side of the 5'/3' bridge region (DseA CR F and DseA CR R;
- 446 Table S2). The PCR product was cloned into pJET1.2 (Thermo Scientific) and the
- 447 plasmid was sequenced to determine the transcript ends.

448 **RT-PCR and qRT-PCR**

449 Reverse transcriptase (RT)-PCR was carried out using ImProm-II reverse

450 transcriptase (Promega) following the manufacturer's protocol with 1 µg of RNA. 5 µl of

451 the cDNA reaction mixture was used as a template in a 50 µl PCR amplification reaction

452 mixture with corresponding forward and reverse primers (Table S2) and GoTaq DNA

453 polymerase (Promega), as described by the supplier. For control reactions, RNA without

454 reverse transcriptase or chromosomal DNA was used as a template.

455 DNase-treated RNA extracted from various conditions was used for qRT-PCR

456 analysis. The SuperScript[®] III First-strand Synthesis for qRT-PCR kit (Invitrogen) was

- 457 used with 1 µg of DNase-treated RNA to make cDNA. 1 µl of the cDNA was used as
- 458 template and reactions were carried out using the SYBR[®] Green SuperMix (Quanta
- 459 Biosciences) and a MJ MiniOpticonTM thermocycler running CFXTM Manager software

460	(Bio-Rad). The cycling parameters consisted of an initial denaturation step of 3 min at
461	95°C followed by 40 cycles of denaturation at 95°C for 30 s and annealing/extension at
462	63°C for 30 s. After each cycle, fluorescence was recorded. A melt curve was performed
463	at the end of each experiment starting at 63°C and concluding at 95°C (0.5°C/5 s). A no
464	RT control indicated no DNA contamination was present. Transcript levels were
465	normalized to the 16S rRNA gene or the <i>rplS</i> gene (DVU0835; primer sequences
466	obtained from Christensen et al. (61)). and fold changes were calculated using the Pfaffl
467	method (62). To calculate reaction efficiency of each gene-specific primer set, a standard
468	curve using a series of diluted cDNA (6 logs of serially diluted 100 ng/ μ l cDNA) was
469	generated.
470	In vitro transcription
471	RNA was <i>in vitro</i> transcribed using the MEGAshortscript TM kit (Ambion)

472 following the manufacturer's guidelines. Standard PCR was used to generate the DNA

473 template from DvH gDNA. RNA was either purified by a phenol/chloroform extraction

474 and ethanol precipitation or by the crush/soak method as described.

475 Crush/soak method of RNA purification

476 In vitro transcribed RNA was run on a Novex® 6% polyacrylamide TBE-urea gel 477 at 180 V for 30-45 min. The gel was removed from the plates, wrapped in plastic wrap, 478 and placed on a TLC plate (Invitrogen). The RNA was visualized by UV shadowing with 479 a hand-held UV lamp. The bands were excised, cut into small pieces, and two volumes of 480 crush-soak solution were added (40) and the tubes were rotated end over end at 4°C 481 overnight or for 2 h at room temperature. The tubes were centrifuged briefly, and the 482 supernatant was transferred. The RNA was ethanol precipitated, washed, and

483 resuspended in DEPC-H₂O. RNA was quantified using the ND-1000.

484 **In-line probing assays**

485	In-line probing analysis was carried out as described previously (40). The tubes
486	were centrifuged briefly, and the supernatant was transferred. The RNA was ethanol
487	precipitated, washed, and resuspended DEPC-H2O. RNA was quantified using the ND-
488	1000.
489	The RNA was dephosphorylated using Calf-Intestinal Alkaline Phosphataste
490	(NEB) and gel purified as described above. The RNA was radiolabeled with T4 PNK as
491	described previously but with 4 μ l of [gamma- ³² P]-ATP (6000 Ci/mmol) (Perkin Elmer).
492	The RNA was mixed with in-line buffer (40) and various amounts of metabolites as
493	indicated. The reactions were incubated for 40 h at 25°C and then halted by the addition
494	of 10 μ l of 2X urea loading buffer. The T1 RNase ladder and alkaline hydrolysis ladder
495	were prepared as previously described (40). The reactions were resolved by
496	polyacrylamide gel electrophoresis using an 8% polyacrylamide/1X TBE-urea gel. The
497	gel was dried using a gel dryer under vacuum pressure at 80°C for 90 min
498	(FisherBiotech). The dried gel was exposed to a phosphor screen (Kodak) for $1-3$ days
499	and analyzed using the Typhoon TM FLA9500 Bimolecular Imager (GE Healthcare).
500	Analysis was done using ImageQuant (GE Healthcare).
501	Single-round in vitro transcription termination assay
502	Termination assays were carried out as previously described (63). The template
503	DNA was PCR amplified from DvH gDNA using standard PCR parameters. The forward
504	primer contained the T7A1 promoter that is recognized by the E. coli RNA polymerase
505	(EpiBio) and a cytosine-less leader region (DseA T7A1 prom F/R; Table S2).

506 Transcription was carried out in various concentrations of SAM or methionine as 507 indicated. Products were resolved by denaturing polyacrylamide electrophoresis and 508 visualized using the TyphoonTM FLA9500 Bimolecular Imager (GE Healthcare). 509 Analysis was done using ImageQuant (GE Healthcare). Percent termination was 510 determined by the amount of termination product divided by the sum of total 511 transcription products. 512 Construction of *lacZ* fusions 513 The predicted DseA promoter and riboswitch region were PCR amplified from 514 DvH gDNA using a forward primer with an EcoRI cut site (DseA prom/EcoRI F; Table 515 S2) added at the 5' end and a reverse primer with a BamHI cut site added at the 5' end 516 (DseA prom/ BamHI R; Table S2). The PCR product was gel purified and digested with 517 EcoRI and BamHI for 5 min at 37°C per manufacturer's guidelines. 1 µg of pRS415 518 containing a promoterless *lacZ* gene was digested with BamHI and EcoRI per 519 manufacturer's guidelines. The digested products were run on an agarose gel and purified 520 as described above. The digested vector was mixed in a 1:1 molar ratio with the digested 521 promoter and riboswitch product, $2 \mu l$ of 10X Buffer, $1 \mu l$ of T4 DNA ligase (Promega), 522 and H_2O up to 20 µl. Three additional reactions were carried out including a 3:1 molar 523 ratio of vector to riboswitch, a vector only negative control, and an insert only negative 524 control. Reactions were incubated overnight at room temperature. Tubes were placed at 525 65°C to halt the reaction. The plasmids were transformed into *E. coli* TOP10 cells and 526 plated on LB plates containing ampicillin (50 μ g/ μ l). Successful ligation and cloning was 527 verified by PCR screening and sequencing. The new vector was named pRS415-DseA. 528 β-galactosidase assays

529	Cells containing <i>lacZ</i> fusions were grown overnight in 5 ml of M9 minimal media
530	with added leucine (30 mg/ml) and appropriate antibiotics. The next day, cultures were
531	diluted 1:100 in fresh M9 minimal media in a 96-well plate and grown to an $OD_{600 \text{ nm}}$ of
532	0.100 - 0.200.1 mM of methionine (Sigma) was added to half of the cultures while an
533	equal volume of diH ₂ O was added to control cultures. After 3 hours of incubation at $37^{\circ}C$
534	with shaking (200 rpm) a final $OD_{600 nm}$ was taken using a microplate reader (BioTek
535	Synergy HT). Samples were collected for β -galactosidase measurements and were
536	assayed as described in (64).
537	Electrophoretic Gel Shift Assay (EMSA).
538	RNA was in vitro transcribed as described above. Primers were designed to
539	amplify both the predicted sRNA DseA and a 5' portion of the SahR (DVU0606) mRNA
540	(DseA T7 prom F/R and SahR T7 prom F/R, Table S2). The RNA was purified by
541	polyacrylamide gel electrophoresis and the crush-soak method. The sahR RNA was
542	radiolabeled with [gamma- ³² P]-ATP at the 5' end after dephosphorylation by CIP. 0.4
543	pmol of DseA RNA or control RNA (Dv SIC2, generated using primers Dv sRNA-2 T7
544	prom F/R) was mixed with 0.2 pmol of end-labeled SahR RNA in 5 μ l of binding buffer
545	(65). The mixture was incubated at 70°C for 5 min and then at 37°C for 20 min. Loading
546	buffer II (Ambion) was added and the samples were loaded onto a Novex® 6% TBE gel.
547	The gel was run at 200 V for $30 - 45$ min. The gel was removed from the plates and
548	vacuum dried on Whatman TM paper. The gel was exposed to Fuji film overnight at -80°C.
549	The film was developed manually by brief immersion in Kodak developer and fixer.
550	Construction of a DseA deletion and complement strain

551	The deletion strain, $\Delta dseA$, was constructed by the J. Wall Laboratory (University
552	of Missouri) as described in Bender et al. (66,67). A region upstream of DseA, the
553	neomycin phosphotransferase (<i>npt</i>) gene that confers resistance to kanamycin and G418,
554	and a region downstream of DseA were PCR amplified and then fused together via
555	overhangs into one product similar to previously described protocols. This product was
556	ligated into an <i>E. coli</i> cloning vector, which is not stable in <i>Dv</i> H, and transformed into <i>E</i> .
557	coli TOP10 cells. This vector was then electroporated into DvH as described previously
558	(67). Transformants were screened and sequenced to verify the deletion of DseA by
559	homologous recombination and the new strain was designated $\Delta dseA$.
560	To complement the $\Delta dseA$ strain, the region corresponding to the DseA +1 site
561	through the terminator region (DvH coordinates 1,264,319 – 1,264,156) was amplified
562	with primers DseA-pSIL300-BamHI-F/DseA-pSIL300R. This allowed for directional
563	cloning into the pSIL300 vector, which is a derivative of pMO719 (68) that possesses the
564	promoter for the DvH cytochrome c_3 gene (DVU3171) with BamHI and ScaI sites
565	(GAGTCCCAAACCGCCATGAATCTAGGCTTTCCCGCTCCATTCCTTGACACTCT
566	ATCATTGATAGAGTTACCATCCCGCTCCCTATCAGTGATAGAGAGG <u>GGGATC</u>
567	<u>CATATAGTACTAATA</u>). This cytochrome c_3 promoter was inserted into the EcoRV
568	site of the parent vector using primers Xba-c3pro-F and
569	c3proBamSca-R. The resulting plasmid, pdseA, was transformed into the $\Delta dseA$ strain as
570	described above and the complement strain was selected by plating on LS4D containing
571	both G418 and spectinomycin.
572	

574 Acknowledgements

575		We thank Dr. Judy Wall and Tom Juba (University of Missouri) for construction					
576	of the	f the deletion strain. We thank Dr. Derek Fisher (Southern Illinois University					
577	Carb	Carbondale) for assistance with the β -galactosidase assays and helpful discussions.					
578							
579	Func	ling					
580	This	material by ENIGMA- Ecosystems and Networks Integrated with Genes and					
581	Mole	ecular Assemblies (<u>http://engima.lbl.gov</u>), a Scientific Focus Area Program at					
582	Lawı	rence Berkeley National Laboratory, is based upon work supported by the U.S.					
583	Depa	artment of Energy, Office of Science, Office of Biological & Environmental					
584	Rese	arch under contract number DE-AC02-05CH11231.					
585							
586	Refe	rences					
587	1.	Bastet, L., Dube, A., Masse, E. and Lafontaine, D.A. (2011) New insights into					
588		riboswitch regulation mechanisms. Mol Microbiol, 80, 1148-1154.					
589	2.	Bobrovskyy, M., Vanderpool, C.K. and Richards, G.R. (2015) Small RNAs					
590		Regulate Primary and Secondary Metabolism in Gram-negative Bacteria.					
591		Microbiol Spectr, 3 .					
592	3.	Gottesman, S. and Storz, G. (2011) Bacterial small RNA regulators: versatile					
593		roles and rapidly evolving variations. Cold Spring Harb Perspect Biol, 3.					
594	4.	Hoe, C.H., Raabe, C.A., Rozhdestvensky, T.S. and Tang, T.H. (2013) Bacterial					
595		sRNAs: regulation in stress. Int J Med Microbiol, 303, 217-229.					

- 596 5. Mellin, J.R. and Cossart, P. (2015) Unexpected versatility in bacterial
- 597 riboswitches. *Trends Genet*, **31**, 150-156.
- 598 6. Michaux, C., Verneuil, N., Hartke, A. and Giard, J.C. (2014) Physiological roles
- 599 of small RNA molecules. *Microbiology*, **160**, 1007-1019.
- 600 7. Oliva, G., Sahr, T. and Buchrieser, C. (2015) Small RNAs, 5' UTR elements and
- 601 RNA-binding proteins in intracellular bacteria: impact on metabolism and
- 602 virulence. *FEMS Microbiol Rev*, **39**, 331-349.
- 8. Wagner, E.G. and Romby, P. (2015) Small RNAs in bacteria and archaea: who
- they are, what they do, and how they do it. *Adv Genet*, **90**, 133-208.
- Raghavan, R., Groisman, E.A. and Ochman, H. (2011) Genome-wide detection of
 novel regulatory RNAs in *E. coli. Genome Res*, 21, 1487-1497.
- 607 10. Shinhara, A., Matsui, M., Hiraoka, K., Nomura, W., Hirano, R., Nakahigashi, K.,
- Tomita, M., Mori, H. and Kanai, A. (2011) Deep sequencing reveals as-yet-
- 609 undiscovered small RNAs in *Escherichia coli*. *BMC Genomics*, **12**, 428.
- 610 11. del Val, C., Rivas, E., Torres-Quesada, O., Toro, N. and Jimenez-Zurdo, J.I.
- 611 (2007) Identification of differentially expressed small non-coding RNAs in the
- 612 legume endosymbiont *Sinorhizobium meliloti* by comparative genomics. *Mol*
- 613 *Microbiol*, **66**, 1080-1091.
- 614 12. Madhugiri, R., Pessi, G., Voss, B., Hahn, J., Sharma, C.M., Reinhardt, R., Vogel,
- 515 J., Hess, W.R., Fischer, H.M. and Evguenieva-Hackenberg, E. (2012) Small
- 616 RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis.
- 617 *RNA Biol*, **9**, 47-58.

618	13.	Mellin, J.R. and Cossart, P. (2012) The non-coding RNA world of the bacterial
619		pathogen Listeria monocytogenes. RNA Biol, 9, 372-378.
620	14.	Postic, G., Frapy, E., Dupuis, M., Dubail, I., Livny, J., Charbit, A. and Meibom,
621		K.L. (2010) Identification of small RNAs in Francisella tularensis. BMC
622		Genomics, 11, 625.
623	15.	Schiano, C.A. and Lathem, W.W. (2012) Post-transcriptional regulation of gene
624		expression in Yersinia species. Front Cell Infect Microbiol, 2, 129.
625	16.	Schluter, J.P., Reinkensmeier, J., Daschkey, S., Evguenieva-Hackenberg, E.,
626		Janssen, S., Janicke, S., Becker, J.D., Giegerich, R. and Becker, A. (2010) A
627		genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-
628		proteobacterium Sinorhizobium meliloti. BMC Genomics, 11, 245.
629	17.	Adnan, F., Weber, L. and Klug, G. (2015) The sRNA SorY confers resistance
630		during photooxidative stress by affecting a metabolite transporter in Rhodobacter
631		sphaeroides. RNA Biol, 12, 569-577.
632	18.	Amin, S.V., Roberts, J.T., Patterson, D.G., Coley, A.B., Allred, J.A., Denner,
633		J.M., Johnson, J.P., Mullen, G.E., O'Neal, T.K., Smith, J.T. et al. (2016) Novel
634		small RNA (sRNA) landscape of the starvation-stress response transcriptome of
635		Salmonella enterica serovar typhimurium. RNA Biol, 13, 331-342.
636	19.	Delihas, N. and Forst, S. (2001) MicF: an antisense RNA gene involved in
637		response of <i>Escherichia coli</i> to global stress factors. J Mol Biol, 313 , 1-12.
638	20.	Masse, E., Vanderpool, C.K. and Gottesman, S. (2005) Effect of RyhB small
639		RNA on global iron use in Escherichia coli. J Bacteriol, 187, 6962-6971.

640	21.	Wadler, C.S. and	Vanderpool, C.K.	(2007)	A dual	function t	for a	bacterial	small

- 641 RNA: SgrS performs base pairing-dependent regulation and encodes a functional
- 642 polypeptide. *Proc Natl Acad Sci U S A*, **104**, 20454-20459.
- 643 22. Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R. and Storz, G.
- 644 (1998) The OxyS regulatory RNA represses *rpoS* translation and binds the Hfq
- 645 (HF-I) protein. *EMBO J*, **17**, 6061-6068.
- 646 23. Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. and Gottesman, S. (1998)
- 647 DsrA RNA regulates translation of RpoS message by an anti-antisense
- 648 mechanism, independent of its action as an antisilencer of transcription. *Proc Natl*
- 649 *Acad Sci U S A*, **95**, 12462-12467.
- 650 24. Opdyke, J.A., Kang, J.G. and Storz, G. (2004) GadY, a small-RNA regulator of
 651 acid response genes in *Escherichia coli*. *J Bacteriol*, **186**, 6698-6705.
- 652 25. Updegrove, T., Wilf, N., Sun, X. and Wartell, R.M. (2008) Effect of Hfq on
- 653 RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5' rpoS
- mRNA leader region. *Biochemistry*, **47**, 11184-11195.
- Wassarman, K.M. and Storz, G. (2000) 6S RNA regulates *E. coli* RNA
 polymerase activity. *Cell*, **101**, 613-623.
- 657 27. Breaker, R.R. (2012) Riboswitches and the RNA world. *Cold Spring Harb*658 *Perspect Biol*, 4.
- Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression
 by riboswitches. *Annu Rev Microbiol*, **59**, 487-517.

661	29.	Fuchs, R.T., Grundy, F.J. and Henkin, T.M. (2006) The S(MK) box is a new
662		SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct
663		<i>Mol Biol</i> , 13 , 226-233.
664	30.	Wang, J.X. and Breaker, R.R. (2008) Riboswitches that sense S-
665		adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol, 86, 157-
666		168.
667	31.	Rodionov, D.A., Vitreschak, A.G., Mironov, A.A. and Gelfand, M.S. (2004)
668		Comparative genomics of the methionine metabolism in Gram-positive bacteria: a
669		variety of regulatory systems. Nucleic Acids Res, 32, 3340-3353.
670	32.	Weissbach, H. and Brot, N. (1991) Regulation of methionine synthesis in
671		Escherichia coli. Mol Microbiol, 5, 1593-1597.
672	33.	Rodionov, D.A., Dubchak, I., Arkin, A., Alm, E. and Gelfand, M.S. (2004)
673		Reconstruction of regulatory and metabolic pathways in metal-reducing delta-
674		proteobacteria. Genome Biol, 5, R90.
675	34.	Novichkov, P.S., Li, X., Kuehl, J.V., Deutschbauer, A.M., Arkin, A.P., Price,
676		M.N. and Rodionov, D.A. (2014) Control of methionine metabolism by the SahR
677		transcriptional regulator in Proteobacteria. Environ Microbiol, 16, 1-8.
678	35.	Price, M.N., Deutschbauer, A.M., Kuehl, J.V., Liu, H., Witkowska, H.E. and
679		Arkin, A.P. (2011) Evidence-based annotation of transcripts and proteins in the
680		sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol,
681		193 , 5716-5727.
682	36.	Dehal, P.S., Joachimiak, M.P., Price, M.N., Bates, J.T., Baumohl, J.K., Chivian,
683		D., Friedland, G.D., Huang, K.H., Keller, K., Novichkov, P.S. et al. (2010)

- 684 MicrobesOnline: an integrated portal for comparative and functional genomics.
- 685 *Nucleic Acids Res*, **38**, D396-400.
- 686 37. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. and Eddy, S.R. (2003)
- 687 Rfam: an RNA family database. *Nucleic Acids Res*, **31**, 439-441.
- 688 38. Tomsic, J., McDaniel, B.A., Grundy, F.J. and Henkin, T.M. (2008) Natural
- 689 variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box
- 690 elements in *Bacillus subtilis* exhibit differential sensitivity to SAM *in vivo* and *in*
- 691 *vitro. J Bacteriol*, **190**, 823-833.
- 692 39. Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E. and Breaker, R.R. (2003)
- 693 An mRNA structure that controls gene expression by binding S-

adenosylmethionine. *Nat Struct Biol*, **10**, 701-707.

- 695 40. Wakeman, C.A. and Winkler, W.C. (2009) Analysis of the RNA backbone:
- 696 structural analysis of riboswitches by in-line probing and selective 2'-hydroxyl

697 acylation and primer extension. *Methods Mol Biol*, **540**, 173-191.

- 698 41. Darty, K., Denise, A. and Ponty, Y. (2009) VARNA: Interactive drawing and
- 699 editing of the RNA secondary structure. *Bioinformatics*, **25**, 1974-1975.
- 700 42. Grundy, F.J. and Henkin, T.M. (1998) The S box regulon: a new global
- 701 transcription termination control system for methionine and cysteine biosynthesis
- genes in gram-positive bacteria. *Mol Microbiol*, **30**, 737-749.
- 43. Mironov, A.S., Gusarov, I., Rafikov, R., Lopez, L.E., Shatalin, K., Kreneva, R.A.,
- 704 Perumov, D.A. and Nudler, E. (2002) Sensing small molecules by nascent RNA:
- a mechanism to control transcription in bacteria. *Cell*, **111**, 747-756.

706	44.	Loh, E., Dussurget, O., Gripenland, J., Vaitkevicius, K., Tiensuu, T., Mandin, P.,
707		Repoila, F., Buchrieser, C., Cossart, P. and Johansson, J. (2009) A trans-acting
708		riboswitch controls expression of the virulence regulator PrfA in Listeria
709		monocytogenes. Cell, 139 , 770-779.
710	45.	Busch, A., Richter, A.S. and Backofen, R. (2008) IntaRNA: efficient prediction of
711		bacterial sRNA targets incorporating target site accessibility and seed regions.
712		<i>Bioinformatics</i> , 24 , 2849-2856.
713	46.	Caron, M.P., Lafontaine, D.A. and Masse, E. (2010) Small RNA-mediated
714		regulation at the level of transcript stability. Rna Biology, 7, 140-144.
715	47.	Storz, G., Vogel, J. and Wassarman, K.M. (2011) Regulation by small RNAs in
716		bacteria: expanding frontiers. Mol Cell, 43, 880-891.
717	48.	Vogel, J. and Wagner, E.G. (2007) Target identification of small noncoding
718		RNAs in bacteria. Curr Opin Microbiol, 10, 262-270.
719	49.	Mandin, P. and Gottesman, S. (2009) A genetic approach for finding small RNAs
720		regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-
721		component system. Mol Microbiol, 72, 551-565.
722	50.	Azam, M.S. and Vanderpool, C.K. (2018) Translational regulation by bacterial
723		small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res, 46,
724		2585-2599.
725	51.	Kuehl, J.V., Price, M.N., Ray, J., Wetmore, K.M., Esquivel, Z., Kazakov, A.E.,
726		Nguyen, M., Kuehn, R., Davis, R.W., Hazen, T.C. et al. (2014) Functional
727		genomics with a comprehensive library of transposon mutants for the sulfate-
728		reducing bacterium Desulfovibrio alaskensis G20. MBio, 5, e01041-01014.

729	52.	Price, M.N., Zane, G.M., Kuehl, J.V., Melnyk, R.A., Wall, J.D., Deutschbauer,
730		A.M. and Arkin, A.P. (2018) Filling gaps in bacterial amino acid biosynthesis
731		pathways with high-throughput genetics. PLoS Genet, 14, e1007147.
732	53.	De Lay, N.R. and Garsin, D.A. (2016) The unmasking of 'junk' RNA reveals
733		novel sRNAs: from processed RNA fragments to marooned riboswitches. Curr
734		<i>Opin Microbiol</i> , 30 , 16-21.
735	54.	Mellin, J.R., Tiensuu, T., Becavin, C., Gouin, E., Johansson, J. and Cossart, P.
736		(2013) A riboswitch-regulated antisense RNA in Listeria monocytogenes. Proc
737		<i>Natl Acad Sci U S A</i> , 110 , 13132-13137.
738	55.	DebRoy, S., Gebbie, M., Ramesh, A., Goodson, J.R., Cruz, M.R., van Hoof, A.,
739		Winkler, W.C. and Garsin, D.A. (2014) Riboswitches. A riboswitch-containing
740		sRNA controls gene expression by sequestration of a response regulator. Science,
741		345 , 937-940.
742	56.	Mellin, J.R., Koutero, M., Dar, D., Nahori, M.A., Sorek, R. and Cossart, P. (2014)
743		Riboswitches. Sequestration of a two-component response regulator by a
744		riboswitch-regulated noncoding RNA. Science, 345, 940-943.
745	57.	Mukhopadhyay, A., He, Z., Alm, E.J., Arkin, A.P., Baidoo, E.E., Borglin, S.C.,
746		Chen, W., Hazen, T.C., He, Q., Holman, H.Y. et al. (2006) Salt stress in
747		Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J
748		Bacteriol, 188, 4068-4078.
749	58.	Davis, L.G., Dibner, M.D. and Battey, J.F. (1986) Basic methods in molecular
750		biology.

751	59.	Abdelrahman.	Y.M., Rose.	L.A. and Belland,	R.J. (2011) Developmental

- 752 expression of non-coding RNAs in *Chlamydia trachomatis* during normal and
- persistent growth. *Nucleic Acids Res*, **39**, 1843-1854.
- 754 60. Vogel, J. and Hess, W.R. (2001) Complete 5' and 3' end maturation of group II
- intron-containing tRNA precursors. *RNA*, **7**, 285-292.
- 756 61. Christensen, G.A., Zane, G.M., Kazakov, A.E., Li, X., Rodionov, D.A.,
- 757 Novichkov, P.S., Dubchak, I., Arkin, A.P. and Wall, J.D. (2015) Rex (encoded by
- 758 DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate
- adenylyl transferase and is regulated by NADH. *J Bacteriol*, **197**, 29-39.
- Pfaffl, M.W. (2001) A new mathematical model for relative quantification in realtime RT-PCR. *Nucleic Acids Res*, 29, e45.
- Artsimovitch, I. and Henkin, T.M. (2009) In vitro approaches to analysis of
 transcription termination. *Methods*, 47, 37-43.
- 64. Battesti, A. and Bouveret, E. (2012) The bacterial two-hybrid system based on
- adenylate cyclase reconstitution in *Escherichia coli*. *Methods*, **58**, 325-334.
- 766 65. Morita, T., Maki, K. and Aiba, H. (2012) Detection of sRNA-mRNA interactions
- by electrophoretic mobility shift assay. *Methods Mol Biol*, **905**, 235-244.
- 768 66. Bender, K.S., Yen, H.C., Hemme, C.L., Yang, Z., He, Z., He, Q., Zhou, J.,
- Huang, K.H., Alm, E.J., Hazen, T.C. et al. (2007) Analysis of a ferric uptake
- 770 regulator (Fur) mutant of *Desulfovibrio vulgaris* Hildenborough. Appl Environ
- 771 *Microbiol*, **73**, 5389-5400.

772	67.	Bender, K.S., Yen, H.C. and Wall, J.D. (2006) Analysing the metabolic
773		capabilities of Desulfovibrio species through genetic manipulation. Biotechnol
774		<i>Genet Eng Rev</i> , 23 , 157-174.
775	68.	Keller, K.L., Bender, K.S. and Wall, J.D. (2009) Development of a markerless
776		genetic exchange system for Desulfovibrio vulgaris Hildenborough and its use in
777		generating a strain with increased transformation efficiency. Appl Environ
778		<i>Microbiol</i> , 75 , 7682-7691.
779		
780		
781	Figur	e Legends
782 783	Figur	e 1. Expression of DseA and chromosomal location. (A) Northern Blot analysis
784	showing	ng 10 µg of DvH RNA from both exponential (Exp.) and stationary (Stat.) growth
785	phases	a. The blot was hybridized with the DseA 30mer probe (Table S2) and size was
786	detern	nined by comparison to RiboRuler TM Low Range RNA ladder. The membrane was
787	strippe	ed and re-probed for the 5S rRNA. (B) The DNA sequence of DseA determined by
788	circula	ar RACE. The predicted σ^{70} promoter is underlined. The +1 site of transcription is
789	indica	ted with a black arrow. The inverted repeats of the predicted intrinsic terminator are
790	indica	ted with grey arrows. (C) Genome view of the region around DseA encompassing
791	coordi	nates $1,266,111 - 1,263,449$. Gene size and location are not to scale.
792		
793	Figur	e 2. Relative quantification of DVU1170 during growth with or without added
794	methic	onine. Transcript levels were normalized to the 16S rRNA transcript (using primers
795	DVU1	170 qRT-PCR F/R and 16S qRT-PCR F2/R2; Table S2). Expression of the 0 min

796	control was artificially set to 1 and expression data for the remaining time-points were
797	determined by the CFX TM Manager software. Error bars represent standard error. Samples
798	with added methionine were compared to the same time-point without methionine using
799	Student t test, two tailed (* p< 0.05, ** p< 0.01).
800 801	Figure 3. Structural analysis of the DseA riboswitch. (A) Spontaneous cleavage pattern
802	of DseA in the absence or presence of SAM, methionine (Met), or SAH as indicated. The
803	location of some of the guanosine residues (G) cleaved by RNase T1 is indicated. NR: no
804	reaction; T1: RNase T1 ladder; -OH: alkaline hydrolysis ladder. (B) Lane profiles as
805	determined by the program ImageQuant (GE Healthcare) of in-line probing gel. The
806	numbers match to the same numbered areas of the gel. The lane profile of the T1 ladder is
807	plotted in the bottom panel and represents the G residues as labeled. (C) Predicted
808	secondary structure of DseA. When SAM concentrations are high an intrinsic terminator
809	(T) is predicted to form. When SAM concentrations drop the anti-terminator (AT) forms
810	instead. Bases colored blue are involved in forming the antiterminator.
811	
812	Figure 4. DseA riboswtich expression platform response. (A) In vitro transcription
813	termination assay of the riboswitch region. Percent termination was determined by the
814	amount of termination product divided by the sum of total transcription products. (B) β -
815	galactosidase activity of pRS415-DseA and the negative control vector pRS415. Values
816	represent the mean of three experiments. Activity is represented by Miller Units. Error
817	bars represent standard deviation.
818	

Figure 5. Interaction of DseA with sahR RNA. (A) Predicted interaction region of DseA

820	(green) and <i>sahR</i> (blue) as determined by IntaRNA (55). The RBS is underlined while the
821	start codon is bolded. (B) EMSA showing radiolabeled $sahR$ alone, mixed with Dv
822	sRNA2, and DseA. The migration of free $sahR$ and bound $sahR$ is indicated. The
823	following primers were used to generate in vitro transcripts: SahR T7 prom F/R, Dv
824	sRNA-2 T7 prom F/R, and DseA T7 prom F/R (Table S2).
825	
826	Figure 6. (A) qRT-PCR analysis of <i>sahR</i> expression in both exponential (Exp.) and
827	stationary (Stat.) growth. (B) qRT-PCR analysis of additional predicted targets of DseA
828	during exponential growth. Transcript levels were determined for wild-type DvH, $\Delta dseA$,
829	and the complement ($\Delta dseA + pdseA$). Each gene was normalized to the 16S rRNA and
830	rplS reference genes. The efficiency of each primer pair is as follows: sahR- 90.1%,
831	DVU0277-88.9%, DVU1165- 90.0%, DVU1362-89.7%, DVU1411-89.5%, DVU1977-
832	85.2%, DVU2373-90.2%, DVU2514-91.3%, DVU2938-94.9%, DVU3156-89.8%, 16S
833	rRNA gene-92.5%, <i>rplS</i> -97.0%. Error bars represent standard error. Samples from $\Delta dseA$
834	and $\Delta dseA + pdseA$ were compared to the wild-type sample from the same growth phase
835	using Student t test, two tailed (* $p < 0.05$, ** $p < 0.01$).
836	
837	Figure 7. Predicted model for the activity of DseA under high SAM concentrations
838	versus low SAM concentrations. DseA is represented in purple, the anti-terminator is
839	orange, and the sequence shared by the terminator and anti-terminator is blue. $sahR$
840	mRNA is shown in green. T: terminator; AT: antiterminator.

842	Figure S1. Alignment of RACE clone sequences corresponding to DseA. Positions 1-25
843	correspond to the 3'-end and position 26 corresponds to the +1 site of the RNA as
844	depicted in Figure 1B.
845	

- 846 Figure S2. Alignment of conserved DseA sequences. Abbreviations are as follows: DvH,
- 847 Desulfovibrio vulgaris Hildenborough; Dv RCH1, Desulfovibrio vulgaris RCH1; Dv

848 DP4, Desulfovibrio vulgaris DP4; DvM, Desulfovibrio vulgaris Miyazaki F; Ds 2638,

849 Desulfovibrio salexigens DSM2638; Da G20, Desulfovibrio alaskensis G20. Black

shading indicates identically conserved bases while grey shading represents similarly

- 851 conserved bases.
- 852

853 Figure S3. Alignment of the predicted riboswitch region of two *Desulfovibrio* species

and other known SAM riboswitches. Alignment was generated by Rfam (48) and the

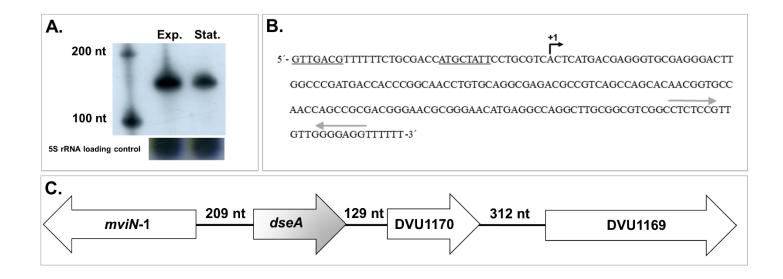
855 colors represent the consensus base for that location.

856

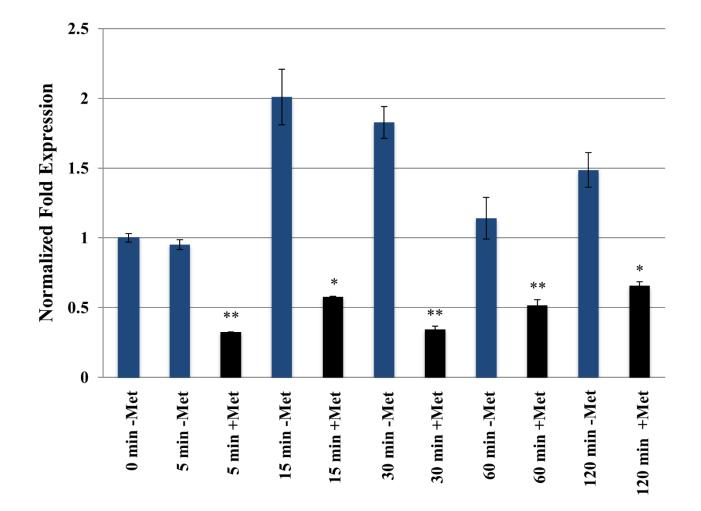
857 Figure S4. RT-PCR analysis of DVU1170 region. (A) Co-transcription of DseA and

858 DVU1170. Top of panel illustrates the genomic view of the DseA-DVU1170 locus with

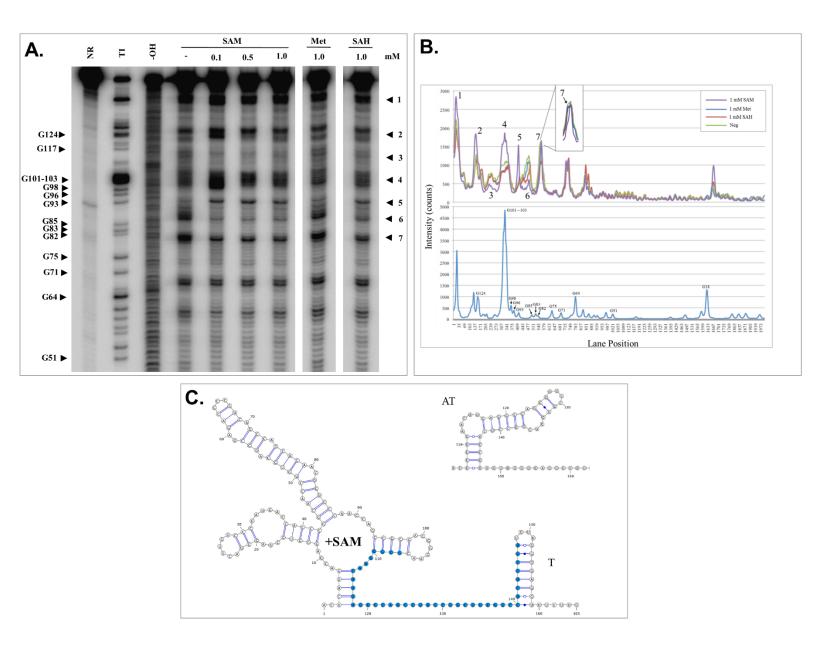
lines a, b, c, and d indicating regions of the locus targeted by RT-PCR. Primers 1170 RT


860 F1-F4/R (Table S2) were used to target regions a-d. (B) DVU1170 and DVU1169 are not

- 861 co-transcribed. Top of panel illustrates the genomic view of the DVU1170-DVU1169
- locus with lines a, b, and c indicating regions of the locus targeted by RT-PCR. Primers


863 DVU1169 RT F1-3/R were used to target regions a-c. Gel analysis of the RT-PCR results

are provided in the bottom of each panel. The reactions within each set of four wells


865	corresponding to the mapped genome regions are as follows: (-), PCR without DNA
866	template as a negative control; (-RT), PCR with RNA as the template as a negative
867	control; (+), PCR with genomic DNA from <i>Dv</i> H as a control; and (+RT), RT-PCR with
868	RNA as a template.
869	Figure S5. DseA- <i>sahR</i> mRNA interaction region. (A) The sequence encompassing the -
870	36 to +126 (in reference to the start codon) region of the $sahR$ mRNA. The RBS is
871	underlined, and the start codon is bolded. The predicted region of interaction between
872	DseA and $sahR$ is shown in red. (B) EMSA showing interaction between DseA and RNA
873	oligos of portions of the sahR mRNA. The sequence of oligo 1, oligo 2, and oligo 3 is
874	underlined with a black, blue, and purple line, respectively. The aforementioned oligos
875	were generated using the following primer sets in Table S2: SahR T7 prom F/SahR Rev 2
876	(oligo 1), SahR T7 prom F/SahR Rev 3 (oligo 2), and SahR Middle F/SahR Rev 3
877	(oligo3).

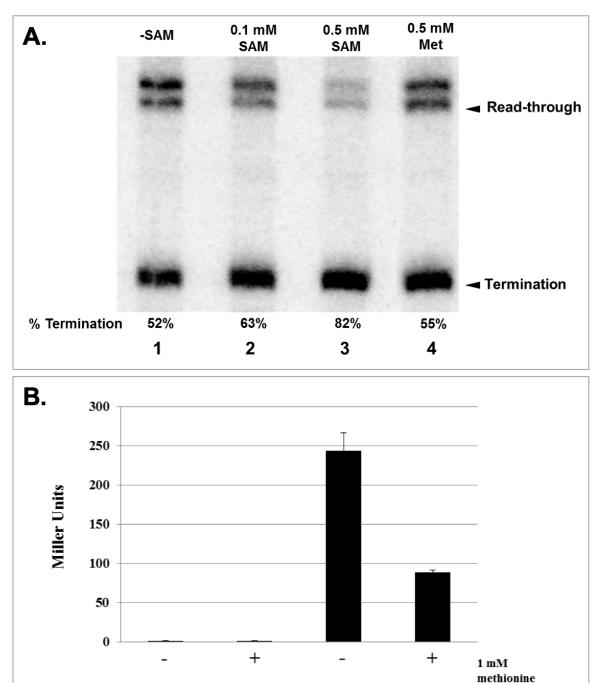
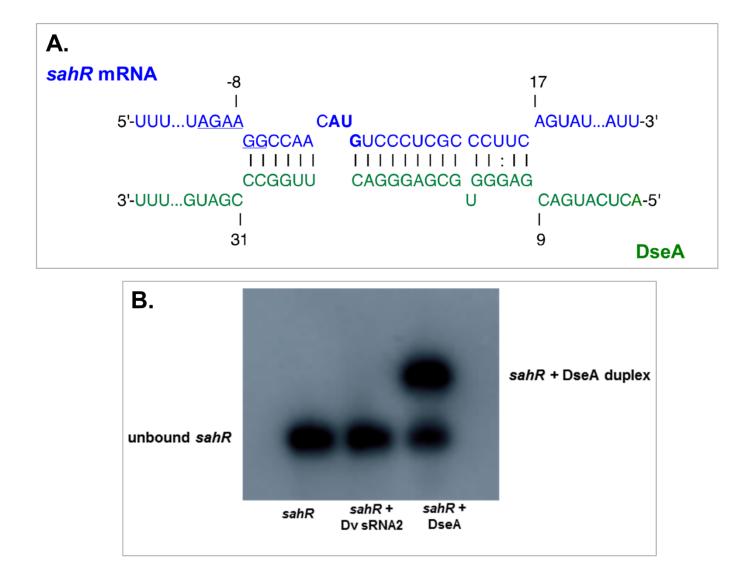
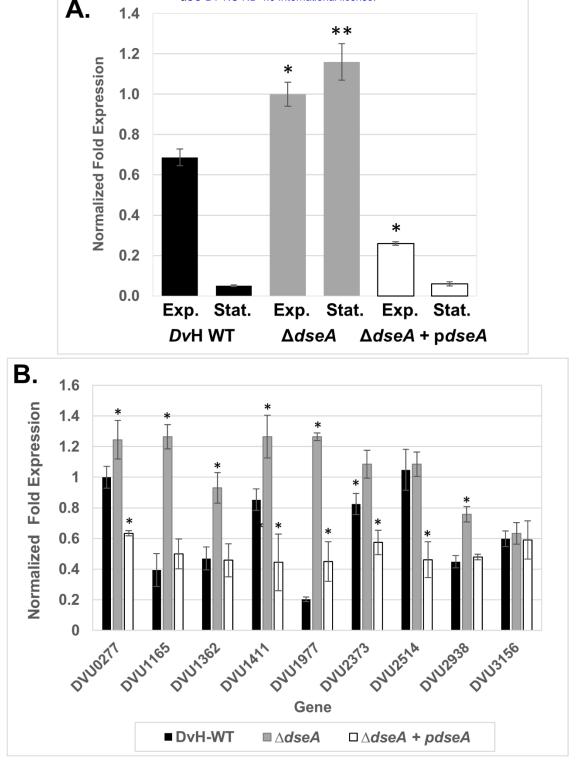

Figure 1. Expression of DseA and chromosomal location. (**A**) Northern Blot analysis showing 10 μ g of *Dv*H RNA from both exponential (Exp.) and stationary (Stat.) growth phases. The blot was hybridized with the DseA 30mer probe (Table S2) and size was determined by comparison to RiboRulerTM Low Range RNA ladder. The membrane was stripped and re-probed for the 5S rRNA. (**B**) The DNA sequence of DseA determined by circular RACE. The predicted promoter is underlined. The +1 site of transcription is indicated with a black arrow. The inverted repeats of the predicted intrinsic terminator are indicated with grey arrows. (**C**) Genome view of the region around DseA encompassing coordinates 1,266,111 – 1,263,449. Gene size and location are not to scale.

Figure 2. Relative quantification of DVU1170 during growth with or without added methionine. Transcript levels were normalized to the 16S rRNA transcript (using primers DVU1170 qRT-PCR F/R and 16S qRT-PCR F2/R2; Table S2). Expression of the 0 min control was artificially set to 1 and expression data for the remaining time-points were determined by the CFXTM Manager software. Error bars represent standard error. Samples with added methionine were compared to the same time-point without methionine using Student t test, two tailed (* p< 0.05, ** p< 0.01).


Figure 3. Structural analysis of the DseA riboswitch. (**A**) Spontaneous cleavage pattern of DseA in the absence or presence of SAM, methionine (Met), or SAH as indicated. The location of some of the guanosine residues (G) cleaved by RNase T1 is indicated. NR: no reaction; T1: RNase T1 ladder; -OH: alkaline hydrolysis ladder. (**B**) Lane profiles as determined by the program ImageQuant (GE Healthcare) of in-line probing gel. The numbers match to the same numbered areas of the gel. The lane profile of the T1 ladder is plotted in the bottom panel and represents the G residues as labeled. (**C**) Predicted secondary structure of DseA. When SAM concentrations are high an intrinsic terminator (T) is predicted to form. When SAM concentrations drop the anti-terminator (AT) forms instead. Bases colored blue are involved in forming the antiterminator.


Figure 4. DseA riboswtich expression platform response. (A) *In vitro* transcription termination assay of the riboswitch region. Percent termination was determined by the amount of termination product divided by the sum of total transcription products. (B) β -galactosidase activity of pRS415-DseA and the negative control vector pRS415. Values represent the mean of three experiments. Activity is represented by Miller Units. Error bars represent standard deviation.

pRS415

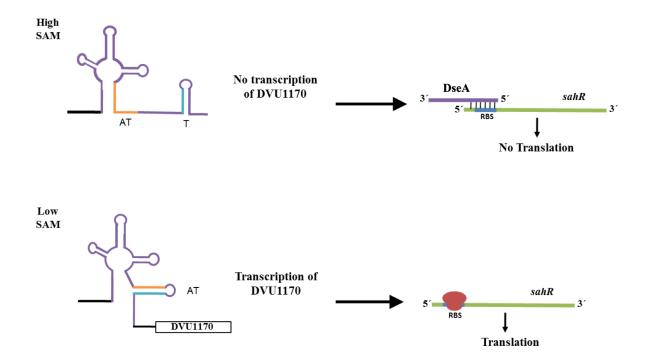

pRS415-DseA

Figure 5. Interaction of DseA with *sahR* RNA. (A) Predicted interaction region of DseA (green) and *sahR* (blue) as determined by IntaRNA (55). The RBS is underlined while the start codon is bolded. (B) EMSA showing radiolabeled *sahR* alone, mixed with Dv sRNA2, and DseA. The migration of free *sahR* and bound *sahR* is indicated. The following primers were used to generate *in vitro* transcripts: SahR T7 prom F/R, Dv sRNA-2 T7 prom F/R, and DseA T7 prom F/R (Table S2).

Figure 6. (A) qRT-PCR analysis of *sahR* expression in both exponential (Exp.) and stationary (Stat.) growth. (B) qRT-PCR analysis of additional predicted targets of DseA during exponential growth. Transcript levels were determined for wild-type DvH, $\Delta dseA$, and the complement ($\Delta dseA + pdseA$). Each gene was normalized to the 16S rRNA and *rplS* reference genes. The efficiency of each primer pair is as follows: *sahR*- 90.1%, DVU0277-88.9%, DVU1165- 90.0%, DVU1362-89.7%, DVU1411-89.5%, DVU1977-85.2%, DVU2373-90.2%, DVU2514-91.3%, DVU2938-94.9%, DVU3156-89.8%, 16S rRNA gene-92.5%, *rplS*-97.0%. Error bars represent standard error. Samples from $\Delta dseA$ and $\Delta dseA + pdseA$ were compared to the wild-type sample from the same growth phase using Student t test, two tailed (* p< 0.05, ** p< 0.01).

Figure 7. Predicted model for the activity of DseA under high SAM concentrations versus low SAM concentrations. DseA is represented in purple, the anti-terminator is orange, and the sequence shared by the terminator and anti-terminator is blue. *sahR* mRNA is shown in green. T: terminator; AT: antiterminator.