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Abstract31

Many diseases and complex traits exhibit population-specific causal effect sizes32

with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic33

polygenic risk prediction. We developed a new method, S-LDXR, for stratifying34

squared trans-ethnic genetic correlation across genomic annotations, and applied S-35

LDXR to genome-wide association summary statistics for 31 diseases and complex36

traits in East Asians (EAS) and Europeans (EUR) (average NEAS=90K, NEUR=267K)37

with an average trans-ethnic genetic correlation of 0.85 (s.e. 0.01). We determined38

that squared trans-ethnic genetic correlation was 0.82� (s.e. 0.01) smaller than the39

genome-wide average at SNPs in the top quintile of background selection statistic,40

implying more population-specific causal effect sizes. Accordingly, causal effect sizes41

were more population-specific in functionally important regions, including conserved42

and regulatory regions. In analyses of regions surrounding specifically expressed genes,43

causal effect sizes were most population-specific for skin and immune genes and least44

population-specific for brain genes. Our results could potentially be explained by45

stronger gene-environment interaction at loci impacted by selection, particularly posi-46

tive selection.47
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Introduction48

Trans-ethnic genetic correlations are significantly less than 1 for many diseases and49

complex traits,1–6 implying that population-specific causal disease effect sizes contribute to50

the incomplete portability of genome-wide association study (GWAS) findings and poly-51

genic risk scores to non-European populations.6–12 However, current methods for estimating52

genome-wide trans-ethnic genetic correlations assume the same trans-ethnic genetic correla-53

tion for all categories of SNPs,2,5,13 providing little insight into why causal disease effect sizes54

are population-specific. Understanding the biological processes contributing to population-55

specific causal disease effect sizes can help inform polygenic risk prediction in non-European56

populations and alleviate health disparities.6,14,15
57

Here, we introduce a new method, S-LDXR, for estimating enrichment of stratified58

squared trans-ethnic genetic correlation across functional categories of SNPs using GWAS59

summary statistics and population-matched linkage disequilibrium (LD) reference panels60

(e.g. the 1000 Genomes Project (1000G)16); we stratify the squared trans-ethnic genetic61

correlation across functional categories to robustly handle noisy heritability estimates. S-62

LDXR analyzes GWAS summary statistics of HapMap317 SNPs with minor allele frequency63

(MAF) greater than 5% in both East Asian (EAS) and European (EUR) populations (re-64

gression SNPs) to draw inferences about causal effects of all SNPs with MAF greater than65

5% in both populations (heritability SNPs). We confirm that S-LDXR yields robust esti-66

mates in extensive simulations. We apply S-LDXR to 31 diseases and complex traits with67

GWAS summary statistics available in both East Asian (EAS) and European (EUR) pop-68

ulations, leveraging recent large studies in East Asian populations from the CONVERGE69

consortium and Biobank Japan;18–20 we analyze a broad set of genomic annotations from the70

baseline-LD model,21–23 as well as tissue-specific annotations based on specifically expressed71

gene sets.24 Most results are meta-analyzed across the 31 traits to maximize power (analo-72

gous to ref.21–23), as we expect to see similar patterns of enrichment/depletion across traits73

(even though the underlying biological processes differ across traits). We also investigate74

trait-specific enrichments/depletions for the tissue-specific annotations (analogous to ref.24).75
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Results76

Overview of methods77

Our method (S-LDXR) for estimating stratified trans-ethnic genetic correlation is con-78

ceptually related to stratified LD score regression21,22 (S-LDSC), a method for partitioning79

heritability from GWAS summary statistics while accounting for LD. S-LDXR determines80

that a category of SNPs is enriched for trans-ethnic genetic covariance if SNPs with high LD81

to that category have higher product of Z-scores than SNPs with low LD to that category.82

Unlike S-LDSC, S-LDXR models per-allele effect sizes (accounting for differences in MAF83

between populations).84

In detail, the product of Z-scores of SNP j in two populations, Z1jZ2j, has the expec-85

tation86

ErZ1jZ2js �
a
N1N2

¸
C

`�pj, CqθC , (1)

where Np is the sample size for population p; `�pj, Cq �
°
k r1jkr2jkσ1jσ2jaCpkq is the trans-87

ethnic LD score of SNP j with respect to annotation C, whose value for SNP k, aCpkq, can88

be either binary or continuous; rpjk is the LD (Pearson correlation) between SNP j and k89

in population p; σpj is the standard deviation of SNP j genotypes in population p; and θC90

represents the per-SNP contribution to trans-ethnic genetic covariance of the per-allele causal91

disease effect size of annotation C. Here, rpjk and σpj can be estimated from population-92

matched reference panels (e.g. 1000 Genomes Project16). We estimate θC for each annotation93

C using weighted least square regression. Subsequently, we estimate the trans-ethnic genetic94

covariance of each binary annotation C (ρgpCq) by summing trans-ethnic genetic covariance95

of each SNP in annotation C as
°
jPC p

°
C1 aC1pjqθC1q, using coefficients (θC1) for all binary96

and continuous-valued annotations C 1 included in the analysis; the heritabilities in each97

population (h2
g1pCq and h2

g2pCq) are estimated analogously. We then estimate the stratified98

squared trans-ethnic genetic correlation, defined as99

r2
gpCq �

ρ2
gpCq

h2
g1pCqh2

g2pCq
. (2)

We define the enrichment/depletion of squared trans-ethnic genetic correlation as λ2pCq �100

r2gpCq

r2g
, where r2

g is the genome-wide squared trans-ethnic genetic correlation; λ2pCq can be101

meta-analyzed across traits with different r2
g . S-LDXR analyzes GWAS summary statistics102

of common HapMap317 SNPs (regression SNPs) to estimate λ2pCq for (causal effects of)103

all common SNPs (heritability SNPs). Further details (quantities estimated, analytical bias104
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correction, shrinkage estimator to reduce standard errors, estimation of standard errors,105

significance testing, and factors impacting power) of the S-LDXR method are provided in the106

Methods section; we have publicly released open-source software implementing the method107

(see URLs).108

We apply S-LDXR to 62 annotations (defined in both EAS and EUR populations) from109

our baseline-LD-X model (Methods, Table S1, Figures S1, S2), primarily derived from the110

baseline-LD model21–23 (v1.1; see URLs). We have publicly released all baseline-LD-X model111

annotations and LD scores for EAS and EUR populations (see URLs).112

Simulations113

We evaluated the accuracy of S-LDXR in simulations using genotypes that we simulated114

using HAPGEN225 from phased haplotypes of 481 EAS and 489 EUR individuals from the115

1000 Genomes Project16, preserving population-specific MAF and LD patterns (18,418 sim-116

ulated EAS-like and 36,836 simulated EUR-like samples, after removing genetically related117

samples, ratio of sample sizes similar to empirical data; �2.5 million SNPs on chromosomes118

1 – 3) (Methods); we did not have access to individual-level EAS data at sufficient sam-119

ple size to perform simulations with real genotypes. For each population, we randomly120

selected a subset of 500 simulated samples to serve as the reference panel for estimating LD121

scores. We performed both null simulations (heritable trait with functional enrichment but122

no enrichment/depletion of squared trans-ethnic genetic correlation; λ2pCq � 1) and causal123

simulations (λ2pCq � 1). In our main simulations, we randomly selected 10% of the SNPs as124

causal SNPs in both populations, set genome-wide heritability to 0.5 in each population, and125

adjusted genome-wide genetic covariance to attain a genome-wide rg of 0.60 (unless otherwise126

indicated). In the null simulations, we used heritability enrichments from analyses of real127

traits in EAS samples to specify per-SNP causal effect size variances and covariances. In the128

causal simulations, we directly specified per-SNP causal effect size variances and covariances129

to attain λ2pCq � 1 values from analyses of real traits, as these were difficult to attain using130

the heritability and trans-ethnic genetic covariance enrichments from analyses of real traits.131

First, we assessed the accuracy of S-LDXR in estimating genome-wide trans-ethnic ge-132

netic correlation (rg); we note that S-LDXR does not use the shrinkage estimator for genome-133

wide estimates. Across a wide range of simulated rg values (0.0 to 1.0), S-LDXR yielded134

approximately unbiased estimates and well-calibrated jackknife standard errors (Table S3,135

Figure S3).136

Second, we assessed the accuracy of S-LDXR in estimating λ2pCq in quintiles of the 8137

continuous-valued annotations of the baseline-LD-X model. We performed both null simu-138
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lations (λ2pCq � 1) and causal simulations (λ2pCq � 1). Results are reported in Figure 1a139

and Tables S4 – S9 . In both null and causal simulations, S-LDXR yielded approximately140

unbiased estimates of λ2pCq for most annotations, validating our analytical bias correction.141

As a secondary analysis, we tried varying the S-LDXR shrinkage parameter, α, which has a142

default value of 0.5. In null simulations, results remained approximately unbiased; in causal143

simulations, reducing α led to less precise (but less biased) estimates of λ2pCq, whereas144

increasing α biased results towards the null (λ2pCq � 1), demonstrating a bias-variance145

tradeoff in the choice of α (Figure S4, Tables S5, S8). Results were similar at other values146

of the proportion of causal SNPs (1% and 100%; Tables S4, S6, S7, S9). We also confirmed147

that S-LDXR produced well-calibrated jackknife standard errors (Tables S4-S9).148

Third, we assessed the accuracy of S-LDXR in estimating λ2pCq for the 28 main binary149

annotations of the baseline-LD-X model (inherited from the baseline model of ref.21). We150

discarded λ2pCq estimates with the highest standard errors (top 5%), as estimates with large151

standard errors (which are particularly common for annotations of small size) are uninfor-152

mative for evaluating unbiasedness of the estimator (in analyses of real traits, trait-specific153

estimates with large standard errors are retained, but contribute very little to meta-analysis154

results, and would be interpreted as inconclusive when assessing trait-specific results). Re-155

sults are reported in Figure 1b and Tables S5, S8. In null simulations, S-LDXR yielded156

unbiased estimates of λ2pCq, further validating our analytical bias correction. In causal sim-157

ulations, estimates were biased towards the null (λ2pCq � 1) – particularly for annotations158

of small size (proportion of SNPs   1%) – due to our shrinkage estimator; increasing the159

shrinkage parameter above its default value of 0.5 further biased the estimates towards the160

null (λ2pCq � 1) in causal simulations (Tables S7, S8, S9). To ensure robust estimates, we161

focus on the 20 main binary annotations of large size (¡ 1% of SNPs) in analyses of real162

traits (see below); although results for these annotations may still be biased towards the163

null, we emphasize that S-LDXR is unbiased in null data. Results were similar at other164

values of the proportion of causal SNPs (1% and 100%; Tables S4, S6, S7, S9). We also165

confirmed that S-LDXR produced well-calibrated jackknife standard errors (Tables S4-S9)166

and conservative p-values (Figure S7, Table S4-S9).167

Fourth, we performed additional null simulations in which causal variants differed across168

the two populations (Methods). S-LDXR yielded robust estimates of λ2pCq, well-calibrated169

standard errors and conservative p-values in these simulations (Figure S11, Table S12).170

Fifth, we performed additional null simulations with annotation-dependent MAF-dependent171

genetic architectures,26–28 defined as architectures in which the level of MAF-dependence is172

annotation-dependent, to ensure that estimate of λ2pCq remain unbiased. We disproportion-173

ately sampled low-frequency causal variants from the top quintile of background selection174
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statistic, and set the variance of per-allele effect sizes of a causal SNP to be inversely pro-175

portional to its maximum MAF across both populations (Methods). Results are reported176

in Figure S8-S10, and Table S10, S11. S-LDXR yielded nearly unbiased estimates of λ2pCq177

for the 28 binary functional annotations (Figure S8) and nearly unbiased estimates of λ2pCq178

for most quintiles of continuously valued annotations (Figure S9); estimates were slightly179

biased estimates in the top and bottom quintile of the average level of LD annotation and180

the recombination rate annotation, likely due to less accurate reference LD scores at SNPs181

with extreme levels of LD. We repeated these simulations with 5 MAF bin annotations added182

to the baseline-LD-X model and obtained similar results (Figure S8a, S9b), supporting our183

decision not to include MAF bin annotations into the baseline-LD-X model.184

Sixth, we performed additional null simulations, in which we increased or decreased the185

reference panel size from 500 to 250 or 1,000, to assess the impact of reference panel size186

on the accuracy of S-LDXR (Methods). We simulated GWAS summary statistics based on187

the baseline-LD-X model as well as the model with annotation-dependent MAF-dependent188

genetic architectures. We determined that the small systematic biases in null simulations189

of continuous-valued annotations were on the same order of magnitude as for 500 reference190

samples (Figures S12, S13 and Table S13 for 250 reference samples; Figures S14, S15 and191

Table S14 for 1,000 reference samples). We also performed simulations in which we re-192

duced the simulated GWAS sample size by half, from NEAS=18K, NEUR=37K to NEAS=9K,193

NEUR=18K (while fixing the reference panel size at 500). We again determined that the194

small systematic biases were generally on the same order of magnitude as for NEAS=18K,195

NEUR=37K (although estimates were less stable and sometimes subject to larger biases,196

likely because our analytical bias correction starts to break down when the GWAS has low197

power) (Figures S16, S17 and Table S15). Although it was not computationally feasible to198

perform simulations at larger GWAS sample sizes, these analyses do not provide a reason to199

believe that the small systematic biases that we observed in some of our null simulations of200

continuously valued annotations would substantially increase at larger GWAS sample sizes.201

In summary, S-LDXR produced approximately unbiased estimates of enrichment/depletion202

of squared trans-ethnic genetic correlation in null simulations, and conservative estimates in203

causal simulations of both quintiles of continuous-valued annotations and binary annotations.204

Analysis of baseline-LD-X model annotations across 31 diseases and205

complex traits206

We applied S-LDXR to 31 diseases and complex traits with summary statistics in East207

Asians (average N=90K) and Europeans (average N=267K) available from Biobank Japan,208
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UK Biobank, and other sources (Table S16 and Methods). First, we estimated the trans-209

ethnic genetic correlation (rg) (as well as population-specific heritabilies) for each trait.210

Results are reported in Figure S18 and Table S16. The average rg across 31 traits was 0.85211

(s.e. 0.01) (average r2
g = 0.72 (s.e. 0.02)). 28 traits had rg   1, and 11 traits had rg212

significantly less than 1 after correcting for 31 traits tested (P   0.05{31); the lowest rg was213

0.34 (s.e. 0.07) for Major Depressive Disorder (MDD), although this may be confounded by214

different diagnostic criteria in the two populations.29 Several other complex traits, including215

Age at Menopause (rg � 0.57 (s.e. 0.09)) and LDL (rg � 0.66 (s.e. 0.11)) also had low216

trans-ethnic rg, likely due to pervasive gene-environment interaction across the genome.217

These estimates were consistent with estimates obtained using Popcorn2 (Figure S19) and218

those reported in previous studies.2,5,6 We note that our estimates of trans-ethnic genetic219

correlation for 31 complex traits are higher than those reported for gene expression traits2
220

(average estimate of 0.32, increasing to 0.77 when restricting the analysis to gene expression221

traits with (cis) heritability greater than 0.2 in both populations), which are expected to222

have different genetic architectures.223

Second, we estimated the enrichment/depletion of squared trans-ethnic genetic correla-224

tion (λ2pCq) in quintiles of the 8 continuous-valued annotations of the baseline-LD-X model,225

meta-analyzing results across traits; these annotations are moderately correlated (Figure 2a226

and Table S1). We used the default shrinkage parameter (α � 0.5) in all analyses. Results227

are reported in Figure 2b and Table S17. We consistently observed a depletion of r2
gpCq228

(λ2pCq   1, implying more population-specific causal effect sizes) in functionally important229

regions. For example, we estimated λ2pCq � 0.82 (s.e. 0.01) for SNPs in the top quintile230

of background selection statistic (defined as 1 � McVicker B statistic / 1000;30 see ref.22);231

λ2pCq estimates were less than 1 for 29/31 traits, including 2 traits (Height and EGFR) with232

two-tailed p   0.05{31. The background selection statistic quantifies the genetic distance233

of a site to its nearest exon; regions with high background selection statistic have higher234

per-SNP heritability, consistent with the action of selection, and are enriched for function-235

ally important regions.22 We observed the same pattern for CpG content and SNP-specific236

Fst (which are positively correlated with background selection statistic; Figure 2a) and the237

opposite pattern for nucleotide diversity (which is negatively correlated with background238

selection statistic). We also estimated λ2pCq � 0.87 (s.e. 0.03) for SNPs in the top quintile239

of average LLD (which is positively correlated with background selection statistic), although240

these SNPs have lower per-SNP heritability due to a competing positive correlation with241

predicted allele age.22 We caution that average LLD was the annotation most susceptible to242

bias in our simulations; see Simulations. Likewise, we estimated λ2pCq � 0.84 (s.e. 0.02)243

for SNPs in the bottom quintile of recombination rate (which is negatively correlated with244
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background selection statistic), although these SNPs have average per-SNP heritability due245

to a competing negative correlation with average LLD.22 However, λ2pCq   1 estimates for246

the bottom quintile of GERP (NS) (which is positively correlated with both background247

selection statistic and recombination rate) and the middle quintile of predicted allele age248

are more difficult to interpret. For all annotations analyzed, heritability enrichments did249

not differ significantly between EAS and EUR, consistent with previous studies.20,31 Results250

were similar at a more stringent shrinkage parameter value (α � 1.0; Figure S20), and for251

a meta-analysis across a subset of 20 approximately independent traits (Methods; Figure252

S21).253

Finally, we estimated λ2pCq for the 28 main binary annotations of the baseline-LD-X254

model (Table S1), meta-analyzing results across traits (as we did not observe significant255

trait-specific enrichment/depletion of squared trans-ethnic genetic correlation for these an-256

notations due to limited power). Results are reported in Figure 3a and Table S18. Our257

primary focus is on the 20 annotations of large size (¡ 1% of SNPs), for which our simula-258

tions yielded robust estimates; results for remaining annotations are reported in Table S18.259

We consistently observed a depletion of λ2pCq (implying more population-specific causal260

effect sizes) within these annotations: 17 annotations had λ2pCq   1, and 5 annotations261

had λ2pCq significantly less than 1 after correcting for 20 annotations tested (P   0.05{20).262

These annotations included Conserved (λ2pCq � 0.93 (s.e. 0.02)), Promoter (λ2pCq � 0.85263

(s.e. 0.04)) and Super Enhancer (λ2pCq � 0.93 (s.e. 0.02)), each of which was significantly264

enriched for per-SNP heritability, consistent with ref.21. For all annotations analyzed, heri-265

tability enrichments did not differ significantly between EAS and EUR (Figure 3a), consistent266

with previous studies.20,31 Results were similar at a more stringent shrinkage parameter value267

(α � 1.0; Figure S20), and for a meta-analysis across a subset of 20 approximately indepen-268

dent traits (Methods; Figure S22). As a secondary analysis, we also estimated λ2pCq across269

10 MAF bin annotations; we did not observe variation in λ2pCq estimates across MAF bins270

(Table S19), further supporting our decision to not include MAF bin annotations in the271

baseline-LD-X model.272

Since the functional annotations are moderately correlated with the 8 continuous-valued273

annotations (Table S1c, Figure S1), we investigated whether the depletions of squared trans-274

ethnic genetic correlation (λ2pCq   1) within the 20 binary annotations could be explained275

by the 8 continuous-valued annotations. For each binary annotation, we estimated its ex-276

pected λ2pCq based on values of the 8 continuous-valued annotations for SNPs in the binary277

annotation (Methods), meta-analyzed this quantity across traits, and compared observed vs.278

expected λ2pCq (Figure 3b and Table S20). We observed strong concordance, with a slope279

of 0.57 (correlation of 0.61) across the 20 binary annotations. This implies that the deple-280
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tions of r2
gpCq (λ2pCq   1) within binary annotations are largely explained by corresponding281

values of continuous-valued annotations.282

In summary, our results show that causal disease effect sizes are more population-specific283

in functionally important regions impacted by selection. Further interpretation of these284

findings, including the role of positive and/or negative selection, is provided in the Discussion285

section.286

Analysis of specifically expressed gene annotations287

We analyzed 53 specifically expressed gene (SEG) annotations, defined in ref.24 as288

�100kb regions surrounding the top 10% of genes specifically expressed in each of 53 GTEx32
289

tissues (Table S2), by applying S-LDXR with the baseline-LD-X model to the 31 diseases and290

complex traits (Table S16). We note that although SEG annotations were previously used to291

prioritize disease-relevant tissues based on disease-specific heritability enrichments,20,24 en-292

richment/depletion of squared trans-ethnic genetic correlation (λ2pCq) is standardized with293

respect to heritability (i.e. increase in heritability in the denominator would lead to increase294

in trans-ethnic genetic covariance in the numerator (Equation (2))), hence not expected to295

produce extremely disease-specific signals. Thus, we first assess meta-analyzed λ2pCq esti-296

mates across the 31 diseases and complex traits (trait-specific estimates are assessed below).297

Results are reported in Figure 4a and Table S21. λ2pCq estimates were less than 1 for298

all 53 tissues and significantly less than 1 (p   0.05{53) for 37 tissues, with statistically299

significant heterogeneity across tissues (p   10�20; Methods). The strongest depletions of300

squared trans-ethnic genetic correlation were observed in skin tissues (e.g. λ2pCq � 0.83 (s.e.301

0.02) for Skin Sun Exposed (Lower Leg)), Prostate and Ovary (λ2pCq � 0.84 (s.e. 0.02) for302

Prostate, λ2pCq � 0.86 (s.e. 0.02) for Ovary) and immune-related tissues (e.g. λ2pCq � 0.85303

(s.e. 0.02) for Spleen), and the weakest depletions were observed in Testis (λ2pCq � 0.98304

(s.e. 0.02); no significant depletion) and brain tissues (e.g. λ2pCq � 0.98 (s.e. 0.02) for Brain305

Nucleus Accumbens (Basal Ganglia); no significant depletion). Results were similar at less306

stringent and more stringent shrinkage parameter values (α � 0.0 and α � 1.0; Figures S23,307

S24 and Table S21). A comparison of 14 blood-related traits and 16 other traits yielded308

highly consistent λ2pCq estimates (R � 0.82; Figure S25, Table S22), confirming that these309

findings were not extremely disease-specific.310

These λ2pCq results were consistent with the higher background selection statistic30 in311

Skin Sun Exposed (Lower Leg) (R � 0.17), Prostate (R � 0.16) and Spleen (R � 0.14) as312

compared to Testis (R � 0.02) and Brain Nucleus Accumbens (Basal Ganglia) (R � 0.08)313

(Figure S26, Table S2), and similarly for CpG content (Figure S27, Table S2). Although314
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these results could in principle be confounded by gene size,33 the low correlation between315

gene size and background selection statistic (R � 0.06) or CpG content (R � �0.20) (in316

�100kb regions) implies limited confounding. We note the well-documented action of recent317

positive selection on genes impacting skin pigmentation,34–38 the immune system,34–37,39 and318

Ovary;40 we are not currently aware of any evidence of positive selection impacting Prostate.319

We further note the well-documented action of negative selection on fecundity- and brain-320

related traits,26,28,41 but it is possible that recent positive selection may more closely track321

differences in causal disease effect sizes across human populations, which have split relatively322

recently42 (see Discussion).323

More generally, since SEG annotations are moderately correlated with the 8 continuous-324

valued annotations (Figure S28, Table S2), we investigated whether these λ2pCq results could325

be explained by the 8 continuous-valued annotations (analogous to Figure 3b). Results are326

reported in Figure 4b and Table S23. We observed strong concordance, with a slope of 0.96327

(correlation of 0.76) across the 53 SEG annotations. This implies that the depletions of328

λ2pCq within SEG annotations are explained by corresponding values of continuous-valued329

annotations.330

The strong depletion of squared trans-ethnic genetic correlation in tissues impacted by331

positive selection (as opposed to negative selection) suggests a possible connection between332

positive selection and population-specific causal effect sizes. To further assess this, we es-333

timated the enrichment/depletion of squared trans-ethnic genetic correlation in SNPs with334

high integrated haplotype score (iHS),43,44 which quantifies the action of positive selection335

(Methods). We observed a significant depletion (λ2pCq � 0.88 (s.e. 0.03)), further implicat-336

ing positive selection (however, it is difficult to assess whether the iHS annotation contains337

unique information about λ2pCq conditional on other annotations; see Discussion). In ad-338

dition, we observed a high genome-wide trans-ethnic genetic correlation for schizophrenia339

(rg � 0.95 (s.e. 0.04) vs. average of 0.85 (s.e. 0.01) across traits), a psychiatric disorder340

hypothesized to be strongly impacted by negative selection,45,46 suggesting that negative341

selection may play a limited role in population-specific causal effect sizes. As noted above,342

these estimates pertain to parameters that were defined based on common variants (see343

Overview of methods); we note that although negative selection has the strongest impact344

on low-frequency variants,26 common variants are also impacted by negative selection and345

can inform inferences about negative selection.22 The role of positive selection (as opposed346

to negative selection) in population-specific causal effect sizes is discussed further in the347

Discussion section.348

We investigated the enrichment/depletion of λ2pCq in the 53 specifically expressed gene349

annotations for each individual trait (Table S24). We identified 6 significantly depleted (vs.350
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0 significantly enriched) trait-tissue pairs at per-trait p   0.05{53. The limited number of351

statistically significant results was expected, due to the reduced power of trait-specific anal-352

yses; however, λ2pCq estimates were generally consistent across traits. Results for BMI and353

height, two widely studied anthropometric traits, are reported in Figure 5. For BMI, we354

observed significant depletion of squared trans-ethnic genetic correlation (λ2pCq � 0.84 (s.e.355

0.05)) in Pituitary. Previous studies have highlighted the role of Pituitary in obesity;47–49
356

our results suggest that this tissue-specific mechanism is population-specific. For height,357

we observed significant depletion of squared trans-ethnic genetic correlation for Transformed358

fibroblasts (λ2pCq � 0.87 (s.e. 0.03)), a connective tissue linked to human developmental dis-359

orders;50 again, our results suggest that this tissue-specific mechanism is population-specific.360

Although Pituitary was significantly depleted for BMI but not height, and Transformed fi-361

broblasts was significantly depleted for height but not BMI, we caution that for both tissues362

our λ2pCq estimates did not differ significantly between BMI and height.363

In summary, our results show that causal disease effect sizes are more population-specific364

in regions surrounding specifically expressed genes.365
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Discussion366

We developed a new method (S-LDXR) for stratifying squared trans-ethnic genetic cor-367

relation across functional categories of SNPs that yields approximately unbiased estimates368

in extensive simulations. By applying S-LDXR to East Asian and European summary statis-369

tics across 31 diseases and complex traits, we determined that SNPs with high background370

selection statistic30 have substantially depleted squared trans-ethnic genetic correlation (vs.371

the genome-wide average), implying that causal effect sizes are more population-specific.372

Accordingly, squared trans-ethnic genetic correlations were substantially depleted for SNPs373

in many functional categories and enriched in less functionally important regions (although374

the power of S-LDXR to detect enrichment of squared trans-ethnic genetic correlation is375

limited due to depletion of heritability in less functionally important regions). In analyses of376

specifically expressed gene annotations, we observed substantial depletion of squared trans-377

ethnic genetic correlation for SNPs near skin and immune-related genes, which are strongly378

impacted by recent positive selection, but not for SNPs near brain genes. We also observed379

trait-specific depletions of squared-trans-ethnic genetic correlation for specifically expressed380

gene annotations, which indicate population-specific disease mechanisms.381

Reductions in trans-ethnic genetic correlation have several possible underlying expla-382

nations, including gene-environment (G�E) interaction, gene-gene (G�G) interaction, and383

dominance variation (but not differences in heritability across populations, which would not384

affect trans-ethnic genetic correlation and were not observed in our study). Given the increas-385

ing evidence of the role of G�E interaction in complex trait architectures,51 and evidence that386

G�G interaction and dominance variation explain limited heritability,52–54 we hypothesize387

that depletion of squared trans-ethnic genetic correlation in the top quintile of background388

selection statistic and in functionally important regions may be primarily attributable to389

stronger G�E interaction in these regions. Interestingly, a recent study on plasticity in390

Arabidopsis observed a similar phenomenon: lines with more extreme phenotypes exhibited391

stronger G�E interaction.55 Although depletion of squared trans-ethnic genetic correlation392

is often observed in regions with higher per-SNP heritability, which may often be subject to393

stronger G�E, depletion may also occur in regions with lower per-SNP heritability that are394

subject to stronger G�E; we hypothesize that this is the case for SNPs in the top quintile395

of average LLD and the bottom quintile of GERP (NS) (Figure 2).396

Distinguishing between stronger G�E interaction in regions impacted by selection and397

stronger G�E interaction in functionally important regions as possible explanations for our398

findings is a challenge, because functionally important regions are more strongly impacted399

by selection. To this end, we constructed an annotation that is similar to the background400
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selection statistic but does not make use of recombination rate, instead relying solely on a401

SNP’s physical distance to the nearest exon (Methods). Applying S-LDXR to the 31 diseases402

and complex traits using a joint model incorporating baseline-LD-X model annotations and403

the nearest exon annotation, the background selection statistic remained highly condition-404

ally informative for trans-ethnic genetic correlation, whereas the nearest exon annotation405

was not conditionally informative (Table S25). This result implicates stronger G�E inter-406

action in regions with reduced effective population size that are impacted by selection, and407

not just proximity to functional regions, in explaining depletions of squared trans-ethnic408

genetic correlation; however, we emphasize that selection acts on allele frequencies rather409

than causal effect sizes, and could help explain our findings only in conjunction with other410

explanations such as G�E interaction. Our results on specifically expressed genes implicate411

stronger G�E interaction near skin, immune, and ovary genes and weaker G�E interaction412

near brain genes, potentially implicating positive selection (as opposed to negative selection).413

This conclusion is further supported by the significant depletion of squared trans-ethnic ge-414

netic correlation in the integrated haplotype score (iHS) annotation that specifically reflects415

positive selection, high genome-wide trans-ethnic genetic correlation for schizophrenia (Ta-416

ble S16), and lack of variation in squared trans-ethnic genetic correlation across genes in417

different deciles of probability of loss-of-function intolerance56 (Methods, Figure S29, S30,418

Table S26). We conclude that depletions of squared trans-ethnic genetic correlation could419

potentially be explained by stronger G�E interaction at loci impacted by positive selection.420

We caution that other explanations are also possible; in particular, evolutionary modeling421

using an extension of the Eyre-Walker model57 to two populations suggests that our re-422

sults for the background selection statistic could also be consistent with negative selection423

(Supplementary Note, Figure S31, S32, Table S27). Additional information, such as genomic424

annotations that better distinguish different types of selection or data from additional diverse425

populations, may help elucidate the relationship between selection and population-specific426

causal effect sizes.427

Our study has several implications. First, polygenic risk scores (PRS) in non-European428

populations that make use of European training data6,9,11 may be improved by reweighting429

SNPs based on the expected enrichment/depletion of squared trans-ethnic genetic correla-430

tion, helping to alleviate health disparities.6,14,15 For example, when applying LD-pruning �431

p-value thresholding methods,58,59 both the strength of association and trans-ethnic genetic432

correlation should be accounted for when prioritizing SNPs for trans-ethnic PRS, as our re-433

sults suggest that trans-ethnic genetic correlation is likely depleted near functional SNPs with434

significant p-values (due to stronger G�E). In particular, when multiple SNPs have similar435

level of significance, the SNPs enriched for trans-ethnic genetic correlation should be priori-436
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tized. Analogously, when applying more recent methods that estimate posterior mean causal437

effect sizes60–66 (including functionally informed methods62,66), these estimates should subse-438

quently be weighted according to the expected enrichment/depletion for squared trans-ethnic439

genetic correlation based on their functional annotations. Second, modeling population-440

specific genetic architectures may improve trans-ethnic fine-mapping. Our results suggest441

that causal effect sizes and/or causal variants are likely to differ across different populations,442

contrary to standard assumptions.31,67 Thus, incorporating information about trans-ethnic443

genetic correlations in trans-ethnic fine-mapping may lead to more accurate identification of444

both population-specific and shared causal variants.68 Third, modeling population-specific445

genetic architectures may also increase power in trans-ethnic meta-analysis,69 e.g. by adapt-446

ing MTAG70 to two populations (instead of two traits) , leveraging trans-ethnic (instead of447

cross-trait) genetic correlation between pairs of populations to improve estimation of SNP448

effect sizes in both populations. Fourth, it may be of interest to stratify G�E interaction449

effects51 across genomic annotations. Fifth, modeling and incorporating environmental vari-450

ables, where available, may provide additional insights into population-specific causal effect451

sizes. In our simulations, we did not explicitly simulate G�E. However, G�E would induce452

population-specific causal effect sizes, which we did explicitly simulate. Sixth, the S-LDXR453

method could potentially be extended to stratify squared cross-trait genetic correlations71
454

across genomic annotations.72
455

We note several limitations of this study that pertain to the S-LDXR method. First,456

S-LDXR is designed for populations of homogeneous continental ancestry (e.g. East Asians457

and Europeans) and is not currently suitable for analysis of admixed populations73 (e.g.458

African Americans or admixed Africans from UK Biobank74), analogous to LDSC and its459

published extensions.21,71,75 However, a recently proposed extension of LDSC to admixed460

populations76 could be incorporated into S-LDXR, enabling its application to the growing461

set of large studies in admixed populations.10 Second, S-LDXR estimates of enrichment462

of stratified squared trans-ethnic genetic correlation (λ2pCq) are slightly downward biased463

in null simulations of the top quintile of the background selection statistic and average464

LLD annotations, especially in simulations involving annotation-dependent MAF-dependent465

genetic architectures. However, these biases are small compared to the depletions of λ2pCq466

observed in analysis of real traits. We further note that our estimates are unbiased in467

null simulations of binary annotations, implying that our results on real traits for binary468

annotations are extremely robust. Third, since S-LDXR applies shrinkage to reduce standard469

error in estimating stratified squared trans-ethnic genetic correlation and its enrichment,470

estimates are conservative – true depletions of squared trans-ethnic genetic correlation in471

functionally important regions may be stronger than the estimated depletions. However, we472
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emphasize that S-LDXR is approximately unbiased in null data. Fourth, the optimal value473

of the shrinkage parameter α may be specific to the pair of populations analyzed. In our474

simulations, we determined that α � 0.5 provides a satisfactory bias-variance tradeoff across475

a wide range of values of polygenicity and power. Thus, α � 0.5 may also be satisfactory476

for other pairs of populations. However, we recommend that one should ideally perform477

simulations on the pair of populations being analyzed to selection the optimal value of α.478

Fifth, it is difficult to assess whether a focal annotation contains unique information about479

λ2pCq conditional on other annotations, as squared trans-ethnic genetic correlation is a non-480

linear quantity defined by the quotient of squared trans-ethnic genetic covariance and the481

product of heritabilities in each population.482

We also note several limitations of this study that pertain to our analysis of real traits.483

First, we focused on comparisons of East Asians and Europeans, due to limited availabil-484

ity of very large GWAS in other populations. For other pairs of continental populations,485

if differences in environment are similar, then we would expect similar genome-wide trans-486

ethnic genetic correlation and similar enrichment/depletion of squared trans-ethnic genetic487

correlation, based on our hypothesis that imperfect trans-ethnic genetic correlation is pri-488

marily attributable to G�E. We also note that different set of SNPs, with different MAF489

and LD patterns, would be analyzed for different pairs of populations. However, we expect490

that these differences would not contribute to differences in trans-ethnic genetic correla-491

tion, if G�E is the fundamental factor impacting trans-ethnic genetic correlation. Second,492

the specifically expressed gene (SEG) annotations analyzed in this study are defined pre-493

dominantly (but not exclusively) based on gene expression measurements of Europeans.24
494

We hypothesize that results based on SEG annotations defined in East Asian populations495

would likely be similar, as heritability enrichment of functional annotations (predominantly496

defined in Europeans) are consistent across continental populations,20,31 despite the fact497

that gene expression patterns and genetic architectures of gene expression differ across di-498

verse populations.12,77,78 Thus, SEG annotations derived from gene expression data from499

diverse populations may provide additional insights into population-specific causal effect500

sizes. Third, we restricted our analyses to SNPs that were relatively common (MAF¡5%)501

in both populations (estimating parameters that were defined based on common SNPs), due502

to the lack of a large LD reference panel for East Asians. Extending our analyses to lower-503

frequency SNPs may provide further insights into the role of negative selection in shaping504

population-specific genetic architectures, as negative selection has the strongest impact on505

variants with low frequency.26,27 Fourth, we did not consider population-specific variants in506

our analyses, due to the difficulty in defining trans-ethnic genetic correlation for population-507

specific variants2,5, a more fundamental challenge than analyzing low-frequency SNPs; a508
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recent study79 has reported that population-specific variants substantially limit trans-ethnic509

genetic risk prediction accuracy. Fifth, estimates of genome-wide trans-ethnic genetic cor-510

relation may be confounded by different trait definitions or diagnostic criteria in the two511

populations, particularly for major depressive disorder. However, this would not impact es-512

timates of enrichment/depletion of squared trans-ethnic genetic correlation (λ2pCq), which is513

defined relative to genome-wide values. Sixth, we have not pinpointed the exact underlying514

phenomena (e.g. environmental heterogeneity coupled with gene-environment interaction)515

that lead to population-specific causal disease effect sizes at functionally important regions.516

Despite these limitations, our study provides an improved understanding of the underlying517

biology that contribute to population-specific causal effect sizes, and highlights the need for518

increasing diversity in genetic studies.519
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URLs520

• S-LDXR software: https://github.com/huwenboshi/s-ldxr/521

• Python code for simulating GWAS summary statistics: https://github.com/huwenboshi/522

s-ldxr-sim/523

• baseline-LD-X model annotations and LD scores: https://data.broadinstitute.org/524

alkesgroup/S-LDXR/525

• Distance to nearest exon annotation and LD scores: https://data.broadinstitute.526

org/alkesgroup/S-LDXR/527

• baseline-LD model annotations: https://alkesgroup.broadinstitute.org/LDSCORE/528

• 1000 Genomes Project: https://www.internationalgenome.org/529

• PLINK2: https://www.cog-genomics.org/plink/2.0/530

• HAPGEN2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.531

html532

• UCSC Genome Browser: https://genome.ucsc.edu/533

• Exome Aggregation Consortium (ExAC): https://exac.broadinstitute.org/534

• Integrated haplotype scores (iHS): http://coruscant.itmat.upenn.edu/data/JohnsonEA_535

iHSscores.tar.gz536
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Methods537

Definition of stratified squared trans-ethnic genetic correlation538

We model a complex phenotype in two populations using linear models, Y 1 �X1β1�ε1539

and Y 2 �X2β2�ε2, where Y 1 and Y 2 are vectors of phenotype measurements of population540

1 and population 2 with sample size N1 and N2 , respectively; X1 and X2 are mean-centered541

but not normalized genotype matrices at M SNPs in the two populations; β1 and β2 are542

per-allele causal effect sizes of the M SNPs; and ε1 and ε2 are environmental effects in the543

two populations. We assume that in each population, genotypes, causal effect sizes, and544

environmental effects are independent from each other. We assume that the per-allele effect545

size of SNP j in the two populations has variance and covariance,546

Varrβ1js �
¸
C

aCpjqτ1C , Varrβ2js �
¸
C

aCpjqτ2C ,

Covrβ1j, β2js �
¸
C

aCpjqθC ,
(3)

where aCpjq is the value of SNP j for annotation C, which can be binary or continuous-547

valued; τ1C and τ2C are the net contribution of annotation C to the variance of β1j and β2j,548

respectively; and θC is the net contribution of annotation C to the covariance of β1j and β2j.549

We define stratified trans-ethnic genetic correlation of a binary annotation C (e.g. func-550

tional annotations21 or quintiles of continuous-valued annotations22) as,551

rgpCq � ρgpCqb
h2
g1pCq

b
h2
g2pCq

, (4)

where ρgpCq �
°
jPC Covrβ1j, β2js �

°
jPC

°
C1 aC1pjqθC1 is the trans-ethnic genetic covari-552

ance of annotation C; and h2
gppCq �

°
jPC Varrβpjs �

°
jPC

°
C1 aC1pjqτpC1 is the “allelic-scale553

heritability” (sum of per-SNP variance of per-allele causal effect sizes; different from her-554

itability on the standardized scale) of annotation C in population p. Here, C 1 includes555

all binary and continuous-valued annotations included in the analysis. Since estimates of556

h2
gppCq can be noisy (possibly negative), we estimate squared stratified trans-ethnic genetic557

correlation,558

r2
gpCq �

ρ2
gpCq

h2
g1pCqh2

g2pCq
, (5)

to avoid bias or undefined values in the square root. In this work, we only estimate r2
gpCq559

for SNPs with minor allele frequency (MAF) greater than 5% in both populations. To assess560
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whether causal effect sizes are more or less correlated for SNPs in annotation C compared561

with the genome-wide average, r2
g , we define the enrichment/depletion of stratified squared562

trans-ethnic genetic correlation as563

λ2pCq � r2
gpCq
r2
g

. (6)

We meta-analyze λ2pCq instead of r2
gpCq across diseases and complex traits. For continuous-564

valued annotations, defining r2
gpCq and λ2pCq is challenging, as squared correlation is a565

non-linear term involving a quotient of squared covariance and a product of variances; we566

elected to instead estimate λ2pCq for quintiles of continuous-valued annotations (analogous567

to ref.22). We note that the average value of λ2pCq across quintiles of continuous-valued568

annotations is not necessarily equal to 1, as squared trans-ethnic genetic correlation is a569

non-linear quantity.570

S-LDXR method571

S-LDXR is conceptually related to stratified LD score regression21,22 (S-LDSC), a method572

for stratifying heritability from GWAS summary statistics, to two populations. The S-LDSC573

method determines that a category of SNPs is enriched for heritability if SNPs with high574

LD to that category have higher expected χ2 statistic than SNPs with low LD to that cate-575

gory. Analogously, the S-LDXR method determines that a category of SNPs is enriched for576

trans-ethnic genetic covariance if SNPs with high LD to that category have higher expected577

product of Z-scores than SNPs with low LD to that category.578

S-LDXR relies on the regression equation579

ErZ1jZ2js �
a
N1N2

¸
C

`�pj, CqθC (7)

to estimate θC , where Zpj is the Z-score of SNP j in population p; `�pj, Cq �
°
k r1jkr2jkσ1jσ2jaCpkq580

is the trans-ethnic LD score of SNP j with respect to annotation C, whose value for SNP k,581

aCpkq, can be either binary or continuous; rpjk is the LD between SNP j and k in population582

p; and σpj is the standard deviation of SNP j in population p. We obtain unbiased estimates583

of `�pj, Cq using genotype data of 481 East Asian and 489 European samples in the 1000584

Genomes Project.16 To account for heteroscedasticity and increase statistical efficiency, we585

use weighted least square regression to estimate θC . We use regression equations analogous586

to those described in ref.21 to estimate τ1C and τ2C . We include only well-imputed (impu-587

tation INFO¡0.9) and common (MAF¡5% in both populations) SNPs that are present in588
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HapMap 317 (irrespective of GWAS significance level) in the regressions (regression SNPs),589

analogous to our previous work.21,71,75 We use all SNPs present in either population in 1000590

Genomes16 to estimate trans-ethnic LD scores `�pj, Cq (reference SNPs; analogous to S-591

LDSC21), so that the resulting coefficients θC also pertain to these SNPs. However, we592

estimate r2
gpCq and λ2pCq (see below; defined as a function of causal effect sizes) for all593

SNPs with MAF¡5% in both populations (heritability SNPs), accounting for tagging effects594

(analogous to S-LDSC21).595

Let τ̂1C , τ̂2C , and θ̂C be the estimates of τ1C , τ2C , and θC , respectively. For each binary596

annotation C, we estimate the stratified heritability of annotation C in each population,597

h2
g1pCq and h2

g2pCq, and trans-ethnic genetic covariance, ρgpCq, as598

ĥ2
g1pCq �

¸
jPC

¸
C1

ajC1 τ̂1C1 , ĥ2
g2pCq �

¸
jPC

¸
C1

ajC1 τ̂2C1 , ρ̂gpCq �
¸
jPC

¸
C1

ajC1 θ̂C1 , (8)

respectively, restricting to causal effects of SNPs with MAF¡5% in both populations (her-599

itability SNPs), using coefficients (τ1C1 , τ2C1 , and θC1) of both binary and continuous-valued600

annotations. We estimate genome-wide trans-ethnic genetic correlation as r̂g � ρ̂gpCqb
ĥ2g1pCqĥ2g1pCq

,601

where C represents the set of all SNPs with MAF¡5% in both populations. We then estimate602

r2
gpCq as603

r̂2
gpCq �

$&
%r̃2

gpCq �
Cov

�
ρ̂2
gpCq, ĥ2

g1pCqĥ2
g2pCq

�
ĥ2
g1pCqĥ2

g2pCq

,.
- {

$&
%1 �

Var
�
ĥ2
g1pCqĥ2

g2pCq
�

ĥ2
g1pCqĥ2

g2pCq

,.
- , (9)

where r̃2
gpCq � ρ̂2gpCq�Varrρ̂gpCqs

ĥ2g1pCqĥ
2
g2pCq�Covrĥ2g1pCq,ĥ

2
g2pCqs

. The correction to r̃2
gpCq in Equation (9) is nec-604

essary for obtaining an unbiased estimate of r2
gpCq, as computing quotients of two random605

variables introduces bias (Supplementary Note). (We do not constrain the estimate of r2
gpCq606

to its plausible range of r�1, 1s, as this would introduce bias.) Subsequently, we estimate607

enrichment of stratified squared trans-ethnic genetic correlation as608

λ̂2pCq �
#
λ̃2pCq � Cov

�
r̂2
gpCq, r̂2

g

�
r̂2
gpCq

+
{
#

1 � Var
�
r̂2
gpCq

�
r̂2
gpCq

+
(10)

where λ̃2pCq � ˆr2gpCq

r̂2g
, the ratio between estimated stratified (r̂2

gpCq) and genome-wide (r̂2
g)609

squared trans-ethnic genetic correlation. We use block jackknife over 200 non-overlapping610

and equally sized blocks to obtain standard error of all estimates. The standard error of611

λ2pCq primarily depends on the total allelic-scale heritability of SNPs in the annotation612
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(sum of per-SNP variances of causal per-allele effect sizes), which appears as the denomi-613

nator (h2
1gpCqh2

2gpCq) in the estimation of stratified squared trans-ethnic genetic correlation614

(r2
gpCq); if this denominator is small, estimation of r2

gpCq becomes noisy. The standard error615

of λ2pCq indirectly depends on the size of the annotation, because larger annotations tend to616

have larger total heritability. However, estimates of λ2pCq for a large annotation may have617

large standard error if the annotation is depleted for heritability.618

To assess the informativeness of each annotation in explaining disease heritability and619

trans-ethnic genetic covariance, we define standardized annotation effect size on heritability620

and trans-ethnic genetic covariance for each annotation C analogous to ref.22,621

τ�1C �
Mh2

g1

h2
g1pCq

� σC � τ1C , τ
�
2C �

Mh2
g2

h2
g2pCq

� σC � τ2C ,

θ�C �
Mρg
ρgpCq � σC � θC ,

(11)

where τ�1C , τ�2C , and θ�C represent proportionate change in per-SNP heritability in population622

1 and 2 and trans-ethnic genetic covariance, respectively, per standard deviation increase in623

annotation C; τ1C , τ2C , and θC are the corresponding unstandardized effect sizes, defined in624

Equation (3); and σC is the standard deviation of annotation C.625

We provide a more detailed description of the method, including derivations of the626

regression equation and unbiased estimators of the LD scores, in the Supplementary Note.627

S-LDXR shrinkage estimator628

Estimates of r2
gpCq can be imprecise with large standard errors if the denominator,629

h2
g1pCqh2

g2pCq, is close to zero and noisily estimated. This is especially the case for annota-630

tions of small size (  1% SNPs). We introduce a shrinkage estimator to reduce the standard631

error in estimating r2
gpCq.632

Briefly, we shrink the estimated per-SNP heritability and trans-ethnic genetic covariance633

of annotation C towards the genome-wide averages, which are usually estimated with smaller634

standard errors, prior to estimating r2
gpCq. In detail, let MC be the number of SNPs in635

annotation C, we shrink
ĥ21gpCq

MC
,
ĥ22gpCq

MC
, and ρ̂gpCq

MC
towards

ĥ21g
M

,
ĥ22g
M

, and ρ̂g
M

, respectively, where636

ĥ2
g1, ĥ2

g2, ρ̂g are the genome-wide estimates, and M the total number of SNPs. We obtain637

the shrinkage as follows. Let γ1 � 1{
�

1 � α
Varrĥ2g1pCqs

Varrĥ2g1s
M
MC



, γ2 � 1{

�
1 � α

Varrĥ2g2pCqs
Varrĥ2g2s

M
MC



,638

and γ3 � 1{
�

1 � αVarrρ̂gpCqs
Varrρ̂gs

M
MC

	
be the shrinkage obtained separately for ĥ2

g1pCq, ĥ2
g2pCq639

and ρ̂gpCq, respectively, where α P r0, 1s is the shrinkage parameter adjusting magnitude of640
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shrinkage. We then choose the most stringent shrinkage, γ � mintγ1, γ2, γ3u, as the final641

shared shrinkage for both heritability and trans-ethnic genetic covariance.642

We shrink heritability and trans-ethnic genetic covariance of annotation C using γ as,643

h̄2
g1pCq � MC

�
γ
ĥ2g1pCq

MC
� p1 � γq ĥ2g1

M



, h̄2

g2pCq � MC

�
γ
ĥ2g2pCq

MC
� p1 � γq ĥ2g2

M



, and ρ̄gpCq �644

MC

�
γ ρ̂gpCq

MC
� p1 � γq ρ̂g

M

	
, where h̄2

g1pCq, h̄2
g2pCq, and ρ̄gpCq are the shrunk counterparts of645

ĥ2
g1pCq, ĥ2

g2pCq, and ρ̂gpCq, respectively. We shrink r̂2
gpCq by substituting ĥ2

g1pCq, ĥ2
g2pCq,646

and ρ̂gpCq with h̄2
g1pCq, h̄2

g2pCq, ρ̄gpCq, respectively, in Equation (9), to obtain its shrunk647

counterpart, r̄2
gpCq. Finally, we shrink λ̂2pCq, by plugging in r̄2

gpCq in Equation (10) to obtain648

its shrunk counterpart, λ̄2pCq. We recommend α � 0.5 as the default shrinkage parameter649

value, as this value provides robust estimates of λ2pCq in simulations. We note that S-LDXR650

does not use the shrinkage estimator when estimating genome-wide rg and r2
g .651

Significance testing652

To assess whether an annotation C is enriched or depleted of squared trans-ethnic653

genetic correlation for a trait, we test the null hypothesis λ̂2pCq � 1. Since λ̂2pCq is not654

normally distributed,80 we instead test the equivalent null hypothesis D̂2pCq � ρ̂2
gpCq �655

r̂2
g ĥ

2
g1pCqĥ2

g1pCq � 0, where r̂2
g is the genome-wide squared trans-ethnic genetic correlation.656

We obtain test statistic as D̂2pCq

s.e.rD̂2pCqs
, and obtain p-value under t-distribution with B � 1657

degrees of freedom, where B is the number of jackknife blocks. Since the D̂2pCq statistic658

does not involve division by ĥ2
g1pCqĥ2

g1pCq, we do not apply any shrinkage to D̂2pCq.659

Baseline-LD-X model660

We include a total of 54 binary functional annotations in the baseline-LD-X model.661

These include 53 annotations introduced in ref.,21 which consists of 28 main annotations662

including conserved annotations (e.g. Coding, Conserved) and epigenomic annotations (e.g.663

H3K27ac, DHS, Enhancer) derived from ENCODE81 and Roadmap,82 24 500-base-pair-664

extended main annotations, and 1 annotation containing all SNPs. We note that although665

chromatin accessibility can be population-specific, the fraction of such regions is small.83
666

Following ref,22 we created an additional annotation for all genomic positions with number667

of rejected substitutions84 greater than 4. Further information for all functional annotations668

included in the baseline-LD-X model is provided in Table S1a.669

We also include a total of 8 continuous-valued annotations in the baseline-LD-X model.670

First, we include 5 continuous-valued annotations introduced in ref.22 (see URLs), without671

modification: background selection statistic,30 CpG content (within a �50 kb window),672
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GERP (number of substitutation) score,84 nucleotide diversity (within a �10 kb window),673

and Oxford map recombination rate (within a �10 kb window).85 Second, we include 2674

minor allele frequency (MAF) adjusted annotations introduced in ref.,22 with modification:675

level of LD (LLD) and predicted allele age. We created analogous annotations applicable to676

both East Asian and European populations. To create an analogous LLD annotation, we677

estimated LD scores for each population using LDSC,75 took the average across populations,678

and then quantile-normalized the average LD scores using 10 average MAF bins. We call679

this annotation “average level of LD”. To create analogous predicted allele age annotation,680

we quantile-normalized allele age estimated by ARGweaver86 across 54 multi-ethnic genomes681

using 10 average MAF bins. Finally, we include 1 continuous-valued annotation based on682

FST estimated by PLINK2,87 which implements the Weir & Cockerham estimator of FST.88
683

Further information for all continuous-valued annotations included in the baseline-LD-X684

model is provided in Table S1b.685

Code and data availability686

Python code implementing S-LDXR is available at https://github.com/huwenboshi/687

s-ldxr. Python code for simulating GWAS summary statistics under the baseline-LD-688

X model is available at https://github.com/huwenboshi/s-ldxr-sim. baseline-LD-X689

model annotations and LD scores are available at https://data.broadinstitute.org/690

alkesgroup/S-LDXR/.691

Simulations692

We used simulated East Asian (EAS) and European (EUR) genotype data to assess693

the performance our method, as we did not have access to real EAS genotype data at694

sufficient sample size to perform simulations with real genotypes. We simulated genotype695

data for 100,000 East-Asian-like and 100,000 European-like individuals using HAPGEN225
696

(see URLs), which preserves population-specific MAF and LD patterns, starting from phased697

haplotypes of 481 East Asians and 489 Europeans individuals available in the 1000 Genomes698

Project16 (see URLs), restricting to �2.5 million SNPs on chromosome 1 – 3 with minor699

allele count greater than 5 in either population. Since direct output of HAPGEN2 includes700

substantial relatedness,2 we used PLINK287 (see URLs) to remove simulated individuals701

with genetic relatedness greater than 0.05, resulting in 35,378 EAS-like and 36,836 EUR-702

like individuals. From the filtered set of individuals, we randomly selected 500 individuals703

in each simulated population to serve as reference panels. We used 18,418 EAS-like and704

36,836 EUR-like individuals to simulate GWAS summary statistics, capturing the imbalance705
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in sample size between EAS and EUR GWAS in analysis of real traits. In our secondary706

simulations, we also decreased or increased the reference panel size or decreased the GWAS707

sample size, to evaluate the robustness of our method with respect to reference panel size708

and GWAS sample size.709

We performed both null simulations, where enrichment of squared trans-ethnic genetic710

correlation, λ2pCq, is 1 across all functional annotations, and causal simulations, where711

λ2pCq varies across annotations, under various degrees of polygenicity (1%, 10%, and 100%712

causal SNPs). In the null simulations, we set τ1C , τ2C , θC to be the meta-analyzed τC in713

real-data analyses of EAS GWASs, and followed Equation (3) to obtain variance, Varrβ1js714

and Varrβ2js, and covariance, Covrβ1j, β2js, of per-SNP causal effect sizes β1j, β2j, setting715

all negative per-SNP variance and covariance to 0. In the causal simulations, we directly716

specified per-SNP causal effect size variances and covariances using self-devised τ1C , τ2C , and717

θC coefficients, to attain λ2pCq � 1, as these were difficult to attain using the coefficients718

from analyses of real traits.719

We randomly selected a subset of SNPs to be causal for both populations, and set720

Varrβ1js, Varrβ2js, and Covrβ1j, β2js to be 0 for all remaining non-causal SNPs. We scaled721

the trans-ethnic genetic covariance to attain a desired genome-wide rg. Next, we drew722

causal effect sizes of each causal SNP j in the two populations from the bi-variate Gaussian723

distribution,724

�
β1j

β2j

�
� N

��
0

0

�
,

�
Varrβ1js Covrβ1j, β2js

Covrβ1j, β2js Varrβ2js

��
, (12)

and scaled the drawn effect sizes to match the desired total heritability and trans-ethnic725

genetic covariance. We also performed null simulations in which imperfect genome-wide726

trans-ethnic genetic correlation is due to population-specific causal variants. In these sim-727

ulations, we randomly selected 10% of the SNPs to be causal in each population, with728

80% of causal variants in each population shared with the other population, and sampled729

perfectly correlated causal effect sizes for shared causal variants using Equation (12). We730

simulated genetic component of the phenotype in population p asXpβp, whereXp is column-731

centered genotype matrix, and drew environmental effects, εp, from the Gaussian distribu-732

tion, N
�
0, 1 � VarrXpβps

�
, such that the total phenotypic variance in each population is733

1. Finally, we simulated GWAS summary association statistics for population p, Zp, as734

Zpj � Xᵀ
pjY p?
Npσpj

, where σpj is the standard deviation of SNP j in population p. We have735

publicly released Python code for simulating GWAS summary statistics for 2 populations736

(see URLs). Fifth, we performed additional null simulations with annotation-dependent737
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MAF-dependent genetic architectures,26–28 defined as architectures in which the level of738

MAF-dependence is annotation-dependent.739

We also performed null simulations with annotation-dependent MAF-dependent ge-740

netic architectures,26–28 defined as architectures in which the level of MAF-dependence is741

annotation-dependent, to assess the impact on estimates of enrichment of stratified squared742

trans-ethnic genetic correlation, (λ2pCq). In these simulations, we set the variance of causal743

effect size of each SNP j in both populations to be proportional to rpj,maxp1 � pj,maxqsα,744

where pj,max is the maximum MAF of SNP j in the two populations. (We elected to use745

maximum MAF because a SNP that is rare in one population but common in the other is746

less likely to be impacted by negative selection.) We set α to �0.38, as previously estimated747

for 25 UK Biobank diseases and complex traits in ref.28. We sampled causal effect sizes using748

Equation (12), with Varrβ1js, Varrβ2js, and Covrβ1j, β2js scaled to attain a desired genome-749

wide heritability and trans-ethnic genetic correlation. We randomly selected 10% of SNPs750

to be causal in both populations. Additionally, in the top quintile of background selection751

statistic, we selected 1.8� more low-frequency causal variants (pj,max   0.05) than common752

variants (pj,max ¥ 0.05), capturing the action of negative selection across low-frequency and753

common variants.27
754

Summary statistics for 31 diseases and complex traits755

We analyzed GWAS summary statistics of 31 diseases and complex traits, primarily756

from UK Biobank,74 Biobank Japan,20 and CONVERGE.18 All summary statistics were757

based on genotyping arrays with imputation to an appropriate LD reference panel (e.g.758

Haplotype Reference Consortium89 and UK10K90 for UK Biobank,74 the 1000 Genomes759

Project16 for Biobank Japan20), except those of the MDD GWAS in the East Asian popula-760

tion, which was based on low-coverage whole genome sequencing data.18 These include: atrial761

fibrillation (AF),91,92 age at menarche(AMN),93,94 age at menopause (AMP),93,94 basophil762

count(BASO),20,95 body mass index (BMI),20,96 blood sugar(BS),20,96 diastolic blood pres-763

sure (DBP),20,96 eosinophil count(EO),20,96 estimated glomerular filtration rate (EGFR),20,97
764

hemoglobin A1c(HBA1C),20,96 height (HEIGHT),96,98 high density lipoprotein (HDL),20,96
765

hemoglobin (HGB),20,95 hematocrit (HTC),20,95 low density lipoprotein (LDL),20,96 lym-766

phocyte count(LYMPH),20,96 mean corpuscular hemoglobin (MCH),20,96 mean corpuscular767

hemoglobin concentration (MCHC),20,95 mean corpuscular volume (MCV),20,95 major de-768

pressive disorder (MDD),18,99 monocyte count (MONO),20,96 neutrophil count(NEUT),20,95
769

platelet count (PLT),20,96 rheumatoid arthritis(RA),100 red blood cell count (RBC),20,96 sys-770

tolic blood pressure (SBP),20,96 schizophrenia (SCZ)101, type 2 diabetes (T2D),102,103 total771

26

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2020. ; https://doi.org/10.1101/803452doi: bioRxiv preprint 

https://doi.org/10.1101/803452
http://creativecommons.org/licenses/by-nc/4.0/


cholesterol (TC),20,96 triglyceride (TG),20,96 and white blood cell count (WBC).20,96 Further772

information for the GWAS summary statistics analyzed is provided in Table S16. In our773

main analyses, we performed random-effect meta-analysis to aggregate results across all 31774

diseases and complex traits. To test if the meta-analyzed λ̂2pCq is significantly different775

from 1, we computed a test statistic as λ̂2pCq�1

s.e.pλ̂2pCqq
, where s.e.pλ̂2pCqq is the standard error of776

meta-analyzed λ̂2pCq, and obtained a p-value under the normal distribution. We also de-777

fined a set of 20 approximately independent diseases and complex traits with cross-trait r2
g778

(estimated using cross-trait LDSC71) less than 0.25 in both populations: AF, AMN, AMP,779

BASO, BMI, EGFR, EO, HBA1C, HEIGHT, HTC, LYMPH, MCHC, MCV, MDD, NEUT,780

PLT, RA, SBP, TC, TG.781

Expected enrichment of stratified squared trans-ethnic genetic cor-782

relation from 8 continuous-valued annotations783

To obtain expected enrichment of squared trans-ethnic genetic correlation of a binary784

annotation C, λ2pCq, from 8 continuous-valued annotations, we first fit the S-LDXR model785

using these 8 annotations together with the base annotation for all SNPs, yielding coefficients,786

τ1C1 , τ2C1 , and θC1 , for a total of 9 annotations. We then use Equation (3) to obtain per-SNP787

variance and covariance of causal effect sizes, β1j and β1j, substituting τ1C , τ2C , θC with τ1C1 ,788

τ2C1 , and θC1 , respectively. We apply shrinkage with default parameter setting (α � 0.5),789

and use Equation (9) and (10) to obtain expected stratified squared trans-ethnic genetic790

correlation, r2
gpCq, and subsequently λ2pCq.791

Analysis of specifically expressed gene annotations792

We obtained 53 specifically expressed gene (SEG) annotations, defined in ref.24 as793

�100k-base-pair regions surrounding genes specifically expressed in each of 53 GTEx32 tis-794

sues. A list of the SEG annotations is provided in Table S2. Correlations between SEG795

annotations and the 8 continuous-valued annotations are reported in Figure S28 and Table796

S2. Most SEG annotations are moderately correlated with the background selection statistic797

and CpG content annotations.798

To test whether there is heterogeneity in enrichment of squared trans-ethnic genetic799

correlation, λ2pCq, across the 53 SEG annotations, we first computed the average λ2pCq800

across the 53 annotations, λ̄2pCq, using fixed-effect meta-analysis. We then computed the test801

statistic
°53
i�1

pλ̂2pCiq�λ̄
2pCiqq2

Varrλ̂2pCiqs
, where Ci is the i-th SEG annotation, and λ̂2pCiq the estimated802

λ2pCq. We computed a p-value for this test statistic based on a χ2 distribution with 53803
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degrees of freedom.804

Analysis of distance to nearest exon annotation805

We created a continuous-valued annotation, named “distance to nearest exon annota-806

tion”, based on a SNP’s physical distance (number of base pairs) to its nearest exon, using807

233,254 exons defined on the UCSC genome browser104 (see URLs). This annotation is mod-808

erately correlated with the background selection statistic annotation22 (R � �0.21), defined809

as (1 - McVicker B statistic / 1000), where the McVicker B statistic quantifies a site’s genetic810

distance to its nearest exon.30 We have publicly released this annotation (see URLs).811

To assess the informativeness of functionally important regions versus regions impacted812

by selection in explaining the depletions of squared trans-ethnic genetic correlation, we ap-813

plied S-LDXR on the distance to nearest exon annotation together with the baseline-LD-X814

model annotations. We used both enrichment of squared trans-ethnic genetic correlation815

(λ2pCq) and standardized annotation effect size (τ�1C , τ�2C , and θ�C) to assess informativeness.816

Analysis of probability of loss-of-function intolerance decile gene817

annotations818

We created 10 annotations based on genes in deciles of probability of being loss-of-819

function intolerant (pLI) (see URLs), defined as the probability of assigning a gene into820

haplosufficient regions, where protein-truncating variants are depleted.56 Genes with high821

pLI (e.g. ¡ 0.9) have higly constrained functionality, and therefore mutations in these genes822

are subject to negative selection. We included SNPs within a 100kb-base-pair window around823

each gene, following ref.24 A correlation heat map between pLI decile gene annotations and824

the 8 continuous-valued annotations is provided in Figure S29. All pLI decile gene anno-825

tations are moderately correlated with the background selection statistic and CpG content826

annotations.827

Analysis of the integrated haplotype score annotation828

We created a binary annotation (proportion of SNPs: 6.3%) that includes all SNPs829

whose maximum absolute value of the integrated haplotype score (iHS)43,44 (see URLs)830

across all 1000 Genomes Project EAS and EUR sub-populations are greater than 2.0, the831

recommended threshold to detect positive selection in ref.43. This annotation is positively832

correlated with the top quintile of the background selection statistic annotation (R � 0.077).833

We note that although the iHS is a recombination-rate-adjusted quantity to detect the action834
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of recent positive selection, it may also capture actions of negative selection.43,44
835
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Figure 1: Accuracy of S-LDXR in null and causal simulations. We report estimates
of the enrichment/depletion of squared trans-ethnic genetic correlation (λ2pCq) in both null
and causal simulations, for (a) quintiles of 8 continuous-valued annotations and (b) 28 main
binary annotations (sorted by proportion of SNPs, displayed in parentheses). Results are
averaged across 1,000 simulations. Error bars denote �1.96� standard error. Numerical
results are reported in Table S5 and S8.

30

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2020. ; https://doi.org/10.1101/803452doi: bioRxiv preprint 

https://doi.org/10.1101/803452
http://creativecommons.org/licenses/by-nc/4.0/


a

Ave
rag

e L
LD

Back
gro

un
d s

ele
cti

on
 st

ati
stic

CpG
 co

nte
nt

GER
P (

NS)

Nucl
eo

tid
e d

ive
rsi

ty

Pre
dic

ted
 al

lele
 ag

e

Reco
mbin

ati
on

 ra
te

SN
P-s

pe
cifi

c F
st

Average LLD

Background selection statistic

CpG content

GERP (NS)

Nucleotide diversity

Predicted allele age

Recombination rate

SNP-specific Fst
0.4

0.2

0.0

0.2

0.4

b

0.6

0.8

1.0

1.2

1.4

2 (
C)

1st quintile (smallest) 2nd quintile 3rd quintile 4th quintile 5th quintile (largest)

0.0

2.5

EA
S

Ave
rag

e 

 LL
D

0.0

2.5

EU
R

Back
gro

un
d 

 se
lec

tio
n 

 st
ati

stic
CpG

 co
nte

nt

GER
P (

NS)

Nucl
eo

tid
e 

 di
ve

rsi
ty

Pre
dic

ted
 

 al
lele

 

 ag
e

Reco
mbin

ati
on

 

 ra
te

SN
P-s

pe
cifi

c 

 F st

h2 g
(C

) e
nr

ich
m

en
t

Figure 2: S-LDXR results for quintiles of 8 continuous-valued annotations across
31 diseases and complex traits. (a) We report correlations between each continuous-
valued annotation; diagonal entries are not shown. Numerical results are reported in Table
S1. (b) We report estimates of the enrichment/depletion of squared trans-ethnic genetic
correlation (λ2pCq), as well as population-specific estimates of heritability enrichment, for
quintiles of each continuous-valued annotation. Results are meta-analyzed across 31 diseases
and complex traits. Error bars denote �1.96� standard error. Red stars (�) denote two-
tailed p 0.05/40. Numerical results are reported in Table S17.
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Figure 3: S-LDXR results for 20 binary functional annotations across 31 diseases
and complex traits. (a) We report estimates of the enrichment/depletion of squared
trans-ethnic genetic correlation (λ2pCq), as well as population-specific estimates of heri-
tability enrichment, for each binary annotation (sorted by proportion of SNPs, displayed
in parentheses). Results are meta-analyzed across 31 diseases and complex traits. Error
bars denote �1.96� standard error. Red stars (�) denote two-tailed p 0.05/20. Numerical
results are reported in Table S18. (b) We report observed λ2pCq vs. expected λ2pCq based
on 8 continuous-valued annotations, for each binary annotation. Results are meta-analyzed
across 31 diseases and complex traits. Error bars denote �1.96� standard error. Annota-
tions for which λ2pCq is significantly different from 1 (p 0.05/20) are denoted in color (see
legend) or dark gray. The dashed black line (slope=0.57) denotes a regression of observed
λpCq � 1 vs. expected λpCq � 1 with intercept constrained to 0. Numerical results are
reported in Table S20.
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Figure 4: S-LDXR results for 53 specifically expressed gene (SEG) annota-
tions across 31 diseases and complex traits. (a) We report estimates of the enrich-
ment/depletion of squared trans-ethnic genetic correlation (λ2pCq) for each SEG annotation
(sorted by λ2pCq). Results are meta-analyzed across 31 diseases and complex traits. Error
bars denote �1.96� standard error. Red stars (�) denote two-tailed p 0.05/53. Numerical
results are reported in Table S21. (b) We report observed λ2pCq vs. expected λ2pCq based
on 8 continuous-valued annotations, for each SEG annotation. Results are meta-analyzed
across 31 diseases and complex traits. Error bars denote �1.96� standard error. Annota-
tions are color-coded as in (a). The dashed black line (slope=0.96) denotes a regression of
observed λpCq � 1 vs. expected λpCq � 1 with intercept constrained to 0. Numerical results
and population-specific heritability enrichment estimates are reported in Table S23.
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Figure 5: S-LDXR results for 53 specifically expressed gene (SEG) annotations
for BMI and height. (a) We report estimates of the enrichment/depletion of squared
trans-ethnic genetic correlation (λ2pCq) for each SEG annotation for BMI and height. SEG
annotations are ordered as in Figure 4. Error bars denote �1.96� standard error. Red stars
(�) denote two-tailed p   0.05{53 for each respective trait. (b) We report λ2pCq estimates
for height vs. BMI for each SEG annotation. These estimates were moderately correlated
(R � 0.35). Annotations are color-coded as in (a). For Pituitary, height λ2pCq is left-shifted
by 0.008 and BMI λ2pCq is right-shifted by 0.008 for easier visualization of standard errors.
Error bars denote �1.96� standard error. The dashed black line denotes the y vs x line.
Numerical results for all 31 diseases and complex traits are reported in Table S24.
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