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Abstract 25	
 26	
 27	
We aim to improve anti-ageing drug discovery, currently achieved through laborious and 28	
lengthy longevity analysis. Recent studies demonstrated that the most accurate molecular 29	
method to measure human age is based on CpG methylation profiles, as exemplified by 30	
several epigenetics clocks that can accurately predict an individual’s age. Here, we 31	
developed CellAgeClock, a new epigenetic clock that measures subtle ageing changes in 32	
primary human cells in vitro. As such, it provides a unique tool to measure effects of 33	
relatively short pharmacological treatments on ageing. We validated the CellAgeClock 34	
against known longevity drugs such as rapamycin and trametinib. Moreover, we uncovered 35	
novel anti-ageing drugs, torin2 and Dactolisib (BEZ-235), demonstrating the value of our 36	
approach as a screening and discovery platform for anti-ageing strategies. The CellAgeClock 37	
outperforms other epigenetic clocks in measuring subtle ageing changes in primary human 38	
cells in culture. The tested drug treatments reduced senescence and other ageing markers, 39	
further consolidating our approach as a screening platform. Finally, we show that the novel 40	
anti-ageing drugs we uncovered in vitro, indeed increased longevity in vivo. Our method 41	
expands the scope of CpG methylation profiling from measuring human chronological and 42	
biological age from human samples in years, to accurately and rapidly detecting anti-ageing 43	
potential of drugs using human cells in vitro, providing a novel accelerated discovery 44	
platform to test sought after geroprotectors. 45	
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 46	
One of the remarkable achievements of developed countries is a continuous increase in life 47	
expectancy at birth, leading to greater longevity. However, a higher proportion of elderly in modern 48	
societies is accompanied by a steep increase in people suffering from age-related diseases. For 49	
example, cancer incidence rates, currently at 17 million worldwide, are expected to increase to 26 50	
million in 2040 (Wilson et al. 2019), and a similar rise is expected for Alzheimer’s and Parkinson’s 51	
disease (Reeve et al. 2014). Compression of late-life morbidity is, therefore, a priority to alleviate 52	
suffering in the elderly (Partridge et al. 2018) and to reduce a growing economic burden to society 53	
(Rae et al. 2010).  54	

Critically, seminal discoveries in the biology of ageing showed that ageing is a malleable process 55	
and that down-regulation of major cellular nutrient signalling pathways, either glucose-sensing insulin 56	
signalling or amino acid-sensing target-of-rapamycin signalling, results in longevity and health 57	
improvement in all model organisms tested from yeast to mammals (Lopez-Otin et al. 2013). For 58	
instance, the long-lived mutants in C. elegans are protected from tumorous cell proliferation 59	
(Pinkston et al. 2006) and have reduced toxic protein aggregation (Cohen et al. 2006), while 60	
Drosophila show less deterioration in their hearts (Wessells et al. 2004). Long-lived mouse mutants 61	
are protected from osteoporosis, cataracts and skin pathology, as well as decline in glucose 62	
homeostasis, immune and motor function (Selman et al. 2008). The effect of these mutations is 63	
conserved from yeast to mammals, and it is, therefore, expected that if drugs replicate the biological 64	
impact of these changes, this could improve health in the elderly and prevent age-related disease. It 65	
is increasingly recognised that directly targeting ageing through pharmacological interventions, as 66	
opposed to specific age-related diseases, is a highly promising strategy for broad-spectrum disease 67	
protection (Niccoli and Partridge 2012). However, at present, there are only a handful of reliable anti-68	
ageing drugs whose effects have been confirmed in mammals, such as rapamycin (Harrison et al. 69	
2009) and metformin (Martin-Montalvo et al. 2013). Crucially, there are currently no sufficiently 70	
reliable ageing biomarkers for testing drugs on human cells in vitro, and the development of a 71	
specialised epigenetic clock is a promising approach (Castillo-Quan et al. 2015; Field et al. 2018; 72	
Horvath et al. 2018; Bell et al. 2019; Horvath et al. 2019).  73	

To accelerate the discovery workflow for anti-ageing drugs, we took advantage of the breakthrough 74	
in the ageing field which showed that epigenetic clocks provide the most accurate measurements of 75	
human age. For instance, the approximate error rate for the Skin and Blood clock is ±2.5 years 76	
(maximal correlation coefficient 0,98) (Horvath et al. 2018). Epigenetic clocks surpass the accuracy 77	
of other ageing biomarkers such as telomere length and those based on transcriptomic, 78	
metabolomic or proteomic approaches, potentially because the latter approaches detect more 79	
transient and less stable cellular changes (Horvath 2013). Ageing is accompanied by overall CpG 80	
hypomethylation, whilst some CpG islands and gene regions become hypermethylated (Booth and 81	
Brunet 2016). Remarkably, only a small selection of the 56 million CpG sites in the diploid human 82	
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genome, coupled with computational algorithms, is sufficient to provide an accurate readout of 83	
human age. One of the first epigenetic clocks was developed by Hannum using just 71 CpG sites to 84	
estimate age from blood samples (Hannum et al. 2013), while Horvath’s multi-tissue age estimator 85	
(Horvath 2013) and Skin and Blood clock (Horvath et al. 2018) use 353 and 391 CpG sites, 86	
respectively (Field et al. 2018; Horvath and Raj 2018). Even a single CpG site in the ELOVL2 gene 87	
is sufficient to determine age (Garagnani et al. 2012), albeit clocks using only a few CpG sites are 88	
less accurate and less applicable to different tissues (Horvath and Raj 2018). The epigenetic clocks 89	
measure the ageing process inherent to all our cells and tissues, irrespective of their proliferation 90	
rate (Horvath et al. 2019). As the human epigenome reflects physiological changes, epigenetic 91	
clocks cannot only predict chronological age from a human sample but also give an estimate of 92	
biological age as has widely been demonstrated by the associations of epigenetic age with morbidity 93	
and mortality (Marioni et al. 2015; Horvath and Raj 2018). Recently, valuable predictors focussing on 94	
this aspect have been developed: PhenoAge (Levine et al. 2018) and GrimAge (Lu et al. 2019), 95	
which form the best epigenetic morbidity and mortality predictors available to date. 96	

DNA methylation also captures information on the approximate number of cell divisions a cell has 97	
been through, as has been shown by epiTOC (Yang et al. 2016), a mitotic-like clock that 98	
approximates stem cell divisions and correlates with cancer risk (Tomasetti et al. 2017), and MiAge, 99	
which also measures mitotic age (Youn and Wang 2018). The biology underlying CpG methylation 100	
alterations at the sites linked to ageing clocks is not well understood. The exception is ribosomal 101	
clock based on CpG methylation in ribosomal RNA (rRNA), which is highly conserved throughout 102	
evolution and which forms nucleolus that has itself been implicated in ageing (Tiku and Antebi 2018; 103	
Wang and Lemos 2019). Horvath suggests an interesting hypothesis that epigenetic maintenance 104	
programmes are being reflected in DNA methylation alterations (Horvath 2013; Horvath and Raj 105	
2018; Raj and Horvath 2020). Recent findings implicate loss of H3K36 histone methyltransferase 106	
NSD1 in epigenetic ageing clock acceleration (Martin-Herranz et al. 2019). Despite the enigma 107	
regarding the mechanism of epigenetic clocks, they are reliable predictors of age and extremely 108	
useful biomarkers (Field et al. 2018; Horvath and Raj 2018; Bell et al. 2019). However, little is known 109	
so far about the performance of these clocks in in vitro ageing experiments. It has recently been 110	
shown that the rate of epigenetic ageing in cultured cells is significantly faster than in the human 111	
body (Horvath et al. 2019; Sturm et al. 2019) and that epigenetic age is retarded by rapamycin in 112	
vitro (Horvath et al. 2019), but neither of the clocks specialised for in vitro drug discovery nor were 113	
they tested on multiple anti-ageing drugs. 114	

Therefore, we aimed to exploit the exceptional accuracy of CpG methylation clocks to uncover new 115	
anti-ageing pharmacological treatments. The current gold standard for discovering novel anti-ageing 116	
drugs are longevity experiments, which are laborious, lengthy and expensive. For instance, in mice, 117	
they take three years, thereby precluding any large scale drug screens. Existing screens in C. 118	
elegans commonly use live E. coli as food (Lucanic et al. 2013; Ye et al. 2014), which is a 119	
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disadvantage as drugs are metabolised first by the bacteria making their effect on worms secondary, 120	
which may lead to confounded results (Cabreiro et al. 2013; Pryor et al. 2019). Yeast drug screens 121	
lack the crucial aspect of tissue toxicity (Zimmermann et al. 2018). In addition, all longevity assays 122	
require constant supply of the drug, making them highly expensive. Other attempts to uncover anti-123	
ageing effects of drugs are based on computational analysis using existing transcriptomic 124	
information on the ageing process combined with drug characteristics (Donertas et al. 2018). 125	
However, transcriptomic changes are more transient and noisy when compared to DNA methylation 126	
and are, therefore, a less consistent ageing marker (Horvath and Raj 2018).  127	

We tested if existing epigenetic clocks could be used to measure anti-ageing drug potential in human 128	
primary cells in vitro and if we could build a new clock specialised for this purpose. Senescence is 129	
tightly associated with ageing of the organism, and because of the pronounced resemblance of 130	
ageing in primary cells in vitro to ageing in vivo, together with the evidence that human DNA 131	
methylation signatures are conserved and accelerated in cultured fibroblasts (Sturm et al. 2019), we 132	
used cultured human cells as a proxy for human ageing (Lowe et al. 2015; Horvath et al. 2019). The 133	
ability to test anti-ageing drug properties directly on human cells in vitro could considerably 134	
accelerate the discovery of new compounds promoting healthy ageing. To this end, we used normal 135	
human mammary fibroblasts (HMFs) from a healthy 16-year old donor that we cultured from 136	
passage 10 to passage 20, which is before these cells reach senescence at passage 29 137	
(Supplemental Fig. S1A-D). To measure CpG methylation, we used EPIC Arrays (Illumina) that 138	
measure methylation at 850,000 sites.  139	

First, we tested the three most suitable existing epigenetic clocks, to determine if they could detect 140	
weekly and monthly ageing differences occurring during serial passaging of HMFs (Fig. 1A). The 141	
Multi-tissue clock (Horvath 2013) consistently predicted a higher epigenetic age, and at passage ten 142	
this was 43.6±1.0 years (Fig. 1A), consistent with what was recently reported (Sturm et al. 2019). 143	
This increased age estimate, compared to the age of the donor who was 16 years old, is in 144	
accordance with published data demonstrating that this epigenetic clock overestimates the age of 145	
mammary tissue samples (Horvath 2013). The PhenoAge clock (Levine et al. 2018), developed to 146	
predict mortality and morbidity risks, reported the epigenetic age of the donor to be 3.5±1.1 years 147	
(Fig. 1A). The most accurate age estimate, predicting the age of the donor at 23.2±0.87 years, was 148	
obtained using the Skin and Blood clock, which is specialised for determining donor age of easily 149	
accessible human tissues and cells in culture (Fig. 1A). The Multi-tissue clock and Skin and Blood 150	
clock showed a small increase in age with progressive passaging (from passage 10 to 20, age 151	
estimate increased from 43.6±1.0 to 53.9±1.7 and from 23.2±0.87 to 31.6±1.2 years, respectively), 152	
while this increase was greater for the PhenoAge clock (from 3.5±1.1 to 26.6±9.7 years). This 153	
suggested that, of the tested clocks, the PhenoAge clock captures ageing in vitro best (Fig. 1A). 154	
However, the PhenoAge clock showed substantial variability in predictions for higher passages, 155	
which would obstruct the detection of subtle ageing differences upon anti-ageing drug treatments. In 156	
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conclusion, while the Skin and Blood clock (Horvath et al. 2018) measures fibroblast ageing in 157	
culture, none of the existing clocks was ideally suited to accurately measure subtle anti-ageing drug 158	
potential in human primary cells in vitro, and similar comparisons have recently been reported by 159	
others (Horvath et al. 2019; Sturm et al. 2019).  160	

This prompted us to develop a new clock that, rather than predicting donor age in years, specialises 161	
in measuring methylation changes occurring during ageing of primary cells in culture and could 162	
differentiate DNA methylation state between each passage. To this end, we developed a clock using 163	
two different cell types, the above-mentioned HMFs and human dermal fibroblasts (HDFs), which 164	
were obtained from a different donor, have a different proliferative lifespan in vitro, and a different 165	
rate of DNA methylation change. Like the HMFs, the HDFs were serially passaged and sampled 166	
every other passage for DNA methylation analysis.  167	

We used a total of 39 HMF and HDF samples to build the clock (see Materials and methods). To 168	
preselect informative probes, we performed a statistical test to identify CpGs undergoing DNA 169	
methylation changes with increasing cell passage using linear regression (Supplemental Fig. S2A). 170	
The resulting 2,543 CpGs were used to build the clock model by elastic net regression, similar to the 171	
method used by Horvath (Horvath 2013). The model selected 42 predictor CpGs (“clock CpGs”), 172	
shown in Fig. 1B and Supplemental Fig. S2B. Of these CpGs, 23 undergo hypomethylation and 19 173	
become hypermethylated with increasing cell passage (Fig. 1B and Supplemental Fig. S2B). Sixteen 174	
of the CpGs are located in intergenic regions (IGRs), whereas 14 of them are located in gene bodies 175	
and 12 in promoters, respectively (Supplemental Fig. S2C). Interestingly, two of the clock CpGs map 176	
to gene GRID1, one is located in its 3’UTR and one in the gene’s body. GRID1 encodes a subunit of 177	
glutamate receptor channels. Several other clock CpGs are also located in genes implicated in cell 178	
receptor activity and metabolic processes, such as LDLRAD4 and NPSR1. Furthermore, multiple 179	
clock CpGs map to genes that play roles development as well as in the regulation of transcription 180	
and protein binding. Examples include GGN, MEIS2, NF1, PROP1, RFX4, RUNX3 and SMARCA2. 181	
The 42 CpGs together with their detailed genomic and functional annotation are available in Table 1.  182	

After building our novel epigenetic clock to measure cell ageing in vitro, named CellAgeClock, we 183	
tested its performance using an entirely different set of samples (n=26), consisting of 22 HMF and 184	
four HDF samples. We observed accurate prediction of passage number for both HMFs and HDFs, 185	
with a Root Mean Square Error (RMSE) of 0.37 (Fig. 1C). To compare the performance of the 186	
CellAgeClock with other epigenetic age predictors, we calculated Spearman’s rank correlation 187	
coefficients between the clocks’ output and actual cell passage (see Table 2). The CellAgeClock 188	
showed the best correlation among the tested predictors, with Spearman’s Rho = 0.98 and p < 2.2e-189	
16. We also tested the mitotic-like clocks EpiTOC and MiAge, for comparison. However, their 190	
correlation coefficients were negative, small and non-significant (Rho > -0.3, p > 0.05).  191	

 192	
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Having built a precise epigenetic clock that measures methylation changes during replicative ageing 193	
of human primary cells in vitro, we tested if anti-ageing drug treatment of HMFs and HDFs 194	
decelerated the CellAgeClock. We chose an mTOR inhibitor, rapamycin, which is one of the most 195	
robust and evolutionarily conserved anti-ageing drug targets (Saxton and Sabatini 2017), and which 196	
mediates its effect through down-regulation of S6K and Pol III, and up-regulation of autophagy 197	
(Bjedov et al. 2010; Filer et al. 2017). We chose relatively low rapamycin concentration of 5nM that 198	
did not inhibit cell growth (Supplemental Fig. S1A) but moderately downregulated mTOR signalling, 199	
as evidenced by decreased pS6K and p4E-BP phosphorylation (Supplemental Fig. S3). This setup 200	
mimics the pro-longevity effects of rapamycin in vivo where it is well accepted that only mild nutrient 201	
sensing pathway inhibition increases life- and healthspan (Bjedov and Partridge 2011; Lopez-Otin et 202	
al. 2013). 203	

DNA methylation profiles from HDF and HMFs collected following four, six and eight weeks of 204	
rapamycin treatment (passage 16, 18 and 20; Fig. 2) were analysed using the CellAgeClock and 205	
clearly demonstrated that rapamycin slows down methylation changes associated with replicative 206	
ageing. Interestingly, this clock deceleration was more pronounced upon longer treatment as shown 207	
by the gradual decrease of predicted-actual passage from 16 to 20 weeks. The low dose rapamycin 208	
treatment did not affect population doublings, confirming that the methylation changes were not a 209	
reflection of proliferation inhibition or slowing of the cell cycle (Supplemental Fig. S1). This is further 210	
evidenced by comparing the predicted passage from the CellAgeClock against cumulative 211	
population doubling, showing that rapamycin samples lie on a separate line to that of the control 212	
samples (Supplemental Fig. S4A-B). Contrarily, rapamycin samples and controls differed to 213	
considerably lesser extent when actual passage and cumulative population doublings are compared 214	
(Supplemental Fig. S4A-B). We observed a similar pattern for HMFs and HDFs (Fig. 2), suggesting 215	
that the CellAgeClock is applicable to different cells, albeit calibration is required for cells that reach 216	
senescence at different rates.  217	

We then focused on HMFs to test another anti-ageing drug, trametinib (Slack et al. 2015), an 218	
inhibitor of the MEK/ERK signalling pathway, which we also applied in low concentration to avoid 219	
any effect on growth and population doubling (Supplemental Fig. S1B and S3). The CellAgeClock 220	
analysis of trametinib treatment showed clock deceleration for all three passages tested (Fig. 2), 221	
thereby confirming previous results in Drosophila in vivo that trametinib extends lifespan (Slack et al. 222	
2015). Next, we examined the effect of two other inhibitors of nutrient-sensing pathways as 223	
mutations in these pathways in model organisms represent the most evolutionary conserved anti-224	
ageing interventions (Lopez-Otin et al. 2013). We tested Dactolisib/BEZ235, a dual ATP competitive 225	
PI3K and mTOR inhibitor, for which we again optimised the dose of the treatment to obtain a 226	
reduction in signalling, as shown by pS6K downstream target 4E-BP (Supplemental Fig. S3), without 227	
significant proliferation impairment (Supplemental Fig. S1C). Dactolisib/BEZ235 slowed down the 228	
DNA methylation changes similar to rapamycin, suggesting that Dactolisib/BEZ235 could be a new 229	
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anti-ageing drug according to the output of the CellAgeClock (Fig. 2). We also tested torin2, which is 230	
a selective inhibitor of the mTOR pathway that inhibits both mTORC1 and mTORC2, unlike 231	
rapamycin, which targets solely mTORC1. Owing to its more complete inhibition of the mTOR 232	
pathway, we were interested in examining its effect on replicative ageing, especially as the role of 233	
mTORC2 in ageing is less well established. The impact of mTORC2 inhibition on lifespan can be 234	
positive or negative depending on which of the mTORC2 downstream effectors is affected, in which 235	
tissue, and whether females or male mice are used for the experiment (Kennedy and Lamming 236	
2016). Some of the negative effects of mTOR pathway inhibition, such as insulin resistance and 237	
hyperlipidemia, are attributed to the mTORC2 branch of the pathway and may arise under certain 238	
conditions of prolonged and/or high dose rapamycin treatment (Kennedy and Lamming 2016). 239	
Interestingly, while our CellAgeClock suggests that torin2 is indeed a novel anti-ageing drug (Fig. 2, 240	
Supplemental Fig. S1D and S3), its effect on ageing in mammalian cell culture appears to be less 241	
pronounced than that of rapamycin. This is in line with literature suggesting that a promising strategy 242	
to improve healthy ageing is the development of inhibitors that are highly specific for mTORC1 or 243	
that target mTORC1 downstream effectors separately (Kennedy and Lamming 2016).  244	

Next, we compared our anti-ageing drug screening results obtained by the CellAgeClock with 245	
analyses using Horvath’s Multi-tissue and Skin and Blood clock, as well as the PhenoAge clock. The 246	
clocks did not detect any significant effect of anti-ageing drug treatment (Supplemental Fig. S5). The 247	
Skin and Blood clock26 was used recently to measure deceleration of ageing in primary fibroblasts 248	
(Horvath et al. 2019; Sturm et al. 2019), however the concentration of rapamycin used in our 249	
conditions was five times lower without effect on cell growth, highlighting the sensitivity of our 250	
epigenetic clock to detect age-related methylation changes at very low drug concentrations. Under 251	
our conditions, the only epigenetic clock that detected gradual methylation changes from passage 10 252	
to passage 20 was the PhenoAge clock (Supplemental Fig. S5). However, its output was more 253	
variable between samples and inconsistent for anti-ageing drug treatments, reporting both clock 254	
acceleration and deceleration. For instance, rapamycin, Dactolisib/BEZ235 and torin2 treated cells 255	
appeared slightly younger compared to controls, whereas trametinib treated cells were estimated 256	
older to some extent (Supplemental Fig. S5), unlike the results we obtained with our CellAgeClock 257	
(Fig. 2). Overall, the CellAgeClock that we developed here was more consistent and performed 258	
significantly better on ageing cells in culture and following known anti-ageing drug treatments 259	
compared to existing clocks. Our results are supportive of clocks being highly specialised for a 260	
certain task, and suggests that while other popular epigenetic clocks perform remarkably on 261	
determining donor’s age in years and their health status, they were not able to robustly detect slight 262	
ageing changes in human primary cells induced by drug treatment over a short period of time in 263	
vitro. 264	

Next, we assessed if the CellAgeClock is suitable for the screening of novel anti-ageing drugs. To 265	
this aim, we examined if drugs that decelerate the CellAgeClock also reduce features associated 266	
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with senescence, such as morphological changes and expression of ageing biomarkers 267	
(Hanzelmann et al. 2015). Rapamycin, Dactolisib/BEZ235 and Trametinib treatment slowed down 268	
morphological alteration in cells that gradually occur during replicative ageing, namely cell 269	
elongation, increased nuclear area and cell area, and the treated cells appeared particularly 270	
‘youthful’ (Fig. 3). Another characteristic of senescence is increased expression of the cyclin-271	
dependent kinase inhibitors p21CIP1/Waf1 and p16INK4a. p21CIP1/Waf1 triggers G1 cycle arrest upon 272	
damage and can lead to senescence or apoptosis (He and Sharpless 2017; McHugh and Gil 2018). 273	
Expression of p16INK4a, which is produced from the CDKN2A gene together with p19ARF  (p14ARF in 274	
humans) increases exponentially during ageing and was suggested to stabilise the senescent state 275	
(Gire and Dulic 2015). p16INK4a expression was the marker of choice for senescent cell clearance 276	
leading to prolonged lifespan in mice (Baker et al. 2016).  277	

Our results demonstrate that drugs which decelerate the CellAgeClock at the same time reduce 278	
expression of both nuclear p21CIP1/Waf1 and p16INK4a compared to non-treated cells, showing their 279	
efficacy in delaying the senescence programme (Fig. 3B-C). In addition, the most frequently used 280	
senescent marker, senescent-associated β-galactosidase activity (SA-βgal), was significantly 281	
decreased upon anti-ageing drugs treatment with rapamycin and Dactolisib/BEZ235, but not in cells 282	
treated with trametinib (Fig. 3B-C). Another difference in senescent markers was observed with 283	
interleukin-6 (IL-6), which is one of the most important inflammatory cytokines and part of the 284	
senescent-associated secretory phenotype. IL-6 was significantly reduced in aged cells upon 285	
rapamycin and Dactolisib/BEZ235 treatment but not in trametinib treated cells (Fig. 3B-C). This 286	
difference possibly stems from the overactivated RAS/ERK pathway being a more prominent inducer 287	
of senescence than the overactivated mTOR/PI3K pathway (Kennedy et al. 2011), and hence 288	
corresponding inhibitors have different potency in inhibiting senescence. Finally, we examined the 289	
nucleolus, an organelle dedicated to rRNA production and ribosomal assembly, as it has recently 290	
emerged that maintenance of its structure, and low levels of nucleolar methyltransferase fibrillarin, is 291	
a common denominator for major anti-ageing intervention from worms to mice (Tiku and Antebi 292	
2018). We observed that as a consequence of ageing, nucleoli in aged HMFs lose their defined 293	
round shape, are more diffused, and stain less well. For rapamycin and Dactolisib/BEZ235, we 294	
observed clearly defined and ‘younger’ looking nucleoli in aged cells. However, trametinib treated 295	
cells resembled the nucleoli of controls. In summary, a panel of the most frequently used markers for 296	
cell senescence confirmed that drugs which decelerate the CellAgeClock also make the cells appear 297	
more youthful. This strongly suggests that the CellAgeClock can be used as a robust and sensitive 298	
detector of novel anti-ageing treatments. 299	

Finally, having discovered two novel potential anti-ageing drug treatments using the CellAgeClock, 300	
Dactolisib/BEZ235 and torin2, we tested and validated them in vivo using the fruit fly Drosophila 301	
melanogaster as a model organism. This is important as tissue-specific drug toxicity, which can be 302	
missed in cell culture, is one of the major reasons for drug failure in clinical trials. For in vivo 303	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2020. ; https://doi.org/10.1101/803676doi: bioRxiv preprint 

https://doi.org/10.1101/803676


	 9	

longevity studies we used the outbred wild-type wDah strain which is particularly suitable for ageing 304	
studies, Drosoflipper device for fast fly transfer, and specially formulated holidic medium (Piper et al. 305	
2014) to increase drug bioavailability compared to standard sugar-yeast-agar fly food. We used 306	
rapamycin as a positive control for longevity experiments in flies and showed that median lifespan 307	
extension on holidic media varied from 7% to 9% compared to ethanol solvent control, depending on 308	
1µM or 5µM concentration, respectively (p<0.001, log-rank test), which is comparable to published 309	
literature (Fan et al. 2015) (Fig. 4A). Importantly, both Dactolisib/BEZ235 and torin2 significantly 310	
extended lifespan in Drosophila for 7% (p<0.001, log-rank test) (Fig. 4B-C). This firmly demonstrates 311	
that drugs that decelerate the CellAgeClock have similarly favourable output on major anti-ageing 312	
biomarkers in vitro and extend longevity in vivo (Fig. 4D).  313	

For the first time, we have a robust epigenetic clock for the rapid discovery of anti-ageing drugs 314	
directly in human cells, bypassing lower model organisms and significantly shortening discovery time 315	
compared to 3-year long mice longevity analysis. Testing different compounds for ageing using the 316	
CellAgeClock could potentially reveal new anti-ageing pathways and help us to improve our 317	
knowledge base of not only ageing biology but of molecular pathways underpinning the epigenetic 318	
clocks as well, understanding of which is limited. Other available epigenetic clocks could not 319	
accurately detect the effect of low-dose short-term anti-ageing drugs on cells in vitro. We expect 320	
many biological outputs to be extracted by the CellAgeClock and other epigenetic clock algorithms in 321	
the future, given the wealth of information stored in our epigenome.  322	
 323	
Better experimental systems to test anti-ageing drugs are very much needed, given a rising 324	
proportion of the elderly in modern societies and, as a consequence, larger numbers of people 325	
suffering from age-related diseases. Our results show that by using the CellAgeClock, cultured 326	
primary human cells can be used as a proxy to measure human ageing and can reliably detect anti-327	
ageing effects upon a relatively brief treatment. By doing so, this fast and accurate method is 328	
expected to accelerate the discovery of novel preventive treatments for age-related disease, directly 329	
using human cells. Importantly, follow-up research will be focused on expanding our findings on 330	
different types of primary cells from donors of different ages, as well as on testing further 331	
compounds. While ageing itself is not a disease, potential anti-ageing drugs could be FDA approved 332	
separately for different conditions. The first study to test broad-spectrum protection capacity of 333	
metformin, the TAME study, is underway (Barzilai et al. 2016). In addition, it was shown that 334	
rapamycin/everolimus pre-treatment dramatically improves flu vaccination and immune response in 335	
the elderly (Mannick et al. 2018). In mice, it also lowers the incidence of tumours (Anisimov et al. 336	
2011), and it shows promising results in the field of neurodegeneration (Bove et al. 2011). This 337	
supports the idea that targeting healthy ageing might have multiple beneficial outputs.  338	
 339	
Our novel drug discovery platform will inform on new anti-ageing mechanisms, currently dominated 340	
by IIS and mTOR signalling pathways as well as dietary restriction regimes. Many drugs targeting 341	
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growth pathways are already available from cancer research where they are used in very high 342	
doses. With the CellAgeClock, we examined which of these compounds could be disease 343	
preventative at very low concentrations. Our experimental setup is also suitable for nutraceutical 344	
approaches whereby dietary supplements can be rigorously tested for their effect on ageing. Overall, 345	
we expect our novel discovery platform to accelerate the discovery of strongly sought after anti-346	
ageing drugs and geroprotective strategies to improve healthy human ageing. 347	
 348	
Materials and methods 349	
Cell culture and reagents. Normal finite lifespan human mammary fibroblasts (HMFs) were 350	
obtained from reduction mammoplasty tissue of a 16-year-old individual, donor 48 by Dr Martha 351	
Stampfer (University Berkeley) who has all required IRB approvals to distribute these cell samples 352	
and MTA agreement set in place with Dr Cleo Bishop laboratory. Independent cultures from these 353	
cells were serially passaged from passage 9 through to passage 20 and aliquots taken upon each 354	
passage for Illumina Infinium Methylation EPIC analysis. HMFs were maintained in Dulbecco’s 355	
Modified Eagles Medium (DMEM) (Life Technologies, UK) supplemented with 10% foetal bovine 356	
serum (FBS) (Labtech.com, UK), 2mM L-glutamine (Life Technologies, UK) and 10 μg/mL insulin 357	
from bovine pancreas (Sigma).  358	
Normal finite lifespan human dermal fibroblasts (HDFs) were obtained from face lift dermis following 359	
a kind donation from an anonymous healthy patient under standard ethical practice, reference LREC 360	
No. 09/HO704/69. HDFs were grown in DMEM with 4 mM L-glutamine (Life Technologies), 361	
supplemented with 10% FBS. 362	
Cells were plated at 7,500 cells/cm2 in T25 cell culture flask in 5ml of media to which 5µl of 363	
appropriate drug or vehicle control was added. Media was changed every two days and cells were 364	
passaged every 7 days and trypsinisation was used to detach the cells. All cells were routinely 365	
tested for mycoplasma and shown to be negative. 366	
 367	
Immunofluorescence microscopy and high content analysis. Cells were washed in phosphate 368	
buffered saline (PBS), fixed for 15 minutes with 3.7% paraformaldehyde with 5% sucrose, washed 369	
and permeabilised for 15 minutes using 0.1% Triton X in PBS (30 minutes for anti-nucleolin 370	
antibody) then washed and blocked in 0.25% bovine serum albumin (BSA) in PBS before primary 371	
antibody incubations. Primary antibodies used were anti-IL6 (R&D Systems, 1:100; overnight 4°C), 372	
anti-nucleolin (Santa Cruz, 1:2000, overnight room temperature), anti-p16 (Proteintech, 1:500, 373	
overnight 4°C), anti-p21 (12D1, Cell Signalling, 1:2000, overnight 4°C). Cells were incubated for 2 374	
hours at room temperature with the appropriate AlexaFluor-488, AlexaFluor-546 or AlexaFluor-647 375	
conjugated antibody (1:500, Invitrogen), DAPI (1:1,000 from 1mg/mL stock) and CellMask Orange or 376	
Deep Red (1:200,000, Invitrogen). Images were acquired using the IN Cell 2200 or 6000 automated 377	
microscope (GE) and HCA was performed using the IN Cell Developer software (GE).  378	
 379	
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Z score generation. For each of the parameters analysed, significance was defined as one Z score 380	
from the negative control mean. Z scores were generated according to the formula below: Z score = 381	
(mean value of experimental condition – mean value of vehicle control/standard deviation (SD) for 382	
vehicle control. 383	
 384	
Senescence-associated beta-galactosidase (SA-β-Gal) assay. Cells were washed in PBS, fixed 385	
for 5 minutes with 0.2% glutaraldehyde, washed and incubated for 24 hour at 37°C (no CO2) with 386	
fresh senescence-associated beta-galactosidase (SA-β-Gal) solution: 1mg of 5-bromo-4-chloro-3-387	
indoyl β-D-galactosidase (X-Gal) per mL (stock = 20mg of dimethylsulfoxide per ml) / 40mM citric 388	
acid/sodium phosphate, pH 6.0 / 5mM potassium ferrocyanide / 5mM potassium ferricyanide / 389	
150mM NaCl / 2mM MgCl2). Cells were stained with Hoechst 33342 (1:10,000 from 10mg/mL stock) 390	
for 30 minutes. Images were acquired using the IN Cell 2200 automated microscope and HCA was 391	
performed using the IN Cell Developer software. 392	
 393	
Genomic DNA extraction. For isolation of Genomic DNA from primary human fibroblasts we used 394	
QIAamp DNA micro kit (56304) and we followed manufacturers protocol, with an additional washing 395	
steps with 500µl AW2 buffer and 500µl 80% ethanol to improve purity. DNA quantification and purity 396	
was determined by Nanodrop and QuBit. For bisulfite conversion EZ DNA methylation kit was used 397	
(D5001). 398	
 399	
Preparation of methylation array data. For each sample, 500ng high-quality DNA was bisulphite 400	
converted using the EZ DNA methylation kit (Zymo Research), using the alternative incubation 401	
conditions recommended for use with Illumina methylation arrays. Bisulphite converted DNA was 402	
eluted in 12ul elution buffer. Methylation was analysed using the Infinium Human Methylation EPIC 403	
array (Illumina) using standard operating procedures at the UCL Genomics facility. The EPIC array 404	
data have been deposited into ArrayExpress at the European Bioinformatics Institute 405	
(https://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-8327. 406	
 407	
 408	
Pre-processing of methylation array data. DNA methylation array data was processed using the 409	
minfi package (Fortin et al. 2017) within R (R Core Team, 2013). Initial QC metrics from this package 410	
were used to remove low-quality samples. Probes were filtered using a detection p-value cut-off 411	
>0.01 and normalised using the Noob procedure. Cross-hybridising probes were removed from 412	
analysis based on the list published in McCartney et al. (McCartney et al. 2016). The training and 413	
test sets were pre-processed separately to obtain a fair estimate of the performance of the 414	
CellAgeClock.  415	
 416	
Estimation of sample age using existing epigenetic clocks. Following pre-processing of data, 417	
the epigenetic age of all samples was predicted using three epigenetic clocks; the Multi-tissue clock 418	
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(Horvath 2013), the Skin and Blood clock (Horvath et al. 2018) and the PhenoAge clock (Levine et 419	
al. 2018) using the online DNA methylation calculator at http://dnamage.genetics.ucla.edu (Horvath 420	
2013). 421	
 422	
Development of the CellAgeClock. The clock was built using a total of 39 samples, with six 423	
samples at each of the following passages; 10, 12, and 14; and seven samples at each of the 424	
following passages; 16, 18, and 20. This included both HDFs (n=12) and HMFs (n=27). 730,453 425	
probes passed quality control measurements as described in the pre-processing section. A 426	
differential DNA methylation test was performed on this set of probes to identify CpGs undergoing 427	
significant DNA methylation changes with increasing cell passage. We used the linear regression 428	
approach for continuous variables implemented in minfi’s DMPFinder function (Fortin et al. 2017). 429	
This resulted in 2,543 differentially methylated CpGs at a p-value threshold of 1x10-11 which was 430	
selected using leave one out validation. Next, we built the clock model by elastic net regression 431	
using the DNA methylation levels of the 2,543 CpGs across all passages as input. We applied the 432	
glmnet function of the corresponding R package (Friedman et al. 2010) setting alpha to 0.5 and 433	
determining the lambda parameter by the internal cross validation function provided by glmnet. The 434	
elastic net regression model selected 42 CpGs as predictors of cell passage (Supplemental Table 1).  435	
We obtained the genomic annotation of these CpGs from Illumina’s EPIC manifest, and retrieved 436	
gene functions using DAVID (Huang da et al. 2009) where we selected the following sources for 437	
annotation: GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, GOTERM_MF_DIRECT, 438	
ENTREZ_GENE_SUMMARY, OFFICIAL_GENE_SYMBOL and KEGG_PATHWAY. 439	
We then tested the CellAgeClock on a different set of 26 samples, 22 HMFs and 4 HDFs, across the 440	
following passages: 9 (1 HMFs), 10 (2 HMFs), 11 (2 HMFs), 12 (1 HMFs), 13 (2 HMFs), 14 441	
(2 HMFs), 15 (2 HMFs), 16 (4 HMFs and 2 HDFs), 18 (3 HMFs and 1 HDFs) and 20 (3 HMFs and 442	
1 HDFs). 443	
 444	
Availability of the CellAgeClock. The CellAgeClock is available as a Jupyter Notebook in Python 445	
and can be retrieved from https://github.com/ucl-medical-genomics/CellAge-epigenetic-clock. 446	
 447	
Lifespan measurements. We used white Dahomey (wDah) wild-type flies that were maintained and 448	
all experiments were conducted at 25ºC. Flies were kept on a 12 h light:12 h dark cycle at constant 449	
humidity using standard sugar/yeast/agar (SYA) medium. For all experiments, flies were reared at 450	
standard larval density by transferring 18 µl of egg suspension into SYA bottles. Eclosing adults 451	
were collected over a 12-h period and allowed to mate for 48 h before sorting into single sexes and 452	
placed in vials containing either control or experimental drug food. For lifespan assays, flies were 453	
reared at standard density and maintained at 15 flies per vial and we used holidic media recipe food 454	
for all longevity assays (Piper et al. 2014). Flies were transferred to fresh food vials every 2-3 days 455	
and scored for deaths. At least 150 flies were used for each lifespan experiment.  456	
 457	
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Western blot measurements. Whole flies or human primary cell pellet was homogenised in 2x 458	
Laemmli loading sample buffer (100 mM Tris pH 6.8, 20% glycerol, 4% SDS; Bio-Rad) containing 50 459	
mM DTT, protease inhibitor (cOmplete Mini EDTA-free; Roche) and phosphatase inhibitor 460	
(PhosSTOP EASYpack; Roche) cocktails. Extracts were cleared by centrifugation and approximately 461	
20 μg of protein extract was loaded per lane on a polyacrylamide gel. Proteins were separated and 462	
transferred to nitrocellulose membrane. The following antibodies were used at the indicated dilutions: 463	
H3 (Cell Signaling Technology; 1:2000; 4499S), pS6K (Cell Signaling Technology; 1:1000; 9206S), 464	
total S6K (Santa Cruz; 1:1000; 8418), p4EBP (Cell Signalling Technology, 1:500; 2855S), non-465	
phospho4E-BP (Cell Signalling Technology; 1:500; 4923S), pAkt (Cell Signalling; 1:1000; 4060), 466	
pAkt (Cell Signalling; 1:1000; 4056), total Akt (Cell Signalling; 1:1000; 9272), pERK (Cell Signalling; 467	
1:1000; 4370), total (Cell Signalling; 1:1000; 4692). Blots were developed using the ECL detection 468	
system (GE, Amersham), and analysed using FIJI software (US National Institutes of Health). We 469	
used precasted TGX stain-free gels from Bio-Rad (567-8123 or 567-8124) according to the 470	
manufacturer’s instructions.  471	
 472	
Statistical analysis. Statistical analysis was performed using R. Log-rank tests were performed on 473	
lifespan curves.  474	

Online content 475	

The CellAgeClock is available from GitHub at https://github.com/ucl-medical-genomics/CellAge-476	
epigenetic-clock. All methylation microarray data reported in this study have been deposited in the 477	
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) public repository and are accessible under 478	
accession number E-MTAB-8327. 479	
 480	
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Figure Legends 659	

Figure 1. Development of CellAgeClock for monitoring subtle ageing difference in cells in culture. 660	
A) Predicted age of control samples using three existing epigenetic clocks. Predicted epigenetic 661	

age for control samples across all experiments as estimated by the Multi-tissue clock 662	
(green), the Skin and Blood clock (orange) and the PhenoAge clock (yellow). Fitted lines are 663	
shown with 95% confidence intervals (semi-transparent). All three clocks show a trend to 664	
increase in predicted age with progressing passage, however there is considerable 665	
variability in predictions, particularly for the PhenoAge clock. The Multi-tissue clock 666	
consistently predicted cells to have the highest epigenetic age, while the PhenoAge clock 667	
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consistently predicted cells to have the lowest epigenetic age, which even reached below 668	
zero for several samples at various passages.  669	

B) Heatmap representing 23 CpG probes that undergo hypomethylation with increasing cell 670	
passage and 19 CpGs that undergo hypermethylation with increasing cell passage. These 671	
42 CpG probes were used to develop the CellAgeClock. Probes that undergo 672	
hypomethylation and hypermethylation with increasing passage were separated and ordered 673	
by their methylation values per row. The mean absolute difference between passage 20 and 674	
passage 10 among clock CpGs is 0.2. 675	

C) Testing the CellAgeClock on HMF and HDF samples that were not used to train the clock. 676	
The gray dashed line represents the diagonal (perfect prediction). The fitted line of the actual 677	
data is shown in blue, with a 95% confidence interval (semi-transparent). Cell passages are 678	
predicted accurately. 679	
 680	

Figure 2. Using the CellAgeClock for the detection of anti-ageing drugs.  681	
A) The CellAgeClock predictions of Human Dermal Fibroblasts (HDF) and  682	
B) Human Mammary Fibroblasts (HMF). Represented is Predicted-Actual Passage for Passage 683	

16, 18 and 20, showing deceleration of the CellAgeClock upon treatment with anti-ageing 684	
drugs rapamycin (5nM), Dactolisib/BEZ235 (10nM), torin2 (5nM) and Trametinib (0.1nM).  685	

 686	
Figure 3. Treatment with anti-ageing drugs decreases markers of senescence. 687	

A) Schematic illustrating the experimental set-up conducted in P10 to P22 HMFs, passaged 688	
weekly. 689	

B) Multi-parameter analysis of senescence markers. Colour coding used to illustrate the 690	
number of Z scores of the experimental drug value from the respective control mean. 691	
Scores highlighted in red denote a shift towards a more proliferative phenotype and 692	
scores highlighted in green denote a shift to a more senescent phenotype. 693	

C) P22 HMFs stained with DAPI (blue) and Cell Mask, p21, p16, IL-6, or nucleolin (red), or 694	
SA-β-Gal (blue) following 96-day treatment with 5nM Rapamycin, 10nM 695	
Dactolisib/BEZ235, 0.1nM Trametinib or their respective controls. Size bar, 100µm.  696	

 697	
Figure 4. Drugs that decelerate the CellAgeClock extend lifespan in vivo.  698	

A) Lifespan analysis on wDah background wild type flies fed with SYA food containing different 699	
concentration of rapamycin or ethanol as solvent control. For each condition, 150 flies were 700	
used. 701	

B) Lifespan analysis on wDah background wild type flies fed with SYA food containing different 702	
concentration of Dactolisib/BEZ235 or DMSO as solvent control. For each condition, 150 703	
flies were used. 704	
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C) Lifespan analysis on wDah background wild type flies fed with SYA food containing different 705	
concentration of torin2 or DMSO as solvent control. For each condition, 150 flies were used. 706	

D) Schematic representation of our approach combining novel CellAgeClock and other ageing 707	
biomarkers in vitro primary human cell, together with in vivo Drosophila lifespan 708	
experiments, for a detailed and robust capture of anti-ageing drug potential. 709	
 710	

Supplemental Figure Legends 711	

Supplemental Figure 1. Drug treatment of HMF did not affect cell growth as measured by 712	
population doubling. Represented are population doubling measurements from passage 9 713	
to passage 21 for A) rapamycin (5nM), B) trametinib (0.1nM), C) Dactolisib/BEZ235 714	
(10nM), D) Torin2 (5nM)  and corresponding vehicle controls.  715	

 716	
Supplemental Figure 2.  717	
A) Scheme for developing of the CellAge clock. A) Primary human mammary fibroblasts 718	

and dermal fibroblasts, from passages 10 to 20, were used for CpG methylation 719	
profiling and using elastic net regression 42 CpGs were selected to develop the 720	
CellAgeClock that predicts cell passage.  721	

B) The beanplots showing the overall distribution of DNA methylation values (all CpGs, 722	
n=736,001) are presented. Overall DNA methylation levels decrease with increasing 723	
cell passage. The lines show where the clock CpGs sit in the distributions (mean per 724	
passage group), and are connected across passages to see how their methylation 725	
levels change. The plots show the mean methylation changes the clock CpGs are 726	
undergoing with increasing passage, separated by those that become hypo- and 727	
hypermethylated, in the contextof the global DNA methylation patterns of all CpGs. 728	

C) Barplots showing the percentage of CpGs falling into the corresponding genomic 729	
feature. Lighter bars show the percentages of clock CpGs (x% of the 42 CpGs). Darker 730	
bars show the background distribution (all other CpGs analyzed = 735,959 CpGs). 731	
Clock CpGs fall more often into IGRs. Barplots on the left are separated into gene 732	
promoters, gene bodies and IGRs for which in the CellAgeClock CpGs we found 12, 14 733	
and 16, respectively. More detailed separation of the CellAgeClock CpGs into 5’UTR (2 734	
CpGs), TSS200 (1 CpG), TSS1500 (7 CpGs), 1st exon (2 CpGs), gene body (13 CpGs) 735	
and 3’UTR (1CpG) and IGR (16 CpG). 736	

 737	
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Supplemental Figure 3. Western blot analysis on HMFs treated with anti-ageing drugs. 738	
Western blots were probed for phospho-S6K (Thr 389) showing p85 S6K Thr412 and lower 739	
band p70 S6K Thr389, total S6K, phospho-4EBP (Thr37/46), non-phospho-4EBP, pERK 740	
(Thr202/Tyr204), total ERK, and H3 as a loading control. Western blots analysis of A) HMF 741	
passage 10 and B) HMF passage 14 C) HMF passage 14 only 8h treatment with anti-742	
ageing drugs. The analysis reflect rapid (S6K) and slower (4EBP) decreases in 743	
phosphorylation, increased phosphorylation (Akt Ser 473 and Akt Thr308) owing to S6K-744	
IRS negative feedback loop, and resilience to phosphorylation changes owing to pMEK 745	
rebound and pERK feedback reactivation. 746	

 747	
Supplemental Figure 4.  748	
A) A scatterplot of the cumulative population doubling against the actual passage for control 749	

and rapamycin samples.  750	
B) A scatterplot of the cumulative population doubling against the predicted passage from 751	

CellAge for control and rapamycin samples. 752	
 753	

Supplemental Figure 5. Predicted age of control samples and samples treated with 754	
potential anti-ageing drugs using three existing epigenetic clocks.  755	
Predictions of epigenetic age made using the Multi-Tissue (A1-D1, green), Skin & Blood 756	
(A2-D2, orange) and PhenoAge (A3-D3, yellow) clocks. Age predictions are indicated for 757	
samples treated with rapamycin (A1-A3), Dactolisib/BEZ235 (B1-B3), trametinib (C1-C3), 758	
torin2 (D1-D3), as compared with the set of control samples. These comparisons show that 759	
the existing clocks do not consistently indicate the anti-ageing effects of these treatments 760	
on cultured cells.  761	
 762	
	763	
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Supplemental Fig. 5
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