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ABSTRACT
Natural populations are often exposed to temporally varying environments. Evolutionary dynamics in pe-
riodically or stochastically modulated environments have been extensively studied, both theoretically and
experimentally, though understanding the effects of temporally varying selection pressures remains challeng-
ing. Here we investigate how periodic cycling between a pair of statistically related fitness landscapes affects
the evolved fitness of an asexually reproducing population. Inspired by collateral sensitivity that frequently
arises between antibiotics, we construct pairs of fitness landscapes that share global fitness features (i.e.
identical mean and variance) but are correlated with one another in a tunable way, resulting in landscape
pairs that range from perfectly anti-correlated to perfectly correlated. We find that switching between these
landscape pairs can drive the system to different regions of genotype space and, depending on the rugged-
ness of the landscape and the inter-landscape correlation, can either increase or decrease steady-state fitness
relative to evolution in single environments. In addition, we show that switching between rugged landscapes
often selects for increased fitness in both landscapes, even in situations where the landscapes themselves are
anti-correlated. We demonstrate that positively correlated landscapes often possess a shared maximum in
both landscapes that allows the population to step through sub-optimal local fitness maximums that often
trap single landscape evolution trajectories. Finally, we demonstrate that switching between strongly anti-
correlated paired landscapes leads to ergodic-like dynamics where each genotype is populated with nonzero
probability, dramatically lowering the steady-state fitness in comparison to single landscape evolution.

I. INTRODUCTION

Natural populations experience tremendous environ-
mental diversity, and understanding how this spatiotem-
poral diversity influences evolutionary dynamics is a
long-standing challenge. A great deal of work, both
theoretical and experimental, has shown that spatial1–10

and temporal11–30 heterogeneity play an important role
in adaptation of asexual communities. For example,
temporal or spatial fluctuations may lead to increased
fixation probability and adaptation rates1,2,5,11,17,18,26,
a phenomenon that is also exploited in genetic pro-
gramming algorithms31. In addition, environments that
change in systematic ways may promote facilitated varia-
tion32,33, allowing organisms to preferentially harness the
beneficial effects of random genetic changes and rapidly
adapt to future perturbations. And when phenotypes
themselves fluctuate over time, the frequency of inter-
phenotype switching can evolve to match the timescale
of environmental fluctuations15,16,19,20.

It is increasingly clear that these evolutionary dy-
namics have practical consequences for human health.
The rise of drug resistance, which threatens the effi-
cacy of treatments for bacterial infections, cancer, and
viruses, is driven–at least in part–by evolutionary adap-
tion occurring in complex, heterogeneous environments.
Spatial heterogeneity in drug concentration has been
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shown to accelerate the evolution of resistance34–39,
though adaptation may also be slowed when fitness land-
scapes36 or drug profiles40 are judiciously tuned. Simi-
larly, temporal variations in drug exposure–for example,
drug cycling–can slow resistance under some conditions,
though hospital-level strategies such as mixing may be
more effective at generating the requisite environmental
heterogeneity41,42. Recent studies have also shown the
potential of new control strategies that harness so-called
collateral effects43–59, which occur when resistance to a
target drug is accompanied by an increase or decrease
in resistance to an unseen stressor. In essence, these
strategies force populations to simultaneously adapt to
incompatible evolutionary tasks60,61.

Evolutionary adaptation is often modeled as a biased
random walk on a high-dimensional landscape that links
each specific genotype with a particular fitness62–64. In
the simplest scenario, these landscapes represent evo-
lution in the strong selection weak mutation (SSWM)
limit, where isogenic populations evolve step-wise as the
current genotype is replaced by that of a fitter descen-
dant. While these idealized models are strictly valid only
under certain conditions–for example, SSWM typically
holds when mutation rate and effective population size
are small–simple models have contributed significantly
to our understanding of evolution12,13,63–67. In the con-
text of fitness landscape models, control strategies that
exploit collateral effects force the population to adapt
to sequences of distinct, but statistically related, land-
scapes. For example, alternating between two drugs that
induce mutual collateral sensitivity (adaptation to drug
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A leads to sensitivity to drug B, and vice versa) corre-
sponds to landscapes with anti-correlated fitness peaks.
When environments change in systematic ways–for ex-
ample, by forcing the population to adapt to modular
tasks comprised of related sub-goals–adaptation may se-
lect for generalists, genotypes that are fit in a wide range
of environments at the cost of suboptimal specializa-
tion for any particular task33,68. Relatively recent theo-
retical work also shows that conditional effects of evo-
lutionary history can be captured by slowly changing
landscapes–seascapes–which allow for the incorporation
of time-dependent correlations10,21. In general, however,
understanding evolution in correlated landscapes–and in
particular, how the choice of that correlation impacts fit-
ness adaptation–remains challenging.

In this work, we investigate evolutionary dynamics
of asexual populations in rapidly alternating environ-
ments described by pairs of (potentially rugged) fit-
ness landscapes with tunable inter-landscape correlations
(Fig 1). This problem is loosely inspired by adapta-
tion of microbial communities to 2-drug cycles in which
each drug induces collateral resistance or sensitivity to
the other, though the scenario in question may arise
in many different contexts, including evolution in anti-
bodies69 and viruses70. Our goal is to understand how
the interplay between intra-landscape disorder (rugged-
ness) and inter-landscape fitness correlations impact fit-
ness. By formulating the evolutionary dynamics as a
simple Markov chain71,72, we are able to efficiently cal-
culate time-dependent genotype distributions and inves-
tigate adaptation to ensembles of landscape pairs with
various levels of epistasis and fitness correlations–results
that would be more difficult to achieve from stochastic
simulations alone. We find that rapid switching can ei-
ther increase or decrease the steady state fitness of the
population, depending on both the correlation between
landscapes and level of intra-landscape ruggedness (i.e.
epistasis). On short timescales, mean fitness is generally
highest in static landscapes, but rapid switching between
correlated environments can produce fitness gains for suf-
ficiently rugged landscapes on longer timescales. Sur-
prisingly, longer periods of rapid switching can also pro-
duce a genotype distribution whose fitness is, on average,
larger than that of the ancestor population in both envi-
ronments, even when the landscapes themselves are anti-
correlated. To intuitively understand these results, we vi-
sualized genotype distributions and inter-genotype tran-
sitions as network diagrams, revealing that rapid switch-
ing in highly correlated environments frequently shep-
herds the population to genotypes that are locally opti-
mal in both landscapes and, in doing so, fosters escape
from the locally optimal but globally suboptimal fitness
peaks that limit adaptation in static environments. The
dynamics arise, in part, from the fact that rugged land-
scape pairs are increasingly likely to exhibit shared max-
ima as they become more positively correlated, and in
turn, for landscapes with positive correlations, the mean
fitness of these shared peaks is higher than that of non-
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FIG. 1. Adaptation to alternating landscapes may depend
on inter-landscape correlations A. Schematic fitness landscape,
with fitness varying from less fit (blue) to more fit (red) over the
two dimensional genotype space. Starting from a single genotype
(lower right hand corner), adaptation follows a biased random walk
(arrows) toward local fitness maxima (in this case, in the upper
left side of the landscape). B and C. Fitness landscapes A and B
are positively (B) or negatively (C) correlated and do not share
a global fitness maximum. Adaptation under rapid alternation of
landscapes A and B leads to an altered evolutionary trajectory
(represented as arrows, with solid arrows indicating steps in A and
dashed arrows steps in B). In this example, the final fitness achieved
in both correlated (panel B) and anti-correlated (panel C) land-
scapes is lower than that of static landscape evolution (panel A).
Adaptation to anti-correlated landscapes leads to a particularly
significant decrease in final fitness, as each step in B effectively
reverses the progress made the previous step in A.

shared peaks. By contrast, evolution in anti-correlated
landscape pairs sample large regions of genotype space,
exhibiting ergodic-like steady-state behavior that results
in decreased average fitness.
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II. RESULTS

A. Markov chain model of evolution in alternating
landscape pairs with tunable correlations

We consider evolution of an asexual haploid genome
with N mutational sites. Each mutational site can have
one of two alleles (labeled 0 or 1), and a single genotype
can therefore be represented by one of the 2N possible
binary sequences of length N. The fitness of each geno-
type depends on the specific environment in which evolu-
tion takes place. We consider two different environments
(“A” and “B”), and in each environment, every genotype
is assigned a fixed fitness value, which defines the corre-
sponding fitness landscapes (landscape A and landscape
B) in each environment. Each fitness landscape is there-
fore defined on an N -dimensional hypercubic graph, with
the nodes corresponding to specific genotypes.

To construct the landscape for a given environment, we
use a many-peaked “rough Mt. Fuji” landscape25,73,74.
Specifically, we assume that the fitness of the ancestor
genotype (0,0,0...0) is zero and that the fitness fi associ-
ated with a single mutation at mutational site i is drawn
from a uniform distribution on the interval [-1,1]. Sin-
gle mutations can therefore lead to increases (fi > 0) or
decreases (fi < 0) in fitness. To fully specify the base
landscape (i.e. the smooth landscape in the absence of
epistasis), we then assume fitness associated with multi-
ple mutations is additive. Finally, landscape ruggedness
is incorporated by adding to the fitness of each genotype
j a fixed, random variable ξj drawn from a zero-mean
normal distribution with variance σ2. The variable σ–the
amplitude of the noise–determines the level of ruggedness
of the landscape, which simulates epistasis (interactions
between genes75–81). In what follows, we focus on land-
scapes of size N = 7 (128 total genotypes) for computa-
tional convenience and limit ourselves primarily to σ = 0
(smooth landscapes) or σ=1 (rugged landscapes).

Our goal is to investigate evolution in rapidly changing
environments that correspond to landscapes pairs with
correlated fitness peaks. To do so, we generate for each
landscape A a “paired” landscape B with similar sta-
tistical properties (identical fitness mean and variance)
but fitness peaks that are, on average, correlated with
those of landscape A in a tunable way. To do so, we
represent each landscape A as a vector Ā of length 2N

and use simple matrix algebra to generate a random vec-
tor Ā⊥ orthogonal to Ā; by construction, then, this vec-
tor corresponds to a landscape whose fitness values are,
on average, uncorrelated with those of landscape A. It
is then straightforward to generate a vector B̄, a linear
combination of Ā and Ā⊥, such that the fitness values
of landscapes A and B are correlated to a tunable degree
−1 ≤ ρ ≤ 1, where ρ is the Pearson correlation coefficient
between the two vectors Ā and B̄. (see Methods).

With the landscapes specified, we then model adap-
tation in the well-characterized Strong Selection Weak
Mutation (SSWM) limit62–64, which can be formally de-

scribed by a Markov chain71,72. During each time step,
the population transitions with uniform probability to
one of the neighboring genotypes with a higher fitness
in the current environment. We compare adaptation
on a single landscape (single landscape evolution, SLE)
with adaptation to rapid alternation of the two corre-
lated landscapes A and B, which we refer to as paired
landscape evolution (PLE). We focus here on the limit
of rapid environmental switching, where the fitness land-
scape changes (A-B-A-B...) at each time step. This cor-
responds loosely to the rapid environmental switching
seen in many laboratory experiments82–85.

We are primarily interested in comparing the (aver-
age) steady-state fitness of populations undergoing SLE
to that of populations undergoing PLE. The average fit-
ness, F̄X(p̄) , in environment X can be calculated at any
time step t using F̄X(p̄) = X̄ ·p̄(t), where p̄(t) is the vector

whose ith component is the probability to be in genotype
i at time t and X̄ is the landscape vector for environment
X. Because the process can be described by a Markov
chain, the vector p̄(t) is given by p̄(t) = TM p̄(0), where
the matrix TM describes the sequence of environments
over time (e.g. TM = TM

A for M steps in environment

A, or TM = (TBTA)M/2 for M consecutive A-B cycles,
with TA and TB the transition matrices corresponding
to single steps in environment A and B, respectively).
In what follows, we focus primarily on the mean fitness
difference between the SLE and PLE adaptation, which
is given by F̄A

∆ ≡ F̄A(p̄A) − F̄A(p̄AB), where p̄A is the
steady state genotype distribution following adaptation
to environment A, and p̄AB is the steady state genotype
distribution following adaptation to alternating A-B en-
vironments. Note that we define this fitness difference,
F̄A

∆ , with respect to landscape Ā (noted by superscript),
which allows us to compare adaptation in environment A
with adaptation in the alternating A-B environments. In
the drug cycling analogy, we are measuring the average
fitness in the drug A environment–essentially a measure
of resistance to that drug. In all calculations, we consider
an ensemble of 1000 landscapes pairs–with each pair shar-
ing the same mean and variance in fitness and the same
inter-landscape correlations–and we average the results
over this ensemble.

B. Adaptation in rugged landscapes frequently ends in
local, sub-optimal fitness maxima

While adaptation to static, rugged landscapes is well-
understood, we first briefly the effects of landscape
ruggedness in the context of the current model. In static
landscapes, steady state is reached when the genotype
corresponds to a local fitness maximum. In the case of
smooth, purely additive landscapes (σ = 0), there is a
single fitness peak that corresponds to the global max-
imum, which we call gMax. However, as the landscape
becomes more rugged (σ > 0), the average number of lo-
cal maxima increases, eventually reaching the theoretical
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FIG. 2. Rugged landscapes trap populations in non-
optimal fitness maxima A. Left panel: average number of local
fitness maxima per landscape as a function of increasing rugged-
ness (epistasis, σ). Dotted red line is the theoretical maximum
(2N/(N + 1) = 16). Right panel: fraction of adapted popula-
tions that reach the global fitness maximum value as a function of
ruggedness. Error bars are ± standard error of the mean in the
ensemble of landscapes. B. Sample adaptive trajectories for small
landscapes (N = 4) and σ = 0 (left) or σ = 1 (right). Each circle
represents a genotype, with the ancestral genotype at the top. The
shading of the circle represents the relative fitness of that genotype
(ranging from less fit, white, to more fit, black) and the size of
the circle indicates occupation probability in the steady state. Red
+ symbols mark genotypes corresponding to local fitness maxima.
Arrows represent transitions between genotypes that occur with
nonzero probability given that adaptation begins in the ancestral
genotype.. The width of the arrow represents the magnitude of the
transition probability.

maximum of 2N/(N+1) (Fig 2A). In turn, the fraction of
adaptation trajectories that reach the global maximum
decreases, reflecting the propensity of rugged landscapes
to trap evolution in globally sub-optimal genotypes. To
visualize these results, we represented the steady state
genotype distributions and inter-genotype transitions as
a network diagram (Fig 2B), with each node (circle) rep-
resenting a genotype. The shading of each circle repre-
sents the relative fitness of that genotype (ranging from
less fit, white, to more fit, black) and the size of the cir-
cle indicates occupation probability in the steady state.
Arrows connecting different genotypes indicate nonzero
transition probabilities, with the thickness of the arrow
corresponding to its magnitude. We show only those
transitions that can occur when adaptation starts in the
ancestor genotype (top of diagram). In the case of evolu-
tion on a smooth landscape (σ = 0, Fig 2B, left panel), all

trajectories lead to the single global maximum (indicated
by red “+”). However, in the rugged landscape (σ = 1,
Fig 2B, right panel), there is a nonzero probability of set-
tling in each of three local maxima, and the population
frequently ends in a non-optimal genotype. Increasing
ruggedness would therefore be expected to lower the av-
erage fitness achieved in an ensemble of landscapes.

C. Switching between positively correlated landscapes can
produce higher average fitness than adaptation to a static
environment

Next, we set out to compare adaptation to landscape
A with adaptation to alternating landscapes (A, B) with
a tunable level of correlation, ρ, in the absence of epis-
tasis (σ = 0, Fig 3A, blue). On these smooth land-
scapes, the fitness is single-peaked25, and in the absence
of switching, the population always reaches this global
maximum. In alternating environments, adaptation ap-
proaches the same average fitness as in static environ-
ments (i.e. F̄A

∆ ≈ 0)–implying that it finds the global
fitness maximum–for all but the most negatively cor-
related landscapes (ρ < −0.85), where switching leads
to steep decreases in fitness. By contrast, when land-
scapes are rugged (σ = 1), we find a range of correlations
for which switching (PLE) increases the mean fitness
(F̄A

∆ < 0, Fig 3A, orange). Furthermore, as ruggedness
increases, the range of correlations leading to increased
fitness grows (Fig 3B).

D. Fitness can be maximally increased in either static or
alternating environments depending on the timescale

We find that adaptation to static environments typ-
ically occurs on a faster timescale than adaptation to
alternating environments (Fig S2). As a result, the pro-
tocol yielding the highest average fitness may differ de-
pending on the timescale over which the comparison is
made. For example, on short timescales (5 evolution-
ary steps, (Fig 3C, blue), adaptation to static environ-
ments always leads to greater fitness gain, regardless of
the correlation between landscapes. On moderate (11
evolutionary steps, Fig 3C, red) to long (Fig 3C, black)
timescales, however, we again see a range of positive cor-
relations for which switching improves fitness–first only
for highly correlated landscapes, and then eventually for
a wider range of positively correlated landscapes. This
result indicates that the optimal protocol for increas-
ing fitness may depend on the chosen timescale. In the
context of drug cycling, these results suggest that differ-
ent strategies may be called for in scenarios that heav-
ily weight short-term evolutionary dynamics–for exam-
ple, the treatment regime for a single patient–and those
associated with long evolutionary time-scales, such as the
emergence of hospital-wide antibiotic resistance over the
course of years.
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FIG. 3. Modulated fitness in alternating landscapes depends on intra-landscape ruggedness and inter-landscape correla-
tions. A. Difference in average fitness (at steady state) between populations adapted to a single static landscape (A) or rapidly alternating
landscape pairs (A-B) as a function of correlation between landscapes A and B. Average fitness is defined as the mean fitness of the steady
state genotypte distribution (which arises following adaptation to either static or switching protocols) measured in landscape A. Blue
curve: σ = 0 (no epistasis; smooth); Orange curve: σ = 1 (orange; rugged). Dotted vertical line (corresponding to zero fitness difference)
indicates critical value of correlation; above this critical value, switching between rugged landscape pairs (σ = 1) leads to larger fitness
gains than evolution in a static landscape. B. Heatmap showing regions of parameter space (ruggedness σ, inter-landscape correlation)
where switching leads to higher (red) or lower (blue) fitness than evolution in a static landscape. C. Identical to panel A, but curves are
shown for 5 (blue), 11 (red) and 501 (black) evolutionary steps. σ=1 for all curves. D. Collateral fitness change, ranging from blue (less
fit) to red (more fit), for populations adapted to alternating environments A and B as a function of ruggedness (σ) and inter-landscape
correlation. Collateral fitness change is defined as the increase in average fitness in landscape B (relative to ancestor) associated with the
steady state genotype distribution arising from adaptation to alternating A-B landscapes. N = 7 in all panels, but see also Figure S1.
Error bars in panels A and C are ± standard error of the mean in the ensemble of landscapes.

E. Adaptation to alternating landscapes can lead to
increased mean fitness in both landscapes, even when they
are anticorrelated

While we have so far focused on mean fitness defined
in landscape A, either due to static (F̄A(p̄A)) or alternat-
ing (F̄A(p̄A)) environments, we also asked how fitness in
landscape B was modulated during adaptation. If adap-
tation occurs to a static landscape (A), the results are
simple: the genotype adapted to A will on average ex-
hibit increased (decreased) fitness in B when landscape
B is positively (negatively) correlated with A. This sce-
nario is reminiscent of collateral effects between differ-
ent drugs, where increased resistance to one drug may
be associated with either increased (cross resistance) or
decreased (collateral sensitivity) resistance to a different
(unseen) drug. In the case of alternating environments,
however, the outcome is less clear a priori.

For smooth landscapes (σ = 0), we find that adap-
tation to the alternating landscapes leads to increased
fitness in B (F̄B(p̄AB) > 0) when the landscapes are pos-
itively correlated and decreased fitness when they are

negatively correlated (Fig 3D). Nonzero epistasis shifts
the boundary separating increased and decreased fitness
toward negative correlations. As a result, switching leads
to increased fitness in both landscapes for a wider range
of correlations–even, counterintuitively, in cases where
the landscapes are (weakly) anti-correlated. In the con-
text of drug cycling, this result suggests that cross re-
sistance is likely to arise following repeated cycling of
two drugs, even when their fitness landscapes are anti-
correlated (i.e. drugs induce mutual collateral sensitiv-
ity).

F. Alternating between highly-correlated landscapes
promotes escape from local fitness optima

To understand why switching between highly corre-
lated landscapes can increase fitness relative to single
landscape adaptation, we again represented adaptation
on a simple (N = 4) network representing a particular
pair of fitness landscapes (Fig 4). The choice of N=4
allows for a simpler visual interpretation of the results,
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state. Red + symbols mark genotypes corresponding to local fitness maxima. Arrows represent transitions between genotypes that occur
with nonzero probability–that is, the entries of the transition matrix. The width of the arrow represents the magnitude of the transition
probability. Right panel: same as left panel, but showing only transitions that occur during adaptation starting from the ancestral genotype
(top circle). B. Network representations of adaptation (at different time points) in alternating landscapes with positively correlated fitness
peaks. Red number above each landscape represents the current evolutionary time point (ranging from 0 to SS, indicating steady state
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distribution) are listed above each plot. Even numbered steps correspond to landscape A, odd to landscape B.

and the relevant dynamics are qualitatively similar for a
broad range of landscape sizes (Fig S1). The landscape
for environment A is characterized by multiple local max-
ima (Fig 4A, left panel), and in this example, the adap-
tation dynamics starting from the ancestral genotype are
relatively simple, with only two paths possible (Fig 4A,
right panel). With equal probability, the trajectory ends

in one of two possible states, one of which is the global
maximum.

If we now introduce rapid alternation with a second,
positively correlated landscape (ρ = 0.8), the dynamics
are much richer (Fig 4B). In this example, there is a sin-
gle shared (local) maximum between the two landscapes
(marked with red “+”), and adaptation to alternating en-
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vironments eventually shepherds all trajectories to this
shared maximum, which also happens to be the global
maximum. As a result, alternating between landscapes
leads to (on average) greater fitness increases than that
achieved in static landscapes, where trajectories are split
between local and global maxima. Intuitively, this exam-
ple suggests that one advantage of rapid switching is that
it dislodges trajectories from suboptimal local maxima–
that is, switching between highly (but not perfectly) cor-
related landscapes provides a source of fluctuations that
maximize the likelihood of finding globally optimal geno-
types.

G. Evolution in highly anti-correlated paired landscapes
broadly samples genotype space resulting in reduced
average fitness

We now return to dynamics in strongly anti-correlated
landscapes, where shared maxima may be less likely to
occur. To intuitively understand dynamics in this regime,
we visualized the fitness landscape and evolutionary tra-
jectories for a pair of simple (N = 4) anticorrelated land-
scapes (Fig 5). In this example, adaptation to the static
landscape leads to considerably higher fitness than adap-
tation to alternating landscapes. Interestingly, we see
that the genotype distribution remains broad, even for
long times. In fact, the only genotypes that remain un-
occupied (pi = 0) are those five that correspond to local
minima in the A landscape. Including an additional step
in landscape B leads to a similarly broad distribution,
now with unoccupied genotypes corresponding to local
minima of landscape B (Figure S4). In contrast to adap-
tation to single landscapes or alternating, positively cor-
related landscapes, the steady state distribution is not
dominated by local fitness maxima but instead corre-
sponds to broad genotype distribution and an associated
decrease in average fitness.

H. Adaptation to alternating landscapes is frequently
dominated by presence or absence of shared fitness maxima

We hypothesized that the increased fitness in alter-
nating landscapes is closely linked to the expected num-
ber of shared maxima between paired landscapes. To
probe this hypothesis, we first estimated what fraction
of the local maxima in a given fitness landscape would
(on average) also correspond to local maxima in a second
(correlated) landscape. As intuition suggests, the frac-
tion of shared maxima increases with correlation, both
for smooth and rugged landscapes (Fig 6A). In addition,
we estimated the fraction of landscape pairs in the en-
tire ensemble that share at least one shared maximum
(Fig 6B). Again we find that this quantity increases with
correlation, but it does so much more rapidly for rugged
landscapes. For smooth landscapes, the latter fraction
increases gradually–and the curve is identical to that in

(Fig 6A), a result of the fact that smooth landscapes have
only a single (global) maximum.

To link these architectural properties of the landscapes
with dynamics, we calculated adaptation trajectories un-
der rapid switching of all paired landscapes in these
ensembles (Fig 6C). For both smooth landscapes and
negatively correlated rugged landscapes, the fraction of
trajectories ending in a shared maximum closely mir-
rors the fraction of landscapes pairs that share a max-
imum. This correspondence suggests that under these
conditions, when landscapes share a local maximum, the
adapting system is likely to settle there. On the other
hand, for positively correlated rugged landscapes, the
likelihood of finding a shared maximum is relatively in-
sensitive to correlation until ρ becomes quite large, when
it rapidly increases (Fig 6C).

The further clarify the connection between fitness and
shared maxima, we divided the local fitness maxima
from landscape A into one of two categories: those that
also correspond to a local maximum in landscape B,
and those that do not. We found, somewhat counter-
intuitively, that the mean fitness differs for the two cat-
egories (Fig 6D). For negatively correlated landscape
pairs, the fitness of shared maxima is less than that
of non-shared maxima. By contrast, shared maxima in
highly (positively) correlated landscapes have a higher
mean fitness than non-shared maxima. In addition, there
is a range of positive ρ where the fitness of shared max-
ima is also greater than the average fitness of maxima in
a single A landscape (which corresponds to the ρ → 1
limit of the curve), offering an explanation for the fit-
ness increase induced by alternating between highly cor-
related landscapes. Specifically, evolutionary trajectories
typically settle into a single local maxima for adapta-
tion to both static and positively correlated, alternating
environments; however, for a range of highly (but not
perfectly) correlated landscape pairs, the mean fitness of
those shared maxima is greater than the mean fitness of
local maxima in a single A landscape.

I. Steady-state genotype distributions transition from
narrow to broad as correlation is decreased

To further characterize steady state dynamics, we cal-
culated the entropy of the steady state genotype distri-
bution, defined as S(p)/Smax ≡ −

∑
i pi ln pi, where pi is

the steady state probability of being in genotype i and
Smax is the entropy of a uniform distribution (Fig 6E)–
that is, a state where every genotype is equally probable.
To capture dynamics associated with potential non-fixed
point behavior, for this analysis we slightly modify the
definition of steady state to be pi = (pA + pB)/2, where
pA is the steady state fitness following a step in land-
scape A (the previously used definition) and pB the fit-
ness in the same steady state regime but following a step
in landscape B (in words, we average over a full A-B cy-
cle in the steady state). We find that as correlation (ρ)
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FIG. 5. Evolutionary dynamics in alternating landscapes with negatively correlated fitness peaks. A. Left inset: network
representation of adaptation on a static landscape (environment A) of size N = 4. Each circle represents a genotype (ancestral genotype
at the top), with shading indicating the relative fitness of that genotype and size representing the occupation probability in the steady
state. Red + symbols mark genotypes corresponding to local fitness maxima. Arrows represent transitions between genotypes that occur
with nonzero probability. The width of the arrow represents the magnitude of the transition probability. Right panel: same as left panel,
but showing only transitions that occur during adaptation starting from the ancestral genotype (top circle). B. Network representations of
adaptation (at different time points) in alternating landscapes with negatively correlated fitness peaks. Red number above each landscape
represents the current evolutionary time point (ranging from 0 to SS, indicating steady state of approximately 200 steps). Directed arrows
represent possible transitions between genotypes based on the current genotype distribution (indicated by the circle sizes) and the current
landscape (A or B). Average fitness at each time point (calculated over the current genotype distribution) are listed above each plot. Even
numbered steps correspond to landscape A, odd to landscape B.

increases, the entropy of the system decreases, indicat-
ing that the dynamics are confined to an ever smaller set
of genotypes–presumably those corresponding to shared
maxima. Indeed, if we restrict the ensemble to only
those landscape pairs that share a maximum, the en-
tropy of the distribution is unchanged for highly corre-
lated landscapes, suggesting that shared maxima domi-

nate the steady state dynamics. By contrast, when land-
scape pairs are anticorrelated, restricting the ensemble
to pairs without shared maxima closely approximates the
results of the full ensemble, suggesting that dynamics in
this regime are dominated by qualitatively different be-
havior. Consistent with changes in the entropy of the
genotype distribution, we also find that correlation dra-
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FIG. 6. Evolution in alternating landscapes is frequently dominated by presence or absence of shared fitness maxima. A.
Fraction of local maxima in landscape A that also correspond to a shared maxima in landscape B (σ = 0, blue; and σ = 1, red). B. Fraction
of landscape pairs share at least one maximum. C. Fraction of trajectories ending in a shared maximumas a function of correlation. D.
Average fitness of shared maxima (blue) and average fitness of non-shared maxima (orange). Dashed line is average fitness of all local
maxima in landscape A. E. Normalized entropy of the steady state genotype distribution following adaptation to alternating landscapes.
Curves correspond to the full landscape pair ensemble (blue) and a reduced ensemble consisting only of landscapes that contain a shared
maximum (red), bottom, and a reduced ensemble consisting only of landscapes with no shared maxima (red, top). The relative entropy
is defined as S(p)/Smax ≡ −

∑
i pi ln pi, where pi is the steady state probability of being in genotype i and Smax is the entropy of a

uniform distribution. F. Fraction of genotypes that have a nonzero probability of occupation in either the last A step or last B step at
steady-state. Curves represent the paired landscape ensemble with no shared maximums (blue), the ensemble where every pair has at least
one shared maximum (red), and the full ensemble (black). G. Difference in average fitness achieved in static and switching landscapes.
Curves correspond to the full ensemble of paired landscapes (black) or a restricted ensemble that includes on those pairs that share a
fitness maximum (red). H. Similar to panel F, with curves corresponding to the full ensemble (black) or a restricted ensemble that includes
only those pairs with no shared fitness maxima (red). Error bars are ± standard error of the mean in the ensemble of landscapes. Error
bars are ± standard error of the mean in the ensemble of landscapes. N = 7 for all curves, and σ = 1 for all curves in panels D-H.
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matically changes the fraction of genotype space occupied
(with nonzero probability) in the steady state (Fig 6F).
For highly correlated landscapes, only a small fraction of
the total genotype space is occupied. By contrast, highly
anti-correlated landscapes produce steady state distribu-
tions wherein all states are occupied with non-zero prob-
ability, suggesting ergodic-like behavior, consistent with
the example in Fig 5. The fact that relative entropy re-
mains less than 1 in this regime does indicate, however,
that the distribution in not fully uniform.

Finally, in Fig 6G, we plot the difference in steady state
fitness achieved in static vs alternating environments for
both the full landscape pair ensemble (black) and for a re-
duced ensemble consisting only of landscapes with shared
maxima (red). We find that the curves are nearly identi-
cal over a wide range of correlations σ > −0.4. Similarly,
when correlation is strongly anticorrelated, fitness differ-
ences are similar between the full ensemble and the re-
duced ensemble with no shared maxima (Fig 6H). Taken
together, these results provide evidence that adaptation
is frequently dominated by the presence or absence of
shared fitness maxima, which in turn depends on the cor-
relation between landscapes and landscape ruggedness.

III. DISCUSSION

Our results indicate that both intra-landscape disor-
der (ruggedness) and inter-landscape fitness correlations
impact fitness in rapdily alternating fitness landscapes.
Compared with static adaptation, rapid switching can
lead to increased or decreased fitness, depending on both
the correlation between landscapes and level of intra-
landscape ruggedness (i.e. epistasis). Perhaps most strik-
ingly, switching between highly, but not perfectly, cor-
related rugged landscapes can increase fitness by pro-
moting escape from local fitness maxima, increasing the
likelihood of finding global fitness optima. Furthermore,
rapid switching can also produce a genotype distribution
whose fitness is, on average, larger than that of the an-
cestor population in both environments, even when the
landscapes themselves are anti-correlated. Adaptation
dynamics are often dominated by the presence or absence
of shared maxima between landscapes. Rugged land-
scape pairs are increasingly likely to exhibit shared max-
ima as they become more positively correlated, and in
turn, for landscapes with positive correlations, the mean
fitness of these shared peaks is higher than that of non-
shared peaks. By contrast, evolution in anti-correlated
landscape pairs sample large regions of genotype space,
exhibiting ergodic-like steady-state behavior that results
in decreased average fitness.

While our results are loosely inspired by antibiotic cy-
cling, the model is highly idealized and certainly cannot
make predictions that apply directly to clinical scenarios.
At the same time, the simplicity and relative generality
of the model means that it may be relevant for under-
standing the qualitative behavior of a wide range of sys-

tems, including evolution in antibodies69 and viruses70.
Our model relies on the Strong Selection Weak Mutation
(SSWM) limit and also neglects potentially relevant dy-
namics that could arise due to clonal interference, hor-
izontal gene transfer, and fixation of deleterious muta-
tions. In addition, we focus on small (N = 7) genotype
for tractability, and dynamics could differ for genotypes
of drastically different sizes.

It is important to note that the paired landscapes in
our ensembles are constructed to share certain global
features–like mean fitness–and are related by a prescribed
inter-landscape correlation, but they are not statistically
identical. For example, the average number of local max-
ima can differ between landscape A and B, leading to
different levels of evolved fitness for each landscape in-
dividually (Figure S5). This indicates that landscapes
A and B have effectively different levels of epistasis, de-
pending on the desired value of ρ, though these differ-
ences are most pronounced when A landscapes are very
smooth (σ ≈ 0). These differences do not seem to be ap-
preciably impacting fitness dynamics, as removing them
by choosing a reduced ensemble (keeping only the B land-
scapes the exhibit similar fitness gains as A under static
adaptation) does not appreciably modify the results (Fig-
ure S5). Nevertheless, it may be interesting to investigate
switching dynamics using landscapes with different types
of statistical similarities–for example, those that differ
only in higher-order moments, or those that fully decou-
ple landscape ruggedness and correlation68). In fact, the
results presented here are complementary to recent find-
ings showing that environmental switching can enhance
the basic of attraction for generalists, which are geno-
types fit in multiple environments68. While the focus of
the work is different–and the timescale of environmen-
tal switching and the statistical relationships between
landscape pairs differ in their model–our results simi-
larly highlight the importance of shared landscape max-
ima in determining adaptation dynamics. Future work
may aim to further elucidate the evolutionary impacts
of varying timescale, ordering, and temporal correlations
in landscape dynamics. In the long run, we hope results
from idealized models like these offer increased concep-
tual clarity to complement the rapidly evolving experi-
mental approaches for mapping landscape dynamics in
living organisms.

IV. METHODS

A. Construction of the landscapes

We consider evolution of an asexual haploid genome
with N mutational sites. Each mutational site can have
one of two alleles (labeled 0 or 1), and a single genotype
can therefore be represented by one of the 2N possible bi-
nary sequences of length N. To construct the landscape
for a given environment, we use a many-peaked “rough
Mt. Fuji” landscape25,73,74. Specifically, we assume that
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the fitness of the ancestor genotype (0,0,0...0) is zero and
that the fitness fi associated with a single mutation at
mutational site i is drawn from a uniform distribution
on the interval [-1,1]. We then assume fitness associ-
ated with multiple mutations is additive, and landscape
ruggedness is incorporated by adding to the fitness of
each genotype j a fixed, random variable ξj drawn from
a zero-mean normal distribution with variance σ2.

To create paired fitness landscapes, we represent each
landscape A as a vector Ā of length 2N , which we center
and rescale to achieve a zero mean, unit variance vector.
Then, we generate a Gaussian random vector Ā⊥ (also
with zero mean and unit variance) and subtract from
Ā⊥ its projection onto Ā, making Ā⊥ orthogonal to Ā;
by construction, this vector corresponds to a landscape
whose fitness values are, on average, uncorrelated with
those of landscape A. It is then straightforward to gener-
ate a vector B̄, a linear combination of Ā and Ā⊥, such
that the fitness values of landscapes A and B are corre-
lated to a tunable degree −1 ≤ ρ ≤ 1, where ρ is the
Pearson correlation coefficient between the two vectors
Ā and B̄. At the end of this procedure, we rescale Ā and
B̄ so that both have mean and variance equal to that of
the original A landscape.

B. Evolution on the landscapes

The SSWM assumption allows the evolutionary trajec-
tories to be modeled as a Markov chain71,72. We follow
the “random move SSWM model”, which says that the
probability of transitioning between adjacent genotypes
i→ j is given by Tij = 1/m, with m the total number of
i-adjacent genotypes with fitnes greater than that of i in
the given environment. Each environment (A or B) has
its own transition matrix, which we designate as TA and
TB . Evolution in environment A is then given by

p̄(t) = (TA)tp̄(0) (1)

with p̄(t) the vector whose ith component is the prob-
ability to be in genotype i at time step t. We refer to
the steady state (t → ∞) limit of this process as p̄A.
Similarly, we can describe rapidly alternating landscapes
(A-B-A-B...) with

p̄(t′) = (TBTA)t
′/2p̄(0) (2)

with t′ ≡ 2t an even time step. We refer to the
steady state (t → ∞) limit of this process as p̄AB .
In practice, we define steady state using the condition
‖(p̄(2t+ 1)− p̄(2t− 1))‖ < ε = 0.001. In words, we re-
quire the change in p̄ between consecutive steps in envi-
ronment A to be sufficiently small. To facilitate compar-
ison with static evolution in landscape A, we always end
the process after a step in landscape A, meaning there are
always an odd number of steps. Ending instead in land-
scape B results in qualitatively similar behavior, though
the fitness is often shifted, indicating that a single step

in A or B–even in steady state–can lead to significant
changes in fitness S3.
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V. SUPPLEMENTAL MATERIAL

The Supplemental Material contains five supplemental figures (S1-S5).
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N = 3

N = 10

N = 10

N = 3

FIG. S1. Rugged landscapes of different sizes show qualitatively similar changes in fitness as a function of correlation.
Difference in average fitness (at steady state) between populations adapted to a single static landscape (landscape A) or rapidly alternating
landscape pairs (A-B cycles) as a function of correlation between landscapes A and B. Average fitness is defined as the mean fitness of
the steady state genotypte distribution (which arises following adaptation to either static or switching protocols) measured in landscape
A. Different curves range from N = 3 to N = 10, and σ = N/12 for each landscape to achieve relatively similar magnitudes of epistasis as
N varies.
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FIG. S2. Adaptation to static and alternating environments approach steady state at different timescales. A. Number of
time steps (log scale) until steady state for alternating landscapes of a given ruggedness (σ) and correlation (ρ). Full correlated landscapes
(ρ = 1) correspond to static evolution in a single landscape. B. Example slices through panel A corresponding to σ = 0 and σ = 2.
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FIG. S3. Adapted fitness depends on whether final step is taken in landscape A or B when landscapes are anticorrleated.
A. Difference in average fitness (at steady state) between populations adapted to a single static landscape (landscape A) or rapidly
alternating landscape pairs (A-B cycles) as a function of correlation between landscapes A and B. Average fitness is defined as the mean
fitness of the steady state genotypte distribution (which arises following adaptation to either static or switching protocols) measured in
landscape A. Curves correspond to steady state with a final step in landscape A (black) or a final step in landscape B (red). B. Collateral
fitness change for populations adapted to alternating environments A and B as a function of inter-landscape correlation. Collateral
fitness change is defined as the increase in average fitness in landscape B (relative to ancestor) associated with the steady state genotype
distribution arising from adaptation to alternating A-B landscapes. C. Network representation of example fitness landscapes and transition
probabilities following long-term adaptation to uncorrelated (ρ = 0) landscapes; adaptation ends either in landscape A (left) or B (right).
N = 4 in all panels.
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A, step 1001 A, step 1003
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FIG. S4. Adaptation to anti-correlated landscapes can produce cycles that sample large fractions of genotype space.
Network representations of 16 consecutive steps in the steady state for paired landscape evolution with ρ = −0.88. Each circle represents a
genotype (ancestral genotype at the top), with shading indicating the relative fitness of that genotype and size representing the occupation
probability at that time step. Arrows represent transitions between genotypes that occur with nonzero probability and are accessible
starting from the ancestor genotype. The width of the arrow represents the magnitude of the transition probability.
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FIG. S5. Statistical properties of landscape B differ from those of A but do not appreciably impact fitness differences
between static and alternating landscapes. A. Average number of local maxima in landscape A (blue) and two different B landscapes
correlated with A to different degrees (ρ = 0, black; ρ = 0.9, red). B. Evolved fitness following static adaptation to landscape A (red) or
B (black). Blue curve is fitness in a reduced “forced fit” ensemble of B landscapes, which includes only those B landscapes that lead to
similar levels of fitness as in landscape A. C. Fitness difference between static and switching environments for the full paired landscape
ensemble (black) and for the reduced “forced fit” ensemble (black).
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