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Abstract30

Many diseases and complex traits exhibit population-specific causal effect sizes31

with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic32

polygenic risk prediction. We developed a new method, S-LDXR, for stratifying33

squared trans-ethnic genetic correlation across genomic annotations, and applied S-34

LDXR to genome-wide association summary statistics for 30 diseases and complex35

traits in East Asians (EAS) and Europeans (EUR) (average NEAS=93K, NEUR=274K)36

with an average trans-ethnic genetic correlation of 0.83 (s.e. 0.01). We determined37

that squared trans-ethnic genetic correlation was 0.81� (s.e. 0.01) smaller than the38

genome-wide average at SNPs in the top quintile of background selection statistic,39

implying more population-specific causal effect sizes. Accordingly, causal effect sizes40

were more population-specific in functionally important regions, including coding, con-41

served, and regulatory regions. In analyses of regions surrounding specifically expressed42

genes, causal effect sizes were most population-specific for skin and immune genes and43

least population-specific for brain genes. Our results could potentially be explained44

by stronger gene-environment interaction at loci impacted by selection, particularly45

positive selection.46
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Introduction47

Trans-ethnic genetic correlations are significantly less than 1 for many diseases and48

complex traits,1–6 implying that population-specific causal disease effect sizes contribute to49

the incomplete portability of genome-wide association study (GWAS) findings and poly-50

genic risk scores to non-European populations.6–12 However, current methods for estimating51

genome-wide trans-ethnic genetic correlations assume the same trans-ethnic genetic correla-52

tion for all categories of SNPs,2,5,13 providing little insight into why causal disease effect sizes53

are population-specific. Understanding the biological processes contributing to population-54

specific causal disease effect sizes can help inform polygenic risk prediction in non-European55

populations and alleviate health disparities.6,14,15
56

Here, we introduce a new method, S-LDXR, for stratifying squared trans-ethnic ge-57

netic correlation across functional categories of SNPs using GWAS summary statistics and58

population-matched linkage disequilibrium (LD) reference panels (e.g. the 1000 Genomes59

Project16); we stratify the squared trans-ethnic genetic correlation across functional cate-60

gories to robustly handle noisy heritability estimates. We confirm that S-LDXR yields ro-61

bust estimates in extensive simulations. We apply S-LDXR to 30 diseases and complex traits62

with GWAS summary statistics available in both East Asian (EAS) and European (EUR)63

populations, leveraging recent large studies in East Asian populations from the CONVERGE64

consortium and Biobank Japan;17–19 we analyze a broad set of genomic annotations from the65

baseline-LD model,20–22 as well as tissue-specific annotations based on specifically expressed66

gene sets.23
67
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Results68

Overview of methods69

Our method (S-LDXR) for estimating stratified trans-ethnic genetic correlation is con-70

ceptually related to stratified LD score regression20,21 (S-LDSC), a method for partitioning71

heritability from GWAS summary statistics. The S-LDSC method determines that a cate-72

gory of SNPs is enriched for heritability if SNPs with high LD to that category have higher73

expected χ2 statistic than SNPs with low LD to that category. Analogously, the S-LDXR74

method determines that a category of SNPs is enriched for trans-ethnic genetic covariance75

if SNPs with high LD to that category have higher expected product of Z-scores than SNPs76

with low LD to that category. Unlike S-LDSC, S-LDXR models per-allele effect sizes (ac-77

counting for differences in minor allele frequency (MAF) between populations), and employs78

a shrinkage estimator to reduce noise.79

In detail, the product of Z-scores of SNP j in two populations, Z1jZ2j, has the expec-80

tation81

ErZ1jZ2js �
a
N1N2

¸
C

`�pj, CqθC , (1)

where Np is the sample size for population p; `�pj, Cq �
°
k r1jkr2jkσ1jσ2jaCpkq is the trans-82

ethnic LD score of SNP j with respect to annotation C, whose value for SNP k, aCpkq,83

can be either binary or continuous; rpjk is the LD (Pearson correlation) between SNP j84

and k in population p; σpj is the standard deviation of SNP j genotypes in population p;85

and θC represents the per-SNP contribution to trans-ethnic genetic covariance of the per-86

allele causal disease effect size of annotation C. Here, rpjk and σpj can be estimated from87

population-matched reference panels (e.g. 1000 Genomes Project16). We estimate θC for each88

annotation C using weighted least square regression. Subsequently, we estimate the trans-89

ethnic genetic covariance of each binary annotation C (ρgpCq) as
°
jPC

°
C1 aC1pjqθC1 , using90

coefficients (θC1) for both binary and continuous-valued annotations C 1; the heritabilities91

in each population (h2
g1pCq and h2

g2pCq) are estimated analogously. We then estimate the92

stratified squared trans-ethnic genetic correlation, defined as93

r2
gpCq �

ρ2
gpCq

h2
g1pCqh2

g2pCq
. (2)

In this work, we only estimate r2
gpCq for SNPs with MAF greater than 5% in both pop-94

ulations. We estimate r2
gpCq instead of rgpCq to avoid bias (or undefined values) from95

computing square roots of noisy (possibly negative) heritability estimates, and use a boot-96
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strap method24 to correct for bias in estimating a ratio. We further employ a shrinkage97

estimator, with shrinkage parameter α (between 0 and 1, where larger values imply more98

shrinkage; the default value is 0.5), to reduce noise. We do not constrain estimates of r2
gpCq99

to their plausible range (between 0 and 1), which would introduce bias. We define the en-100

richment/depletion of squared trans-ethnic genetic correlation as λ2pCq � r2gpCq

r2g
, where r2

g101

is the genome-wide squared trans-ethnic genetic correlation; λ2pCq can be meta-analyzed102

across traits with different r2
g . We compute standard errors via block-jackknife, as in previ-103

ous work.20 We estimate λ2pCq for binary annotations only, such as functional annotations20
104

or quintiles of continuous-valued annotations.21 Further details of the S-LDXR method are105

provided in the Methods section; we have publicly released open-source software implement-106

ing the method (see URLs). We note that all genetic correlations are defined using causal107

effect sizes, as opposed to joint-fit effect sizes.2,5
108

We apply S-LDXR to 62 annotations, defined in both EAS and EUR populations (Table109

S1, Figure S1, S2). 61 of these annotations (54 binary annotations and 7 continuous-valued110

annotations) are from the baseline-LD model (v1.1; see URLs), which includes a broad set111

of coding, conserved, regulatory and LD-related annotations; we modified the definition of112

two MAF-adjusted continuous-valued annotations (level of LD (LLD) and predicted allele113

age) to make them compatible with both populations. We also added one new continuous-114

valued annotation, SNP-specific FST between EAS and EUR populations. We did not include115

MAF bins from the baseline-LD model, due to the complexity of defining MAF bins in both116

populations. We refer to our final set of annotations as the baseline-LD-X model (Methods).117

We have publicly released all baseline-LD-X model annotations and LD scores for EAS118

and EUR populations (see URLs). We also apply S-LDXR to specifically expressed gene119

annotations for 53 tissues23 (Table S2).120

Simulations121

We evaluated the accuracy of S-LDXR in simulations using genotypes that we sim-122

ulated using HAPGEN225 from phased haplotypes of 481 EAS and 489 EUR individuals123

from the 1000 Genomes Project16 (35,378 simulated EAS-like and 36,836 simulated EUR-124

like samples, after removing genetically related samples; �2.5 million SNPs on chromosomes125

1 – 3) (Methods); we did not have access to individual-level EAS data at sufficient sam-126

ple size to perform simulations with real genotypes. For each population, we randomly127

selected a subset of 500 simulated samples to serve as the reference panel for estimating LD128

scores. We performed both null simulations (heritable trait with functional enrichment but129

no enrichment/depletion of squared trans-ethnic genetic correlation; λ2pCq � 1) and causal130
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simulations (λ2pCq � 1). In our main simulations, we randomly selected 10% of the SNPs as131

causal SNPs in both populations, set genome-wide heritability to 0.5 in each population, and132

adjusted genome-wide genetic covariance to attain a genome-wide rg of 0.60 (unless otherwise133

indicated). In the null simulations, we used heritability enrichments from analyses of real134

traits in EAS samples to specify per-SNP causal effect size variances and covariances. In the135

causal simulations, we directly specified per-SNP causal effect size variances and covariances136

to attain λ2pCq � 1 values from analyses of real traits, as these were difficult to attain using137

the heritability and trans-ethnic genetic covariance enrichments from analyses of real traits.138

First, we assessed the accuracy of S-LDXR in estimating genome-wide trans-ethnic ge-139

netic correlation (rg). Across a wide range of simulated rg values (0.20 to 0.96), S-LDXR140

yielded approximately unbiased estimates and well-calibrated jackknife standard errors (Ta-141

ble S3, Figure S3).142

Second, we assessed the accuracy of S-LDXR in estimating λ2pCq in quintiles of the 8143

continuous-valued annotations of the baseline-LD-X model. We performed both null sim-144

ulations (λ2pCq � 1) and causal simulations (λ2pCq � 1). Results are reported in Figure145

1a and Tables S4 – S9 . At default parameter settings, S-LDXR yielded approximately un-146

biased estimates of λ2pCq for most annotations. As a secondary analysis, we tried varying147

the S-LDXR shrinkage parameter, α, which has a default value of 0.5. We determined that148

reducing the shrinkage parameter led to less accurate estimates of λ2pCq for annotations149

depleted for heritability, whereas increasing the shrinkage parameter biased results towards150

λ2pCq � 1 in causal simulations (Figure S4, Tables S5, S8). Results were similar at other151

values of the proportion of causal SNPs (1% and 100%; Tables S4, S6, S7, S9). We also152

confirmed that S-LDXR produced well-calibrated jackknife standard errors (Tables S4-S9).153

Finally, we assessed the accuracy of S-LDXR in estimating λ2pCq for the 28 main binary154

annotations of the baseline-LD-X model (inherited from the baseline model of ref.20). We155

discarded λ2pCq estimates with the highest standard errors (top 5%), as estimates with large156

standard errors (which are particularly common for annotations of small size) are uninfor-157

mative for evaluating unbiasedness of the estimator (in analyses of real traits, trait-specific158

estimates with large standard errors are retained, but contribute very little to meta-analysis159

results). Results are reported in Figure 1b and Tables S5, S8. At default parameter settings,160

S-LDXR yielded approximately unbiased estimates of λ2pCq for functional annotations of161

large size in both null and causal simulations; however, estimates were slightly downward162

biased in null simulations for functional annotations of small size (e.g. 5’ UTR; 0.5% of163

SNPs). This is likely because the bootstrap method for correcting bias in ratio estimation164

(Methods) has limited capability when heritability estimates in the denominator of Equa-165

tion (2) are noisy,24 as is the case for small annotations. Increasing the shrinkage parameter166
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above its default value of 0.5 and extending the functional annotations by 500bp on each167

side20 ameliorated the downward bias (and reduced standard errors) for annotations of small168

size in null simulations (Figure S5, S6);. However, increasing the shrinkage parameter also169

biased results towards the null (λ2pCq � 1) in causal simulations (Tables S7, S8, S9), and170

λ2pCq estimates for the extended annotations are less biologically meaningful than for the171

corresponding main annotations. To ensure robust estimates, we focus on the 20 main bi-172

nary annotations of large size (¡ 1% of SNPs) in analyses of real traits (see below). Results173

were similar at other values of the proportion of causal SNPs (1% and 100%; Tables S4, S6,174

S7, S9). We also confirmed that S-LDXR produced well-calibrated jackknife standard errors175

(Tables S4-S9).176

In summary, S-LDXR produced approximately unbiased estimates of enrichment/depletion177

of squared trans-ethnic genetic correlation in both null and causal simulations of both quin-178

tiles of continuous-valued annotations and binary annotations of large size (¡ 1% of SNPs).179

Analysis of baseline-LD-X model annotations across 30 diseases and180

complex traits181

We applied S-LDXR to 30 diseases and complex traits with summary statistics in East182

Asians (average N � 93K) and Europeans (average N � 274K) available from Biobank183

Japan, UK Biobank, and other sources (Table S10 and Methods). First, we estimated the184

trans-ethnic genetic correlation (rg) (as well as population-specific heritabilies) for each trait.185

Results are reported in Figure S7 and Table S10. The average rg across 30 traits was 0.83186

(s.e. 0.01) (average r2
g = 0.69 (s.e. 0.02)). 28 traits had rg   1, and 11 traits had rg187

significantly less than 1 after correcting for 30 traits tested (P   0.05{30); the lowest rg was188

0.34 (s.e. 0.07) for Major Depressive Disorder (MDD), although this may be confounded by189

different diagnostic criteria in the two populations.26 These estimates were consistent with190

estimates obtained using Popcorn2 (Figure S8) and those reported in previous studies.2,5,6
191

Second, we estimated the enrichment/depletion of squared trans-ethnic genetic correla-192

tion (λ2pCq) in quintiles of the 8 continuous-valued annotations of the baseline-LD-X model,193

meta-analyzing results across traits; these annotations are moderately correlated (Figure 2a194

and Table S1). We used the default shrinkage parameter (α � 0.5) in all analyses. Results195

are reported in Figure 2b and Table S11. We consistently observed a depletion of r2
gpCq196

(λ2pCq   1, implying more population-specific causal effect sizes) in functionally important197

regions. For example, we estimated λ2pCq � 0.81 (s.e. 0.01) for SNPs in the top quintile of198

background selection statistic (defined as 1 � McVicker B statistic / 1000;27 see ref.21); λ2pCq199

estimates were less than 1 for 27/30 traits (including 7 traits with two-tailed p   0.05{30).200
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The background selection statistic quantifies the genetic distance of a site to its nearest201

exon; regions with high background selection statistic have higher per-SNP heritability, con-202

sistent with the action of selection, and are enriched for functionally important regions.21
203

We observed the same pattern for CpG content and SNP-specific Fst (which are positively204

correlated with background selection statistic; Figure 2a) and the opposite pattern for nu-205

cleotide diversity (which is negatively correlated with background selection statistic). We206

also estimated λ2pCq � 0.85 (s.e. 0.03) for SNPs in the top quintile of average LLD (which207

is positively correlated with background selection statistic), although these SNPs have lower208

per-SNP heritability due to a competing positive correlation with predicted allele age.21
209

Likewise, we estimated λ2pCq � 0.83 (s.e. 0.02) for SNPs in the bottom quintile of recom-210

bination rate (which is negatively correlated with background selection statistic), although211

these SNPs have average per-SNP heritability due to a competing negative correlation with212

average LLD.21 However, λ2pCq   1 estimates for the bottom quintile of GERP (NS) (which213

is positively correlated with both background selection statistic and recombination rate) and214

the middle quintile of predicted allele age are more difficult to interpret. For all annotations215

analyzed, heritability enrichments did not differ significantly between EAS and EUR, consis-216

tent with previous studies.19,28 Results were similar at a more stringent shrinkage parameter217

value (α � 1.0; Figure S9), and for a meta-analysis across a subset of 20 approximately218

independent traits (Methods; Figure S10).219

Finally, we estimated λ2pCq for the 28 main binary annotations of the baseline-LD-X220

model (Table S1), meta-analyzing results across traits. Results are reported in Figure 3a and221

Table S12. Our primary focus is on the 20 annotations of large size (¡ 1% of SNPs), for which222

our simulations yielded robust estimates; results for remaining annotations are reported223

in Table S12. We consistently observed a depletion of λ2pCq (implying more population-224

specific causal effect sizes) within these annotations: 17 annotations had λ2pCq   1, and225

8 annotations had λ2pCq significantly less than 1 after correcting for 20 annotations tested226

(P   0.05{20); these annotations included Coding (λ2pCq � 0.90 (s.e. 0.03)), Conserved227

(λ2pCq � 0.92 (s.e. 0.02)), Promoter (λ2pCq � 0.88 (s.e. 0.03)) and Super Enhancer228

(λ2pCq � 0.91 (s.e. 0.01)), each of which was significantly enriched for per-SNP heritability,229

consistent with ref.20. For all annotations analyzed, heritability enrichments did not differ230

significantly between EAS and EUR (Figure 3a), consistent with previous studies.19,28 Results231

were similar at a more stringent shrinkage parameter value (α � 1.0; Figure S9), and for a232

meta-analysis across a subset of 20 approximately independent traits (Methods; Figure S11).233

Since the functional annotations are moderately correlated with the 8 continuous-valued234

annotations (Table S1c, Figure S1), we investigated whether the depletions of squared trans-235

ethnic genetic correlation (λ2pCq   1) within the 20 binary annotations could be explained236
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by the 8 continuous-valued annotations. For each binary annotation, we estimated its ex-237

pected λ2pCq based on values of the 8 continuous-valued annotations for SNPs in the binary238

annotation (Methods), meta-analyzed this quantity across traits, and compared observed vs.239

expected λ2pCq (Figure 3b and Table S13). We observed strong concordance, with a slope240

of 0.63 (correlation of 0.56) across the 20 binary annotations. This implies that the deple-241

tions of r2
gpCq (λ2pCq   1) within binary annotations are largely explained by corresponding242

values of continuous-valued annotations.243

In summary, our results show that causal disease effect sizes are more population-specific244

in functionally important regions impacted by selection. Further interpretation of these245

findings, including the role of positive and/or negative selection, is provided in the Discussion246

section.247

Analysis of specifically expressed gene annotations248

We analyzed 53 specifically expressed gene (SEG) annotations, defined in ref.23 as249

�100kb regions surrounding the top 10% of genes specifically expressed in each of 53 GTEx29
250

tissues (Table S2), by applying S-LDXR with the baseline-LD-X model to the 30 diseases and251

complex traits (Table S10). We note that although SEG annotations were previously used to252

prioritize disease-relevant tissues based on disease-specific heritability enrichments,19,23 en-253

richment/depletion of squared trans-ethnic genetic correlation (λ2pCq) is standardized with254

respect to heritability, hence not expected to produce disease-specific signals. Thus, for each255

tissue, we meta-analyzed λ2pCq estimates across the 30 diseases and complex traits.256

Results are reported in Figure 4a and Table S14. λ2pCq estimates were less than 1 for257

all 53 tissues and significantly less than 1 (p   0.05{53) for 39 tissues, with statistically258

significant heterogeneity across tissues (p   10�20; Methods). The strongest depletions of259

squared trans-ethnic genetic correlation were observed in skin tissues (e.g. λ2pCq � 0.81 (s.e.260

0.02) for Skin Sun Exposed (Lower Leg)), Prostate and Ovary (e.g. λ2pCq � 0.82 (s.e. 0.02)261

for Prostate) and immune-related tissues (e.g. λ2pCq � 0.83 (s.e. 0.02) for Spleen), and262

the weakest depletions were observed in Testis (λ2pCq � 0.97 (s.e. 0.02)) and brain tissues263

(e.g. λ2pCq � 0.96 (s.e. 0.02) for Brain Nucleus Accumbens (Basal Ganglia)). Results264

were similar at less stringent and more stringent shrinkage parameter values (α � 0.0 and265

α � 1.0; Figures S12, S13 and Table S14). A comparison of 14 blood-related traits and 16266

other traits yielded highly consistent λ2pCq estimates (R � 0.82; Figure S14, Table S15),267

confirming that these findings were not disease-specific.268

These λ2pCq results were consistent with the higher background selection statistic27 in269

Skin Sun Exposed (Lower Leg) (R � 0.17), Prostate (R � 0.16) and Spleen (R � 0.14) as270

9
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compared to Testis (R � 0.02) and Brain Nucleus Accumbens (Basal Ganglia) (R � 0.08)271

(Figure S15, Table S2), and similarly for CpG content (Figure S16, Table S2). Although272

these results could in principle be confounded by gene size,30 the low correlation between273

gene size and background selection statistic (R � 0.06) or CpG content (R � �0.20) (in274

�100kb regions) implies limited confounding. We note the well-documented action of recent275

positive selection on genes impacting skin pigmentation31–35 and the immune system;31–34,36
276

we are not currently aware of any evidence of positive selection impacting Prostate and277

Ovary. We further note the well-documented action of negative selection on fecundity- and278

brain-related traits,37–39 but it is possible that recent positive selection may more closely279

track differences in causal disease effect sizes across human populations, which have split280

relatively recently40 (see Discussion).281

More generally, since SEG annotations are moderately correlated with the 8 continuous-282

valued annotations (Figure S17, Table S2), we investigated whether these λ2pCq results could283

be explained by the 8 continuous-valued annotations (analogous to Figure 3b). Results are284

reported in Figure 4b and Table S16. We observed strong concordance, with a slope of 1.01285

(correlation of 0.75) across the 53 SEG annotations. This implies that the depletions of286

λ2pCq within SEG annotations are explained by corresponding values of continuous-valued287

annotations.288

In summary, our results show that causal disease effect sizes are more population-specific289

in regions surrounding specifically expressed genes. This effect was strongest in tissues im-290

pacted by positive selection (as opposed to negative selection), suggesting a possible connec-291

tion between positive selection and population-specific causal effect sizes (see Discussion).292
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Discussion293

We developed a new method (S-LDXR) for stratifying squared trans-ethnic genetic cor-294

relation across functional categories of SNPs that yields approximately unbiased estimates295

in extensive simulations. By applying S-LDXR to East Asian and European summary statis-296

tics across 30 diseases and complex traits, we determined that SNPs with high background297

selection statistic27 have substantially lower squared trans-ethnic genetic correlation (vs.298

the genome-wide average), implying that causal effect sizes are more population-specific.299

Accordingly, squared trans-ethnic genetic correlations were substantially lower for SNPs in300

many functional categories. In analyses of specifically expressed gene annotations, we ob-301

served substantial depletion of squared trans-ethnic genetic correlation for SNPs near skin302

and immune-related genes, which are strongly impacted by recent positive selection, but not303

for SNPs near brain genes.304

Reductions in trans-ethnic genetic correlation have several possible underlying expla-305

nations, including gene-environment (G�E) interaction, gene-gene (G�G) interaction, and306

dominance variation (but not differences in heritability across populations, which would307

not affect trans-ethnic genetic correlation and were not observed in our study). Given the308

increasing evidence of the role of G�E interaction in complex trait architectures,41 and ev-309

idence that G�G interaction and dominance variation explain limited heritability,42–44 we310

hypothesize that depletions of squared trans-ethnic genetic correlation in the top quintile of311

background selection statistic and in functionally important regions may be primarily at-312

tributable to stronger G�E interaction in these regions. Interestingly, a recent study on plas-313

ticity in Arabidopsis observed a similar phenomenon: lines with more extreme phenotypes314

exhibited stronger G�E interaction.45 Distinguishing between stronger G�E interaction in315

regions impacted by selection and stronger G�E interaction in functionally important re-316

gions as possible explanations for our findings is a challenge, because functionally important317

regions are more strongly impacted by selection. To this end, we constructed an annotation318

that is similar to the background selection statistic but does not make use of recombination319

rate, instead relying solely on a SNP’s physical distance to the nearest exon (Methods).320

Applying S-LDXR to the 30 diseases and complex traits using a joint model incorporating321

baseline-LD-X model annotations and the nearest exon annotation, the background selec-322

tion statistic remained highly conditionally informative for trans-ethnic genetic correlation,323

whereas the nearest exon annotation was not conditionally informative (Table S17). This324

result implicates stronger G�E interaction in regions with reduced effective population size325

that are impacted by selection, and not just proximity to functional regions, in explaining326

depletions of squared trans-ethnic genetic correlation; however, we emphasize that selection327
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acts on allele frequencies rather than causal effect sizes, and could help explain our find-328

ings only in conjunction with other explanations such as G�E interaction. Our results on329

specifically expressed genes implicate stronger G�E interaction near skin and immune genes330

and weaker G�E interaction near brain genes, potentially implicating positive selection (as331

opposed to negative selection). This conclusion is further supported by the lack of variation332

in squared trans-ethnic genetic correlation across genes in different deciles of probability of333

loss-of-function intolerance46 (Methods, Figure S18, S19, Table S18). We conclude that de-334

pletions of squared trans-ethnic genetic correlation could potentially be explained by stronger335

G�E interaction at loci impacted by positive selection. We caution that other explanations336

are also possible; in particular, evolutionary modeling using an extension of the Eyre-Walker337

model47 to two populations suggests that our results for the background selection statis-338

tic could also be consistent with negative selection (Supplementary Note, Figure S20, S21,339

Table S19). Additional information, such as genomic annotations that better distinguish340

different types of selection or data from additional diverse populations, may help elucidate341

the relationship between selection and population-specific causal effect sizes.342

Our study has several implications. First, polygenic risk scores in non-European pop-343

ulations that make use of European training data6,9 may be improved by reweighting SNPs344

based on the expected enrichment/depletion of squared trans-ethnic genetic correlation,345

helping to alleviate health disparities;6,14,15 specifically, although the impact of population-346

specific LD patterns on trans-ethnic polygenic risk scores is well-documented,6,9 population-347

specific causal effect sizes also merit thorough investigation. Second, modeling population-348

specific genetic architectures may improve trans-ethnic fine-mapping, moving beyond the349

standard assumption that all causal variants are shared across populations.28,48 Third, mod-350

eling population-specific genetic architectures may also increase power in trans-ethnic meta-351

analysis,49 e.g. by adapting MTAG50 to two populations (instead of two traits). Fourth, it352

may be of interest to stratify G�E interaction effects41 across genomic annotations. Fifth,353

the S-LDXR method could potentially be extended to stratify squared cross-trait genetic354

correlations51 across genomic annotations.52
355

We note several limitations of this study. First, S-LDXR is designed for populations of356

homogeneous continental ancestry (e.g. East Asians and Europeans) and is not currently357

suitable for analysis of admixed populations53 (analogous to LDSC and its published ex-358

tensions20,51,54). However, a recently proposed extension of LDSC to admixed populations55
359

could be incorporated into S-LDXR, enabling its application to the growing set of large stud-360

ies in admixed populations.10 Second, since S-LDXR applies shrinkage to reduce standard361

error in estimating stratified squared trans-ethnic genetic correlation and its enrichment, es-362

timates are slightly conservative – true depletions of squared trans-ethnic genetic correlation363
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in functionally important regions may be stronger than the estimated depletions. Third,364

the specifically expressed gene (SEG) annotations analyzed in this study are defined primar-365

ily based on gene expression measurements of Europeans.23 However, genetic architectures366

of gene expression differ across diverse populations.12,56,57 Thus, SEG annotations derived367

from gene expression data from diverse populations may provide additional insights into368

population-specific causal effect sizes. Fourth, we restricted our analyses to SNPs that were369

relatively common (MAF¡5%) in both populations, due to the lack of a large LD refer-370

ence panel for East Asians. Extending our analyses to lower-frequency SNPs may provide371

further insights into the role of negative selection in shaping population-specific genetic ar-372

chitectures, given the particular importance of negative selection for low-frequency SNPs.58
373

Fifth, we did not consider population-specific variants in our analyses, due to the difficulty in374

defining trans-ethnic genetic correlation for population-specific variants;2,5 a recent study59
375

has reported that population-specific variants substantially limit trans-ethnic genetic risk376

prediction accuracy. Sixth, estimates of genome-wide trans-ethnic genetic correlation may377

be confounded by different trait definitions or diagnostic criteria in the two populations,378

particularly for major depressive disorder. However, this would not impact estimates of379

enrichment/depletion of squared trans-ethnic genetic correlation (λ2pCq), which is defined380

relative to genome-wide values. Seventh, we have not pinpointed the exact underlying phe-381

nomena (e.g. environmental heterogeneity coupled with gene-environment interaction) that382

lead to population-specific causal disease effect sizes at functionally important regions. De-383

spite these limitations, our study provides an improved understanding of the underlying384

biology that contribute to population-specific causal effect sizes, and highlights the need for385

increasing diversity in genetic studies.386
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URLs387

• S-LDXR software: https://github.com/huwenboshi/s-ldxr/388

• Python code for simulating GWAS summary statistics: https://github.com/huwenboshi/389

s-ldxr-sim/390

• baseline-LD-X model annotations and LD scores: https://data.broadinstitute.org/391

alkesgroup/LDSCORE/baseline-LD-X/392

• Distance to nearest exon annotation and LD scores: https://data.broadinstitute.393

org/alkesgroup/LDSCORE/baseline-LD-X/394

• baseline-LD model annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/395

readme_baseline_versions396

• 1000 Genomes Project: https://www.internationalgenome.org/397

• PLINK2: https://www.cog-genomics.org/plink/2.0/398

• HAPGEN2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.399

html400

• UCSC Genome Browser: https://genome.ucsc.edu/401

• Exome Aggregation Consortium (ExAC): https://exac.broadinstitute.org/402
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Methods403

Definition of stratified squared trans-ethnic genetic correlation404

We model a complex phenotype in two populations using linear models, Y 1 �X1β1�ε1405

and Y 2 �X2β2�ε2, where Y 1 and Y 2 are vectors of phenotype measurements of population406

1 and population 2 with sample size N1 and N2 , respectively; X1 and X2 are mean-centered407

but not normalized genotype matrices at M SNPs in the two populations; β1 and β2 are408

per-allele causal effect sizes of the M SNPs; and ε1 and ε2 are environmental effects in the409

two populations. We assume that in each population, genotypes, causal effect sizes, and410

environmental effects are independent from each other. We assume that the per-allele effect411

size of SNP j in the two populations has variance and covariance,412

Varrβ1js �
¸
C

aCpjqτ1C , Varrβ2js �
¸
C

aCpjqτ2C ,

Covrβ1j, β2js �
¸
C

aCpjqθC ,
(3)

where aCpjq is the value of SNP j for annotation C, which can be binary or continuous-413

valued; τ1C and τ2C are the net contribution of annotation C to the variance of β1j and β2j,414

respectively; and θC is the net contribution of annotation C to the covariance of β1j and β2j.415

We define stratified trans-ethnic genetic correlation of a binary annotation C (e.g. func-416

tional annotations20 or quintiles of continuous-valued annotations21) as,417

rgpCq � ρgpCqb
h2
g1pCq

b
h2
g2pCq

, (4)

where ρgpCq �
°
jPC Covrβ1j, β2js �

°
jPC

°
C1 aC1pjqθC1 is the trans-ethnic genetic covariance418

of annotation C; and h2
gppCq �

°
jPC Varrβpjs �

°
jPC

°
C1 aC1pjqτpC1 is the heritability (sum419

of per-SNP variance of causal effect sizes) of annotation C in population p. Here, C 1 includes420

both binary and continuous-valued annotations. Since estimates of h2
gppCq can be noisy421

(possibly negative), we estimate squared stratified trans-ethnic genetic correlation,422

r2
gpCq �

ρ2
gpCq

h2
g1pCqh2

g2pCq
, (5)

to avoid bias or undefined values in the square root. In this work, we only estimate r2
gpCq423

for SNPs with minor allele frequency (MAF) greater than 5% in both populations. To assess424

whether causal effect sizes are more or less correlated for SNPs in annotation C compared425
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with the genome-wide average, r2
g , we define the enrichment/depletion of stratified squared426

trans-ethnic genetic correlation as427

λ2pCq � r2
gpCq
r2
g

. (6)

We meta-analyze λ2pCq instead of r2
gpCq across diseases and complex traits. We note that428

the average value of λ2pCq across quintiles of continuous-valued annotations is not necessarily429

equal to 1, as squared trans-ethnic genetic correlation is a non-linear quantity.430

S-LDXR method431

S-LDXR is conceptually related to stratified LD score regression20,21 (S-LDSC), a method432

for stratifying heritability from GWAS summary statistics, to two populations. The S-LDSC433

method determines that a category of SNPs is enriched for heritability if SNPs with high434

LD to that category have higher expected χ2 statistic than SNPs with low LD to that cate-435

gory. Analogously, the S-LDXR method determines that a category of SNPs is enriched for436

trans-ethnic genetic covariance if SNPs with high LD to that category have higher expected437

product of Z-scores than SNPs with low LD to that category.438

S-LDXR relies on the regression equation439

ErZ1jZ2js �
a
N1N2

¸
C

`�pj, CqθC (7)

to estimate θC , where Zpj is the Z-score of SNP j in population p; `�pj, Cq �
°
k r1jkr2jkσ1jσ2jaCpkq440

is the trans-ethnic LD score of SNP j with respect to annotation C, whose value for SNP k,441

aCpkq, can be either binary or continuous; rpjk is the LD between SNP j and k in population442

p; and σpj is the standard deviation of SNP j in population p. We obtain unbiased estimates443

of `�pj, Cq using genotype data of 481 East Asian and 489 European samples in the 1000444

Genomes Project.16 To account for heteroscedasticity and increase statistical efficiency, we445

use weighted least square regression to estimate θC . We include only well-imputed (impu-446

tation INFO¡0.9) and common (MAF¡5% in both populations) SNPs that are present in447

HapMap 360 in the regression, as in our previous work.20,51,54 We use regression equations448

analogous to those described in ref.20 to estimate τ1C and τ2C .449

Let τ̂1C , τ̂1C , and θ̂C be the estimates of τ1C , τ1C , and θC , respectively. For each binary450

annotation C, we estimate the stratified heritability of annotation C in each population,451
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h2
g1pCq and h2

g2pCq, and trans-ethnic genetic covariance, ρgpCq, as452

ĥ2
g2pCq �

¸
jPC

¸
C1

ajC1 τ̂2C1 , ĥ2
g1pCq �

¸
jPC

¸
C1

ajC1 τ̂1C1 , ρ̂gpCq �
¸
jPC

¸
C1

ajC1 θ̂C1 , (8)

respectively, using coefficients (τ1C1 , τ2C1 , and θC1) of both binary and continuous-valued453

annotations. We then estimate r2
gpCq as454

r̂2
gpCq �

ρ̂2
gpCq � ˆS.E.

2rρ̂gpCqs
ĥ2
g1pCqĥ2

g2pCq � ˆCovrĥ2
g1pCq, ĥ2

g2pCqs
� ˆbiaspCq, (9)

where ˆbiaspCq is obtained using bootstrap to correct for bias in estimating the ratio.24 We455

do not constrain the estimate of r2
gpCq to its plausible range of r�1, 1s to be unbiased.456

Subsequently, we obtain enrichment of stratified squared trans-ethnic genetic correlation as457

λ̂2pCq � r̂2
gpCq
r̂2
g

, (10)

where r̂2
g is the estimate of genome-wide squared trans-ethnic genetic correlation r2

g . We use458

block jackknife over 200 non-overlapping and equally sized blocks to obtain standard error459

of all estimates. The standard error of λ2pCq typically depends on sample size of the GWAS460

and overall heritability of annotation C in the two populations (i.e. h2
g1pCq and h2

g2pCq).461

To assess the informativeness of each annotation in explaining disease heritability and462

trans-ethnic genetic covariance, we define standardized annotation effect size on heritability463

and trans-ethnic genetic covariance for each annotation C analogous to ref.21,464

τ�1C � Mh2
g1

h2
g1pCq

� σC � τ1C , τ
�
2C � Mh2

g2

h2
g2pCq

� σC � τ2C ,

θ�C � Mρg
ρgpCq � σC � θC ,

(11)

where τ�1C , τ�2C , and θ�C represent proportionate change in per-SNP heritability in population465

1 and 2 and trans-ethnic genetic covariance, respectively, per standard deviation increase in466

annotation C; τ1C , τ2C , and θC are the corresponding unstandardized effect sizes, defined in467

Equation (3); and σC is the standard deviation of annotation C.468

We provide a more detailed description of the method, including derivations of the469

regression equation and unbiased estimators of the LD scores, in the Supplementary Note.470
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S-LDXR shrinkage estimator471

Estimates of r2
gpCq can be imprecise with large standard errors if the denominator,472

h2
g1pCqh2

g2pCq, is close to zero and noisily estimated. This is especially the case for annota-473

tions of small size (  1% SNPs). We introduce a shrinkage estimator to reduce the standard474

error in estimating r2
gpCq.475

Briefly, we shrink the estimated per-SNP heritability and trans-ethnic genetic covariance476

of annotation C towards the genome-wide averages, which are usually estimated with smaller477

standard errors, prior to estimating r2
gpCq. In detail, let MC be the number of SNPs in478

annotation C, we shrink
ĥ21gpCq

MC
,
ĥ22gpCq

MC
, and ρ̂gpCq

MC
towards

ĥ21g
M

,
ĥ22g
M

, and ρ̂g
M

, respectively, where479

ĥ2
g1, ĥ2

g2, ρ̂g are the genome-wide estimates, and M the total number of SNPs. We obtain480

the shrinkage as follows. Let γ1 � 1{
�

1 � α
Varrĥ2g1pCqs

Varrĥ2g1s
M
MC



, γ2 � 1{

�
1 � α

Varrĥ2g2pCqs
Varrĥ2g2s

M
MC



,481

and γ3 � 1{
�

1 � αVarrρ̂gpCqs
Varrρ̂gs

M
MC

	
be the shrinkage obtained separately for ĥ2

g1pCq, ĥ2
g2pCq482

and ρ̂gpCq, respectively, where α P r0, 1s is the shrinkage parameter adjusting magnitude of483

shrinkage. We then choose the most stringent shrinkage, γ � mintγ1, γ2, γ3u, as the final484

shared shrinkage for both heritability and trans-ethnic genetic covariance.485

We shrink heritability and trans-ethnic genetic covariance of annotation C using γ as,486

h̄2
g1pCq � MC

�
γ
ĥ2g1pCq

MC
� p1 � γq ĥ2g1

M



, h̄2

g2pCq � MC

�
γ
ĥ2g2pCq

MC
� p1 � γq ĥ2g2

M



, and ρ̄gpCq �487

MC

�
γ ρ̂gpCq

MC
� p1 � γq ρ̂g

M

	
, where h̄2

g1pCq, h̄2
g2pCq, and ρ̄gpCq are the shrunk counterparts of488

ĥ2
g1pCq, ĥ2

g2pCq, and ρ̂gpCq, respectively. We shrink r̂2
gpCq by substituting ĥ2

g1pCq, ĥ2
g2pCq,489

and ρ̂gpCq with h̄2
g1pCq, h̄2

g2pCq, ρ̄gpCq, respectively, in Equation (9), to obtain its shrunk490

counterpart, r̄2
gpCq. Finally, we shrink λ̂2pCq, by plugging in r̄2

gpCq in Equation (10) to obtain491

its shrunk counterpart, λ̄2pCq. We recommend α � 0.5 as the default shrinkage parameter492

value, as this value provides robust estimates of λ2pCq in simulations.493

Baseline-LD-X model494

We include a total of 54 binary functional annotations in the baseline-LD-X model.495

These include 53 annotations introduced in ref.,20 which consists of 28 main annotations496

including conserved annotations (e.g. Coding, Conserved) and epigenomic annotations (e.g.497

H3K27ac, DHS, Enhancer) derived from ENCODE61 and Roadmap,62 24 500-base-pair-498

extended main annotations, and 1 annotation containing all SNPs. We note that although499

chromatin accessibility can be population-specific, the fraction of such regions is small.63
500

Following ref,21 we created an additional annotation for all genomic positions with number501

of rejected substitutions64 greater than 4. Further information for all functional annotations502
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included in the baseline-LD-X model is provided in Table S1a.503

We also include a total of 8 continuous-valued annotations in the baseline-LD-X model.504

First, we include 5 continuous-valued annotations introduced in ref.21 (see URLs), without505

modification: background selection statistic,27 CpG content (within a �50 kb window),506

GERP (number of substitutation) score,64 nucleotide diversity (within a �10 kb window),507

and Oxford map recombination rate (within a �10 kb window).65 Second, we include 2508

minor allele frequency (MAF) adjusted annotations introduced in ref.,21 with modification:509

level of LD (LLD) and predicted allele age. We created analogous annotations applicable to510

both East Asian and European populations. To create an analogous LLD annotation, we511

estimated LD scores for each population using LDSC,54 took the average across populations,512

and then quantile-normalized the average LD scores using 10 average MAF bins. We call513

this annotation “average level of LD”. To create analogous predicted allele age annotation,514

we quantile-normalized allele age estimated by ARGweaver66 across 54 multi-ethnic genomes515

using 10 average MAF bins. Finally, we include 1 continuous-valued annotation based on516

FST estimated by PLINK2,67 which implements the Weir & Cockerham estimator of FST.68
517

Further information for all continuous-valued annotations included in the baseline-LD-X518

model is provided in Table S1b.519

Code and data availability520

Python code implementing S-LDXR is available at https://github.com/huwenboshi/521

s-ldxr. Python code for simulating GWAS summary statistics under the baseline-LD-522

X model is available at https://github.com/huwenboshi/s-ldxr-sim. baseline-LD-X523

model annotations and LD scores are available at https://data.broadinstitute.org/524

alkesgroup/LDSCORE/baseline-LD-X/.525

Simulations526

We used simulated East Asian (EAS) and European (EUR) genotype data to assess527

the performance our method, as we did not have access to real EAS genotype data at suffi-528

cient sample size to perform simulations with real genotypes. We simulated genotype data529

for 100,000 East-Asian-like and 100,000 European-like individuals using HAPGEN225 (see530

URLs), starting from phased haplotypes of 481 East Asians and 489 Europeans individuals531

available in the 1000 Genomes Project16 (see URLs), restricting to �2.5 million SNPs on532

chromosome 1 – 3 with minor allele count greater than 5 in either population. Since excessive533

relatedness arose from HAPGEN2 simulations,2 we used PLINK267 (see URLs) to remove534

simulated individuals with genetic relatedness greater than 0.05. From the filtered set of535
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individuals, we randomly selected 500 individuals in each simulated population to serve as536

reference panels, and used the remaining 35,378 East-Asian-like and 36,836 European-like537

individuals to simulate GWAS summary statistics.538

We performed both null simulations, where enrichment of squared trans-ethnic genetic539

correlation, λ2pCq, is 1 across all functional annotations, and causal simulations, where540

λ2pCq varies across annotations, under various degrees of polygenicity (1%, 10%, and 100%541

causal SNPs). In the null simulations, we set τ1C , τ2C , θC to be the meta-analyzed τC in542

real-data analyses of EAS GWASs, and followed Equation (3) to obtain variance, Varrβ1js543

and Varrβ2js, and covariance, Covrβ1j, β2js, of per-SNP causal effect sizes β1j, β2j, setting544

all negative per-SNP variance and covariance to 0. In the causal simulations, we directly545

specified per-SNP causal effect size variances and covariances using self-devised τ1C , τ2C , and546

θC coefficients, to attain λ2pCq � 1, as these were difficult to attain using the coefficients547

from analyses of real traits.548

We randomly selected a subset of SNPs to be causal for both populations, and set549

Varrβ1js, Varrβ2js, and Covrβ1j, β2js to be 0 for all remaining non-causal SNPs. We scaled550

the trans-ethnic genetic covariance to attain a desired genome-wide rg. Next, we drew551

causal effect sizes of each causal SNP j in the two populations from the bi-variate Gaussian552

distribution,553

�
β1j

β2j

�
� N

��
0

0

�
,

�
Varrβ1js Covrβ1j, β2js

Covrβ1j, β2js Varrβ2js

��
, (12)

and scaled the drawn effect sizes to match the desired total heritability and trans-ethnic554

genetic covariance. We simulated genetic component of the phenotype in population p as555

Xpβp, where Xp is column-centered genotype matrix, and drew environmental effects, εp,556

from the Gaussian distribution, N
�
0, 1 � VarrXpβps

�
, such that the total phenotypic vari-557

ance in each population is 1. Finally, we simulated GWAS summary association statistics558

for population p, Zp, as Zpj � Xᵀ
pjY p?
Npσpj

, where σpj is the standard deviation of SNP j in pop-559

ulation p. We have publicly released Python code for simulating GWAS summary statistics560

for 2 populations (see URLs).561

Summary statistics for 30 diseases and complex traits562

We analyzed GWAS summary statistics of 30 diseases and complex traits, primarily563

from UK Biobank,69 Biobank Japan,19 and CONVERGE.17 These include: atrial fibrillation564

(AF),70,71 age at menarche(AMN),72,73 age at menopause (AMP),72,73 basophil count(BASO),19,74
565

body mass index (BMI),19,75 blood sugar(BS),19,75 diastolic blood pressure (DBP),19,75 eosinophil566
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count(EO),19,75 estimated glomerular filtration rate (EGFR),19,76 hemoglobin A1c(HBA1C),19,75
567

height (HEIGHT),75,77 high density lipoprotein (HDL),19,75 hemoglobin (HGB),19,74 hemat-568

ocrit (HTC),19,74 low density lipoprotein (LDL),19,75 lymphocyte count(LYMPH),19,75 mean569

corpuscular hemoglobin (MCH),19,75 mean corpuscular hemoglobin concentration (MCHC),19,74
570

mean corpuscular volume (MCV),19,74 major depressive disorder (MDD),17,78 monocyte count571

(MONO),19,75 neutrophil count(NEUT),19,74 platelet count (PLT),19,75 rheumatoid arthri-572

tis(RA),79 red blood cell count (RBC),19,75 systolic blood pressure (SBP),19,75 type 2 di-573

abetes (T2D),80,81 total cholesterol (TC),19,75 triglyceride (TG),19,75 and white blood cell574

count (WBC).19,75 Further information for the GWAS summary statistics analyzed is pro-575

vided in Table S10. In our main analyses, we performed random-effect meta-analysis to576

aggregate results across all 30 diseases and complex traits. We also defined a set of 20577

approximately independent diseases and complex traits with cross-trait r2
g (estimated us-578

ing cross-trait LDSC51) less than 0.25 in both populations: AF, AMN, AMP, BASO, BMI,579

EGFR, EO, HBA1C, HEIGHT, HTC, LYMPH, MCHC, MCV, MDD, NEUT, PLT, RA,580

SBP, TC, TG.581

Expected enrichment of stratified squared trans-ethnic genetic cor-582

relation from 8 continuous-valued annotations583

To obtain expected enrichment of squared trans-ethnic genetic correlation of a binary584

annotation C, λ2pCq, from 8 continuous-valued annotations, we first fit the S-LDXR model585

using these 8 annotations together with the base annotation for all SNPs, yielding coefficients,586

τ1C1 , τ2C1 , and θC1 , for a total of 9 annotations. We then use Equation (3) to obtain per-SNP587

variance and covariance of causal effect sizes, β1j and β1j, substituting τ1C , τ2C , θC with τ1C1 ,588

τ2C1 , and θC1 , respectively. We apply shrinkage with default parameter setting (α � 0.5),589

and use Equation (9) and (10) to obtain expected stratified squared trans-ethnic genetic590

correlation, r2
gpCq, and subsequently λ2pCq.591

Analysis of specifically expressed gene annotations592

We obtained 53 specifically expressed gene (SEG) annotations, defined in ref.23 as593

�100k-base-pair regions surrounding genes specifically expressed in each of 53 GTEx29 tis-594

sues. A list of the SEG annotations is provided in Table S2. Correlations between SEG595

annotations and the 8 continuous-valued annotations are reported in Figure S17 and Table596

S2. Most SEG annotations are moderately correlated with the background selection statistic597

and CpG content annotations.598
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To test whether there is heterogeneity in enrichment of squared trans-ethnic genetic599

correlation, λ2pCq, across the 53 SEG annotations, we first computed the average λ2pCq600

across the 53 annotations, λ̄2pCq, using fixed-effect meta-analysis. We then computed the test601

statistic
°53
i�1

pλ̂2pCiq�λ̄
2pCiqq2

Varrλ̂2pCiqs
, where Ci is the i-th SEG annotation, and λ̂2pCiq the estimated602

λ2pCq. We computed a p-value for this test statistic based on a χ2 distribution with 53603

degrees of freedom.604

Analysis of distance to nearest exon annotation605

We created a continuous-valued annotation, named “distance to nearest exon annota-606

tion”, based on a SNP’s physical distance (number of base pairs) to its nearest exon, using607

233,254 exons defined on the UCSC genome browser82 (see URLs). This annotation is mod-608

erately correlated with the background selection statistic annotation21 (R � �0.21), defined609

as (1 - McVicker B statistic / 1000), where the McVicker B statistic quantifies a site’s genetic610

distance to its nearest exon.27 We have publicly released this annotation (see URLs).611

To assess the informativeness of functionally important regions versus regions impacted612

by selection in explaining the depletions of squared trans-ethnic genetic correlation, we ap-613

plied S-LDXR on the distance to nearest exon annotation together with the baseline-LD-X614

model annotations. We used both enrichment of squared trans-ethnic genetic correlation615

(λ2pCq) and standardized annotation effect size (τ�1C , τ�2C , and θ�C) to assess informativeness.616

Analysis of probability of loss-of-function intolerance decile gene617

annotations618

We created 10 annotations based on genes in deciles of probability of being loss-of-619

function intolerant (pLI) (see URLs), defined as the probability of assigning a gene into620

haplosufficient regions, where protein-truncating variants are depleted.46 Genes with high621

pLI (e.g. ¡ 0.9) have higly constrained functionality, and therefore mutations in these genes622

are subject to negative selection. We included SNPs within a 100kb-base-pair window around623

each gene, following ref.23 A correlation heat map between pLI decile gene annotations and624

the 8 continuous-valued annotations is provided in Figure S18. All pLI decile gene anno-625

tations are moderately correlated with the background selection statistic and CpG content626

annotations.627
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Figure 1: Accuracy of S-LDXR in null and causal simulations. We report estimates
of the enrichment/depletion of squared trans-ethnic genetic correlation (λ2pCq) in both null
and causal simulations, for (a) quintiles of 8 continuous-valued annotations and (b) 28 main
binary annotations (sorted by proportion of SNPs, displayed in parentheses). Results are
averaged across 1,000 simulations. Error bars denote �1.96� standard error. Numerical
results are reported in Table S5 and S8.
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Figure 2: S-LDXR results for quintiles of 8 continuous-valued annotations across
30 diseases and complex traits. (a) We report correlations between each continuous-
valued annotation; diagonal entries are not shown. Numerical results are reported in Table
S1. (b) We report estimates of the enrichment/depletion of squared trans-ethnic genetic
correlation (λ2pCq), as well as population-specific estimates of heritability enrichment, for
quintiles of each continuous-valued annotation. Results are meta-analyzed across 30 diseases
and complex traits. Error bars denote �1.96� standard error. Red stars (�) denote two-
tailed p 0.05/40. Numerical results are reported in Table S11.
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Figure 3: S-LDXR results for 20 binary functional annotations across 30 diseases
and complex traits. (a) We report estimates of the enrichment/depletion of squared
trans-ethnic genetic correlation (λ2pCq), as well as population-specific estimates of heri-
tability enrichment, for each binary annotation (sorted by proportion of SNPs, displayed
in parentheses). Results are meta-analyzed across 30 diseases and complex traits. Error
bars denote �1.96� standard error. Red stars (�) denote two-tailed p 0.05/20. Numerical
results are reported in Table S12. (b) We report observed λ2pCq vs. expected λ2pCq based
on 8 continuous-valued annotations, for each binary annotation. Results are meta-analyzed
across 30 diseases and complex traits. Error bars denote �1.96� standard error. Annota-
tions for which λ2pCq is significantly different from 1 (p 0.05/20) are denoted in color (see
legend) or dark gray. The dashed black line (slope=0.63) denotes a regression of observed
λpCq � 1 vs. expected λpCq � 1 with intercept constrained to 0. Numerical results are
reported in Table S13.
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Figure 4: S-LDXR results for 53 specifically expressed gene (SEG) annota-
tions across 30 diseases and complex traits. (a) We report estimates of the enrich-
ment/depletion of squared trans-ethnic genetic correlation (λ2pCq) for each SEG annotation
(sorted by λ2pCq). Results are meta-analyzed across 30 diseases and complex traits. Error
bars denote �1.96� standard error. Red stars (�) denote two-tailed p 0.05/53. Numerical
results are reported in Table S14. (b) We report observed λ2pCq vs. expected λ2pCq based
on 8 continuous-valued annotations, for each SEG annotation. Results are meta-analyzed
across 30 diseases and complex traits. Error bars denote �1.96� standard error. Annota-
tions are color-coded as in (a). The dashed black line (slope=1.01) denotes a regression of
observed λpCq � 1 vs. expected λpCq � 1 with intercept constrained to 0. Numerical results
and population-specific heritability enrichment estimates are reported in Table S16.
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