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Abstract

Trans-eQTLs collectively explain a substantial proportion of expression
variation, yet are challenging to detect and replicate since their effects are
individually weak. Many trans-effects are mediated by cis-gene expression and
some of those effects are shared across tissue types/conditions. To detect robust
cis-mediated trans-associations at the gene-level and for specific single nucleotide
polymorphisms (SNPs), we proposed two Cross-Condition Mediation methods –
CCmedgene and CCmedGWAS, respectively. We analyzed data from 13 brain
tissue types from the Genotype-Tissue Expression (GTEx) project, and identified
trios with cis-eQTLs of a cis-gene having associations with a trans-gene, many of
which show evidence of replication in other datasets. By applying CCmedGWAS,
we identified trans-genes associated with known schizophrenia susceptibility loci.
We further conducted validation analyses assessing the
schizophrenia-risk-associations of the identified trans-genes, by harnessing GWAS
summary statistics from the Psychiatric Genomics Consortium and multitissue
eQTL statistics from GTEx.

Keywords: trans-expression quantitative trait loci (trans-eQTL); mediation
analysis; cross-condition; cross-tissue; cis-mediated trans-associations; GWAS;
validation; two-sample Mendelian Randomization

Introduction
The impact of genetic variation on the human transcriptome is well-established

[1, 2, 3, 4]. To date, the majority of known expression quantitative trait loci (eQTLs)

affect expression of local genes (cis-eQTLs) [5]. It is known that genetic variation

may also affect distal or inter-chromosomal gene expression levels as trans-eQTLs.

Cis-eQTLs are often defined as the SNPs within 1 Mb from the gene transcriptional

start site while trans-eQTLs are defined as the SNPs beyond or on different chro-

mosomes. It is still challenging to detect and replicate trans-eQTLs with existing

eQTL data. The reason is multifaceted: though trans-eQTLs collectively explain a

substantial proportion of expression variation in the genome, their effects are indi-

vidually weak; other than whole-blood [6], the available sample sizes of eQTL data

from specific tissue/cell types are generally limited; many identified trans-genetic ef-

fects act in a tissue-specific or cell-type-specific manner; and the significance criteria

for detecting trans-associations are more stringent due to the increase in multiple

testing burden.
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In contrast to directly testing for trans-associations (i.e., SNPs → trans-gene)

in a single or multiple tissue types, more recently an alternative and complemen-

tary strategy has been proposed to detect trans-associations mediated by cis-gene

expression levels (i.e., SNPs → cis-gene → trans-gene) [7, 8, 9, 10]. It has been

shown in the causal mediation literature that while directly testing for total trans-

association effects is more powerful in detecting large effects of SNPs on trans-genes,

mediation-based association tests are more powerful for detecting small effects when

one or more mediators are measured and accounted for [11]. Studies have shown

that many cis-eQTLs also affect distal gene expression [8], and a large proportion

of trans-eQTL effects are at least partially mediated by cis-gene expression levels

[7]. That is, trans-associations mediated by cis-gene expression are quite abundant

in the genome. Moreover, by summarizing the results from single-tissue mediation

analysis, it is also observed that many cis “hub” genes (with cis-eQTLs) may affect

multiple trans-genes in functionally related tissue types [7], suggesting the existence

and even prevalence of cross-tissue effects for cis-mediated trans-associations (i.e.,

trans-associations mediated by cis-gene expression).

In this work, we first propose a Cross-Condition Mediation (CCmed) method

(Figure 1) to detect cis-mediated trans-associations and to boost power by jointly

analyzing multiple tissue types. To establish cis-mediated trans-effects, two condi-

tions need to be satisfied simultaneously – non-zero cis-associations and non-zero

conditional correlations of cis- and trans-gene expression levels conditioning on the

eQTL genotypes. Cis-association effects are often shared across many tissue types,

and gene expression levels also tend to have shared correlations among related tissue

types with similar cell type compositions [5]. Therefore, we argue that cis-mediated

trans-association effects are also likely to be shared across related tissue types and

potentially be replicated across studies. Moreover, in CCmedgene, we propose to

study gene-level trans-associations across conditions, i.e., we consider all cis-eQTLs

for a specific gene as a set and aim to detect their joint association and media-

tion effects on a trans-gene. Studying gene-level trans-associations would increase

the chance of detecting and replicating trans-associations that are individually weak

but collectively strong and robust, while also minimizing the potential impact of dif-

ferent genotyping platforms in different studies. We applied the CCmedgene method

to data from 13 brain tissue types of the GTEx project (V8) [12] and detected

9,053 trios with trans-associations at the 90% posterior probability threshold, each

trio consisting of a cis-eQTL set, a cis-gene transcript, and a trans-gene transcript

with evidence of association from the eQTL set on the trans-gene. We attempted to

replicate our findings using data from two other studies of different tissue types –

whole blood samples from the eQTLGen consortium [6] and dorsolateral prefrontal

cortex samples from the CommonMind Consortium (CMC) [13].

In addition to mapping robust gene-level trans-associations in the genome, an-

other major focus of this work is to study the trans-genes of GWAS SNPs and

further understand how genetic variation affects complex traits – a long-standing

question in genetics research. Increasing evidence has suggested that many sus-

ceptibility loci may affect complex traits/diseases via the modulation of their cis-

gene expression levels [14, 15, 16, 17]. Those cis-gene expression levels may fur-

ther affect other distal genes in functional pathways, some of which also con-
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tribute to phenotypic variation. Here, by focusing on trait-associated SNPs iden-

tified from GWAS, we adapted the CCmed framework to identify trans-genes for

GWAS SNPs, and proposed a CCmedGWAS method (see Figure 1B&C). Differ-

ent than CCmedgene for gene-level trans-association, CCmedGWAS focuses on one

GWAS SNP at a time and aims to detect trans-genes for a GWAS SNP mediated

by cis-gene expression while accounting for other cis-eQTLs in the gene region,

i.e., a GWAS SNP |other cis-eQTLs → cis-gene→ trans-gene. CCmedGWAS quantifies

the joint probabilities of two conditions being simultaneously satisfied in at least

some tissue types. The two conditions are: 1) the GWAS SNP is also a cis-eQTL

conditioning on other cis-eQTLs; and 2) there exists non-zero conditional correla-

tions between cis- and trans-expression levels conditioning on eQTL genotypes. As a

proof-of-concept, we applied the CCmedGWAS method to the multitissue eQTL data

from 13 brain tissue types of the GTEx project, and detected suspected trans-genes

for known schizophrenia (scz)-associated loci [18].

Not all of the trans-genes associated with disease susceptibility loci will be in-

volved in the disease etiology. Considering the pleiotropic effects of many genetic

variants [19, 20] and the potential false positive findings due to violations of as-

sumptions required for mediation and association analyses, it is possible that only

some proportion of the identified suspected trans-genes for GWAS loci are truly

affecting disease risk. In order to further identify and validate the effects of the

suspected trans-genes for 108 scz risk loci, we conducted three validation analyses.

Among the suspected trans-genes for scz GWAS SNPs identified by CCmedGWAS,

many of them show evidence of scz-risk associations in the validation analyses.

Many cis-mediated trans-associations have only weak effects, and will be unde-

tectable via direct trans-association tests. In this work, we developed two tailored

methods for detecting cis-mediated trans-associations across multiple conditions. A

major innovation of our work is that we focused on cis-mediated trans-association

effects, both at the gene-level and for GWAS-SNPs, and showed that those ef-

fects are not only prevalent in the genome, but also are often shared across related

tissue types and are replicable across studies. The proposed CCmed framework

takes only summary statistics as input and can be applied across different tis-

sues/datasets/studies.

Results
Methods overview

In this work, we developed two cross-condition mediation analysis methods,

CCmedgene and CCmedGWAS, for detecting cis-mediated trans-associations at the

gene-level and for GWAS SNPs, respectively. CCmed takes as input summary statis-

tics from multiple studies/tissue-types/conditions, aiming to detect robust media-

tion and trans-association effects shared across conditions. Additionally, to validate

the trait-associations of the identified suspected trans-genes for GWAS SNPs, we

developed a two-sample Mendelian Randomization (MR) method ROBust to cor-

related and some INvalid instruments, termed “MR-Robin”. While the CCmed

methods can be applied to many cross-condition settings (e.g. cell types), in this

work we applied the methods to study cross-tissue mediation effects. For clarity and

consistency between descriptions of the methods and data applications, we used the

term “tissue” in lieu of “condition” in describing the methods.
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CCmedgene for mapping gene-level trans-associations mediated by cis-gene

CCmedgene detects trios (eQTL set, cis-gene, trans-gene) showing evidence of cross-

tissue trans-association and mediation effects by quantifying the joint probability

of two conditions being satisfied in at least K1 out of K tissue types. The two

conditions are gene-level cis-associations and non-zero correlations between the ex-

pression levels of the cis- and trans-genes conditioning on the eQTL genotypes. Note

that CCmed allows that the trios may also have a direct effect from the eQTL set

to the trans-gene not completely mediated by the cis-gene expression (i.e., β2 6= 0

in Figure 1A).

Specifically, for each trio (Li, Ci, Tj), where Li is a set of eQTL genotypes for

a cis-gene i, Ci is the cis-gene expression level and Tj is the expression level of a

trans-gene j, we calculated the probability that Ci mediates the effects of Li on Tj

in at least K1 tissue types, Pmed,ij , as follows:

Pmed,ij = Pr(Li → Ci → Tj in at least K1 out of K tissue types)

≥ Pr(αc 6= 0 in all K tissue types)

× Pr(β1 6= 0 in at least K1 tissue types), (1)

where αc is a vector of cis-association effects for the set of eQTLs in a single

tissue type, and β1 is the conditional correlation of cis- and trans-gene expression

levels in a single tissue type. We estimated αc and β1 for each tissue type and

obtained the summary statistics. Note that here we omitted the subscript for tissue

type to make notation simpler, though gene expression levels, cis-association and

conditional correlation effects all vary by tissue type.

To quantify the cross-tissue cis-association probability, Pr(αc 6= 0 in all K tissue types)

in (1), we first obtained the gene-level cis-association statistics for M cis-genes

by F -tests. We applied a recently developed integrative association analysis ap-

proach, Primo [15, 21], to the association statistics to obtain the probabilities

of P̂r(αc 6= 0 in all K tissue types) for gene i = 1, . . . ,M . Similarly, by apply-

ing Primo to the conditional correlation statistics from K tissue types for the

M ′i trans-genes for each cis-gene i, we obtained the probability of non-zero con-

ditional correlation in at least K1 tissue types for all trans-genes of a cis-gene,

P̂r(β1 6= 0 in at least K1 tissue types). By taking the products of the two proba-

bilities, we estimated a lower bound of the probability of gene-level cis-mediated

trans-associations for each trio of (Li, Ci, Tj) in at least K1 tissue types. Additional

details are provided in the Methods section.

CCmedGWAS for detecting trans-genes for GWAS SNPs

To detect trans-genes associated with GWAS SNPs of a complex trait via media-

tion analysis, CCmedGWAS quantifies the joint probability of two conditions being

satisfied in at least K ′1 out of K tissue types. The two conditions are: (i) the GWAS

SNP is also a cis-eQTL for the cis-gene conditioning on other cis-eQTLs, and (ii)

there is a non-zero correlation between the cis- and trans-gene expression levels

conditioning on the genotypes of eQTL and GWAS SNPs. Specifically, we calculate

the probability that a GWAS SNP (Gi) is affecting the expression of a distal gene
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(Tj) in at least K ′1 of K tissues via modulating its cis-gene expression (Ci), while

also allowing partial mediation, as follows:

PGWAS
med,ij = Pr(Gi → Ci → Tj in at least K ′1 out of K tissue types)

≥ max
{s`:|s`|=K′

1}
Pr(Gi → Ci → Tj at least in tissue(s) s`)

≥ max
{s`:|s`|=K′

1}
[Pr(α′g 6= 0 at least in tissue(s) s`)

× Pr(β′1 6= 0 at least in tissue(s) s`)], (2)

where Gi is the genotype of a GWAS SNP of interest, s` is a set of tissue indices

and is a subset of {1, 2, · · · ,K} with K ′1 distinct tissue types. There are a total

of
(
K
K′

1

)
unique s`’s. The parameter α′g is the conditional cis-association statistic of

the GWAS SNP of interest to a local gene’s expression conditioning on other lead

eSNPs (an eSNP is an eQTL SNP, and a lead eSNP is the eSNP with the smallest

eQTL P -value in the region), and a non-zero α′g value implies the GWAS SNP is

also an independent eQTL regulating the cis-gene expression Ci. And β′1 is the con-

ditional correlation statistic of cis- and trans-gene expression levels conditioning on

eQTL and GWAS SNPs. Both cis-association and conditional correlation statistics

are calculated separately for each tissue type, and we again omitted the subscript

for tissue type for simpler notation. We apply the Primo method to calculate the

two probabilities in (2) to obtain a lower bound of the probability of trans-gene

association of a GWAS SNP via cis-mediation.

CCmedgene and CCmedGWAS differ in the following major aspects: first, the cis-

association statistic of CCmedgene is calculated based on an F -test for a set of

cis-eQTLs, whereas the cis-association statistic of CCmedGWAS focuses on only

the cis-association of a GWAS SNP, adjusting for other eQTLs. Second, in calcu-

lating the conditional correlation statistics, CCmedgene adjusts for cis-eQTLs, and

CCmedGWAS also adjusts for the GWAS SNP in addition to cis-eQTLs. Third, it can

be seen from our results that there are many robust gene-level cis-mediated trans-

associations with effects shared across multiple tissue types, and we used K1 = 12

out of K = 13 brain tissues in detecting the more robust cross-brain-tissue trans-

association analysis of the GTEx data. In contrast, the GWAS SNPs of a complex

disease/trait may be eQTLs in only specific disease/trait-relevant tissue types and

subsequently may have trans-associated genes in specific tissue types. As such, we

suggest using a relatively small K ′1 (and K ′1 > 1 would ensure some robustness)

for CCmedGWAS. In detecting the trans-genes for scz risk loci, we choose K ′1 = 2

out of 13 brain tissue types in the analysis. Note that if a GWAS SNP has multiple

cis-genes in the cis-region, we will separately consider them.

Validating the trait-associations of the suspected trans-genes for GWAS SNPs

Not all of the trans-genes associated with GWAS SNPs for a complex disease/trait

will be involved in the disease/trait etiology. Considering the pleiotropic effects

of many genetic variants, only some of the trans-genes for GWAS SNPs are truly

affecting disease risk or trait variation. Therefore, we conducted three validation

analyses to assess the effects of suspected trans-genes of GWAS SNPs identified by

CCmedGWAS on the complex disease/trait of interest.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/803106doi: bioRxiv preprint 

https://doi.org/10.1101/803106


Yang et al. Page 6 of 29

As shown in Figure 2, those validation analyses share a common rationale: consid-

ering a suspected trans-gene identified via CCmedGWAS, if the trans-gene is truly

affecting the complex trait variation, then the local eQTLs of the trans-gene would

also have associations to the complex trait; otherwise, they would not. Using an

analogy, there is a known “ancestor” (GWAS SNP) and “descendant” (complex

trait) relationship, and there are two suspected “fathers” (trans-genes) of the de-

scendant. When the father information is not available (trans-gene expression not

being measured in the GWAS study), then by examining the relatedness of the

descendant (complex trait) to the local relatives from maternal side of the sus-

pected fathers (local eQTLs for the suspected trans-genes) using only GWAS statis-

tics, one can validate the paternal relationship (trait-association of the suspected

trans-gene). Here we recapitalized on existing multitissue eQTL resources from the

GTEx Project and the GWAS summary statistics from the Psychiatric Genomics

Consortium (PGC), and conducted three types of validation analyses on the sus-

pected trans-genes for scz loci detected from GTEx data via CCmedGWAS. We ex-

amined their risk-associations based on: 1) single-SNP GWAS summary statistics

for local eQTLs of the suspected trans-genes; 2) a gene-based association test via

transcriptome-wide association analysis (TWAS); and 3) a newly-developed two-

sample Mendelian Randomization method – MR-Robin.

MR-Robin: a robust two-sample Mendelian Randomization method for assessing

the causal effect of gene expression on a complex trait

MR-Robin assesses the causal effect of gene expression on a complex trait by inte-

grating and recapitalizing on existing GWAS and multitissue eQTL statistics. Note

that we applied MR-Robin in the validation analysis, though it can be generally

applicable to assess the causal effect of a gene on a trait for discovery purposes.

Many existing methods have been proposed in the Mendelian Randomization

literature to assess the causal effects of gene expression on a trait by har-

nessing Mendelian randomized genetic variants as instrumental variables (IVs)

[22, 23, 24, 25]. A valid IV is a genetic variant that has effects on the complex

trait completely mediated through gene expression [26], and is independent of un-

measured confounders of the mediator (gene expression) and outcome (complex

trait). That is, there is no “horizontal pleiotropy” (a phenomenon that a genetic

variant also affects the complex traits via other pathways not mediated through cis

expression) [22] nor “correlated pleiotropy” [27] (a phenomenon that a genetic vari-

ant affect both mediator and outcome through a heritable shared factor, i.e. IVs are

associated with the confounder). Note that valid IVs do not have to be the causal

SNPs. The inclusion of invalid IVs in the MR analysis may lead to biased causal

effect estimation and inference. A more detailed review of existing literature can

be found in Methods section. In summary, most existing two-sample MR methods

require a large number of IVs (here cis-eQTLs), and some methods require IVs to

be nearly independent, limiting the applicability of those methods in assessing the

causal effects of gene expression on complex trait.

The proposed MR-Robin method fills the gap. It requires only summary-level

GWAS and multitissue eQTL statistics as input, considers multitissue eQTL effects

for multiple IVs of a gene, allows IVs to be correlated and some of them to be invalid,
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and can be applied to genes with only a small number of cis-eQTLs. Specifically,

traditional two-sample MR methods estimate the effect from gene to trait by taking

the ratio of marginal effects of GWAS to eQTL associations, βyi/βxi, where βyi and

βxi are the marginal GWAS and eQTL association effects, respectively, for SNP i.

Due to linkage disequilibrium (LD) among SNPs and the pervasive horizontal and

potential correlated pleiotropic effects in the genome [28, 27, 29], based on marginal

summary statistics of one SNP i the estimated effect of gene to trait will be biased

if any other SNP in the LD block has a horizontal or correlated pleiotropy effect.

The magnitude of the bias depends on many factors including LD pattern, eQTL

effects, and effects of horizontal or correlated pleiotropy. The bias is thus specific

to each SNP (see Supplemental Materials for details).

MR-Robin considers the estimated effect of gene to trait from each IV as an

observed value of the true effect plus a SNP-specific bias. By jointly considering

multiple IVs, MR-Robin decomposes the estimated effects of multiple IVs into two

components – a concordant effect shared across IVs and a discordant component

allowing some IVs to be invalid with SNP-specific deviations from the true effect.

MR-Robin makes the estimation identifiable by taking advantage of the multitissue

eQTL effects for multiple IVs of a gene and treating them as the response variable

in a reverse regression, with GWAS effect estimates as the predictor. The rich

multitissue eQTL effect information in the response variable allows the estimation

of SNP-specific random-slopes (i.e. deviated effects) due to potential invalid IVs. In

contrast, to our knowledge, all existing MR methods use only single-tissue eQTL

effects. Thus, with only a limited number of potentially correlated IVs, MR-Robin

can accurately test the true effect from gene to trait by testing the shared fixed

effect of correlation of eQTL and GWAS effects across IVs. A major innovation

of MR-Robin is the use of rich information in multitissue eQTL effects in two-

sample MR analyses. Additionally, correlated IVs are allowed, and LD among SNPs

and estimation uncertainty are accounted for, with a P -value for each gene being

calculated from resampling. A detailed description of the MR-Robin method can

be found in the Methods section.

Simulations to evaluate CCmed in detecting robust cis-mediated trans-associations

across conditions

In this section, we evaluated the performance of CCmedgene and CCmedGWAS

through simulation studies. We showed that when individual trans-eQTL effects

are weak but are mediated by cis-gene expression with effects shared across tissue-

types, the CCmed algorithms can borrow information across tissue types to improve

power and detect cis-mediated trans-associations, while controlling the false discov-

ery rate (FDR) . We also compared with directly testing for trans-associations in

each single tissue type and showed the advantages of the proposed algorithms. In

each of the algorithm evaluations, we simulated 2.5 × 105 trios (SNP(s), cis-gene

expression, trans-gene expression) for 350 subjects in K = 10 tissues.

The performance of CCmedgene in identifying robust gene-level trans-associations

We simulated 500 sets of cis-eQTLs for 500 cis-gene expression levels. For each set

of cis-eQTLs, we simulated the genotypes of 10 correlated eSNPs with pairwise cor-

relation of 0.3. Based on the genotypes, in each tissue type, we randomly selected
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1 SNP as the causal eSNP to generate cis- and trans-gene expression levels. The

causal eSNPs varied across tissues. For each pair of a cis-eQTL set and a cis-gene,

we generated 500 trans-gene expression levels. There are a total of 250, 000 trios of

(cis-eQTL, cis-gene, trans-gene). We generated cis- and trans-gene expression data

from 10 correlated tissue types. Expression data was simulated such that cis-gene

expression was associated with the cis-eQTL set in a varying proportion of the

tissues (including none), and that non-zero conditional cis-trans gene expression

correlation was present in a subset of the cis-trans gene pairs in a varying propor-

tion of the tissues (including none). Among those trios with non-zero cis-mediated

trans-associations, 50% of them also had non-zero direct effect from SNPs on the

trans-gene expression levels. Effect sizes were simulated to mimic weak total trans-

associations as observed in the GTEx study. See Supplemental Materials for addi-

tional simulation details. In the simulation studies, we are interested in detecting

the trios with cis-association and conditional expression correlation in at least 9 out

of 10 tissue types.

Table 1A presents the powers as well as the true and estimated FDRs to detect

gene-level trans-associations mediated by cis-gene in at least K1 = 9 tissue types

at a threshold of P̂med,ij > 0.5, 0.8 and 0.9, respectively. As a comparison, we also

obtained the P -values of F -statistics that directly test for the total gene-level trans-

association effects. For each of the thresholds used in the CCmedgene approach, we

applied the corresponding estimated FDR to the 250, 000 by 10 matrix of P -values of

direct tests and obtained the trios with significant total gene-level trans-associations

in at least 9 tissues. The powers of the direct test are low as expected due to weak

trans-association effects, stringent cross-tissue association criteria (i.e., 9 out of 10)

and multiple testing burden. In contrast, CCmedgene greatly improved the power by

exploring mediation-based association and by borrowing information across tissues.

The FDRs are well-controlled by both methods.

The performance of CCmedGWAS in identifying cis-mediated trans-genes for one

(GWAS) SNP in selected tissue-types

In this simulation, we simulated cis-gene expression levels being affected by 3 corre-

lated eQTLs with correlation 0.3. We focused on one of them as the (GWAS) SNP

of interest and generated the trans-gene expression levels being affected by the SNP

in selected tissue types. Effects sizes were simulated to mimic scenarios with weak

to moderate effects in selected and limited tissue types. See Supplemental Materials

for additional simulation details.

Table 1B compares the performance of CCmedGWAS with the direct test for the

total trans-association effects for the (GWAS) SNP of interest to identify associa-

tions in at least K ′1 = 2 tissues. With stronger effects on average and smaller K ′1
than those in the previous simulation, the direct test enjoys reasonable power this

time. However, with CCmedGWAS, the power can still be improved by around 40%

to 50% in this simulation setup with the same FDR control.

Simulations to evaluate the performance of MR-Robin when IVs are correlated, some

being invalid, and/or limited in number

In this section, we conducted simulation studies to compare MR-Robin with com-

peting models and methods. We showed that MR-Robin is robust to the inclusion
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Table 1 Simulation results evaluating the performance of CCmed. estP := estimated probability;
estFDR := estimated FDR.(A) Simulation to compare CCmedgene with direct test for
trans-association in detecting associations in at least K1 = 9 tissue types. (B) Simulation to
compare CCmedGWAS with direct test for trans-association in detecting associations in at least
K′

1 = 2 tissue types.

(A)

Method

Association in at least K1 = 9 tissue types
estP ≥ 0.50 estP ≥ 0.80 estP ≥ 0.90

Power true estFDR Power true estFDR Power true estFDR
(%) FDR(%) (%) (%) FDR(%) (%) (%) FDR(%) (%)

CCmedgene 68.0 3.2 7.7 60.2 2.2 4.0 54.7 2.2 3.1
7.7% estFDR 4.0% estFDR 3.1% estFDR

Direct test 31.6 9.4 - 25.9 4.8 - 23.9 3.6 -

(B)

Method

Association in at least K′
1 = 2 tissue types

estP ≥ 0.50 estP ≥ 0.80 estP ≥ 0.90
Power true estFDR Power true estFDR Power true estFDR
(%) FDR(%) (%) (%) FDR(%) (%) (%) FDR(%) (%)

CCmedGWAS 83.2 2.3 2.9 79.2 0.9 0.9 76.7 0.6 0.4
2.9% estFDR 0.9% estFDR 0.4% estFDR

Direct test 60.6 0.8 - 55.4 0.2 - 52.3 0.1 -

of correlated and some proportions of invalid IVs even when the number of IVs is

small. We compared MR-Robin to three competing models and several competing

methods in the literature. See Supplemental Materials for details of the simulation

and the description of competing models. The first model is a single-tissue MR

model with no intercept.The second and third models both use multitissue eQTL

effect estimates, either as the response variable or predictor in the regression but

do not consider SNP-specific deviation effects (random-slopes), unlike MR-Robin.

We also compared MR-Robin to three existing MR methods in the literature that

are based on summary statistics and are robust to invalid IVs: MR-RAPS [30],

MR-Egger [31], and MRMix [29].Note that those three methods were developed for

settings where many independent genetic variants are available as candidate IVs,

for example when analyzing a polygenic trait as a mediator for other complex traits.

Therefore, they may not be suited for our target settings in which gene expression

(with only a limited number of correlated eQTLs/IVs) is considered as the medi-

ator. Most of those existing methods also do not allow the IVs to be correlated.

And they are all developed for single-tissue eQTLs. Nonetheless, we included the

methods for comparison.

Table 2 shows the type I error rate and power comparison in the presence of 0,

10, . . ., 70% invalid IVs, allowing IVs to be correlated (pairwise LD r2 < 0.5) over

10,000 simulations of 10 LD blocks with 20 correlated SNPs in each block, before

the IV selection (details in Supplemental Materials). As shown in the table, whereas

competing methods are unable to control the type I error rate when there are any

invalid instruments and instruments are in LD, MR-Robin maintains reasonable

control of the type I error rate if a majority of instruments are valid (up to 30%

invalid IVs). The last three methods in the table were developed for independent

instruments; since they do not account for correlation (LD) among the instruments,

they do not control the type I error rate even when all instruments are valid. In

Supplemental Materials, Tables S1-3, we compared the type I error rates and powers

using alternative LD selection criteria for the IVs (pairwise LD r2 < 0.8, 0.3 or 0.01).

Moreover, in Supplementary Table S4, we showed that even when the number of

available IVs is very small (3-10), the proposed MR-Robin can still yield reasonable
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results if the small number of IVs are relatively less dependent. Last but not least,

we want to emphasize that when IVs are correlated, if one IV is an invalid IV, all the

other correlated IVs are also affected to some degree, and as such the random-slope

model of MR-Robin fits the need for allowing correlated IVs when considering the

effect of gene expression on complex trait.

Table 2 Simulation results evaluating the performance of MR-Robin. Averaged type I error rates
and power over 10,000 simulations are shown by percentage of valid instruments. 10 LD blocks
were simulated, with one true eQTL per LD block. Instruments were selected sequentially: the
eSNP with the strongest association with gene expression was selected, and the next selected
eSNP is the strongest-associated SNP remaining also with LD r2 < 0.5 with any already-selected
eSNPs.

Method
Proportion of valid IV (%)

100 90 80 70 60 50 30
Type I error rate

MR-Robin 0.046 0.058 0.063 0.078 0.094 0.110 0.165
A single tissue MR model with no intercept 0.310 0.365 0.395 0.413 0.432 0.451 0.446
A multitissue MR model with a fixed slope and no intercept 0.047 0.075 0.094 0.109 0.124 0.138 0.145
Random Intercept 0.048 0.071 0.093 0.107 0.122 0.133 0.141
MR-RAPS 0.286 0.629 0.801 0.875 0.908 0.919 0.913
MR-Egger 0.141 0.219 0.263 0.302 0.325 0.332 0.343
MRMix 0.154 0.218 0.274 0.329 0.374 0.426 0.494

Power
MR-Robin 0.978 0.932 0.880 0.824 0.768 0.720 0.589
A single tissue MR model with no intercept 0.995 0.969 0.937 0.903 0.878 0.851 0.803
A multitissue MR model with a fixed slope and no intercept 0.999 0.948 0.885 0.822 0.766 0.713 0.614
Random Intercept 0.999 0.949 0.886 0.824 0.770 0.718 0.609
MR-RAPS 1.000 0.995 0.992 0.989 0.982 0.976 0.966
MR-Egger 0.888 0.805 0.739 0.675 0.635 0.614 0.537
MRMix 0.527 0.527 0.523 0.516 0.530 0.540 0.545

Avg number of SNPs selected (valid/invalid)
All methods 35.2/0 31.5/3.5 28.0/7.0 24.5/10.5 20.9/14.2 17.4/17.6 10.4/24.6

Mapping cross-tissue gene-level trans-associations mediated via cis-gene expression

levels in the 13 GTEx brain tissue types

We applied CCmedgene to data from the 13 brain tissue types of the GTEx project

to identify gene-level cis-mediated trans-associations in the brain tissues. There

are 5,347 autosomal genes with a posterior probability > 90% of gene-level cis-

association in all 13 brain tissues. For each of these 5,347 cis-genes, we further assess

the conditional correlation to each of the trans-gene expression levels in each brain

tissue type, and subsequently calculate the cross-tissue probability of mediation.

At a threshold of P̂med,ij > 90%, see equation (1), we identified a total of 9,053

trios (cis-eSNP set, cis-gene expression, trans-gene expression) showing evidence of

gene-level cis-mediated trans-associations in at least 12 out of 13 brain tissue types

(with an estimated FDR = 2.0% at 90% posterior probability). These trios included

604 unique cis- and 2509 unique trans-genes.

To replicate the trans-associations identified by CCmedgene, we used data from

the eQTLGen and the CommonMind Consortia (CMC) as two replication studies

[6, 13]. The eQTLGen Consortium, which focused on the 10,317 trait-associated

SNPs, performed a meta-analysis of trans-eQTL association statistics based on

whole blood samples of 31,684 individuals from 37 datasets [6], and has provided

SNP-level blood-tissue trans-association P -values for those trait-associated SNPs.

To replicate our gene-level trans-association findings with eQTLGen results, for

each (Ci,Tj) cis-trans pair in a CCmedgene mediation trio, we obtained the eQTL-

Gen trans-association P -values between expression of Tj and each SNP in cis with

Ci. As a comparison, we also obtained the eQTLGen trans-association P -values for

randomly selected cis-trans gene pairs. In the QQ-plots of Figure 3A, the eQTLGen

trans-association P -values for cis-SNPs and trans-genes identified by CCmedgene
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(cyan points) show a much stronger enrichment of association than randomly se-

lected sets (black points). This enrichment is present despite the discovery and

replication analyses using different tissue types, brain versus blood, respectively,

suggesting that CCmedgene identifies cis-gene-mediated trans-associations that are

robust across tissue types. Note that since the eQTLGen consortium focuses on only

the trait-associated SNPs (which are enriched for cis-/trans- eQTLs), and moreover

the sample size of eQTLGen is very large, the eQTLGen results for randomly se-

lected cis-trans gene pairs are also enriched for trans-associations.

Next, we examined the cis-trans gene-gene correlations for gene pairs identified

by CCmedgene using data from the CMC [13]. CMC has generated DNA and RNA

sequencing data from postmortem brain samples from donors with schizophrenia

and bipolar disorder, and from subjects with no neuropsychiatric disorders (see

Supplemental Materials for detailed data descriptions). For the cis-trans gene pairs

identified by CCmedgene using the GTEx data, Figure 3B shows their marginal

expression correlations in the CMC data. As shown by the histogram, most cis-

trans pairs in mediation trios identified by CCmedgene have moderately to strongly

correlated expression levels in the dorsolateral prefontal cortex samples of CMC.

Since 80% (FDR≤ 5%) of the genes in the CMC data are reported to have at

least one cis-eQTL [13], the presence of cis-association and correlation of cis-trans

gene expression implies gene-level trans-association and mediation effects being also

present in the dorsolateral prefrontal cortex tissue. That is, we observed evidence

of replication in the CMC data for our trans-associations findings from GTEx data

identified by CCmedgene.

With the discovery analysis using GTEx data and replication analyses using

eQTLGen and CMC data, we showed that cis-mediated trans-associations are abun-

dant in the genome and a substantial proportion of them can be replicated across

studies, tissue types, and populations (e.g. healthy individuals from GTEx versus

diseased individuals in CMC). This is not surprising because each tissue type is a

mixture of many cell types, and both cis-association and gene expression correla-

tion may have effects shared across many cell types. The detection and availability

of robust trans-eQTLs can be further used in many related areas, for example, in

improving the expression imputation in TWAS analysis, or in constructing gene

networks. Cross-condition mediation analysis, as a complementary approach to the

direct trans-association test, will help to integrate data from multiple studies and

to detect moderate-to-weak mediation and trans-association effects.

Detecting trans-genes associated with 108 known schizophrenia loci in GTEx brain

tissues

To detect trans-genes whose expression levels may be associated with schizophrenia

risk, we applied CCmedGWAS to the 108 scz susceptibility loci reported by the PGC

consortium [18]. Of the 128 reported GWAS SNPs in these loci, 103 were genotyped

in the GTEx data, 21 were captured by a SNP in strong LD (for lead GWAS SNPs

in the region, we substituted the most significant SNP in the gene region present in

GTEx; and for secondary GWAS SNPs, we substituted the nearest SNP mapped in

GTEx that reached genome-wide significance), 1 SNP was not present nor captured

by a SNP in high LD, and 3 non-autosomal SNPs were excluded in the analysis.
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For each of the 124 scz-associated SNPs we analyzed, there were multiple cis-genes

in the cis-region. And there were a total of 1,643 unique cis-genes we considered for

those 124 GWAS SNPs, with all cis-genes being expressed in all brain tissues and

having at least 1 brain eQTL reported by GTEx.

For each (GWAS SNP, cis-gene) pair, we conducted regression (6) described in the

Methods, regressing cis-gene expression on the GWAS SNP genotype and adjust-

ing for GTEx-reported eQTLs, to obtain the cis-association statistics in each tissue

type. We applied Primo [15] to the Mg×K matrix of cis-association statistics {FG}
where Mg is the number of (GWAS SNP, cis-gene) pairs, and estimated the proba-

bility of each GWAS SNP being also an eQTL in at least 2 tissue types, conditioning

on other cis-eQTLs. There were 40 (GWAS SNP, cis-gene) pairs showing evidence of

cis-association in at least 2 tissue types (with cross-2-tissue cis-association posterior

probability > 80%).

For each of the 40 (GWAS SNP, cis-gene) pairs, we further conducted condi-

tional correlation analysis with each of its trans-genes in each tissue type using

the regression model (7) described in Methods to obtain a matrix of conditional

correlation statistics, {ZG
i..}, conditioning on cis-eQTL and GWAS SNP genotypes.

We applied Primo [15] to {ZG
i..} to estimate the probability of non-zero conditional

cis-trans gene-expression correlation for each possible pair of tissues s`. Using equa-

tion (2), we obtained a lower bound estimate of the probability of cis-mediated

trans-association in at least two brain tissue types for each trio, and identified 1492

(GWAS SNP, cis-gene, trans-gene) trios with PGWAS
med,ij > 80% (FDR = 7.9%) with

1418 unique trans-genes.

Validating schizophrenia-risk-associations of suspected trans-genes based on GWAS

summary statistics from PGC

To examine whether the 1418 identified trans-genes for the scz-GWAS SNPs are

truly associated with scz risk, we conducted a series of validation analyses on

those suspected genes. Those validation analyses are based on a common ratio-

nale (as shown in Figure 2). Considering a suspected trans-gene identified via

CCmedGWAS, if the trans-gene is truly associated with the complex trait of in-

terest (here, schizophrenia), then the local eQTLs of the trans gene would also

have associations to the complex trait; otherwise, they would not. Therefore, by

examining the trait-association statistics from existing GWAS for SNPs in cis with

the suspected trans-genes, one could distinguish the trans-genes truly associated

with complex trait versus those ones that may be only co-expressed with the scz-

associated cis-genes. Note that suspected trans-genes not having any local eQTLs

cannot be checked nor validated by those analyses.

First, we examined the single-SNP scz GWAS summary statistics from PGC for

local eQTLs of suspected trans-genes. For each suspected trans-gene identified from

GTEx via CCmedGWAS, we checked the GWAS scz-association P -values for the

local eQTLs of the suspected trans-gene. The local eQTLs are eQTLs reported

in at least one GTEx brain tissue reported by the GTEx consortium [12]. There

are 1158 out of 1418 suspected trans-genes having at least one GTEx reported

local eQTL that could also be mapped to the PGC GWAS summary statistics.

We checked the scz-associations of the local SNPs of those genes and found that
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589 genes (50.9%) had at least one local eQTL with GWAS scz-risk-association

P -value < 0.05. Figure 4A shows the histogram of PGC GWAS P -values for the

local eQTLs of the 1158 suspected trans-genes. Based on the histogram, the local

eQTLs for suspected trans-genes identified by CCmedGWAS are highly enriched for

associations with schizophrenia-risk.

Next, we obtained the TWAS P -values for scz-risk associations for all genes from

a recent analysis by Barbeira, et al. [32]. The TWAS analysis was conducted using

PGC scz-risk GWAS summary statistics [18] and predicted transcriptome data with

multitissue eQTL data from GTEx (V6p) as reference panels. We examined the

results from S-MultiXcan, which used a multitissue eQTL reference panel of 44

GTEx tissue types (including brain and non-brain tissue types). The barplot in

Figure 4B summarizes the gene counts in the predicted transcriptome dataset at

the cutoffs of P -value < 0.05 and FDR < 5%. We compared the counts of the 1418

trans-genes identified by CCmedGWAS present at each cutoff (total bar height) to

the average counts of 1418 randomly selected genes present at each cutoff (blue

bar), averaged across 100 randomly selected sets. Out of 1290 CCmedGWAS trans-

genes tested in S-MultiXcan, 386 (29.9%) and 271 (21.0%) genes were significant

at P < 0.05 and FDR < 5%, respectively. The suspected trans-genes identified by

CCmedGWAS have higher than random gene-level scz-risk-associations based on the

results from Barbeira, et al. [32].

Both single-SNP and TWAS-based gene-level analyses showed the enrichment

of scz-risk associations for the suspected trans-genes identified by CCmedGWAS

from GTEx data. To precisely identify the trans-genes causal for schizophrenia

risk, we applied the proposed two-sample MR method, MR-Robin, to the identified

suspected trans-genes. Note that only trans-genes with multiple local cross-tissue

eQTLs can be properly analyzed using MR-Robin. If the gene has only 1 cis-eQTL,

MR-Robin is reduced to a single-IV analysis, which can be heavily affected by the

validity of the IV with assumptions that cannot be adequately checked in general.

Therefore, in the following analysis, we restricted the MR-Robin analysis to the

suspected trans-genes with at least three local eQTLs (within 1 Mb of transcription

start site) that have median eQTL P -value being < 0.05 across 13 GTEx brain

tissues. We formed the set of IVs by iteratively selecting the SNP with the smallest

median eQTL P -value and having pairwise LD r2 < 0.5 with each SNP already

selected. Among the 1418 identified suspected trans-genes, 493 had at least 3 such

SNPs selected (median P < 0.05 and pairwise LD r2 < 0.5) and were tested using

MR-Robin. At the P -value cutoff of 0.05 based on MR-Robin, 46 of the trans-genes

showed significant dependence of GWAS and eQTL statistics, implying significant

scz-risk associations for the trans-genes (see Supplementary Materials for details

of the 46 genes validated by MR-Robin). The scatterplot in Figure 4C shows an

example of a significant gene (PRR12, with MR-Robin P = 0.001). The eQTL

effect sizes in the GTEx brain tissues were plotted against the GWAS effects sizes

in the PGC dataset for the selected SNPs for the gene (PRR12). Despite some SNPs

having potentially larger deviation from the others – indicated by the random slopes

(colored lines) deviating from the fixed effect estimate (black line) – the plot shows a

clear pattern of association between the magnitude of eQTL effects and magnitude

of GWAS effects, implying that the expression levels of the gene affects scz risks. In
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Figure 4D, we examined the overlaps of results based on MR-Robin and TWAS. In

addition to the S-MultiXcan TWAS results, we also examined overlap with single

tissue S-PrediXcan TWAS results using GTEx Brain tissues, summarized by taking

the minimum P -value across 10 GTEx V6p Brain tissues. Among the 46 causal

trans-genes identified by MR-Robin, 24 are also implied by either S-PrediXcan

Brain or S-MultiXcan. Among the 22 genes that are implied by neither TWAS

method, 17 were included in two or fewer brain tissues in the TWAS results, likely

due to poor expression prediction; and, the genes DGCR6 and MDGA2 have been

reported in the literature with evidence of associations to schizophrenia [33, 34, 13].

There is significant interest in identifying the mechanisms through which GWAS

SNPs affect complex traits. Much research examining the effects of GWAS SNPs

on gene expression has focused on cis-associations. Here we introduced a mediation

method to identify trans-associations of GWAS-SNPs and proposed a series of val-

idation analyses to identify which of the suspected trans-genes may be associated

with complex trait variation such as disease risk. As a proof-of-concept, we analyzed

scz-risk associated SNPs and detected their trans-genes based on CCmedGWAS.

With validation analyses, we showed that the detected trans-genes are enriched

with scz-risk-associations. A highlight of the validation analysis is that using a

newly proposed two-sample MR method, MR-Robin, we leveraged the rich infor-

mation provided by the multitissue eQTL statistics from GTEx and the GWAS

statistics from PGC, and further fine-mapped 46 trans-genes with potential causal

associations to scz risk, many of which are also supported by other evidence.

Discussion
In this work, we focused on studying trans-associations mediated by cis-gene ex-

pression levels. The cis-mediated trans-association effects have a direct mechanistic

interpretation; moreover, we show that many of those trans-associations may have

effects shared across functionally related tissue types, cell types, studies or cellu-

lar conditions, and are robust across conditions and replicable. To detect trans-

associations via cross-condition mediation analyses at the gene level and for GWAS

SNPs, we proposed two methods, CCmedgene and CCmedGWAS, respectively. Both

methods take as input the summary statistics of cis-eQTL-to-expression association

and conditional cis-trans expression correlations from multiple tissue-types, cell-

types, studies or cellular conditions, and quantify the probability of cis-mediated

trans-associations in multiple conditions. By applying CCmedgene to data from the

13 brain tissues of the GTEx project, we identified cis-trans gene pairs with gene-

level trans-association effects in most brain tissues. Our findings are replicable with

many cis-trans gene pairs showing evidence of trans-association effects in two dif-

ferent tissue types from two other studies. As a proof-of-concept for CCmedGWAS,

we applied the method to 108 schizophrenia susceptibility loci and identified the

trans-genes for scz GWAS SNPs with cis-mediated trans-association effects in at

least 2 out of 13 GTEx brain tissues. By harnessing GWAS and GTEx multitissue

eQTL statistics for SNPs in cis with the identified suspected trans-genes, we further

conducted validation analyses to examine the trait-associations of suspected trans-

genes using single-SNP GWAS statistics, TWAS-based analyses, and a proposed

two-sample MR approach (MR-Robin).
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Trans-acting genetic effects on distal gene expression are ubiquitous in the genome;

however, they are often found to act in a tissue-specific or cell-type-specific manner.

Using standard trans-association tests correlating SNP genotypes with each distal

gene expression in the genome and adjusting for multiple comparison, the detec-

tion and replication of trans-association effects require large sample sizes. Our work

describes a complementary approach for studying trans-associations mediated by

cis-gene expression, one that can increase power to detect robust trans-associations

by borrowing information across studies/tissue-types/conditions. By analyzing mul-

titissue eQTL data from GTEx and replicating our findings, we showed that many

cis-mediated trans-associations are robust and replicable in different studies. Here

we applied the methods to data from multiple brain tissues, while the proposed

methods and analyses can be used and generalized to recapitalize on existing eQTL

data from many different tissue types and studies. Given that trans-eQTLs account

for a substantial amount of expression heritability in the genome, we anticipate that

replicable trans-association findings would provide new opportunities in advancing

related research areas in integrative analyses involving eQTL data – for example,

in improving expression imputation in TWAS analysis. Furthermore, the proposed

trans-association analysis may be able to identify convergent gene networks when

multiple cis-genes mediate a common trans-gene, or help infer master regulators of

disease-relevant gene networks [35].

Another innovation of this work is the development of MR-Robin – a two-sample

MR approach to assess the causal effects of gene expression on a complex trait

of interest. The method is used as a validation approach in the work but can be

applied as a discovery method in other contexts. Compared to existing two-sample

MR methods, a major advantage of MR-Robin is the use of multitissue eQTL

summary statistics. Selecting the eQTLs with cross-tissue effects will improve the

reproducibility of eQTL effects and subsequent findings across two samples - the

eQTL reference and the GWAS data. More importantly, MR-Robin is based on a

mixed-effect model with multitissue eQTL effects from multiple IVs as the response

variable and GWAS effects as the predictor, testing for non-zero correlation of eQTL

and GWAS effects from multiple IVs. The rich information in multitissue eQTL

effects allow the estimation of a shared fixed-effect correlation of eQTL and GWAS

effects across all IVs, as well as the estimation of SNP-specific deviation due to

invalid IVs captured by the random-slope. In contrast, existing models and methods

based on the deconvolution of mixture distributions or penalized regressions in

general require a large number of IVs to achieve stability in estimation. With both

simulation studies and real data analyses, we showed that MR-Robin can achieve

reasonable performance with only a small number of IVs (as small as 3) when the

effects of invalid IVs are weak to moderate. MR-Robin allows for correlated IVs and

accounts for LD among SNPs. Given most genes in the genome have only limited

numbers of eQTLs, MR-Robin is particularly useful in studying the causal effects

of gene expression on various complex traits.

There are some caveats of the current work and aspects that could be potentially

improved in future research. First, we analyzed 13 GTEx brain tissue types as a

multi-condition mediation analysis. It should be noted that the brain tissues from

GTEx have only modest sample size, and a future multi-condition mediation analy-

sis could benefit from the use of eQTL summary statistics from other studies, tissue
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types, and cellular conditions. Second, using CCmedgene, we mapped and replicated

only gene-level but not SNP-level trans-associations from a cis-gene to a trans-gene

in the genome. There are two main reasons: an individual SNP’s trans-effects may

not be robust and replicable across conditions; and a decent proportion of SNPs

may not be genotyped nor well imputed in all studies when conducting integrative

analysis or replication analysis using data from several studies. Third, findings from

both CCmedgene and CCmedGWAS should be interpreted as association rather than

causation. As such, to further conduct fine-mapping of causal mediators (i.e., cis-

gene expression levels modulating the trans-expression or complex trait variation),

additional analysis are needed. For this purpose, we proposed MR-Robin as a fine-

mapping and validation method that can be used to assess the causal effect of a

suspected gene on complex trait. It should be noted that even though MR-Robin

can be applied to genes with as small as three eQTLs as correlated IVs, still a large

proportion of the genes in the genome may have fewer than three eQTLs and are

not applicable. In future work, MR-Robin can be improved in at least two aspects:

the selection criteria of IVs can be further explored; and by using robust regression

rather than generalized linear regression, MR-Robin may allow more inclusion of

invalid IVs with very strong effects.

The R packages CCmed and MrRobin are available at https://github.com/kjgleason/.
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Methods
Obtaining summary statistics of gene-level cis-association and conditional correlation

in each single tissue type for CCmedgene

To detect the trios (Li, Ci, Tj)’s with non-zero trans-association and mediation ef-

fects Li → Ci → Tj , two conditions both need to be satisfied – a cis-association

between the eQTL SNP set Li and cis-gene expression Ci; and a conditional cor-

relation of cis- and trans-expression levels (Ci and Tj), conditioning on the eQTL

genotypes Li. Note that here Li is a set of pre-selected cis-eQTLs.

In a single tissue type k (k = 1, . . . ,K), a test of cis-association between Li and

Ci is conducted based on the following regression:

Ci = α0 +αT
c Li +αT

HH + η, (3)

where αc are the cis-association effects of interest, H are covariates, αH are coeffi-

cients of covariates, and η is the error term. In the current analyses,H includes gen-

der, genotype Principal Components (PCs), PEER factors [36] capturing expression

heterogeneity, and genotyping platform. We obtain the F -statistics, Fik, for testing

gene-level cis-association of gene i in tissue k, H0 : αc = 0 vs. HA : αc 6= 0.

To test for non-zero conditional correlation effects between cis- and trans-

expression levels conditioning on eQTL genotypes, we perform the following re-

gression in each single tissue type:

Tj = β0 + β1Ci + βT
2 Li + βT

HH + ε, (4)

where β1 captures the conditional correlation effect of interest. We obtain the t-

statistic, Zijk, for cis-gene i and trans-gene j in testing H0 : β1 = 0 versus HA :

β1 6= 0 in tissue type k. Note that we allow for potential partial mediation, i.e.

horizontal pleiotropic effect, depicted by the direct effect β2 in equation (4).

In the following cross-tissue (cross-condition) mediation analysis, the inputs are

the two sets of the summary statistics: (i) {Fik} for testing cis-associations of all

cis-genes (i = 1, . . . ,M) in each of the K tissue types, and (ii) {Zijk} for conditional

correlations between Ci and Tj conditional on Li in each of the K tissue types.

CCmedgene for detecting cross-tissue gene-level cis-mediated trans-associations

For each trio (Li, Ci, Tj), we calculate the probability that Ci mediates the effects

of Li on Tj in at least K1 tissue types, Pmed,ij , as follows:

Pmed,ij = Pr(Li → Ci → Tj in at least K1 out of K tissue types)

= Pr(αc 6= 0 and β1 6= 0 in at least K1 out of K tissue types)

≥ Pr(αc 6= 0 in all K tissues)

× Pr(β1 6= 0 in at least K1 tissue types | αc 6= 0 in all K tissues)

(5)

≥ Pr(αc 6= 0 in all K tissues)

× Pr(β1 6= 0 in at least K1 tissue types). (1)
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The first probability in (5) describes the probability of a gene i having at least

one cis-eQTL in all K tissue types, and the lead cis-eQTL may differ by tissue

type. Given robust cross-tissue cis-associations, the second probability quantifies

the probability of non-zero cis-trans gene expression correlations conditioning on

eQTL genotypes in at least K1 tissue types. The derivation from (5) to (1) is based

on the assumption that genes with cis-associations across all tissues are more likely

to affect downstream genes [25]. The probability product in (1) provides a lower

(i.e., conservative) bound estimate for the probability of mediation, Pmed,ij .

To estimate Pr(αc 6= 0 in all K tissues), we apply a recently developed integrative

association analysis approach, Primo [15, 21]. Primo takes as input the M × K

matrix of cis-association summary statistics {Fik}, considers all 2K possible cross-

tissue association patterns and estimates the density function for each pattern,

and returns the probabilities of P̂1i = P̂r(αc 6= 0 in all K tissue types) for gene i =

1, . . . ,M . For each cis-gene i, to estimate the probabilities of conditional correlations

for the cis-genes i and its M ′i trans-genes in at least K1 tissue types, we apply the

Primo algorithm to the M ′i ×K matrix of conditional correlation statistics {Zijk}
(j = 1, . . . ,M ′i ; and k = 1, . . . ,K), and obtain the probabilities P̂2ij = P̂r(β1 6=
0 in at least K1 out of K tissue types). For each trio (Li, Ci, Tj), the cross-tissue

mediation probability can be estimated as P̂med,ij = P̂1i ·P̂2ij . Algorithm 1 provides

a summary of the algorithm.

Algorithm 1 CCmedgene for detecting cross-tissue gene-level cis-mediated trans-

associations
Step 1. Obtain tissue-specific summary statistics. In each tissue type k (k = 1, . . . ,K), calculate
the gene-level cis-association statistics {Fik} for each gene i (i = 1, . . . ,M) to its reported cis-eQTL
set Li, and the conditional correlation statistics {Zijk} for each pair of genes i and j (j 6= i).

Step 2. Estimate the cross-tissue cis-association probabilities. We apply the Primo algorithm to
the M × K matrix of cis-association statistics, and estimate the probability of cis-associations for

each gene in all K tissues, P̂1i = P̂r(αc 6= 0 in all K tissues).

Step 3. Estimate the cross-tissue conditional correlation probabilities. For each cis-gene i, apply
Primo to its M ′

i × K matrix of conditional correlation statistics {Zijk} for all trans-genes, and

estimate P̂2ij = P̂r(β1 6= 0 in at least K1 out of K tissue types) for all M ′
i trans-genes.

Step 4. Estimate the cross-tissue mediation probabilities. For each trio (Li, Ci, Tj), the cross-tissue

mediation probability can be estimated as P̂med,ij = P̂1i · P̂2ij .

CCmedGWAS for detecting trans-genes associated with GWAS SNPs mediated by

cis-expression levels in certain tissue-types

Different than Algorithm 1 for detecting gene-level mediation and trans-association

effects, here we are interested in detecting trans-genes associated with a GWAS

SNP for a complex trait or disease. It has been reported in the literature that a

proportion of GWAS SNPs are also an eQTL with cis-association effects on their

local gene expression levels [14, 37]. And such cis-association effects are likely to

be present in some disease/trait-relevant tissue types but not all tissues. Therefore,

in the mediation and trans-association analysis of GWAS SNPs, we made some

tailored developments and propose the CCmedGWAS algorithm.

First, we obtain the tissue-specific summary statistics for cis-association (GWAS

SNPs’ eQTL associations) and conditional correlation of cis-trans gene expression.
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To assess whether a GWAS SNP, Gi, is associated with the cis-gene expression

(i = 1 . . . , NG with NG total GWAS SNPs), we perform the following regression:

Ci = α′0 + α′gGi +α′T
c Li +α′T

HH + η′, (6)

where α′g is the cis-association effect of a GWAS SNP i with genotype Gi on cis-gene

expression Ci. We obtain the t-statistic for testing the single parameter H0 : α′g = 0

as the cis-association statistic adjusting for other GTEx-reported eQTLs. Note that

here although we are interested in only the association of GWAS SNP Gi to cis-

gene Ci, we adjust GTEx-reported eQTLs for gene i in the regression to reduce

false associations due to LD. Also note that if an eQTL is a GWAS SNP or is in

high LD (r2 > 0.5) with it, we exclude it from Li in the above analysis. We obtain

the cis-association statistics for all NG pairs of GWAS SNPs and their cis-genes in

K tissue types, {FG
ik}. One GWAS SNP may be associated with multiple cis-genes,

and those are considered as separate pairs.

For each trio of a GWAS SNP, a cis-gene and a trans-gene (Gi, Ci, Tj), the condi-

tional correlation statistic for the cis-gene of GWAS SNP i with trans-gene j given

genotype Gi in each tissue k can be calculated based on regression (7). Slightly

different than (4), in regression (7) both eQTLs and GWAS SNP genotypes are ad-

justed. To test for non-zero conditional correlation effects, we perform the following

regression:

Tj = β′0 + β′1Ci + β′T
2 Li + β′3Gi + β′T

HH + ε′, (7)

where β′1 is the parameter of interest that captures the conditional correlation effect

between cis and trans-expression levels, adjusting for eQTLs, the GWAS SNP and

other covariates. We obtain the t-statistics for testing H0 : β′1 = 0 in all K tissue

types for all trios as the conditional association statistics, {ZG
ijk}.

To detect trans-genes associated with GWAS SNPs mediated by cis-genes, we

propose to integrate the summary statistics from all K tissues to calculate the

probability of mediation in at least K ′1 tissue types, PGWAS
med,ij . We used K ′1 = 2 in the

scz analysis.

PGWAS
med,ij = P(Gi → Ci → Tj in at least K ′1 tissue types)

≥ max
{s`:|s`|=K′

1}
P(Gi → Ci → Tj at least in tissue(s) s`) (8)

≥ max
{s`:|s`|=K′

1}
[Pr(α′g 6= 0 at least in tissue(s) s`)

× Pr(β′1 6= 0 at least in tissue(s) s`)], (2)

where s` is a set of tissue indices and is a subset of {1, 2, · · · ,K} with K ′1 distinct

tissue types. There are a total of
(
K
K′

1

)
unique s`’s. The parameters α′g and β′1 are

from equations (6) and (7), with the corresponding tissue-specific test statistics

{FG
ik} and {ZG

ijk}, respectively.

In the above derivation, the inequality (8) follows from the fact that the proba-

bility of mediation in at least K ′1 tissue types is lower bounded by the maximum
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probability of mediation in at least any specific set of K ′1 tissues. The inequality

(2) holds under the assumption that cis-genes affected by GWAS SNPs are at least

equally likely to affect downstream trans-genes compared to those not affected by

GWAS SNPs. The maximum value of the probability products across all possible

combinations of K ′1 tissue types in (2) provides a lower bound estimate for the prob-

ability of a GWAS SNP i being associated with a trans-gene j via cis-mediation in

at least K ′1 tissue types, PGWAS
med,ij . All the probabilities involved can be estimated by

applying the Primo algorithm separately to the matrix of cis-association statistics

and to the conditional correlation statistics matrix for each GWAS SNP i. The

algorithm of CCmed for GWAS SNPs is summarized in Algorithm 2.

Algorithm 2 CCmedGWAS for trans-genes associated with GWAS SNPs via mediation

of cis-expression levels
Step 1. Obtain tissue-specific summary statistics. In each tissue type k (k = 1, . . . ,K), following
(6) calculate the cis-association statistics {FG

ik} for each GWAS SNP adjusting for other eQTLs.
Note that if a GWAS SNP is in cis with multiple genes, the pairs are separately considered and
estimated. Following (7), calculate the conditional correlation statistics {ZG

ijk}.

Step 2. Estimate the probabilities of GWAS SNPs being also eQTLs. We apply the Primo algorithm
to the matrix of cis-association statistics for GWAS SNPs conditioning on other eQTLs {FG

ik} and
estimate the probability of GWAS SNP i being an eQTL in at least tissue(s) s`, for each possible
tissue set with K′

1 tissue types, {s` : |s`| = K′
1}.

Step 3. Estimate the conditional correlation probabilities. We apply the Primo algorithm to the
matrix of conditional correlation statistics for each GWAS SNP {ZG

i..} and estimate the probability
of non-zero conditional correlation in at least tissue(s) s`, for each possible {s` : |s`| = K′

1}.

Step 4. Estimate the probabilities of trans-association via cis-mediation in at least K′
1 tissue

types. For each trio of (Gi, Ci, Tj), we estimate the probability of trans-association of GWAS SNP
i to a trans-gene j via cis-mediation by (2).

MR-Robin for assessing the causal effect of suspected trans-gene expression on

complex trait

Many existing methods have been proposed in the Mendelian Randomization liter-

ature to assess the causal effects of a gene’s expression levels on a complex trait by

harnessing Mendelian randomized genetic variants as IVs. [22, 23, 24, 25]. Earlier

works assumed that genetic variants are completely mediated through gene expres-

sion [26], i.e., no “horizontal pleiotropy” [22], and are independent of unmeasured

confounders of the mediator (gene expression) and the outcome (complex trait), i.e.,

no “correlated pleiotropy” [27]. Violations of either assumption would invalidate the

SNPs as IVs and can lead to biased causal effect estimation and inference. However,

it has been shown that horizontal pleiotropy is prevalent in the genome and many

of the genetic effects on omics and complex traits are only partially mediated by

gene expression [7, 28]. Some methods relaxed the assumptions and consider multi-

ple SNPs as multiple IVs, while allowing some IVs to be invalid [31, 38, 30]. Those

methods either require the IVs to be nearly independent or require the individual-

level data, limiting the applicability in real applications. More recently, the method

CAUSE [27] is proposed to account for both horizontal and correlated pleiotropy,

though the method requires a large number of IVs. In contrast, many of the sus-

pected trans-genes in our work may not have a large number of eQTLs. Another

issue that is not sufficiently addressed by existing methods is the use of two sam-

ples – eQTL reference and GWAS. It is known that eQTL effects depend on cellular

conditions and may not always be consistent across two samples.
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To assess the causal effect of expression levels of a gene on a complex trait of

interest, we propose a two-sample MR method – MR-Robin. Here we first introduce

the notation. Let βxi(i = 1, . . . , I) denote the marginal eQTL effect of a local

eQTL/IV i for a gene and βyi denote the marginal GWAS association effect of the

eQTL/IV i, both from a GWAS study (though eQTL data for a GWAS study may

not be available). Our goal is to test whether the effect of gene expression on the

trait (γ in Figure 5) is zero, H0 : γ = 0 vs. HA : γ 6= 0.

In the presence of horizontal or correlated pleiotropy, an eQTL would be an invalid

IV. And in such a case, the effect from gene to trait (γ) is not separable/identifiable

from the direct effect of the eQTL nor confounding effects (for example, µyj in Fig-

ure 5) when only the total effect estimate (marginal summary statistic) is available.

The presence of horizontal or correlated pleiotropy makes it challenging to infer

the effect of a gene on a trait using single-IV-based MR approaches. When there

are multiple eQTLs in the gene region, as shown in Figure 5, the presence of one

eQTL with horizontal or correlated pleiotropic effect would also render all eQTLs

invalid if they are in LD. Specifically, consider a SNP i of interest with genotype

Li, eQTL effect µi and gene on trait effect of interest γ in Figure 5. A SNP j in LD

(ρij 6= 0) affects the complex trait Y via an independent pathway (with horizontal

pleiotropic effect µyj
6= 0). Since SNPs i and j are in LD, SNP i would also be

associated with Y via an independent pathway (ρij ·µyj 6= 0) not mediated through

gene expression X. Thus, if SNP j has horizontal pleiotropic effect, then SNP i

in LD with it would have biased effect estimate of γ based on marginal statistics

βyi/βxi. In the Supplemental Materials, we derive the biases of the effect estimate

βyi/βxi for SNP i with respect to the true effect γ, and show that the magnitude

of the bias depends on LD, eQTL and pleiotropic effect sizes, and other factors,

and thus are SNP-specific. It should be noted that although the derivation is based

on two SNPs i and j, the conclusion extends to multiple SNPs in a gene region:

if there is horizontal or correlated pleiotropic effect for at least one SNP in a gene

region, the effect estimates based on marginal summary statistics for all SNPs in

LD would be biased to varying extents.

Given the bias derived for βyi/βxi w.r.t γ, we model that βyi/βxi = (γ+γi), where

γi denotes the SNP-specific bias. The bias is zero if there is neither horizontal nor

correlated pleiotropic effect in the region. The bias is small to negligible for some

eQTLs if those eQTLs themselves are valid IVs when adjusting for invalid IV Lj

and those eQTLs being in moderate-to-weak LD with the invalid IV(s) and when

the pleiotropic effect of SNP j is not strong (i.e., small ρij · µyj). It follows that

βyi = (γ + γi)βxi,∀i = 1, . . . , I. (9)

And equivalently,

βxi = (θ + θi)βyi,∀i = 1, . . . , I. (10)

where θ captures the dependence between βxi and βyi, and θi is the SNP-level

deviation from the common effect θ in the presence of pleiotropy.

In the above equation, βxi is the marginal eQTL effect of SNP i to gene expression

in the GWAS study and is often not available, since most GWAS studies do not
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have gene expression data measured. The availability of multitissue eQTL summary

statistics from trait-relevant tissue types in a reference eQTL study such as GTEx

provides a valuable resource to estimate βxi, given cis-eQTL effects are often repli-

cable across studies. We model SNP i’s eQTL effect in tissue k (k = 1, . . . ,K) in

the reference multitissue eQTL data as a function of the eQTL effect in the GWAS

data (βxi) and an error term. Based on (10), we propose the following model of

MR-Robin for testing trait-association of a trans-gene using only summary statis-

tics from GWAS and multitissue eQTL reference:

β̂R
xik = (θ + θi)β̂yi + εRxik, (11)

where β̂R
xik is the eQTL effect estimate of SNP i in tissue k in the reference eQTL

data, and β̂yi is the GWAS effect estimate for SNP i; and θ captures the shared cor-

relation of GWAS and eQTL statistics among all SNPs and is non-zero and bounded

if and only if the true mediation effect γ is non-zero and bounded; θi represents the

SNP-specific bias due to horizontal or correlated pleiotropy in the region and is a

SNP-specific random-slope; and εRxik is a random error that follows a multivariate

normal distribution N(0,ΣR
x ). The diagonal elements of ΣR

x are the variance esti-

mates of eQTL effects,
(
σ̂R
xik

)2
’s, and the off-diagonal elements are σ̂R

xikrii′ σ̂
R
xi′k,

where rii′ = Cov(Li,Li′ )√
Var(Li)Var(Li′ )

and R = {rii′} is the genotype correlation matrix . In

the reverse regression (11), the eQTL effect estimates from multiple tissue types,

β̂R
xik, are considered as the response variable while the GWAS association effects

β̂yi are considered as the predictor. This is mainly to take advantage of the rich

information in multitissue eQTL datasets (i.e., variation in response). If there are

multiple sets of correlated or independent GWAS summary statistics from the same

population/ethnicity, one may not need to use reverse regression and can instead

treat GWAS association effects as the response. Each observation in the regres-

sion (11) is a tissue-specific eQTL effect, with a total of I ×K (sample-by-tissue)

observations. By testing the shared correlation of tissue-specific eQTL and the cor-

responding GWAS association effects for all eQTLs in the same gene (H0 : θ = 0

vs. HA : θ 6= 0) while also allowing for SNP-level deviation, we can test the effect of

gene expression on trait (H0 : γ = 0 vs. HA : γ 6= 0), allowing invalid and correlated

IVs.

Note that many existing methods in the MR literature [27, 30, 38] include an

intercept or a random intercept in the model to capture the direct effect from

genotype to trait, i.e. horizontal pleiotropy. In contrast, in the MR-Robin model,

there is no intercept nor random intercept. Instead, we include a random slope

for each SNP to capture the effect due to potential pleiotropy in the region. This

is because, by allowing correlated IVs and considering all eQTLs in a region, as

shown above when there is a non-zero pleiotropic effect, most of the SNPs in the

LD region would be affected with a non-zero (but possibly negligible) SNP-specific

deviation θi. Allowing correlated IVs and some invalid IVs even when the number

of IVs are limited is also a major innovation of our model. Due to limited numbers

of eQTLs/IVs for most genes in the genome, a model with both an intercept and a

random slope may not be identifiable and thus are not explored.

To account for uncertainty in the eQTL effect estimation, we perform a weighted

mixed-effects regression analysis and weigh each “observation” (i.e., a tissue-specific
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eQTL effect) by the reciprocal of the estimated standard error for β̂R
xik, i.e., wik =

1/
(
σ̂R
xik

)
. We obtain the t-statistic for testing the fixed effect of interest θ as our

test statistic. To obtain the P -value while accounting for LD and the uncertainty

in the estimation of βyi’s, we adopt a resampling based approach to generate the

null test statistics. In each resampling b (b = 1, . . . , B), we sample a vector of

GWAS effects from a multivariate distribution, β
0(b)
y ∼ N(0,Σ2

y), where the diagonal

and off-diagonal elements are Σ2
yii′ = σ̂yirii′ σ̂yi′∀i, i′ with rii′ being the genotype

correlation matrix and σ̂yi being the estimated standard error for β̂yi. We apply the

same weighted model (11) on data β̂R
xik’s and β

0(b)
yi ’s to obtain a null statistic. We

repeat the resampling process at least B = 10, 000 times and calculate the P -value.

The MR-Robin algorithm is summarized in Algorithm 3.

Algorithm 3 MR-Robin for assessing the causal effect of gene expression of a gene on

complex trait with summary statistics from GWAS and multitissue eQTL study
Step 1. Obtain the summary statistics from GWAS study and eQTL study. For each of I local
SNPs of the suspected trans-gene, we obtain the association statistics between the SNP and the

complex trait {β̂yi} and the standard error estimates {σ̂yi} from the GWAS study. And we obtain

the association statistics between the SNP and the gene expression across K tissues {β̂R
xik} along

with the standard errors {σ̂R
xik} (k = 1, . . . ,K) from the multitisue eQTL study.

Step 2. Obtain the test statistic. We perform a weighted analysis of the mixed-effects model (11)

on data {β̂R
xik} and {β̂yi} with weight being 1/σ̂R

xik for each β̂R
xik to obtain the test statistic tMR

for testing H0 : θ = 0 vs. HA : θ 6= 0.

Step 3. Calculate the MR-Robin P-value based on resampling. In each resampling b (b = 1, · · ·B),

we generate a vector of GWAS effects β
0(b)
y from N(0,Σ2

y) to account for GWAS effect esti-

mation uncertainty and LD. We then apply the weighted analysis of the model (11) on data

{β̂R
xik} and {β0(b)

yi } with the weight of SNP i in the k-th tissue being wik = 1/σ̂R
xik to ob-

tain a null test statistic t
0(b)
MR . We then calculate the P-value of trait-association for the gene as,

P -value = 1
B

∑B
b=1 I

(
|t0(b)MR | ≥ |tMR|

)
, where I(·) is the indicator function.
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Figure 1 Two CCmed algorithms for identifying cis-mediated trans-associations across multiple
conditions at the gene-level and for GWAS SNPs, respectively. (A) An illustration of the
CCmedgene model for mapping gene-level mediation and trans-association in a single tissue type.
(B) An illustration of the CCmedGWAS model for identifying trans-genes of a GWAS SNP
mediated by cis-gene expression in a single tissue type. (C) A flowchart of the two CCmed
algorithms to establish cross-condition (here, cross-tissue) trans-associations mediated by cis-gene
expression levels.
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Figure 2 A conceptual illustration of the validation analyses to examine the trait-associations of
the suspected trans-genes for GWAS SNPs. In the discovery analysis by CCmedGWAS, we
identified the suspected trans-genes for GWAS SNPs. If a trans-gene is involved in the
trait/disease etiology as in (A), we expect the SNPs in cis with the trans-gene to have higher than
random association effects with the complex trait. When a trans-gene is not involved in the
trait/disease etiology as in (B), we expect to observe the SNPs in cis with it not associated with
the complex trait higher than random.
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Figure 3 CCmedgene trans-associations are replicated in other datasets. (A) QQ-plot of
− log10(P ) comparing trans-associations identified by CCmedgene (cyan points) to randomly
selected trans-associations (black points) in the eQTLGen blood tissue trans-eQTL study of
trait-associated variants. (B) Marginal correlations in CMC Dorsolateral Prefrontal Cortex samples
of cis-trans pairs in mediation trios identified by CCmedgene.
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Figure 4 Validation of CCmedGWAS trans-associations. (A) Among the 1418 trans-genes for 124
scz-SNPs detected from GTEx data via CCmedGWAS, 1158 trans-genes have at least 1 GTEx
reported cis-eQTL, with a total of 124,619 eQTLs also genotyped in the GWAS data. Here we
plot the GWAS scz-risk-association P -values for those 124,619 eQTLs (and zoomed-in to focus on
those with GWAS P < 0.05). (B) Counts of suspected trans-genes showing evidence of
schizophrenia-risk association based on multitissue TWAS analysis. Colors correspond to counts
that would be expected by chance using randomly selected genes (blue) and the counts beyond
what would be expected by chance (orange) among CCmed-identified suspected trans-genes. (C)
An example of a suspected trans-gene validated by MR-Robin (p = 0.001). The eQTL effect size
estimates (y-axis) are plotted against GWAS effect size estimates (x-axis) for SNPs used in the
analysis. Points are colored by SNP. Colored lines represent SNP-specific slope estimates. The
slope of the black line is the fixed effect estimate from the MR-Robin reverse regression, and
implies a non-zero mediation effect of the gene PRR12 on scz. (D) Venn diagram of gene counts
of MR-Robin, brain-tissue-based S-PrediXcan and S-MultiXcan results at the cutoff of P < 0.05.

SNP i (Li) Gene (X) Trait (Y )

SNP j (Lj)

µi γ

ρij
µxj

µyj

Figure 5 An illustration of horizontal pleiotropy in a gene region. There is a SNP i of interest
being a candidate IV. A SNP j in LD with it is also an eQTL of the targeted gene and has a
direct effect on the trait. When conducting MR using only marginal summary statistics, the effect
of SNP j is not accounted for, and will confound the relationships among the SNP i, the gene
expression and the trait. That is, horizontal (and/or correlated) pleiotropy in a gene region will
bias the effect estimate based on marginal statistics for SNP i, without conditioning on SNP j.
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