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30 Abstract

31 Many diseases and complex traits exhibit population-specific causal effect sizes
32 with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic
33 polygenic risk prediction. We developed a new method, S-LDXR, for stratifying
34 squared trans-ethnic genetic correlation across genomic annotations, and applied S-
35 LDXR to genome-wide association summary statistics for 30 diseases and complex
36 traits in East Asians (EAS) and Europeans (EUR) (average Npas=93K, Ngur=274K)
37 with an average trans-ethnic genetic correlation of 0.83 (s.e. 0.01). We determined
38 that squared trans-ethnic genetic correlation was 0.81x (s.e. 0.01) smaller than the
39 genome-wide average at SNPs in the top quintile of background selection statistic,
40 implying more population-specific causal effect sizes. Accordingly, causal effect sizes
41 were more population-specific in functionally important regions, including coding, con-
42 served, and regulatory regions. In analyses of regions surrounding specifically expressed
43 genes, causal effect sizes were most population-specific for skin and immune genes and
44 least population-specific for brain genes. Our results could potentially be explained
45 by stronger gene-environment interaction at loci impacted by selection, particularly
46 positive selection.
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+ Introduction

48 Trans-ethnic genetic correlations are significantly less than 1 for many diseases and
s complex traits,' % implying that population-specific causal disease effect sizes contribute to
so the incomplete portability of genome-wide association study (GWAS) findings and poly-
51 genic risk scores to non-European populations.®? However, current methods for estimating
s2 genome-wide trans-ethnic genetic correlations assume the same trans-ethnic genetic correla-

s tion for all categories of SNPs,?%13

providing little insight into why causal disease effect sizes
s« are population-specific. Understanding the biological processes contributing to population-
ss  specific causal disease effect sizes can help inform polygenic risk prediction in non-European
ss populations and alleviate health disparities.®!41?

57 Here, we introduce a new method, S-LDXR, for stratifying squared trans-ethnic ge-
ss netic correlation across functional categories of SNPs using GWAS summary statistics and
so  population-matched linkage disequilibrium (LD) reference panels (e.g. the 1000 Genomes
oo Project!'®); we stratify the squared trans-ethnic genetic correlation across functional cate-
st gories to robustly handle noisy heritability estimates. We confirm that S-LDXR yields ro-
e2 bust estimates in extensive simulations. We apply S-LDXR to 30 diseases and complex traits
s with GWAS summary statistics available in both East Asian (EAS) and European (EUR)
s« populations, leveraging recent large studies in East Asian populations from the CONVERGE

es consortium and Biobank Japan;'™ ¢

20-22
L,

we analyze a broad set of genomic annotations from the
6 baseline-LLD mode as well as tissue-specific annotations based on specifically expressed

&7 gene sets.”3
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« Results

o Overview of methods

70 Our method (S-LDXR) for estimating stratified trans-ethnic genetic correlation is con-
71 ceptually related to stratified LD score regression?”?! (S-LDSC), a method for partitioning
72 heritability from GWAS summary statistics. The S-LDSC method determines that a cate-
73 gory of SNPs is enriched for heritability if SNPs with high LD to that category have higher
74 expected x? statistic than SNPs with low LD to that category. Analogously, the S-LDXR
75 method determines that a category of SNPs is enriched for trans-ethnic genetic covariance
76 if SNPs with high LD to that category have higher expected product of Z-scores than SNPs
77 with low LD to that category. Unlike S-LDSC, S-LDXR models per-allele effect sizes (ac-
76 counting for differences in minor allele frequency (MAF) between populations), and employs
79 a shrinkage estimator to reduce noise.

80 In detail, the product of Z-scores of SNP j in two populations, Z;;Z5;, has the expec-

g1 tation

B[Z1;Z2;] = v/NiN2 ) € (j, C)bc (1)
C

.2 where N, is the sample size for population p; €4 (j,C) = >, 71k72jx01;02jac (k) is the trans-
ss ethnic LD score of SNP j with respect to annotation C, whose value for SNP k, ac(k),
s« can be either binary or continuous; rp;; is the LD (Pearson correlation) between SNP j
ss and k in population p; 0,; is the standard deviation of SNP j genotypes in population p;
ss and 0 represents the per-SNP contribution to trans-ethnic genetic covariance of the per-
g7 allele causal disease effect size of annotation C. Here, 7,,, and o0,; can be estimated from
s population-matched reference panels (e.g. 1000 Genomes Project!%). We estimate 6 for each
so annotation C' using weighted least square regression. Subsequently, we estimate the trans-
% ethnic genetic covariance of each binary annotation C (py(C)) as 3 e > acr(j§)0cr, using
ot coefficients (f¢r) for both binary and continuous-valued annotations C”; the heritabilities
2 in each population (h? (C) and h2,(C)) are estimated analogously. We then estimate the

s stratified squared trans-ethnic genetic correlation, defined as

= R (O50) @)

s In this work, we only estimate 7’3(0) for SNPs with MAF greater than 5% in both pop-
os ulations. We estimate 72(C) instead of ry(C) to avoid bias (or undefined values) from

s computing square roots of noisy (possibly negative) heritability estimates, and use a boot-
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o7 strap method?* to correct for bias in estimating a ratio. We further employ a shrinkage
¢ estimator, with shrinkage parameter o (between 0 and 1, where larger values imply more
s shrinkage; the default value is 0.5), to reduce noise. We do not constrain estimates of rg(C)

10 to their plausible range (between 0 and 1), which would introduce bias. We define the en-
r5(©) 2
2 g

102 is the genome-wide squared trans-ethnic genetic correlation; A*(C') can be meta-analyzed

11 richment/depletion of squared trans-ethnic genetic correlation as A\*(C) = , where 7

103 across traits with different 7”;. We compute standard errors via block-jackknife, as in previ-
104 ous work.?? We estimate \?(C) for binary annotations only, such as functional annotations®’
105 or quintiles of continuous-valued annotations.?! Further details of the S-LDXR method are
106 provided in the Methods section; we have publicly released open-source software implement-
107 ing the method (see URLs). We note that all genetic correlations are defined using causal
108 effect sizes, as opposed to joint-fit effect sizes.?”

109 We apply S-LDXR to 62 annotations, defined in both EAS and EUR populations (Table
1o S1, Figure S1, S2). 61 of these annotations (54 binary annotations and 7 continuous-valued
11 annotations) are from the baseline-LD model (v1.1; see URLs), which includes a broad set
112 of coding, conserved, regulatory and LD-related annotations; we modified the definition of
13 two MAF-adjusted continuous-valued annotations (level of LD (LLD) and predicted allele
14 age) to make them compatible with both populations. We also added one new continuous-
15 valued annotation, SNP-specific Fgt between EAS and EUR populations. We did not include
116 MAF bins from the baseline-LLD model, due to the complexity of defining MAF bins in both
17 populations. We refer to our final set of annotations as the baseline-LD-X model (Methods).
1s - We have publicly released all baseline-LD-X model annotations and LD scores for EAS
19 and EUR populations (see URLs). We also apply S-LDXR to specifically expressed gene

120 annotations for 53 tissues* (Table S2).

21 Simulations

122 We evaluated the accuracy of S-LDXR in simulations using genotypes that we sim-
123 ulated using HAPGEN2% from phased haplotypes of 481 EAS and 489 EUR individuals
12« from the 1000 Genomes Project!'® (35,378 simulated EAS-like and 36,836 simulated EUR-
125 like samples, after removing genetically related samples; ~2.5 million SNPs on chromosomes
126 1 — 3) (Methods); we did not have access to individual-level EAS data at sufficient sam-
127 ple size to perform simulations with real genotypes. For each population, we randomly
128 selected a subset of 500 simulated samples to serve as the reference panel for estimating LD
120 scores. We performed both null simulations (heritable trait with functional enrichment but

130 no enrichment/depletion of squared trans-ethnic genetic correlation; A?(C') = 1) and causal
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11 simulations (\*(C') # 1). In our main simulations, we randomly selected 10% of the SNPs as
122 causal SNPs in both populations, set genome-wide heritability to 0.5 in each population, and
13s adjusted genome-wide genetic covariance to attain a genome-wide 7, of 0.60 (unless otherwise
13¢ indicated). In the null simulations, we used heritability enrichments from analyses of real
135 traits in EAS samples to specify per-SNP causal effect size variances and covariances. In the
136 causal simulations, we directly specified per-SNP causal effect size variances and covariances
17 to attain A\2(C) # 1 values from analyses of real traits, as these were difficult to attain using
138 the heritability and trans-ethnic genetic covariance enrichments from analyses of real traits.
139 First, we assessed the accuracy of S-LDXR in estimating genome-wide trans-ethnic ge-
10 netic correlation (r,). Across a wide range of simulated r, values (0.20 to 0.96), S-LDXR
11 yielded approximately unbiased estimates and well-calibrated jackknife standard errors (Ta-
12 ble S3, Figure S3).

143 Second, we assessed the accuracy of S-LDXR in estimating A?(C) in quintiles of the 8
12 continuous-valued annotations of the baseline-LD-X model. We performed both null sim-
s ulations (A?(C) = 1) and causal simulations (A\*(C') # 1). Results are reported in Figure
116 la and Tables S4 — S9 . At default parameter settings, S-LDXR yielded approximately un-
17 biased estimates of A2(C') for most annotations. As a secondary analysis, we tried varying
1as  the S-LDXR shrinkage parameter, o, which has a default value of 0.5. We determined that
19 reducing the shrinkage parameter led to less accurate estimates of A(C') for annotations
150 depleted for heritability, whereas increasing the shrinkage parameter biased results towards
51 A2(C) = 1 in causal simulations (Figure S4, Tables S5, S8). Results were similar at other
152 values of the proportion of causal SNPs (1% and 100%; Tables S4, S6, S7, S9). We also
153 confirmed that S-LDXR produced well-calibrated jackknife standard errors (Tables S4-S9).
154 Finally, we assessed the accuracy of S-LDXR in estimating A\*(C) for the 28 main binary
15 annotations of the baseline-LD-X model (inherited from the baseline model of ref.?%). We
15 discarded A?(C') estimates with the highest standard errors (top 5%), as estimates with large
157 standard errors (which are particularly common for annotations of small size) are uninfor-
158 mative for evaluating unbiasedness of the estimator (in analyses of real traits, trait-specific
159 estimates with large standard errors are retained, but contribute very little to meta-analysis
160 results). Results are reported in Figure 1b and Tables S5, S8. At default parameter settings,
161 S-LDXR yielded approximately unbiased estimates of A*(C) for functional annotations of
162 large size in both null and causal simulations; however, estimates were slightly downward
163 biased in null simulations for functional annotations of small size (e.g. 5" UTR; 0.5% of
1« SNPs). This is likely because the bootstrap method for correcting bias in ratio estimation
165 (Methods) has limited capability when heritability estimates in the denominator of Equa-

1es tion (2) are noisy,?! as is the case for small annotations. Increasing the shrinkage parameter
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167 above its default value of 0.5 and extending the functional annotations by 500bp on each
1es  side?” ameliorated the downward bias (and reduced standard errors) for annotations of small
169 size in null simulations (Figure S5, S6);. However, increasing the shrinkage parameter also
170 biased results towards the null (A*(C) = 1) in causal simulations (Tables S7, S8, S9), and
71 A%(C') estimates for the extended annotations are less biologically meaningful than for the
172 corresponding main annotations. To ensure robust estimates, we focus on the 20 main bi-
73 nary annotations of large size (> 1% of SNPs) in analyses of real traits (see below). Results
174 were similar at other values of the proportion of causal SNPs (1% and 100%; Tables S4, S6,
75 S7,S9). We also confirmed that S-LDXR produced well-calibrated jackknife standard errors
176 (Tables S4-S9).

177 In summary, S-LDXR produced approximately unbiased estimates of enrichment /depletion
178 of squared trans-ethnic genetic correlation in both null and causal simulations of both quin-

179 tiles of continuous-valued annotations and binary annotations of large size (> 1% of SNPs).

w Amnalysis of baseline-LD-X model annotations across 30 diseases and

s complex traits

182 We applied S-LDXR to 30 diseases and complex traits with summary statistics in East
13 Asians (average N = 93K) and Europeans (average N = 274K) available from Biobank
184 Japan, UK Biobank, and other sources (Table S10 and Methods). First, we estimated the
185 trans-ethnic genetic correlation (r,) (as well as population-specific heritabilies) for each trait.
s Results are reported in Figure S7 and Table S10. The average r, across 30 traits was 0.83
w7 (s.e. 0.01) (average r; = 0.69 (s.e. 0.02)). 28 traits had r, < 1, and 11 traits had r,
188 significantly less than 1 after correcting for 30 traits tested (P < 0.05/30); the lowest r, was
189 0.34 (s.e. 0.07) for Major Depressive Disorder (MDD), although this may be confounded by
100 different diagnostic criteria in the two populations.?® These estimates were consistent with
191 estimates obtained using Popcorn? (Figure S8) and those reported in previous studies.?>0

192 Second, we estimated the enrichment/depletion of squared trans-ethnic genetic correla-
19s tion (A\?(C')) in quintiles of the 8 continuous-valued annotations of the baseline-LD-X model,
194 meta-analyzing results across traits; these annotations are moderately correlated (Figure 2a
195 and Table S1). We used the default shrinkage parameter (o = 0.5) in all analyses. Results
196 are reported in Figure 2b and Table S11. We consistently observed a depletion of rz(C’)
197 (A?(C) < 1, implying more population-specific causal effect sizes) in functionally important
198 regions. For example, we estimated A\?(C') = 0.81 (s.e. 0.01) for SNPs in the top quintile of
190 background selection statistic (defined as 1 — McVicker B statistic / 1000;?7 see ref.?!); \2(C)
200 estimates were less than 1 for 27/30 traits (including 7 traits with two-tailed p < 0.05/30).
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200 The background selection statistic quantifies the genetic distance of a site to its nearest
202 exon; regions with high background selection statistic have higher per-SNP heritability, con-
208 sistent with the action of selection, and are enriched for functionally important regions.?!
204 We observed the same pattern for CpG content and SNP-specific Fy, (which are positively
205 correlated with background selection statistic; Figure 2a) and the opposite pattern for nu-
206 cleotide diversity (which is negatively correlated with background selection statistic). We
207 also estimated A*(C) = 0.85 (s.e. 0.03) for SNPs in the top quintile of average LLD (which
208 is positively correlated with background selection statistic), although these SNPs have lower
20 per-SNP heritability due to a competing positive correlation with predicted allele age.?!
210 Likewise, we estimated A\*(C) = 0.83 (s.e. 0.02) for SNPs in the bottom quintile of recom-
211 bination rate (which is negatively correlated with background selection statistic), although
212 these SNPs have average per-SNP heritability due to a competing negative correlation with
215 average LLD.?! However, A*(C') < 1 estimates for the bottom quintile of GERP (NS) (which
214 s positively correlated with both background selection statistic and recombination rate) and
215 the middle quintile of predicted allele age are more difficult to interpret. For all annotations
216 analyzed, heritability enrichments did not differ significantly between EAS and EUR, consis-
217 tent with previous studies.'®?® Results were similar at a more stringent shrinkage parameter
218 value (o = 1.0; Figure S9), and for a meta-analysis across a subset of 20 approximately
219 independent traits (Methods; Figure S10).

220 Finally, we estimated A?(C') for the 28 main binary annotations of the baseline-LD-X
221 model (Table S1), meta-analyzing results across traits. Results are reported in Figure 3a and
222 Table S12. Our primary focus is on the 20 annotations of large size (> 1% of SNPs), for which
223 our simulations yielded robust estimates; results for remaining annotations are reported
224 in Table S12. We consistently observed a depletion of A\?(C) (implying more population-
25 specific causal effect sizes) within these annotations: 17 annotations had A\*(C') < 1, and
226 8 annotations had \?(C') significantly less than 1 after correcting for 20 annotations tested
227 (P < 0.05/20); these annotations included Coding (A?*(C') = 0.90 (s.e. 0.03)), Conserved
28 (A2(C) = 0.92 (s.e. 0.02)), Promoter (\*(C') = 0.88 (s.e. 0.03)) and Super Enhancer
220 (A2(C) = 0.91 (s.e. 0.01)), each of which was significantly enriched for per-SNP heritability,
230 consistent with ref.?Y. For all annotations analyzed, heritability enrichments did not differ
231 significantly between EAS and EUR (Figure 3a), consistent with previous studies.'??® Results
222 were similar at a more stringent shrinkage parameter value (o = 1.0; Figure S9), and for a
23 meta-analysis across a subset of 20 approximately independent traits (Methods; Figure S11).
234 Since the functional annotations are moderately correlated with the 8 continuous-valued
235 annotations (Table Slc, Figure S1), we investigated whether the depletions of squared trans-

23 ethnic genetic correlation (A*(C') < 1) within the 20 binary annotations could be explained
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237 by the 8 continuous-valued annotations. For each binary annotation, we estimated its ex-
238 pected A\?(C) based on values of the 8 continuous-valued annotations for SNPs in the binary
239 annotation (Methods), meta-analyzed this quantity across traits, and compared observed vs.
220 expected A\2(C) (Figure 3b and Table S13). We observed strong concordance, with a slope
241 of 0.63 (correlation of 0.56) across the 20 binary annotations. This implies that the deple-
22 tions of r2(C) (A*(C) < 1) within binary annotations are largely explained by corresponding
2.3 values of continuous-valued annotations.

244 In summary, our results show that causal disease effect sizes are more population-specific
25 in functionally important regions impacted by selection. Further interpretation of these
26 findings, including the role of positive and /or negative selection, is provided in the Discussion

247 section.

2s Analysis of specifically expressed gene annotations

249 We analyzed 53 specifically expressed gene (SEG) annotations, defined in ref.?* as
20 +100kb regions surrounding the top 10% of genes specifically expressed in each of 53 GTEx?
251 tissues (Table S2), by applying S-LDXR with the baseline-LD-X model to the 30 diseases and
22 complex traits (Table S10). We note that although SEG annotations were previously used to

253 prioritize disease-relevant tissues based on disease-specific heritability enrichments,'??

en-
25 richment/depletion of squared trans-ethnic genetic correlation (A*(C)) is standardized with
255 respect to heritability, hence not expected to produce disease-specific signals. Thus, for each
256 tissue, we meta-analyzed \?(C) estimates across the 30 diseases and complex traits.

257 Results are reported in Figure 4a and Table S14. A\?(C) estimates were less than 1 for
258 all 53 tissues and significantly less than 1 (p < 0.05/53) for 39 tissues, with statistically
250 significant heterogeneity across tissues (p < 1072°; Methods). The strongest depletions of
260 squared trans-ethnic genetic correlation were observed in skin tissues (e.g. A\*(C') = 0.81 (s.e.
261 0.02) for Skin Sun Exposed (Lower Leg)), Prostate and Ovary (e.g. A*(C) = 0.82 (s.e. 0.02)
262 for Prostate) and immune-related tissues (e.g. A*(C) = 0.83 (s.e. 0.02) for Spleen), and
263 the weakest depletions were observed in Testis (A*(C) = 0.97 (s.e. 0.02)) and brain tissues
ee (e.g. A(C) = 0.96 (s.e. 0.02) for Brain Nucleus Accumbens (Basal Ganglia)). Results
265 were similar at less stringent and more stringent shrinkage parameter values (o = 0.0 and
26 « = 1.0; Figures S12, S13 and Table S14). A comparison of 14 blood-related traits and 16
267 other traits yielded highly consistent A?(C') estimates (R = 0.82; Figure S14, Table S15),
266 confirming that these findings were not disease-specific.

269 These A\?(C') results were consistent with the higher background selection statistic®” in
20 Skin Sun Exposed (Lower Leg) (R = 0.17), Prostate (R = 0.16) and Spleen (R = 0.14) as
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271 compared to Testis (R = 0.02) and Brain Nucleus Accumbens (Basal Ganglia) (R = 0.08)
272 (Figure S15, Table S2), and similarly for CpG content (Figure S16, Table S2). Although
273 these results could in principle be confounded by gene size,** the low correlation between
27+ gene size and background selection statistic (R = 0.06) or CpG content (R = —0.20) (in
275 £100kb regions) implies limited confounding. We note the well-documented action of recent

31735 and the immune system;3! 3436

276 positive selection on genes impacting skin pigmentation
277 we are not currently aware of any evidence of positive selection impacting Prostate and
278 Ovary. We further note the well-documented action of negative selection on fecundity- and
279 brain-related traits,®” 3 but it is possible that recent positive selection may more closely
250 track differences in causal disease effect sizes across human populations, which have split
251 relatively recently” (see Discussion).

282 More generally, since SEG annotations are moderately correlated with the 8 continuous-
253 valued annotations (Figure S17, Table S2), we investigated whether these A\2(C) results could
264 be explained by the 8 continuous-valued annotations (analogous to Figure 3b). Results are
285 reported in Figure 4b and Table S16. We observed strong concordance, with a slope of 1.01
266 (correlation of 0.75) across the 53 SEG annotations. This implies that the depletions of
27 A?(C') within SEG annotations are explained by corresponding values of continuous-valued
288 annotations.

289 In summary, our results show that causal disease effect sizes are more population-specific
200 in regions surrounding specifically expressed genes. This effect was strongest in tissues im-
201 pacted by positive selection (as opposed to negative selection), suggesting a possible connec-

202 tion between positive selection and population-specific causal effect sizes (see Discussion).

10
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x 1Iiscussion

294 We developed a new method (S-LDXR) for stratifying squared trans-ethnic genetic cor-
205 Telation across functional categories of SNPs that yields approximately unbiased estimates
206 in extensive simulations. By applying S-LDXR to East Asian and European summary statis-
207 tics across 30 diseases and complex traits, we determined that SNPs with high background
208 selection statistic?” have substantially lower squared trans-ethnic genetic correlation (vs.
209 the genome-wide average), implying that causal effect sizes are more population-specific.
a0 Accordingly, squared trans-ethnic genetic correlations were substantially lower for SNPs in
a1 many functional categories. In analyses of specifically expressed gene annotations, we ob-
a2 served substantial depletion of squared trans-ethnic genetic correlation for SNPs near skin
a3 and immune-related genes, which are strongly impacted by recent positive selection, but not
34 for SNPs near brain genes.

305 Reductions in trans-ethnic genetic correlation have several possible underlying expla-
06 nations, including gene-environment (G xE) interaction, gene-gene (GxG) interaction, and
sz dominance variation (but not differences in heritability across populations, which would
w8 not affect trans-ethnic genetic correlation and were not observed in our study). Given the

Land ev-

si0 idence that Gx G interaction and dominance variation explain limited heritability,** % we

s00 increasing evidence of the role of GxE interaction in complex trait architectures,?

st hypothesize that depletions of squared trans-ethnic genetic correlation in the top quintile of
sz background selection statistic and in functionally important regions may be primarily at-
a3 tributable to stronger G xE interaction in these regions. Interestingly, a recent study on plas-
a4 ticity in Arabidopsis observed a similar phenomenon: lines with more extreme phenotypes
a5 exhibited stronger GxE interaction.*® Distinguishing between stronger G xE interaction in
sis regions impacted by selection and stronger G xE interaction in functionally important re-
a7 gions as possible explanations for our findings is a challenge, because functionally important
a8 regions are more strongly impacted by selection. To this end, we constructed an annotation
a9 that is similar to the background selection statistic but does not make use of recombination
w20 rate, instead relying solely on a SNP’s physical distance to the nearest exon (Methods).
a2t Applying S-LDXR to the 30 diseases and complex traits using a joint model incorporating
a2 baseline-LD-X model annotations and the nearest exon annotation, the background selec-
a3 tion statistic remained highly conditionally informative for trans-ethnic genetic correlation,
224 whereas the nearest exon annotation was not conditionally informative (Table S17). This
a5 result implicates stronger GxE interaction in regions with reduced effective population size
a6 that are impacted by selection, and not just proximity to functional regions, in explaining

227 depletions of squared trans-ethnic genetic correlation; however, we emphasize that selection
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a8 acts on allele frequencies rather than causal effect sizes, and could help explain our find-
229 ings only in conjunction with other explanations such as GxE interaction. Our results on
a0 specifically expressed genes implicate stronger G xE interaction near skin and immune genes
s and weaker GxE interaction near brain genes, potentially implicating positive selection (as
sz opposed to negative selection). This conclusion is further supported by the lack of variation
a3 in squared trans-ethnic genetic correlation across genes in different deciles of probability of
s34 loss-of-function intolerance®® (Methods, Figure S18, S19, Table S18). We conclude that de-
a5 pletions of squared trans-ethnic genetic correlation could potentially be explained by stronger
s G xE interaction at loci impacted by positive selection. We caution that other explanations
a7 are also possible; in particular, evolutionary modeling using an extension of the Eyre-Walker
se model’” to two populations suggests that our results for the background selection statis-
s9  tic could also be consistent with negative selection (Supplementary Note, Figure 520, S21,
a0 Table S19). Additional information, such as genomic annotations that better distinguish
a1 different types of selection or data from additional diverse populations, may help elucidate
a2 the relationship between selection and population-specific causal effect sizes.

343 Our study has several implications. First, polygenic risk scores in non-European pop-
s4s  ulations that make use of European training data®’ may be improved by reweighting SNPs
ss  based on the expected enrichment/depletion of squared trans-ethnic genetic correlation,

61415 gpecifically, although the impact of population-

as helping to alleviate health disparities;
a7 specific LD patterns on trans-ethnic polygenic risk scores is well-documented,® population-
us  specific causal effect sizes also merit thorough investigation. Second, modeling population-
a9 specific genetic architectures may improve trans-ethnic fine-mapping, moving beyond the
ss0 standard assumption that all causal variants are shared across populations.?®*® Third, mod-
1 eling population-specific genetic architectures may also increase power in trans-ethnic meta-
sz analysis,® e.g. by adapting MTAG® to two populations (instead of two traits). Fourth, it
s may be of interest to stratify GxE interaction effects*! across genomic annotations. Fifth,
s« the S-LDXR method could potentially be extended to stratify squared cross-trait genetic

a5 correlations® 52

across genomic annotations.
356 We note several limitations of this study. First, S-LDXR is designed for populations of
37 homogeneous continental ancestry (e.g. East Asians and FEuropeans) and is not currently
sss suitable for analysis of admixed populations® (analogous to LDSC and its published ex-

205154) " However, a recently proposed extension of LDSC to admixed populations®

359 tensions
a0 could be incorporated into S-LDXR, enabling its application to the growing set of large stud-
s ies in admixed populations.!® Second, since S-LDXR applies shrinkage to reduce standard
s2 error in estimating stratified squared trans-ethnic genetic correlation and its enrichment, es-

a3 timates are slightly conservative — true depletions of squared trans-ethnic genetic correlation
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se¢ in functionally important regions may be stronger than the estimated depletions. Third,
s the specifically expressed gene (SEG) annotations analyzed in this study are defined primar-
s6 ily based on gene expression measurements of Europeans.??> However, genetic architectures
s of gene expression differ across diverse populations.'>%%57 Thus, SEG annotations derived
s from gene expression data from diverse populations may provide additional insights into
a9 population-specific causal effect sizes. Fourth, we restricted our analyses to SNPs that were
a0 relatively common (MAF>5%) in both populations, due to the lack of a large LD refer-
a7t ence panel for East Asians. Extending our analyses to lower-frequency SNPs may provide
a2 further insights into the role of negative selection in shaping population-specific genetic ar-
3 chitectures, given the particular importance of negative selection for low-frequency SNPs.%®
a7« Fifth, we did not consider population-specific variants in our analyses, due to the difficulty in
s defining trans-ethnic genetic correlation for population-specific variants;?>® a recent study®
a7e  has reported that population-specific variants substantially limit trans-ethnic genetic risk
s77 prediction accuracy. Sixth, estimates of genome-wide trans-ethnic genetic correlation may
as be confounded by different trait definitions or diagnostic criteria in the two populations,
s7e  particularly for major depressive disorder. However, this would not impact estimates of
s enrichment/depletion of squared trans-ethnic genetic correlation (A?(C')), which is defined
1 relative to genome-wide values. Seventh, we have not pinpointed the exact underlying phe-
;2 nomena (e.g. environmental heterogeneity coupled with gene-environment interaction) that
a3 lead to population-specific causal disease effect sizes at functionally important regions. De-
sss  spite these limitations, our study provides an improved understanding of the underlying
ass  biology that contribute to population-specific causal effect sizes, and highlights the need for

a6 increasing diversity in genetic studies.

13
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URLs

e S-LDXR software: https://github.com/huwenboshi/s-1dxr/

e Python code for simulating GWAS summary statistics: https://github.com/huwenboshi/
s-1dxr-sim/

e baseline-LD-X model annotations and LD scores: https://data.broadinstitute.org/
alkesgroup/LDSCORE/baseline-LD-X/

e Distance to nearest exon annotation and LD scores: https://data.broadinstitute.
org/alkesgroup/LDSCORE/baseline-LD-X/

e baseline-LD model annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/
readme_baseline_versions

e 1000 Genomes Project: https://www.internationalgenome.org/

e PLINK2: https://www.cog-genomics.org/plink/2.0/

e HAPGENZ2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen?2.
html

e UCSC Genome Browser: https://genome.ucsc.edu/

e Exome Aggregation Consortium (ExAC): https://exac.broadinstitute.org/
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« Methods

«« Definition of stratified squared trans-ethnic genetic correlation

405 We model a complex phenotype in two populations using linear models, Y = X138, +¢€;
ws and Yo = Xo3,+€9, where Y| and Y, are vectors of phenotype measurements of population
207 1 and population 2 with sample size N1 and N, , respectively; X and X5 are mean-centered
a8 but not normalized genotype matrices at M SNPs in the two populations; 38, and 3, are
w9 per-allele causal effect sizes of the M SNPs; and €; and €5 are environmental effects in the
a0 two populations. We assume that in each population, genotypes, causal effect sizes, and
s11 environmental effects are independent from each other. We assume that the per-allele effect

a1z size of SNP j in the two populations has variance and covariance,

Var /31_] Z CLC TlC; Var ﬁ2] Z CLC 7—207

3
Cov[B1, Baj] = ZGC(j)eca ¥

c
s3 where ac(j) is the value of SNP j for annotation C, which can be binary or continuous-
ss valued; T and Ty are the net contribution of annotation C' to the variance of 5; and fs;,
ss respectively; and 0¢ is the net contribution of annotation C' to the covariance of 8;; and ;.

416 We define stratified trans-ethnic genetic correlation of a binary annotation C' (e.g. func-

#7 tional annotations®® or quintiles of continuous-valued annotations?!) as,

_ py(C)
VI (C)y/2(C)
s where p,(C) = 3. Cov[Buj, Boj] = X jec Dier acr (j)0cr is the trans-ethnic genetic covariance

s of annotation C; and h? (C) = 3, Var[By;] = e Dier acr(§)Tper is the heritability (sum

20 of per-SNP variance of causal effect sizes) of annotation C' in population p. Here, C” includes

(4)

221 both binary and continuous-valued annotations. Since estimates of hf]p(C) can be noisy

w22 (possibly negative), we estimate squared stratified trans-ethnic genetic correlation,

= a5 5
W (O () )

223 to avoid bias or undefined values in the square root. In this work, we only estimate 7’3(0)
s24 for SNPs with minor allele frequency (MAF) greater than 5% in both populations. To assess

225 whether causal effect sizes are more or less correlated for SNPs in annotation C' compared

15
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2
g

trans-ethnic genetic correlation as

with the genome-wide average, r2, we define the enrichment/depletion of stratified squared

N(C) = -~ (6)

We meta-analyze \*(C) instead of 72(C) across diseases and complex traits. We note that
the average value of \?(C') across quintiles of continuous-valued annotations is not necessarily

equal to 1, as squared trans-ethnic genetic correlation is a non-linear quantity.

S-LDXR method

S-LDXR is conceptually related to stratified LD score regression®>?! (S-LDSC), a method
for stratifying heritability from GWAS summary statistics, to two populations. The S-LDSC
method determines that a category of SNPs is enriched for heritability if SNPs with high
LD to that category have higher expected x? statistic than SNPs with low LD to that cate-
gory. Analogously, the S-LDXR method determines that a category of SNPs is enriched for
trans-ethnic genetic covariance if SNPs with high LD to that category have higher expected
product of Z-scores than SNPs with low LD to that category.

S-LDXR relies on the regression equation

E[Z1;255] = v/NiN2 Y 1 (4, C)e (7)
c
to estimate ¢, where Z,; is the Z-score of SNP j in population p; £, (7, C) = >, m1jkr2k01j02iac (k)
is the trans-ethnic LD score of SNP j with respect to annotation C', whose value for SNP £,
ac(k), can be either binary or continuous; r,i is the LD between SNP j and k in population
p; and o, is the standard deviation of SNP j in population p. We obtain unbiased estimates
of £,(j,C) using genotype data of 481 East Asian and 489 European samples in the 1000

Genomes Project.!®

To account for heteroscedasticity and increase statistical efficiency, we
use weighted least square regression to estimate 6. We include only well-imputed (impu-
tation INFO>0.9) and common (MAF>5% in both populations) SNPs that are present in

HapMap 3% in the regression, as in our previous work.2?->1:54

We use regression equations
analogous to those described in ref.?’ to estimate 71 and Toc.
Let 71, T1c, and 08¢ be the estimates of 71¢, T1¢, and 6¢, respectively. For each binary

annotation C, we estimate the stratified heritability of annotation C' in each population,

16
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w2 D21 (C) and h2,(C), and trans-ethnic genetic covariance, py(C), as

hga(C) = 1 Y ajortaer, hgy(C) = )1 Y ajoticr, 4e(C) = ) Y ajeber, (8)

jeC C’ jeC C’ jeC C’

3 respectively, using coefficients (7¢r, Tocr, and 6¢r) of both binary and continuous-valued

w4 annotations. We then estimate r2(C) as

) F(C) = SB[, (C)]
72, (C)h2,(C) = Cov[h2,(C), h2y(O)]

72(C)

p — bias(C), (9)
45 where biAas(C') is obtained using bootstrap to correct for bias in estimating the ratio.?* We
s do not constrain the estimate of 72(C) to its plausible range of [~1,1] to be unbiased.

s57 Subsequently, we obtain enrichment of stratified squared trans-ethnic genetic correlation as

2
9

18 where f’g is the estimate of genome-wide squared trans-ethnic genetic correlation rg. We use
sse  block jackknife over 200 non-overlapping and equally sized blocks to obtain standard error
w0 of all estimates. The standard error of A\?(C) typically depends on sample size of the GWAS
w1 and overall heritability of annotation C' in the two populations (i.e. h2 (C) and h2,(C)).

462 To assess the informativeness of each annotation in explaining disease heritability and
w3 trans-ethnic genetic covariance, we define standardized annotation effect size on heritability

s+ and trans-ethnic genetic covariance for each annotation C analogous to ref.?!,

Mh? Mh?
TI*C = PR gl X oc X Tic, 7'2*0 = PO 92 X oc X Toc,
h2, (C) hig2(C) (11)
Mp
0% = Y x o0 x Oc,
¢ pg(C)

a5 where 7%, T3, and 0. represent proportionate change in per-SNP heritability in population
w6 1 and 2 and trans-ethnic genetic covariance, respectively, per standard deviation increase in
w7 annotation C; ¢, Toe, and ¢ are the corresponding unstandardized effect sizes, defined in
w8  Equation (3); and o¢ is the standard deviation of annotation C'.

469 We provide a more detailed description of the method, including derivations of the

a0 Tegression equation and unbiased estimators of the LD scores, in the Supplementary Note.
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o1 S-LDXR shrinkage estimator

472 Estimates of r2(C) can be imprecise with large standard errors if the denominator,
a3 h2 (C)hZy(C0), is close to zero and noisily estimated. This is especially the case for annota-
74 tions of small size (< 1% SNPs). We introduce a shrinkage estimator to reduce the standard
475 error in estimating 72(C).

476 Briefly, we shrink the estimated per-SNP heritability and trans-ethnic genetic covariance
s77 - of annotation C' towards the genome-wide averages, which are usually estimated with smaller
a7 standard errors, prior to estimating r2(C). In detail, let M¢ be the number of SNPs in
a79 annotation C, we shrink (f), & M(CC) nd 2 S C) towards ]\149, SR

th, pg are the genome-wide estimates, and M the total number of SNPs. We obtain

and 2 respectively, where

A~

480 h2

gl

81 the shrinkage as follows. Let v; = 1/ (1 + % ) v2 =1/ (1 + %Mﬂc)’

w2 and 3 = 1/ ( %Mﬁc) be the shrinkage obtained separately for hgl(C’), th(C)
w3 and p,(C), respectively, where o € [0, 1] is the shrinkage parameter adjusting magnitude of
a4 shrinkage. We then choose the most stringent shrinkage, v = min{yi, v2,v3}, as the final
sss shared shrinkage for both heritability and trans-ethnic genetic covariance.

486 We shrink heritability and trans-ethnic genetic covariance of annotation C' using 7 as,
7 h2,(C) h? 7 2(0) h? _
w B(0) = Mo (1524 (1= 0% ), #5(0) = Mo (4552 4 (1= 9%, and () -
w8 Me (vpj/(lc) + (1 — 7)%), where h2,(C), h2,(C), and p,(C) are the shrunk counterparts of
ws h2,(C), h2%(C), and jy(C), respectively. We shrink #2(C) by substituting h2,(C), h2,(C),
w0 and pg(C) with h2,(C), h2,(C), pg(C), respectively, in Equation (9), to obtain its shrunk
s counterpart, 72(C'). Finally, we shrink A2(C), by plugging in 72(C) in Equation (10) to obtain
w2 its shrunk counterpart, A(C). We recommend a = 0.5 as the default shrinkage parameter

w3 value, as this value provides robust estimates of A\*(C') in simulations.

w Baseline-LD-X model

495 We include a total of 54 binary functional annotations in the baseline-LD-X model.
w6 These include 53 annotations introduced in ref.,?° which consists of 28 main annotations
a7 including conserved annotations (e.g. Coding, Conserved) and epigenomic annotations (e.g.
ws H3K27ac, DHS, Enhancer) derived from ENCODES! and Roadmap,%? 24 500-base-pair-
a9 extended main annotations, and 1 annotation containing all SNPs. We note that although

so0 chromatin accessibility can be population-specific, the fraction of such regions is small.%

f21

st Following ref,”" we created an additional annotation for all genomic positions with number

sz of rejected substitutions® greater than 4. Further information for all functional annotations
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s included in the baseline-LD-X model is provided in Table Sla.

504 We also include a total of 8 continuous-valued annotations in the baseline-LLD-X model.
sos First, we include 5 continuous-valued annotations introduced in ref.?! (see URLs), without
sos modification: background selection statistic,?” CpG content (within a £50 kb window),
sv  GERP (number of substitutation) score,® nucleotide diversity (within a £10 kb window),
ss and Oxford map recombination rate (within a +£10 kb window).®® Second, we include 2
soo minor allele frequency (MAF) adjusted annotations introduced in ref.,*! with modification:
sio level of LD (LLD) and predicted allele age. We created analogous annotations applicable to
st both East Asian and European populations. To create an analogous LLD annotation, we
si2 estimated LD scores for each population using LDSC,>* took the average across populations,
s3. and then quantile-normalized the average LD scores using 10 average MAF bins. We call
sta this annotation “average level of LD”. To create analogous predicted allele age annotation,
515 we quantile-normalized allele age estimated by ARGweaver®® across 54 multi-ethnic genomes
st using 10 average MAF bins. Finally, we include 1 continuous-valued annotation based on
si7 Fgp estimated by PLINK2,5" which implements the Weir & Cockerham estimator of Fgr.%®
si8 Further information for all continuous-valued annotations included in the baseline-LD-X
si9. model is provided in Table S1b.

2 (Code and data availability

521 Python code implementing S-LDXR is available at https://github.com/huwenboshi/
s22 s—1dxr. Python code for simulating GWAS summary statistics under the baseline-LD-
s23. X model is available at https://github.com/huwenboshi/s-1dxr-sim. baseline-LD-X
s model annotations and LD scores are available at https://data.broadinstitute.org/
s2s alkesgroup/LDSCORE/baseline-LD-X/.

s Simulations

527 We used simulated East Asian (EAS) and European (EUR) genotype data to assess
s2s the performance our method, as we did not have access to real EAS genotype data at suffi-
s29 cient sample size to perform simulations with real genotypes. We simulated genotype data
ss0 for 100,000 East-Asian-like and 100,000 European-like individuals using HAPGEN2%® (see
ssn URLSs), starting from phased haplotypes of 481 East Asians and 489 Europeans individuals
s22 available in the 1000 Genomes Project'® (see URLSs), restricting to ~2.5 million SNPs on
ss3 chromosome 1 — 3 with minor allele count greater than 5 in either population. Since excessive
s« relatedness arose from HAPGEN2 simulations,? we used PLINK257 (see URLs) to remove

sss simulated individuals with genetic relatedness greater than 0.05. From the filtered set of
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s individuals, we randomly selected 500 individuals in each simulated population to serve as
ss7  reference panels, and used the remaining 35,378 East-Asian-like and 36,836 European-like
s individuals to simulate GWAS summary statistics.

539 We performed both null simulations, where enrichment of squared trans-ethnic genetic
so0 correlation, A\?(C), is 1 across all functional annotations, and causal simulations, where
set A%(C') varies across annotations, under various degrees of polygenicity (1%, 10%, and 100%
se2 causal SNPs). In the null simulations, we set 71¢, Toc, ¢ to be the meta-analyzed 7¢ in
s3 real-data analyses of EAS GWASs, and followed Equation (3) to obtain variance, Var|Sy;]
see and Var[fy;], and covariance, Cov[f;, f2;], of per-SNP causal effect sizes (1, a5, setting
se5  all negative per-SNP variance and covariance to 0. In the causal simulations, we directly
s specified per-SNP causal effect size variances and covariances using self-devised ¢, To¢, and
se7 Oc coefficients, to attain A\2(C) # 1, as these were difficult to attain using the coefficients
s8 from analyses of real traits.

549 We randomly selected a subset of SNPs to be causal for both populations, and set
sso  Var[fy;], Var[fBs;], and Cov|Si;, B2;] to be 0 for all remaining non-causal SNPs. We scaled
ss1 the trans-ethnic genetic covariance to attain a desired genome-wide r4. Next, we drew

ss2 causal effect sizes of each causal SNP j in the two populations from the bi-variate Gaussian

MR

ss« and scaled the drawn effect sizes to match the desired total heritability and trans-ethnic

553 distribution,

(12)

Var[f1;]  Cov[Bi;, Ba)]
Cov|[Bij, B25] ~ Var[B] 7

555 genetic covariance. We simulated genetic component of the phenotype in population p as
sss X ,3,, where X, is column-centered genotype matrix, and drew environmental effects, €,,
ss7 from the Gaussian distribution, N (O, 1 — Var[ X pﬁp]), such that the total phenotypic vari-

sss ance in each population is 1. Finally, we simulated GWAS summary association statistics

. XTY . e .
sse for population p, Z,, as Z,; = ;; =, where 0,; is the standard deviation of SNP j in pop-
popj

seo ulation p. We have publicly released Python code for simulating GWAS summary statistics
st for 2 populations (see URLSs).

2 Summary statistics for 30 diseases and complex traits

563 We analyzed GWAS summary statistics of 30 diseases and complex traits, primarily
se«  from UK Biobank,% Biobank Japan,'” and CONVERGE.'" These include: atrial fibrillation
ses (AF), "% age at menarche(AMN),™ 7™ age at menopause (AMP),”7 basophil count(BASO),'™
ses body mass index (BMI),'*™ blood sugar(BS),'*™ diastolic blood pressure (DBP),'%™ eosinophil
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s count(EQ),'%™ estimated glomerular filtration rate (EGFR),'" hemoglobin Alc(HBA1C),'*™
ses  height (HEIGHT),” " high density lipoprotein (HDL),'*"™ hemoglobin (HGB),!*™ hemat-
seo ocrit (HTC),'*™ low density lipoprotein (LDL),'"™ lymphocyte count(LYMPH),'*™ mean
s corpuscular hemoglobin (MCH),'®™ mean corpuscular hemoglobin concentration (MCHC),'*™
st mean corpuscular volume (MCV),'*™ major depressive disorder (MDD),'"™ monocyte count
sz (MONO),'%™ neutrophil count(NEUT),!™ platelet count (PLT),!*™ rheumatoid arthri-
s tis(RA),™ red blood cell count (RBC),'*™ systolic blood pressure (SBP),!*™ type 2 di-
s abetes (T2D),%8 total cholesterol (TC),'"" triglyceride (TG),'*™ and white blood cell
s count (WBC).'%™ Further information for the GWAS summary statistics analyzed is pro-
s vided in Table S10. In our main analyses, we performed random-effect meta-analysis to
577 aggregate results across all 30 diseases and complex traits. We also defined a set of 20
ss - approximately independent diseases and complex traits with cross-trait 7’3 (estimated us-
s79  ing cross-trait LDSC®!) less than 0.25 in both populations: AF, AMN, AMP, BASO, BMI,
ss0 LGFR, EO, HBA1C, HEIGHT, HTC, LYMPH, MCHC, MCV, MDD, NEUT, PLT, RA,
sst SBP, TC, TG.

2 Expected enrichment of stratified squared trans-ethnic genetic cor-

ss relation from 8 continuous-valued annotations

584 To obtain expected enrichment of squared trans-ethnic genetic correlation of a binary
sss annotation C, A*(C), from 8 continuous-valued annotations, we first fit the S-LDXR model
ses  using these 8 annotations together with the base annotation for all SNPs, yielding coefficients,
7 Ticv, Tocr, and Ocr, for a total of 9 annotations. We then use Equation (3) to obtain per-SNP
sss  variance and covariance of causal effect sizes, 81; and 35, substituting 7i¢, Tec, 8¢ With 7¢,
9 Tocv, and Ocr, respectively. We apply shrinkage with default parameter setting (o = 0.5),
soo and use Equation (9) and (10) to obtain expected stratified squared trans-ethnic genetic

se  correlation, 77(C), and subsequently A*(C).

s« Analysis of specifically expressed gene annotations

593 We obtained 53 specifically expressed gene (SEG) annotations, defined in ref.?® as
ses  +100k-base-pair regions surrounding genes specifically expressed in each of 53 GTEx?" tis-
so5 sues. A list of the SEG annotations is provided in Table S2. Correlations between SEG
s annotations and the 8 continuous-valued annotations are reported in Figure S17 and Table
s7 52. Most SEG annotations are moderately correlated with the background selection statistic

ss and CpG content annotations.
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599 To test whether there is heterogeneity in enrichment of squared trans-ethnic genetic

so0 correlation, A*(C), across the 53 SEG annotations, we first computed the average A\*(C)

so1 across the 53 annotations, A2(C), using fixed-effect meta-analysis. We then computed the test
2 C; 32 C; 2 . . . N .

sz statistic Zfil %, where C; is the i-th SEG annotation, and A\?(C;) the estimated

o3 A%(C'). We computed a p-value for this test statistic based on a x? distribution with 53

04 degrees of freedom.

os Amnalysis of distance to nearest exon annotation

606 We created a continuous-valued annotation, named “distance to nearest exon annota-
s07 tion”, based on a SNP’s physical distance (number of base pairs) to its nearest exon, using
sos 233,254 exons defined on the UCSC genome browser®? (see URLs). This annotation is mod-
s0s erately correlated with the background selection statistic annotation?' (R = —0.21), defined
s10 as (1 - McVicker B statistic / 1000), where the McVicker B statistic quantifies a site’s genetic
s11  distance to its nearest exon.?” We have publicly released this annotation (see URLs).

612 To assess the informativeness of functionally important regions versus regions impacted
s13 by selection in explaining the depletions of squared trans-ethnic genetic correlation, we ap-
s1a  plied S-LDXR on the distance to nearest exon annotation together with the baseline-LD-X
e15 model annotations. We used both enrichment of squared trans-ethnic genetic correlation

s (A%(C)) and standardized annotation effect size (7}, 7o, and 6%) to assess informativeness.

s Amnalysis of probability of loss-of-function intolerance decile gene

s1s  annotations

619 We created 10 annotations based on genes in deciles of probability of being loss-of-
s20 function intolerant (pLI) (see URLs), defined as the probability of assigning a gene into
st haplosufficient regions, where protein-truncating variants are depleted.*® Genes with high
22 pLI (e.g. > 0.9) have higly constrained functionality, and therefore mutations in these genes
e23 are subject to negative selection. We included SNPs within a 100kb-base-pair window around
s2¢ each gene, following ref.?> A correlation heat map between pLI decile gene annotations and
e2s the 8 continuous-valued annotations is provided in Figure S18. All pLI decile gene anno-
e2s tations are moderately correlated with the background selection statistic and CpG content

627 annotations.
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Figure 1: Accuracy of S-LDXR in null and causal simulations. We report estimates
of the enrichment/depletion of squared trans-ethnic genetic correlation (A?(C')) in both null
and causal simulations, for (a) quintiles of 8 continuous-valued annotations and (b) 28 main
binary annotations (sorted by proportion of SNPs, displayed in parentheses). Results are
averaged across 1,000 simulations. FError bars denote +1.96x standard error. Numerical
results are reported in Table S5 and S8.
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Figure 2: S-LDXR results for quintiles of 8 continuous-valued annotations across
30 diseases and complex traits. (a) We report correlations between each continuous-
valued annotation; diagonal entries are not shown. Numerical results are reported in Table
S1. (b) We report estimates of the enrichment/depletion of squared trans-ethnic genetic
correlation (A\?(C)), as well as population-specific estimates of heritability enrichment, for
quintiles of each continuous-valued annotation. Results are meta-analyzed across 30 diseases
and complex traits. Error bars denote +1.96x standard error. Red stars () denote two-
tailed p<0.05/40. Numerical results are reported in Table S11.
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Figure 3: S-LDXR results for 20 binary functional annotations across 30 diseases
and complex traits. (a) We report estimates of the enrichment/depletion of squared
trans-ethnic genetic correlation (A?(C')), as well as population-specific estimates of heri-
tability enrichment, for each binary annotation (sorted by proportion of SNPs, displayed
in parentheses). Results are meta-analyzed across 30 diseases and complex traits. Error
bars denote +1.96x standard error. Red stars (x) denote two-tailed p<0.05/20. Numerical
results are reported in Table S12. (b) We report observed A?(C) vs. expected A?(C) based
on 8 continuous-valued annotations, for each binary annotation. Results are meta-analyzed
across 30 diseases and complex traits. Error bars denote +1.96x standard error. Annota-
tions for which A\*(C) is significantly different from 1 (p<0.05/20) are denoted in color (see
legend) or dark gray. The dashed black line (slope=0.63) denotes a regression of observed
AC) — 1 vs. expected A(C) — 1 with intercept constrained to 0. Numerical results are
reported in Table S13.
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Figure 4: S-LDXR results for 53 specifically expressed gene (SEG) annota-
tions across 30 diseases and complex traits. (a) We report estimates of the enrich-
ment /depletion of squared trans-ethnic genetic correlation (A?(C)) for each SEG annotation
(sorted by A*(C)). Results are meta-analyzed across 30 diseases and complex traits. Error
bars denote +1.96x standard error. Red stars (x) denote two-tailed p<0.05/53. Numerical
results are reported in Table S14. (b) We report observed A?(C) vs. expected A?(C) based
on 8 continuous-valued annotations, for each SEG annotation. Results are meta-analyzed
across 30 diseases and complex traits. Error bars denote +1.96x standard error. Annota-
tions are color-coded as in (a). The dashed black line (slope=1.01) denotes a regression of
observed A\(C') — 1 vs. expected A(C) — 1 with intercept constrained to 0. Numerical results
and population-specific heritability enrichment estimates are reported in Table S16.
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