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Abstract	
Transcription	factors	and	microRNAs	(miRNA)	both	play	a	critical	role	in	gene	
regulation	and	in	the	development	of	many	diseases	such	as	cancer.	Understanding	
how	transcription	factors	and	miRNAs	influence	gene	expression	is	thus	important	
to	understand,	but	complicated	due	to	the	large	and	interconnected	nature	of	the	
human	genome.	To	help	better	understand	what	genes	are	being	regulated	by	
transcription	factors	and/or	miRNAs	we	looked	at	it	over	8000	patient	samples	
from	32	different	cancer	types	collected	from	The	Cancer	Genome	Atlas	(TCGA).	We	
started	by	clustering	the	transcription	factors	and	miRNAs	using	Thresher	to	reduce	
the	number	of	features.	Using	both	the	mRNA	and	miRNA	sequencing	data	we	
constructed	linear	models	to	calculate	the	coefficient	of	determination	(R²)	for	each	
mRNA	based	on	the	Thresher	cluster	expression.	We	generated	three	types	of	linear	
models:	transcription	factor,	miRNA	and	transcription	factor	plus	miRNA.	We	then	
determined	genes	that	were	highly	explained	or	poorly	explained	by	each	of	the	
three	models	based	on	the	genes	R²	value.	We	performed	downstream	gene	
enrichment	analysis	using	ToppGene	on	the	sets	of	well	and	poorly	explained	genes.	
This	identified	differences	in	gene	regulation	between	transcription	factors	and	
miRNAs	and	showed	what	groups	of	gene	are	differentially	regulated.	
	
Introduction	
Several	different	regulatory	factors	impact	gene	expression	including	transcription	
factors,	methylation	patterns,	and	miRNAs[1].	That	these	types	of	regulatory	factors	
play	a	crucial	role	in	gene	expression	and	thus	have	an	active	role	in	disease	
progression	has	been	well	documented[2].	Thus,	it	is	vitally	important	that	we	
further	our	understanding	of	how	genes	are	regulated	in	order	to	help	treat	why	did	
variety	of	disease	conditions.	However,	to	date	there	are	limited	studies	that	have	
(1)	identified	the	different	types	of	genes	that	are	regulated	or	expressed	by	these	
elements	and	(2)	compared	the	differential	effect	of	these	regulatory	elements	on	
those	genes[3].	In	this	article	we	present	experimental	results	that	focus	on	the	
comparative	role	of	two	particular	regulatory	elements:	transcription	factors	and	
miRNAs.	We	selected	these	regulatory	elements	for	two	primary	reasons.	First,	both	
elements	regulate	the	abundance	of	messenger	RNA	in	the	cell[4].	Transcription	
factors	do	this	by	promoting	transcription	of	a	particular	gene[5].	miRNAs	regulate	
messenger	RNAs	by	targeted	binding	and	subsequent	ubiquitination	to	degrade	and	
destroy	the	messenger	RNA[6].	Although	miRNAs	and	transcription	factors	work	
differently,	they	both	operate	at	the	same	relative	stage	of	gene	regulation[5].	
Second,	there	is	an	abundance	of	publicly	available	data	involving	both	mRNA	and	
miRNA	sequencing	on	the	same	patient	cohort;	most	notably	The	Cancer	Genome	
Atlas	(TCGA)[7].	This	enabled	us	to	conduct	a	comparative	study	to	evaluate	the	
combined	role	of	both	transcription	factors	and	miRNAs	in	regulating	mRNA	
expression.	
	
Methods	
Data.	As	detailed	previously,	we	analyzed	data	collected	from	TCGA	using	
FireBrowse[8].	We	identified	486	transcription	factors	as	listed	in	the	Transcription	
Factor	Catalog[9],	in	10,446	samples	from	studies	of	33	different	kinds	of	cancer	in	
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TCGA.	We	normalized	the	data	using	reads per kilobase per million (RPKM) and then 
performed a log2 transformation[10]. We	also	identified	8,895	patients	from	32	cancer	
types	that	had	miRNA	sequencing	data	in	TCGA	using	FireBrowse.	We	normalized	
the	data	using	reads per kilobase per million (RPKM) and then performed a log2 
transformation. We performed an additional filtering step by removing miRNAs that had 
a read count of zero in 75% or more of the patient population. This left us with 470 
miRNAs across the 8,895 patients. We then identified the overlap between the 
transcription factor and miRNA cohorts. This left us with 8,895 patients who had both 
transcription factor and miRNA data along with mRNA sequencing. 	
	
Software.	The	first	step	in	our	analysis	was	to	identify	clusters	within	both	the	
miRNA	and	transcription	factor	data	sets.	This	was	done	using	the	Thresher	R	
package[11].	This	R	package	generates	one-dimensional	clusters	in	principal	
component	space.		We	used	the	MultiLinearModel	function	of	version	3.1.6	of	the	
ClassComparison	R	package	to	run	our	linear	models[12].	We	then	calculated	the	
coefficient	of	determination	(R²)	for	each	mRNA	for	each	of	the	linear	predictive	
models	to	gauge	the	prediction performance. The R2 the value is on a 0 to 1 scale and 
represents the proportion of variability explained buy the particular input factors in a 
model. Thus an R2 value of 0.4 means that 40% of the variability is explained by the 
model. The R2 values can determine both how influenced individual mRNAs our by 
regulatory elements and what type of regulatory elements, transcription factors and 
miRNAs, are having the greatest effect.	
 
To perform our downstream gene enrichment analysis, we utilized the ToppGene 
website[13]. This web service allows users to input a set of genes and perform a large set 
of Fisher exact tests across a variety of curated biological pathways. The system can then 
tell a user which pathways are statistically significantly enriched for a given input set of 
genes.	
		
Results	
R	squared	distributions.	We	ran	the	Thresher	algorithm	over	the	set	of	miRNAs	
and	the	set	of	transcription	factors	independently.	This	produced	30	transcription	
factor	clusters	and	21	miRNA	clusters.		These	clusters	were	then	examined	within	a	
set	of	predictive	linear	models.	We	performed	three	sets	of	linear	models:	(1)	
transcription	factor	only,	(2)	miRNA	only	and	(3)	transcription	factor	plus	miRNA.	
Each	of	these	three	models	was	run	over	the	same	data	set	of	8,895	patients	and	
20,289	mRNAs.	Thus,	each	of	our	three	sets	of	linear	models	was	run	for	each	of	the	
20,289	mRNAs	so	that	an	R2	value	could	be	calculated	for	each	mRNA.		The	
distributions	of	R2	values	for	each	model	are	shown	in	Figure	1.		
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Figure	1.	Distribution	of	R2	values	across	linear	models.		Panel	A	shows	the	miRNA	
model	(mean	=	0.30),	B	shows	the	transcription	factor	model	(mean	=	0.47)	and	C		
shows	the	joint	model	(mean	=	0.50).	
	
ToppGene	Enrichment.	For	each	of	the	three	models	we	identified	the	genes	that	
had	an	R2	value	of	greater	than	0.80	and	less	than	0.02.	This	identified	genes	that	
were	either	well	or	poorly	explained	by	the	models.		These	genes	were	then	run	
through	the	ToppGene	web	service	to	identify	gene	pathways	that	were	significantly	
enriched	for	each	individual	gene	set.	A	subset	of	these	results	is	shown	in	Table	1	
(well	explained	genes)	and	in	Table	2	(poorly	explained	genes).		The	complete	lists	
are	shown	in	Supplemental	Table	1	and	Table	2.	
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Table	1.	Gene	enrichment	for	well	explained	genes	(R2	>	0.80).	p-values	are	
calculated	using	a	false	discovery	rate	(FDR)	correction	Benjamini–Hochberg	
procedure.	NS	indicates	non-significant.	The	main	pattern	involving	genes	that	are	
well	explained	by	miRNA	expression	is	in	cell-to-cell	communication,	such	as	the	
formation	of	junctions.		This	is	in	contrast	to	the	transcription	factor	and	joint	
model,	which	are	dominated	by	cell	cycle-related	processes	such	as	M	phase	and	
sister	chromatid	cohesion.	These	findings	demonstrate	that	the	classes	of	genes	that	are	
highly	regulated	by	miRNAs	and	transcription	factors	do	not	have	a	high	degree	of	
overlap.	

Pathways	from	ToppGene	 miRNA	 TF	 TF+miRNA	
Olfactory	transduction	 6.77E-229	 5.70E-58	 2.11E-17	
Olfactory	Signaling	

Pathway	 7.18E-223	 3.92E-57	 3.46E-17	
GPCR	downstream	

signaling	 1.66E-154	 3.56E-39	 1.45E-11	
Signaling	by	GPCR	 2.75E-128	 4.66E-31	 8.27E-09	
Keratinization	 3.67E-43	 3.29E-43	 2.55E-37	
Defensins	 7.94E-16	 5.99E-14	 1.43E-11	

Developmental	Biology	 1.15E-06	 2.10E-13	 4.31E-15	
Table	2.	Gene	enrichment	for	poorly	explained	genes	(R2	<	0.02).	p-values	are	
calculated	using	a	false	discovery	rate	(FDR)	correction	Benjamini–Hochberg	
procedure.	These	results	indicate	that	genes	that	are	poorly	explained	by	miRNA	
expression	are	also	poorly	explained	using	transcription	factors.	This	may	indicate	
that	a	different	process,	such	as	methylation,	regulates	these	genes.	Many	of	these	
pathways	are	associated	with	basic	developmental	biology	such	as	the	G	protein-
coupled	receptor	(GPCR)	pathway.	
	

Pathways	from	ToppGene	 miRNA	 TF	 TF+miRNA	
Tight	junction	interactions	 1.26E-03	 NS	 NS	

Cell-cell	junction	organization	 5.17E-03	 NS	 NS	
Formation	of	the	cornified	envelope	 5.17E-03	 NS	 NS	

Cell	junction	organization	 7.59E-03	 NS	 NS	
Cell-Cell	communication	 2.02E-02	 NS	 NS	

Tight	junction	 3.35E-02	 NS	 NS	
Cell	Cycle	 NS	 4.17E-31	 5.73E-27	

Cell	Cycle,	Mitotic	 NS	 4.07E-27	 3.53E-23	
Mitotic	Prometaphase	 NS	 7.36E-25	 4.21E-22	

Resolution	of	Sister	Chromatid	Cohesion	 NS	 4.80E-22	 1.33E-18	
M	Phase	 NS	 2.01E-16	 9.46E-13	

RHO	GTPase	Effectors	 NS	 2.23E-16	 6.48E-13	
Mitotic	Anaphase	 NS	 3.09E-16	 9.46E-13	
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Discussion	
Transcription	factor	and	miRNA	R2	values.		There	are	some	significant	
observations	made	by	comparing	the	R2	values	of	the	three	linear	models.		First,	the	
overall	performance	of	the	transcription	factor	only	model	(mean	=	0.47)	was	
greater	than	that	of	the	miRNA	only	model	(mean	=	0.30).		Second,	adding	the	
miRNA	to	the	transcription	factors	did	not	significantly	increase	the	model’s	
performance	compared	to	the	transcription	factor	only	model.	This	may	be	because	
there	are	fewer	genes	(n	=	32)	that	are	well	explained	by	the	miRNA	only	model	
compared	to	the	number	of	genes	(n	=	330)	explained	by	transcription	factors.		
Although	the	joint	model	had	a	mean	expression	of	0.50,	it	is	likely	that	other	
regulatory	elements	not	tested	in	this	experiment	contributed	causally	to	the	
missing	predictive	strength.	Events	such	as	methylation	are	significant	factors	in	
gene	expression	and	incorporating	methylation	data	into	this	joint	model	in	future	
research	may	improve	the	overall	predictive	strength	of	the	model.	
	
Gene	enrichment	analysis.		Large	differences	were	evident	in	the	gene	enrichment	
results	involving	well	explained	genes	between	miRNA	only	and	transcription	factor	
only	(Table	1).		The	joint	model	tracked	strongly	with	the	transcription	factor	only	
model.	The	miRNA	model	showed	the	genes	that	are	highly	regulated	by	miRNAs	
are	involved	in	cell	communication	and	junction	formation.	These	results	mirror	
other	research	that	has	linked	miRNA	regulation	to	tight	junction	proteins[14,15].	
By	contrast,	the	genes	that	are	highly	regulated	by	transcription	factors	are	
significantly	involved	in	the	cell	cycle	and	other	cellular	reproduction/division	
systems.	There	is	evidence	in	the	literature	that	transcription	factors	play	the	key	
role	in	regulating	cell	division[16].		
	
In	contrast	to	the	well	explained	genes,	the	set	of	genes	that	were	poorly	explained	
by	the	miRNA	model	and	the	transcription	factor	model	are	nearly	identical	(Table	
2).	Overall,	genes	that	were	poorly	explained	by	all	models	are	involved	in	basic	
developmental	biology	or	olfactory	receptor	pathways.	Olfactory	receptors	are	an	
interesting	finding,	although	it	is	known	that	olfactory	receptors	often	come	up	as	
significant	in	a	lot	of	gene	enrichment	studies	due	to	the	large	number	of	different	
olfactory	receptor	genes[17].	However,	the	pathways	associated	with	
developmental	biology	and	G	protein-coupled	receptors	(GPCR)	indicated	that	there	
are	a	large	set	of	genes	involved	in	fundamental	biological	processes	that	are	
virtually	uncontrolled	by	transcription	factors	or	miRNA	regulation.	This	may	be	
because	these	pathways	often	start	signal	cascades	that	may	be	influencing	
transcription	factors	to	turn	on	and	regulate	other	genes[18,19].	In	essence	the	
genes	that	are	not	controlled	by	miRNA	or	transcription	factors	may	be	influencing	
transcription	factors	and	miRNAs,	or	be	controlled	by	other	gene	regulatory	
elements	like	methylation.	This	finding	illustrates	the	complexity	of	gene	expression	
and	the	importance	of	continued	research	in	the	future.		
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