Robust Estimation of Bacterial Cell Count from Optical Density

Jacob Beal^{1*}, Natalie G. Farny^{2*}, Traci Haddock-Angelli^{3*}, Vinoo Selvarajah³, Geoff S. Baldwin^{4*}, Russell Buckley-Taylor⁴, Markus Gershater^{5*}, Daisuke Kiga⁶, John Marken⁷, Vishal Sanchania⁵, Abigail Sison³, Christopher T. Workman^{8*}, and the iGEM Interlab Study Contributors[¶]

1 Raytheon BBN Technologies, Cambridge, MA, USA

2 Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA

3 iGEM Foundation, Cambridge, MA, USA

4 Department of Life Sciences and IC-Centre for Synthetic Biology, Imperial College London, London, UK

 ${\bf 5}$ Synthace, London, UK

6 Faculty of Science and Engineering, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan

7 Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA 8 DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark

¶ Membership list is provided in Supplementary Note: iGEM Interlab Study Contributors.

* jakebeal@ieee.org (J.B.), nfarny@wpi.edu (N.G.F.), traci@igem.org (T.H-A.), g.baldwin@imperial.ac.uk (G.S.B.), m.gershater@synthace.com (M.G.), cwor@dtu.dk (C.T.W.)

Abstract

Optical density (OD) is a fast, cheap, and high-throughput measurement widely used to estimate the density of cells in liquid culture. These measurements, however, cannot be compared between instruments without a standardized calibration protocol and are challenging to relate to actual cell count. We address these shortcomings with an interlaboratory study comparing three OD calibration protocols, as applied to eight strains of *E. coli* engineered to constitutively express varying levels of GFP. These three protocols—comparison with colloidal silica (LUDOX), serial dilution of silica microspheres, and a reference colony-forming unit (CFU) assay—are all simple, low-cost, and highly accessible. Based on the results produced by the 244 teams completing this interlaboratory study, we recommend calibrating OD using serial dilution of silica microspheres, which readily produces highly precise calibration (95.5% of teams having residuals less than 1.2-fold), is easily assessed for quality control, and as a side effect also assesses the effective linear range of an instrument. Moreover, estimates of cell count from silica microspheres can be combined with fluorescence calibration against fluorescein to obtain units of Molecules of Equivalent Fluorescein (MEFL), allowing direct comparison and data fusion with equivalently calibrated flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.

Introduction

Comparable measurements are a *sine qua non* for both science and engineering, and one of the most commonly needed measurements of microbes is the number (or concentration) of cells in a sample. The most common method for estimating the number of cells in a liquid suspension is the use of optical density measurements (OD) at an absorbance wavelength of 600nm (OD600) [1]. The dominance of OD measurements is unsurprising, particularly in plate readers, as these measurements are extremely fast, inexpensive, simple, relatively non-disruptive, high-throughput, and readily automated. Alternative measurements of cell count—microscopy (with or without hemocytometer), flow cytometry, colony forming units (CFU), and others, e.g., [2–5]—lack many of these properties, though some offer other benefits, such as distinguishing viability and being unaffected by cell states such as inclusion body formation, protein expression, or filamentous growth [6].

A key shortcoming of OD measurements is that they do not actually provide a direct measure of cell count. Indeed, OD is not even linearly related to cell count except within a limited range [7]. Furthermore, because the phenomenon is based on light scatter rather than absorbance, it is relative to the configuration of a particular instrument. Thus, in order to relate OD measurements to cell count—or even just to compare measurements between instruments and experiments—it is necessary to establish a calibration protocol, such as comparison to a reference material.

While the problems of interpreting OD values have been studied (e.g., [1, 6, 7]), no previous study has attempted to establish a standard protocol to reliably calibrate estimation of cell count from OD. To assess reliability, it is desirable to involve a large diversity of instruments and laboratories, such as those participating in the International Genetically Engineered Machines (iGEM) competition [8], where hundreds of teams at the high school, undergraduate, and graduate levels been organized previously to study reproducibility and calibration for fluorescence measurements in engineered *E. coli* [9, 10]. As iGEM teams have a high variability in training and available resources, organizing an interlaboratory study with iGEM also demands that protocols be simple, low cost, and highly accessible. The large scale and high variability between teams also allows investigation of protocol robustness, as well as how readily issues can be identified and debugged in protocol execution.

We thus organized a large-scale interlaboratory study within iGEM to compare three candidate OD calibration protocols: a colony-forming unit (CFU) assay, the de facto standard assay for determining viable cell count; comparison with colloidal silica (LUDOX) and water, previously used for normalizing fluorescence measurements [9]; and serial dilution of silica microspheres, a new protocol based on a recent study of microbial growth [7]. Overall, this study demonstrates that serial dilution of silica microspheres is by far the best of these three protocols, allowing highly precise, accurate, and robust calibration that is easily assessed for quality control and can also evaluate the effective linear range of an instrument.

Results

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

To evaluate the three candidate OD calibration protocols, we organized an 43 interlaboratory study as part of the 2018 International Genetically Engineered Machine (iGEM) competition. The precision and robustness of each protocol is assessed based on 45 the variability between replicates, between reference levels, and between laboratories. 46 The overall efficacy of the protocols was then further evaluated based on the 47 reproducibility of cross-laboratory measurements of cellular fluorescence, as normalized 48 by calibrated OD measurements. 49

Experimental Data Collection

50

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Each contributing team was provided with a set of calibration materials and a collection 51 of eight engineered genetic constructs for constitutive expression of GFP at a variety of 52 levels. Specifically, the constructs consisted of a negative control, a positive control, and 53 six test constructs that were identical except for promoters from the Anderson 54 library [11], selected to give a range of GFP expression (illustrated in Figure 1(a), with 55 complete details provided in Supplementary Data 1 DNA Constructs). These materials 56 were then used to follow a calibration and cell measurement protocol (Materials and 57 Methods; Supplementary Note: Plate Reader and CFU Protocol and Supplementary 58 Note: Flow Cytometer Protocol). 59

Each team transformed *E. coli* K-12 DH5-alpha with the provided genetic constructs, culturing two biological replicates for each of the eight constructs. Teams measured absorbance at 600nm (OD600) and GFP in a plate reader from 4 technical replicates per biological replicate at the 0 and 6 hour time points, along with media blanks, thus producing a total of 144 OD600 and 144 GFP measurements per team. Teams with access to a flow cytometer were asked to also collect GFP and scatter measurements for each sample, plus a sample of SpheroTech Rainbow Calibration Beads [12] for fluorescence calibration.

Measurements of GFP fluorescence were calibrated using serial dilution of fluorescein with PBS in quadruplicate, using the protocol from [9], as illustrated in Figure 1(b). Starting with a known concentration of fluorescein in PBS means that there is a known number of fluorescein molecules per well. The number of molecules per arbitrary fluorescence unit can then by estimated by dividing the expected number of molecules in each well by the measured fluorescence for the well; a similar computation can be made for concentration.

Measurements of OD via absorbance at 600nm (OD600) were calibrated using three protocols and for each of these a model was devised for the purpose of fitting the data obtained in the study (Methods):

- Calibration to colony forming units (CFU), illustrated in Figure 1(c): four overnight cultures (two each of positive and negative controls), were sampled in triplicate, each sample diluted to 0.1 OD, then serially diluted, and the final three dilutions spread onto bacterial culture plates for incubation and colony counting (a total of 36 plates per team). The number of CFU per OD per mL is estimated by multiplying colony count by dilution multiple. This protocol has the advantage of being well established and insensitive to non-viable cells and debris, but the disadvantages of an unclear number of cells per CFU, potentially high statistical variability when the number of colonies is low, and being labor intensive.
- Comparison of colloidal silica (LUDOX CL-X) and water, illustrated in Figure 1(d): this protocol is adapted from [9] by substitution of a colloidal silica formulation that is more dense and freeze-tolerant (for easier shipping). Quadruplicate measurements are made for both LUDOX CL-X and water, with conversion from arbitrary units to OD measurement in a standard spectrophotometer cuvette estimated as the ratio of their difference to the OD measurement for LUDOX CL-X in a reference spectrophotometer. This protocol has the advantage of using extremely cheap and stable materials, but the disadvantage that LUDOX CL-X provides only a single reference value, and that it calibrates for instrument differences in determination of OD but cannot determine the number of particles.
- Comparison with serial dilution of silica microspheres, illustrated in Figure 1(e). This novel protocol, inspired by the relationship between particle size, count, and

bioRxiv preprint doi: https://doi.org/10.1101/803239; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

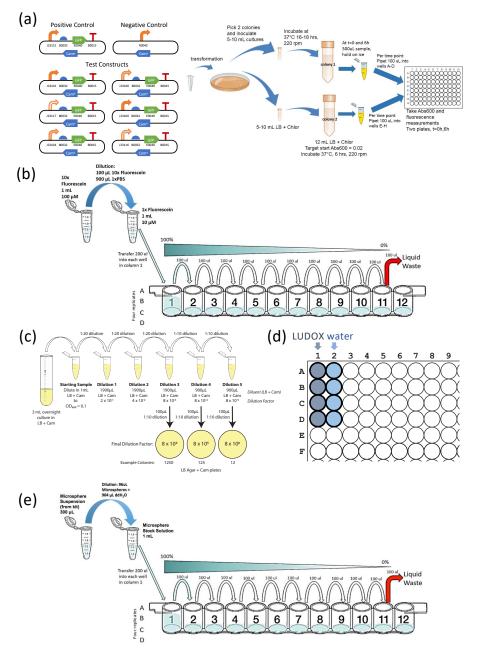


Fig 1. Study design: (a) each team cultured eight strains of engineered E. coli expressing GFP at various levels: positive and negative controls plus a library of six test constructs with promoters selected to give a range of levels of expression. Each team also collected four sets of calibration measurements, (b) fluorescein titration for calibration of GFP fluorescence, plus three alternative protocols for calibration of absorbance at 600nm: (c) dilution and growth for colony forming units (CFU), (d) LUDOX and water, and (e) serial dilution of 0.961 μ m diameter monodisperse silica microspheres.

OD [7], uses quadruplicate serial dilution protocol of $0.961 \mu m$ diameter monodisperse silica microspheres (selected to match the approximate volume and optical properties of *E. coli*) in water (similar to fluorescein dilution, but with different materials). With a known starting concentration of particles, the number of particles per OD600 unit is estimated by dividing the expected number of particles in each well by the measured OD for the well. This protocol has the advantages of low cost and of directly mapping between particles and OD, but the disadvantage that the microspheres tend to settle and are freeze-sensitive.

Data from each team were accepted only if they met a set of minimal data quality criteria (Supplementary Note: Data Acceptance Criteria), including values being non-negative, the positive control being significantly brighter than the negative control, and measured values for calibrants decreasing as dilution increases. In total, 244 teams provided data meeting these minimal criteria, with 17 teams also providing usable flow cytometry data. Complete anonymized data sets and analysis results are available in Supplementary Data 2 Complete Data.

Robustness of calibration protocols

115

128

129

130

131

132

133

134

135

136

137

138

139

148

149

100

101

102

103

104

105

106

107

We assessed the robustness of the calibration protocols under test in two ways: replicate 116 precision and residuals. Replicate precision can be evaluated simply in terms of the 117 similarity of values for each technical replicate of a protocol. The smaller the coefficient 118 of variation (i.e., ratio of standard deviation to mean), the more precise the protocol. 119 With regards to residuals, on the other hand, we considered the modeled mechanism 120 that underlies each calibration method and assess how well it fits the data. Here, the 121 residual is the distance between each measured value provided by a team and the 122 predicted value of a model fit using that same set of data (see Materials and Methods 123 for details of each mechanism model and residual calculations). The smaller the residual 124 value, the more precise the protocol. Moreover, the more similar the replicate precision 125 and residuals across teams, the more robust the protocol is to variations in execution 126 conditions. 127

Figure 2 shows the distribution of the coefficients of variation (CVs) for all valid replicates for each of the calibrant materials (see Materials and Methods for validity criteria). For CFU, basic sampling theory implies that the dilution with the largest number of countably distinct colonies (lowest dilution) should have the best CV, and indeed this is the case for 81.6% of the samples. This percentage is surprisingly low, however, and indicates a higher degree of variation than can be explained by the inherent stochasticity of the protocol: CFU sampling should follow a binomial distribution and have a little over 3-fold higher CV with each 10-fold dilution, but on average it was much less. This indicates the presence of a large component of variation with an unknown source, which is further confirmed by the fact that even the best CVs are quite high: the best of the three dilutions for each team has $CV \le 0.1$ for only 2.1% of all data sets and $CV \le 0.2$ for only 16.4% of all data sets.

LUDOX and water have the lowest CV, at CV ≤ 0.1 for 86.9% (LUDOX) and 88.1% 140 (water) of all replicate sets and CV < 0.2 for 97.1% (LUDOX) and 98.0% (water) of all 141 replicate sets. Microspheres and fluorescein have slightly higher CV, at CV < 0.1 for 142 80.8% (microspheres) and 76.9% (fluorescein) of all replicate sets and CV ≤ 0.2 for 93.9%143 (microspheres) and 92.4% (fluorescein) of all replicate sets. The difference between these 144 two pairs likely derives from the fact that the LUDOX and water samples are each 145 produced in only a single step, while the serial dilution of microspheres and fluorescein 146 allows inaccuracies to compound in the production of later samples. 147

The accuracy of a calibration protocol is ultimately determined by how replicate data sets across the study are jointly interpreted to parameterize a model of the

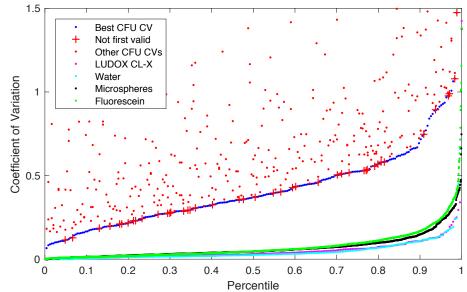


Fig 2. Distribution of the coefficient of variation for valid replicate sets in CFU, LUDOX/water, microspheres, and fluorescein. CFU models are generated from only the best CV dilution (blue); other dilutions are shown separately above. Even the best CV CFU dilutions, however, have a distribution far worse than the other four methods, and are surprisingly often not the lowest dilution (red crosses). Of the others, LUDOX (magenta) and water (light blue) have the best and near-identical distributions, while microspheres (black) and fluorescein (green) are only slightly higher.

calibration protocol, one part of which is the scaling function that maps between 150 arbitrary units and calibrated units. As noted above, this can be assessed by 151 considering the residuals in the fit between observed values and their fit to the protocol 152 model. To do this, we first estimated the calibration parameters from the observed 153 experimental values (see Materials and Methods for the unit scaling computation for 154 each calibration method), then used the resulting model to "predict" what those values 155 should have been (e.g., 10-fold less colonies after a 10-fold dilution). The closer the ratio 156 was to one, the more the protocol was operating in conformance with the theory 157 supporting its use for calibration, and thus the more likely that the calibration process 158 produced an accurate value.

159

Here we see a critical weakness of the LUDOX/water protocol: the LUDOX and 160 water samples provide only two measurements, from which two model parameters are 161 set: the background to subtract (set by water) and the scaling between 162 background-subtracted LUDOX and the reference OD. Thus, the dimensionality of the 163 model precisely matches the dimensionality of the experimental samples, and there are 164 no residuals to assess. As such, the LUDOX/water protocol may indeed be accurate, 165 but its accuracy cannot be empirically assessed from the data it produces. If anything 166 goes wrong in the reagents, protocol execution, or instrument, such problems cannot be 167 detected unless they are so great as to render the data clearly invalid (e.g., the OD of 168 water being less than the OD of LUDOX). 169

The CFU protocol and the two serial dilution protocols, however, both have multiple 170 dilution levels, overconstraining the model and allowing likely accuracy to be assessed. 171 Figure 3 shows the distribution of residuals for these three protocols, in the form of a 172 ratio between the observed mean for each replicate set and the value predicted by the 173 model fit across all replicate sets. The CFU protocol again performs extremely poorly, 174 as we might expect based on the poor CV of even the best replicates: only 7.3% of valid 175

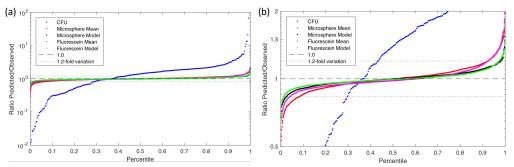


Fig 3. (a) Model fit residual distribution for each replica set in the CFU (blue), microsphere, and fluorescein calibration protocols. (b) Expanding the Y axis to focus on the microsphere and fluorescein distributions shows that incorporating a model parameter for systematic pipetting error (black, green) produces a significantly better fit (and thus likely more accurate unit calibration) than a simple geometric mean over scaling factors (red, magenta).

replicate sets have a residual within 1.1-fold, only 14.0% within 1.2-fold, and overall the geometric standard deviation of the residuals is 3.06-fold—meaning that values are only reliable to within approximately two orders of magnitude! Furthermore, the distribution is asymmetric, suggesting that the CFU protocol may be systematically underestimating the number of cells in the original sample. The accuracy of the CFU protocol thus appears highly unreliable.

The microsphere dilution protocol, on the other hand, produced much more accurate 182 results. Even with only a simple model of perfect dilution, the residuals are quite low 183 (red line in Figure 3(b)), having 61.0% of valid replicates within 1.1-fold, 83.6% within 184 1.2-fold, and an overall geometric standard deviation of 1.152-fold. As noted above, 185 however, with serial dilution we may expect error to compound systematically with each 186 dilution, and indeed the value sequences in individual data sets do tend to show curves 187 indicative of systematic pipetting error. When the model is extended to include 188 systematic pipetting error (see Materials and Methods subsection on systematic 189 pipetting error model), the results improve markedly (black line in Figure 3(b)), to 190 82.4% of valid replicates within 1.1-fold, 95.5% within 1.2-fold, and an overall geometric 191 standard deviation improved to 1.090-fold. Fluorescein dilution provides nearly identical 192 results: with a perfect dilution model (magenta line in Figure 3(b)), having 71.1% of 193 valid replicates within 1.1-fold, 88.2% within 1.2-fold, and an overall geometric standard 194 deviation of 1.148-fold, and systematic pipetting error improving the model (green line 195 in Figure 3(b)), to 88.1% of valid replicates within 1.1-fold, 98.0% within 1.2-fold, and 196 an overall geometric standard deviation of 1.085-fold. 197

Based on an analysis of the statistical properties of calibration data, we may thus conclude that the microsphere and fluorescein dilution protocols are highly robust, producing results that are precise, likely to be accurate, and readily assessed for execution quality on the basis of calibration model residuals. The LUDOX/water protocol is also highly precise and may be accurate, but its execution quality cannot be directly assessed due to its lack of residuals. The CFU protocol, on the other hand, appears likely to be highly problematic, producing unreliable and likely inaccurate calibrations.

198

199

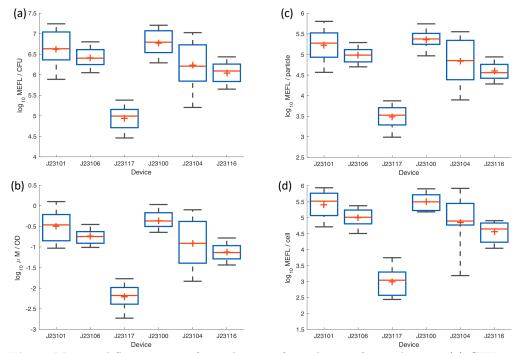
200

201

202

203

204


205

206

Reproducibility and accuracy of cell-count estimates

Reproducibility and accuracy of the calibration protocols can be evaluated through their $_{207}$ application to calibration of fluorescence from *E. coli*, as normalized by calibrated OD $_{208}$

bioRxiv preprint doi: https://doi.org/10.1101/803239; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 4. Measured fluorescence of test devices after 6 hours of growth using (a) CFU calibration, (b) LUDOX/water calibration, (c) microsphere dilution calibration, and (d) flow cytometry. In each box, red plus indicates geometric mean, red line indicates median, top and bottom edges indicate 25th and 75th percentiles, and whiskers extend from 9%–91%.

measurements. Figure 4 shows the fluorescence values computed for each of the three 209 fluorescence/OD calibration combinations, as well as for calibrated flow cytometry, 210 excluding data with poor calibration or outlier values for colony growth or positive 211 control fluorescence (for details see Materials and Methods on determining validity of E. 212 coli data). Overall, the lab-to-lab variation was workably small, with the geometric 213 mean of the geometric standard deviations for each test device being 2.4-fold for CFU 214 calibration, 2.21-fold for LUDOX/water calibration, and 2.21-fold for microsphere 215 dilution calibration. These values are quite similar to those previously reported in [9], 216 which reported a 2.1-fold geometric standard deviation for LUDOX/water. 217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Note that these standard deviations are also dominated by the high variability observed in the constructs with J23101 and J23104, both of which appear to have suffered significant difficulties in culturing (see Supplementary Figure 2 *E. coli* Colony Growth). Omitting the problematic constructs finds variations of 2.02-fold for CFU calibration, 1.84-fold for LUDOX/water calibration, and 1.83-fold for microsphere dilution calibration. Flow cytometry in this case is also similar, though somewhat higher variability in this case, at 2.31-fold (possibly due to the much smaller number of replicates and additional opportunities for variation in protocol execution). All together, these values indicate that, when filtered using quality control based on the replicate precision and residual statistics established above, all three OD calibration methods are capable of producing highly reproducible measurements across laboratories.

To determine the accuracy of cell count estimates, we compared normalized bulk measurements (total fluorescence divided by estimated cell count) against single cell measurements of fluorescence from calibrated flow cytometry (see Materials and Methods on flow cytometry data processing for analytical details). In making this

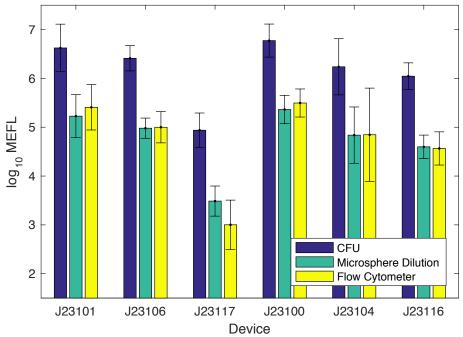


Fig 5. Fluorescence per cell after 6 hours of growth, comparing calibrated flow cytometry to estimates using cell count from CFU and microsphere dilution protocols (LUDOX/water is not shown as the units it produces are not comparable). Microsphere dilution produces values extremely close to the ground truth provided by calibrated flow cytometry, whereas the CFU protocol produces values more than an order of magnitude different, suggesting that CFU calibration greatly underestimates the number of cells in the sample. Bars show geometric mean and standard deviation.

comparison, there are some differences that must be considered between the two 233 modalities. Gene expression typically has a log-normal distribution [13], meaning that 234 bulk measurements will be distorted upward compared to the geometric mean of 235 log-normal distribution observed with the single-cell measurements of a flow cytometer. 236 In this experiment, for typical levels of cell-to-cell variation observed in E. coli, this 237 effect should cause the estimate of per-cell fluorescence to be approximately 1.3-fold 238 higher from a plate reader than a flow cytometer. At the same time, non-cell particles in 239 the culture will tend to distort fluorescence per cell estimates in the opposite direction 240 for bulk measurement, as these typically contribute to OD but not fluorescence in a 241 plate reader, but are gated out of flow cytometry data. With generally healthy cells in 242 log-phase growth, however, the levels of debris in this experiment are expected to be 243 relatively low. Thus, these two differences are likely to both be small and in opposite 244 directions, such that we should still expect the per-cell fluorescence estimates of plate 245 reader and flow cytometry data to closely match if accurately calibrated. 246

Of the three OD calibration methods, the LUDOX/water measurement is 247 immediately disqualified as it calibrates only to a relative OD, and thus cannot produce 248 comparable units. Comparison of CFU and microsphere dilution to flow cytometry is 249 shown in Figure 5. The CFU-calibrated measurements are far higher than the values 250 produced by flow cytometry, a geometric mean of 28.4-fold higher, indicating that this 251 calibration method badly underestimates the number of cells. It is unclear the degree to 252 which this is due to known issues of CFU, such as cells adhering into clumps, as 253 opposed to the problems with imprecision noted above or yet other possible unidentified 254 causes. Whatever the cause, however, CFU calibration is clearly problematic for 255 obtaining anything like an accurate estimate of cell count.

Microsphere dilution, on the other hand, produces values that are remarkably close 257 to those for flow cytometry, a geometric mean of only 1.07-fold higher, indicating that 258 this calibration method is quite accurate in estimating cell count. Moreover, we may note that the only large difference between values comes with the extremely low fluorescence of the J23117 construct, which is unsurprising given that flow cytometers 261 generally have a higher dynamic range than plate readers, allowing better sensitivity to 262 low signals.

Discussion

264

256

259

260

263

Reliably determining the number of cells in a liquid culture has remained a challenge in 265 biology for decades. For the field of synthetic biology, which seeks to engineer based on 266 standardized biological measurements, it was critical to find a solution to this challenge. 267 Here, we have compared the most common method for calibrating OD to cell number 268 (calculation of CFU) to two alternative methods of calibration: LUDOX/water and 269 microsphere serial dilution. The qualitative and quantitative benefits and drawbacks of 270 these three methods for OD calibration are summarized in Table 6. 271

Protocol	Benefits	Drawbacks/Limitations
Colony Forming Units (CFU)	Inexpensive	Lower precision
	Requires no additional reagents	Count affected by cell clumping/adhesion
	Counts only live and active cells, elimina	ting quiescent cells, dead cells, and debris
		Labor intensive
		Slow (overnight incubation)
LUDOX/water	Extremely simple, fast, and cheap	Generates only a single calibration point
	High precision	Cell count is still relative
Microsphere Serial Dilution	Inexpensive	Slightly more difficult to perform, as it
	Highest precision	must be completed before spheres have
	Many dilution levels helps with quality	time to settle
	control and corrections	
	Also assesses linear range of instrument	

Fig 6. Summary of the benefits and drawbacks of the three calibration protocols.

These three protocols are all inexpensive, with the reagent cost for both 272 LUDOX/water and microsphere serial dilution being less than \$0.10 US. The CFU 273 protocol has well-known issues of cell clumping and slow, labor-intensive execution, and 274 counts only live and active cells, which can be either a benefit or a limitation depending 275 on circumstances. Additionally, the CFU counts in this study exhibited a remarkably 276 high level of variability, which may call into question the use of the CFU method as the 277 a standard for determining cell counts. This observed variability is not without 278 precedent—prior work has also demonstrated E. coli CFU counting performing poorly 279 on measures of reproducibility and repeatability in an interlaboratory study [14] 280

The microsphere protocol, on the other hand, has no major drawbacks and provides 281 a number of significant benefits. First, the microsphere protocol is highly robust and 282 reliable, particularly compared to CFU assays. Second, failures are much easier to 283 diagnose with the microsphere protocol, since it has many distinct levels that can be 284 compared. This is particularly significant when compared to the LUDOX/water 285 protocol, which only provides a single calibration point at low absorbance (and thus 286 susceptible to instrument range issues), and to the CFU protocol, where failures may be 287 difficult to distinguish from inherent high variability. With the microsphere protocol, on 288 the other hand, some failures such as systematic dilution error and instrument 289 saturation can not only be detected, but also modeled and corrected for. Finally, the 290

microsphere protocol also permits a unit match between plate reader and flow 291 cytometry measurements (both in cell number and in fluorescence per cell), which is 292 highly desirable, allowing previously impossible data fusion between these two 293 complementary platforms (e.g., to connect high-resolution time-series data from a plate 294 reader with high-detail data about population structure from a flow cytometer). 295 Accordingly, based on the results of this study, we recommend the adoption of silica 296 microsphere calibration for robust estimation of bacterial cell count. 297

With regards to future opportunities for extension, we note that these methods seem 298 likely to be applicable to other instruments that measure absorbance (e.g., 299 spectrophotometers, automated culture flasks) by appropriately scaling volumes and 300 particle densities. Similarly it should be possible to adapt to other cell types by 301 selecting other microspheres with appropriately adjusted diameters and materials for their optical properties, and a wide range of potential options are already readily 303 available from commercial suppliers. Finally, further investigation would be valuable for 304 more precisely establishing the relationship between cell count and particle count. It 305 would also be useful to quantify the degree to which the estimates are affected by factors such as changing optical properties associated with cell state, distribution, shape, 307 and clustering, and to investigate means of detecting and compensating for such effects. 308

Materials and Methods

309

325

326

327

328

329

330

302

306

Participating iGEM teams measured OD and fluorescence among the same set of 310 plasmid-based devices, according to standardized protocols. In brief, teams were 311 provided a test kit containing the necessary calibration reagents, a set of standardized 312 protocols, and pre-formatted Excel data sheets for data reporting. Teams provided their 313 own plate reader instruments, consumables/plasticware, competent E. coli cells, PBS, 314 water, and culture medium. First, teams were asked to complete a series of calibration 315 measurements by measuring LUDOX and water, and also making a standard curve of 316 both fluorescein and silica microspheres. Next, each team transformed the plasmid 317 devices into *E. coli* and selected transformants on chloramphenicol plates. They selected 318 two colonies from each plate to grow as liquid cultures overnight, then the following day 319 diluted their cultures and measured both fluorescence and OD after 0 and 6 hours of 320 growth. Some of these cultures were also used to make serial dilutions for the CFU 321 counting experiment. Teams were asked to report details of their instrumentation, E. 322 coli strains used, and any variations from the protocol using an online survey. 323 Additional details are available in the Supplementary Information. 324

Calibration Materials

The following calibration materials were provided to each team as a standard kit:

- 1 ml of LUDOX CL-X (Sigma-Aldrich)
- 1.00e-8 moles fluorescein (Sigma-Aldrich).
- 300 μ l of 0.961 um diameter monodisperse silica beads (Cospheric) in ddH₂0, prepared to contain 3.00e8 beads.

Fluorescein samples tubes were prepared with 1.00e-8 moles fluorescein in solution in 331 each tube, which was then vacuum dried for shipping. Resuspension in 1 ml PBS would 332 thus produce a solution with initial concentration of 10 μ M fluorescein. 333

Each team providing flow cytometry data also obtained their own sample of 334 SpheroTech RCP-30-5A Rainbow Calibration Particles (SpheroTech). A sample of this 335 material is a mixture of particles with eight levels of fluorescence, which should appear 336

as up to eight peaks (typically some are lost to saturation on the instrument). Teams 337 used various different lots, reporting the lot number to allow selection of the appropriate 338 manufacturer-supplied quantification for each peak. 330 **Constructs**, Culturing, and Measurement Protocols 340 The genetic constructs supplied to each team for transformation are provided in 341 Supplementary Data 1 DNA Constructs. The protocol for plate readers, exactly as 342 supplied to each participating team, is provided in Supplementary Note: Plate Reader 343 and CFU Protocol. The supplementary protocol for flow cytometry is likewise provided 344 in Supplementary Note: Flow Cytometer Protocol. 345 **Criteria for Valid Calibrant Replicates** 346 For purpose of analyzing the precision of calibrants, the following criteria were used to 347 determine which replicate sets are sufficiently valid for inclusion of analysis: 348 • CFU: A dilution level is considered valid if at least 4 of the 12 replicate plates 349 have a number of colonies that are greater than zero but not too numerous to 350 count. A calibration set is considered valid if there is at least one valid dilution 351 level. Of the 244 data sets, 241 are valid and 3 are not valid. 352 • LUDOX/water: A LUDOX/water calibration is considered valid if it fits the 353 acceptance criteria in Supplementary Note: Data Acceptance Criteria, meaning 354 that all 244 are valid. 355 • Microsphere dilution and fluorescein dilution: For both of these protocols, 356 a dilution level is considered locally valid if the measured value does not appear to 357 be either saturated high or low. High saturation is determined by lack of sufficient 358 slope from the prior level, here set to be at least 1.5x, and low saturation by 359 indistinguishability from the blank replicates, here set to be anything less than 2 360 blank standard deviations above the mean blank. The valid range of dilution 361 levels is then taken to be the longest continuous sequence of locally valid dilution 362 levels, and the calibration set considered valid overall if this range has at least 3 363 valid dilution levels. 364 - For microsphere dilution, of the 244 data sets, 235 are valid and 9 are not 365 valid—one due to being entirely low saturated, the others having inconsistent 366 slopes indicative of pipetting problems. Supplementary Figure 1 Length of 367 Valid Sequence(a) shows that most microsphere dilution data sets have the 368 majority of dilution levels valid, but that only about one tenth are without 369 saturation issues. 370 - For fluorescein dilution, of the 244 data sets, 243 are valid and 1 is not valid, 371 having an inconsistent slope indicative of pipetting problems. Supplementary 372 Figure 1 Length of Valid Sequence(a) shows that the vast majority of 373 fluorescein dilution data sets are without any saturation issues. 374 **Unit Scaling Factor Computation** 375

CFU

The scaling factor S_c relating CFU/ML to Abs600 is computed as follows:

$$S_{c,i} = \mu(C_i) * \delta_i \tag{1}$$

376

377

where $\mu(C_i)$ is the mean number of colonies for dilution level i and δ_i is the dilution fold 378 for level *i*. For the specific protocol used, there are three effective dilution factors, $1.6e_5$, 379 1.6e6, and 1.6e7 (including a 2-fold conversion between $200\mu l$ and $100\mu l$ volumes). 380

The overall scaling factor S_c for each data set is then taken to be:

$$S_c = \{S_{c,i} | \frac{\sigma(C_i)}{\mu(C_i)} = \min_i \frac{\sigma(C_i)}{\mu(C_i)}\}$$

$$\tag{2}$$

i.e., the scaling factor for the valid level with the lowest coefficient of variation.

The residuals for this fit are then $S_{c,i}/S_c$ for all other valid levels.

LUDOX/Water

The scaling factor S_l relating standard OD to Abs600 is computed as follow:

$$S_l = \frac{R}{\mu(L) - \mu(W)} \tag{3}$$

where R is the measured reference OD in a standard cuvette (in this case 0.063 for LUDOX CL-X), $\mu(L)$ is the mean Abs600 for LUDOX CL-X samples and $\mu(W)$ is the mean Abs600 for water samples.

No residuals can be computed for this fit, because there are two measurements and two degrees of freedom.

Microsphere Dilution and Fluorescein Dilution

The scaling factors S_m relating microsphere count to Abs600 and S_f for relating molecules of fluorescein to arbitrary fluorescent units are both computed in the same way. These are transformed into scaling factors in two ways, either as the mean conversion factor S_{μ} or as one parameter of a fit to a model of systematic pipetting error S_p .

Mean Conversion Factor If we ignore pipetting error, then the model for serial 397 dilution has an initial population of calibrant p_0 that is diluted n times by a factor of α at each dilution, such that the expected population of calibrant for the *i*th dilution level 399 is: 400

$$p_i = p_0 (1 - \alpha) \alpha^{i-1} \tag{4}$$

In the case of the specific protocols used here, $\alpha = 0.5$. For the microsphere dilution protocol used, $p_0 = 3.00e8$ microspheres, while for the fluorescein dilution protocol used, $p_0 = 6.02e14$ molecules of fluorescein.

The local conversion factor S_i for the *i*th dilution is then:

$$S_i = \frac{p_i}{\mu(O_i) - \mu(B)} \tag{5}$$

where $\mu(O_i)$ is the mean of the observed values for the *i*th dilution level and $\mu(B)$ is the 405 mean observed value for the blanks. 406

The mean conversion factor is thus:

$$S_{\mu} = \mu(\{S_i | i \text{ is a valid dilution level}\})$$
(6)

i.e., the mean over local conversion factors for valid dilution levels.

The residuals for this fit are then S_i/S_{μ} for all valid levels.

398

401

402

403

404

407

408

409

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

Systematic Pipetting Error Model The model for systematic pipetting error 410 modifies the intended dilution factor α with the addition of an unknown bias β , such 411 that the expected biased population b_i for the *i*th dilution level is: 412

$$b_i = p_0 (1 - \alpha - \beta) (\alpha + \beta)^{i-1} \tag{7}$$

We then simultaneously fit β and the scaling factor S_p to minimize the sum squared error over all valid dilution levels: 414

$$\epsilon = \sum_{i} |\log(\frac{b_i}{S_p \cdot (\mu(O_i) - \mu(B))})|^2 \tag{8}$$

where ϵ is sum squared error of the fit and x_n is the mean corrected arbitrary unit value of the *n*th titration stage. 416

The residuals for this fit are then the absolute ratio of fit-predicted to observed net $\frac{b_i/S_p}{\mu(O_i)-\mu(B)}$ for all valid levels. 418

Application to E. coli data

The Abs600 and fluorescence a.u. data from *E. coli* samples are converted into 420 calibrated units by subtracting the mean blank media values for Abs600 and 421 fluorescence a.u., then multiplying by the corresponding scaling factors for fluorescence and Abs600. 420

Criteria for Valid E. coli Data

For analysis of *E. coli* culture measurements, a data set was only eligible to be included if both its fluorescence calibration and selected OD calibration were above a certain quality threshold. The particular values used for the four calibration protocols were:

- **CFU:** Coefficient of variation for best dilution level is less than 0.5.
- LUDOX/water: Coefficient of variation for both LUDOX and water are less than 0.1.
- Microsphere dilution: Systematic pipetting error has geometric mean absolute residual less than 1.1-fold.
- Fluorescein dilution: Systematic pipetting error has geometric mean absolute 433 residual less than 1.1-fold. 434

Measurements of the cellular controls were further used to exclude data sets with apparent problems in their protocol: those with a mean positive control value more than 3-fold different than the median mean positive control.

Finally, individual samples without significant growth were removed, that being defined as all that are either less than the 25% of the 75th percentile Abs600 measurement in the sample set or less than 2 media blank standard deviations above the mean media blank in the sample set.

Flow Cytometry Data Processing

Flow cytometry data was processed using the TASBE Flow Analytics software package [15]. A unit conversion model from arbitrary units to MEFL was constructed per the recommended best practices of TASBE Flow Analytics for each data set using the bead sample and lot information provided by each team: 445

419

424

428

429

430

435

436

437

438

439

440

441

442

• Gating was automatically determined using a two-dimensional Gaussian fit on the forward-scatter area and side-scatter area channels for the first negative control (Supplementary Figure 3 Example of Flow Cytometry Gating).	447 448 449
• The same negative control was used to determine autofluorescence for background subtraction.	450 451
• As only a single green fluorescent protein was used, there was no need for spectral compensation or color translation.	452 453
This color model was then applied to each sample to filter events and convert GFP measurements from arbitrary units to MEFL, and geometric mean and standard deviation computed for the filtered collection of events.	454 455 456
Supplementary Information	457
Supplementary Note: iGEM Interlab Study Contributors	458
List of all authors in the iGEM Interlab Study Consortium	459
Supplementary Note: Plate Reader and CFU Protocol	460
Protocol specification provided for collecting plate reader and CFU data in	461
the 2018 iGEM Interlab Study.	462
Supplementary Note: Flow Cytometer Protocol	463
Addendum protocol provided for flow cytometry data collection.	464
Supplementary Note: Data Acceptance Criteria	465
Quality control criteria for acceptance of data in 2018 iGEM Interlab	466
Study.	467
Supplementary Data 1 DNA Constructs	468
File containing DNA constructs for the 2018 iGEM Interlab Study.	469
Supplementary Data 2 Complete Data	470
JSON files containing of all input data sets, plus all results of analysis per	471
Materials and Methods above. Team names are omitted in order to	472
anonymize data sets. For flow cytometry data, only the per-sample statistical summary of each sample is included.	473 474
Supplementary Figure 1 Length of Valid Sequence	175
	475
Distribution of lengths of valid sequence of dilution levels for microspheres (a) and fluorescein (b).	476 477
Supplementary Figure 2 E. coli Colony Growth	478
Fraction of well-grown colonies for each test construct in E. coli: the	479
constructs incorporating J23101 and J23104 presented major problems in	480
culturing for many teams, as did the J23100 construct to a lesser degree.	481

Supplementary Figure 3 Example of Flow Cytometry Gating	
Example of Gaussian mixture model determination of gating from negative control:	4
Acknowledgments	4
Partial support for this work was provided by NSF Expeditions in Computing Program Award #1522074 as part of the Living Computing Project. This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.	
Author Contributions	4
• Conceptualization: J.B., N.G.F., T.H-A., V.S1, G.S.B., R.B-T., M.G., D.K., J.M., C.T.W.	4
• Data curation: J.B., N.G.F., T.H-A., V.S1	4
• Formal analysis: J.B.	4
• Investigation: Experimental data gathered by iGEM Interlab Study Contributors (all authors listed in Supplementary Note: iGEM Interlab Study Contributors)	4
• Methodology: J.B., N.G.F., T.H-A., V.S1, G.S.B., R.B-T., M.G., D.K., J.M., V.S2, A.S., C.T.W.	4
• Project administration: J.B., N.G.F., T.H-A.	5
• Resources: T.H-A., V.S1, A.S.	5
• Software: J.B.	5
• Writing (original draft): J.B., N.G.F.	5
• Writing (review & editing): J.B., N.G.F., T.H-A., G.S.B., J.M., C.T.W., V.S2,	5
Competing Interests	Ę
The authors declare no competing interests.	5

References

- 1. Myers JA, Curtis BS, Curtis WR. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC biophysics. 2013;6(1):4.
- 2. DeBlois R, Bean C. Counting and sizing of submicron particles by the resistive pulse technique. Review of Scientific Instruments. 1970;41(7):909–916.
- 3. Bapat P, Nandy SK, Wangikar P, Venkatesh K. Quantification of metabolically active biomass using methylene blue dye reduction test (MBRT): measurement of CFU in about 200 s. Journal of Microbiological Methods. 2006;65(1):107–116.

- Hazan R, Que YA, Maura D, Rahme LG. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC microbiology. 2012;12(1):259.
- Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, et al. Validation of three viable-cell counting methods: Manual, semi-automated, and automated. Biotechnology Reports. 2015;7:9–16.
- Hecht A, Endy D, Salit M, Munson MS. When Wavelengths Collide: Bias in Cell Abundance Measurements Due to Expressed Fluorescent Proteins. ACS Synthetic Biology. 2016;5:1024–1027. doi:https://doi.org/10.1021/acssynbio.6b00072.
- 7. Stevenson K, McVey AF, Clark IB, Swain PS, Pilizota T. General calibration of microbial growth in microplate readers. Scientific reports. 2016;6:38828.
- Beal J, Haddock-Angelli T, Farny N, Rettberg R. Time to get serious about measurement in synthetic biology. Trends in Biotechnology. 2018;36:869–871.
- Beal J, Haddock-Angelli T, Baldwin G, Gershater M, Dwijayanti A, Storch M, et al. Quantification of Bacterial Fluorescence using Independent Calibrants. PLoS ONE. 2018;13:e0199432.
- Beal J, Haddock-Angelli T, Gershater M, de Mora K, Lizarazo M, Hollenhorst J, et al. Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli. PLoS ONE. 2016;11:e0150182.
- 11. Anderson JC. Anderson promoter collection; Retrieved Oct. 30, 2015. http://parts.igem.org/Promoters/Catalog/Anderson.
- SpheroTech. Measuring Molecules of Equivalent Fluorescein (MEFL), PE (MEPE) and RPE-CY5 (MEPCY) using Sphero Rainbow Calibration Particles. SpheroTech; 2001. SpheroTechnical Notes: STN-9, Rev C 071398.
- 13. Beal J. Biochemical complexity drives log-normal variation in genetic expression. Engineering Biology. 2017;1(1):55–60.
- Jarvis B, Hedges AJ, Corry JE. Assessment of measurement uncertainty for quantitative methods of analysis: Comparative assessment of the precision (uncertainty) of bacterial colony counts. International journal of food microbiology. 2007;116(1):44–51.
- Beal J, Overney C, Adler A, Yaman F, Tiberio L, Samineni M. TASBE Flow Analytics: A Package for Calibrated Flow Cytometry Analysis. ACS synthetic biology. 2019;.