
 

Imputing missing RNA-seq data from DNA methylation by 

using transfer learning based-deep neural network 
Xiang Zhou1, Hua Chai1, Huiying Zhao2, Ching-Hsing Luo1*, and Yuedong Yang1,3* 

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China, 2Sun Yat-sen Memorial Hospital, Sun 

Yat-sen University, Guangzhou, China, 3Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen 

University), Ministry of Education, China 

* yangyd25@mail.sysu.edu.cn; luojinx5@mail.sysu.edu.cn 

Abstract 

Multi-omics integrative analysis can capture the associations of different omics and thus provides a comprehensive view of the complex mechanisms in 

cancers. However, it is common that one portion of samples miss one type of omics data due to various limitations in experiments, which can be an 

obstacle for downstream analysis where complete dataset is needed. Current imputation methods mainly focus on single cancer dataset, which are limited 

by their ability to capture information from large pan-cancer dataset. We present a novel transfer learning-based deep neural network to impute missing 

gene expression data from DNA methylation data, namely TDimpute. The pan-cancer dataset was utilized to train a general model for all cancers, which 

was then fine-tuned on each cancer dataset for the specific cancer. We compared our method to other state-of-the-art methods on 16 cancer datasets, and 

found that our method consistently outperforms other methods in terms of imputation error, methylation-expression correlations recovery, and downstream 

analysis including the identification of DNA methylation‑driving genes and prognosis-related genes, clustering analysis, and survival analysis. The 

improvements are especially pronounced at high missing rates.  

Author summary 

As an epigenetic modification, DNA methylation plays an important role in regulating gene expression. However, due to limitations of sample availability 

and cost, some samples aren’t measured with gene expression, which results in a reduced sample size for integrative analysis of DNA methylation and 

gene expression. The accuracy of traditional imputation methods are limited since they cannot effectively utilize the information from DNA methylation 

data and other relevant datasets. With the power of modeling nonlinear relationship, we used deep neural network to impute missing gene expression data 

using the nonlinear transformation from DNA methylation data to gene expression data. We also employed transfer learning to alleviate the data 

insufficiency in training the deep leaning model. In 16 cancer datasets from The Cancer Genome Atlas (TCGA), our method yields higher accuracy 

compared to other methods. More importantly, better performance of the downstream analysis on imputed gene expression datasets are achieved, which 

indicates the missing data imputed by our method are more biologically meaningful. 

Introduction  

Recent development of molecular biology and high-throughput technologies facilitates the simultaneous measurement of various biological omics data 

such as genomics, transcriptomics, epigenetics, proteomics, and metabolomics for a single patient. Compared with single-omics analysis, integrative 

analysis of multi-omics data provides comprehensive insights of cancer occurrence and progression, and thus strengthens our ability to predict cancer 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/803692doi: bioRxiv preprint 

mailto:luojinx5@mail.sysu.edu.cn
https://doi.org/10.1101/803692


Zhou et al. 

prognosis and to discover various levels of biomarker. However, due to technical limitations of experimental settings or high costs for acquiring the omics 

data, most samples aren’t measured with all types of omics data, and lack one part of omics types (called “block missing”). This problem is prevalent in 

publicly available multi-omics dataset, such as The Cancer Genome Atlas (TCGA). In traditional multi-omics integration studies, samples with missing 

omics are usually removed, which greatly reduces the sample size, especially when concatenating many types of omics data [1].  

When the data is missing at random in single omics data, many methods have been proposed for imputing the missing values by using correlation 

structure among matrix entries, such as singular value decomposition imputation (SVD), k-nearest neighbor (KNN) [2]. However, these traditional 

methods may not be suitable for the cases lacking a whole set of features. In order to address this issue, several methods have been specifically designed. 

Voillet et al. used multiple hot-deck imputation approach to impute missing rows in multi-omics dataset for multiple factor analysis [3]. To improve the 

reliability of gene network inference, Imbert et al. used multiple hot-deck imputation method to process RNA-seq data with missing rows, where they 

measured the similarities to cases in a standard database, and fixed the missing values according to the case with the highest similarity  [4]. Obviously, 

this way to use only the most similar case (neighbor) might be unstable due to random fluctuations in its neighbors. Recently, Dong et al. proposed a k-

nearest neighbor weighted method (named as TOBMI by the authors) to impute mRNA-missing samples through evaluating the sample similarity by 

DNA methylation data [5]. However, TOBMI suffers from poor scalability for dataset with large sample size and high dimensionality, and the accuracy 

is still limited since the size of specific cancer dataset is relatively small. More importantly, it cannot capture information from other related cancer 

datasets.  

In recent years, deep neural network has demonstrated its superiority on modeling complex nonlinear relationships and enjoys scalability and flexibility. 

One or multiple hidden layers and nonlinear activation function are employed to capture the nonlinear patterns between input and output data. For the 

gene expression imputation or prediction, many deep learning models have been proposed. Chen et al. built a multilayer feedforward neural network to 

predict the expression of target genes from the expression of ~1000 landmark genes [6]. Xie et al. constructed a similar deep model to infer gene expression 

from genotypes of genetic variants [7]. Based on convolutional neural network, Zeng et al. used promoter sequences and enhancer-promoter correlations 

to predict gene expression [8]. With the ability to recover partially corrupted input data, denoising autoencoder (DAE) was used to impute missing values 

in single-cell RNA-seq data [9, 10]. Besides genetic variants and transcription factors, DNA methylation is another fundamental mechanism to regulate 

gene expression, and aberrant DNA methylation is considered as an important contributor to disease phenotypes (Gevaert, et al., 2015). Thus, gene 

expression imputation can improve the correlation analysis between methylation and gene expression, by increasing the sample size when expression data 

are not available. Nevertheless, the studies on predicting gene expression from DNA methylation are limited, and the only known one is TOBMI  [5]. 

One obstacle for the application of these deep learning model to multi-omics dataset is the high dimensionality (>20,000 features) in omics data while 

a small sample size. Even the TCGA has only hundreds of samples for each cancer type. Thus, it is hard to train an accurate model with millions of 

parameters in deep learning architecture. In such scenarios, transfer learning is usually considered as a promising method, where parameters trained for a 

task with large amount of data are reused as the initialization parameters for a similar task with limited data [11]. The transfer learning has been widely 

used in the computer vision including object detection [12], image segmentation [13].  

For the omics data analysis of cancers, the transfer learning strategy has been applied to different tasks. Li et al. built a pan-cancer Cox model for the 

prediction of survival time, where eight cancer types were combined to assist the training of target cancer dataset [11]. Yousefi et al. used transfer learning 

approach to predict the clinical outcomes utilizing samples from uterine corpus endometrial carcinoma and ovarian serous carcinoma to augment target 

breast cancer dataset to improve the prediction of clinical outcomes [14]. Hajiramezanali et al. learned information from the Head and Neck Squamous 

Cell Carcinoma cancer to subtype lung cancer [15]. Based on the assumption that different types of cancer may share common mechanisms [16, 17], 

transfer learning is becoming a useful approach for the prediction of missing data by learning from the data of different cancer types.  
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In this study, we propose a transfer learning based deep neural network method for imputing gene expression from DNA methylation data, namely 

TDimpute. Specifically, we first train a deep neural network on the pan-cancer dataset to build a general imputation model for all cancers, which is then 

transferred to target cancer types (see Fig 1 for a schematic overview). To the best of our knowledge, this is the first time to employ the transfer deep 

learning for the imputation of gene expression from methylation. The method was tested to recover gene expressions for 16 cancer types at five different 

missing rates, and achieved better performances than other methods by measurement of the root mean square errors (RMSE) and Pearson correlation 

coefficients to actual values. We further evaluated the imputed gene expressions for the identification of methylation-driving genes, prognosis-related 

genes, clustering analysis, and survival analysis. The results show that our method consistently provides the best performances. These results confirm that 

TDimpute succeeds in transferring related information from pan-cancer data to target cancer data. 

Results 

Comparisons on the imputation accuracy 

We evaluated the imputation accuracy of 6 imputation methods by the average root mean square errors (RMSE) across 16 cancer datasets over different 

missing rates. The missing rate means the fraction of samples whose gene expression data are removed. As shown in Fig 2A, TOBMI achieves similar 

but consistently lower RMSE than SVD. SVD has a slow increase of RMSE from 1.06 to 1.01 when missing rates change from 10% to 70%, but then a 

sharp increase to 1.24 that is even worse than the result by the Mean method. Overall, the Mean method has the worst performance, which is consistent 

with the trend in the original paper [5]. By comparison, TDimpute-self without using transfer learning yields 6%-12% lower RMSE than TOBMI at 

different missing rates. TDimpute-noTF, as a general model, is trained on the pan-cancer dataset (excluding the target cancer). The model doesn’t use 

information from the target cancer and thus shows a constant performance. It doesn’t perform well but better than the Mean method.  The performance is 

even better than SVD and TOBMI when the missing rate is above 70%. TDimpute, a further transfer learning of the target cancer from TDimpute-noTF, 

decreases the RMSE by 7%-16% over TDimpute-noTF. The RMSE by TDimpute is also 2%-5% lower than TDimpute-self with a bigger difference at a 

higher missing rate. These results confirm the power of our TDimpute method in transferring knowledge from the other cancer types to improve the 

imputation performance. We also noted SVD, MI hot-deck, and TOBMI have close to constant RMSE values for missing rates 70% and 10%, indicating 

that 3 times increase of sample sizes don’t contribute much to increase the imputation accuracy. Instead, deep learning methods, TDimpute and TDimpute-

self, decrease the RMSE by 5% and 7%, respectively, indicating the ability of further improvement with an increase of sample size in future.  

When measured by the squared correlation (𝑅2) between the imputed and actual values by each sample (Fig 2B), TDimpute is consistently the best, 

followed by the TDimput-self. Differently, SVD ranks the 3rd except at a missing rate of 90%, where SVD has the lowest 𝑅2 of 0.909. The Mean 

imputation keeps the lowest performance. Hereafter, we will focus on the comparison with SVD and TOBMI methods.  

Fig 1. The architecture of transfer learning based deep neural network (TDimpute) for imputing missing gene expression values in multi-
omics dataset. The deep neural network: DNA methylation data are transformed into gene expression data and the root mean squared error (RMSE) 
between the actual output and desired output is minimized. Transfer learning: pan-cancer dataset is used to train the general imputation model for 
pan cancers, which is specifically tuned for each type of cancer.  
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Impact on the methylation-expression correlations and the identification of methylation-driving 

genes 

 

For multi-omics dataset, proper imputation method should preserve the correlation structures between different types of omics. Since the most correlated 

CpG-gene pairs play the most important roles, we only compare the impact of imputation methods by the average 𝑅2 of top 100 CpG-gene pairs from 

full datasets. As shown in Fig 3, TOBMI displays a dramatic decrease of 𝑅2 from 0.78 to 0.64 with the increase of missing rates.  SVD method has a 

small decrease of 𝑅2 from 0.80 to 0.79 when missing rates increase from 10% to 50%, but a large drop to 0.72 at a missing rate of 90%. In contrast, both 

TDimpute and TDimpute-self have 𝑅2 values fluctuating around the ideal values (𝑅2=0.8) when missing rates are less than 70%. At a missing rate of 

90%, TDimpute-self by using single dataset has a drop of 𝑅2 to 0.75, while TDimpute doesn’t show any decrease. This is as expected because transfer 

learning has been widely proven to solve the problem of small sample sizes.  

We further investigate whether the preservation of correlations can obtain better performance in the identification of methylation-driving genes. The 

performance is evaluated by PR-AUC and the overlap of top 100 methylation-driving gene from imputed and full datasets. A higher value means stronger 

Missing rate SVD TOBMI TDimpute-self TDimpute 

10% 0.988* 0.988* 0.992* 0.993 

30% 0.954* 0.956* 0.969* 0.974 

50% 0.900* 0.898* 0.932* 0.943 

70% 0.818* 0.807* 0.867* 0.892 

90% 0.665* 0.651* 0.712* 0.788 

Table 1. The average PR-AUC over 16 cancers for recovering methylation-driving 

genes according to the imputed relative to the actual gene expression data. Average 

performance across 16 imputed cancer datasets are reported. Best results are highlighted in 

bold face. * indicates statistical significance (p-value < 0.05) between TDimpute and other 

three methods (SVD, TOBMI, TDimpute-self). 

 

Fig 3. The average correlations 𝑹𝟐 of top 100 CpG-gene pairs over 16 cancer datasets 

by four imputed methods. Dashed black line is the correlations from the actual dataset.  

Fig 2. Imputation accuracy of each imputation method. Results were averaged across 16 imputed cancer datasets. (A) RMSE values of each method. (B) The squared 

Pearson correlation coefficient (𝑅2) between each sample of the imputed data and the original full data. TDimpute-self indicates the TDimpute trained and predicted on the target 

cancer dataset. TDimpute-noTF indicates the TDimpute trained on the pan-cancer dataset (excluding the target cancer) and predicted on the target cancer dataset. The standard 

deviations are shown with error bars.  
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concordance with the gene list identified from actual dataset. Tables 1 and S3.1 show that our proposed TDimpute method has the highest PR-AUC values 

and overlap with true methylation-driving genes among the four methods across different missing rates. TDimpute-self ranks the second in selecting 

methylation-driving genes, followed by SVD and TOBMI. Compared with SVD, TDimpute achieves 0.5%-19% improvement for PR-AUC, and 3%-103% 

improvement for overlapped genes. The improvement is especially pronounced at high missing rates. 

Impact on the identification of prognosis-related genes 

 

We investigated the recovery power of different imputation methods on the identification of significantly prognosis-related genes. To evaluate the selected 

genes, we compared the genes identified from the imputed to those from the actual data. Consistent with the performance in the imputation accuracy, 

Tables 2 and S5.1 show that TDimpute method achieves 2%-28% higher PR-AUC values, and 4%-54% more number of overlapped genes than those by 

the TOBMI method. TOBMI and SVD achieve the lowest values, with TOBMI performing slightly better than SVD. We also investigate the enrichment 

of the top 100 genes overlapped with the prognosis-related gene list downloaded from The Human Protein Atlas [18] relative to the random. Table 3 

demonstrates that TDimpute achieves the largest enrichment factors, indicating its ability to identify the really validated prognosis-related genes. 

Impact on the performance of clustering analysis and survival analysis 

We also evaluate the effects of different imputation methods on clustering analysis and survival analysis. By input of top 100 prognosis-related genes, K-

means algorithm is used to divided the samples into two clusters. The adjusted rand index (ARI) for the clustering concordance is shown in Fig 4A. For 

all methods, accuracy decreases with increasing missing rates, which is consistent with the previous study [10]. As expected, TDimpute achieves the 

highest clustering concordance among the four imputation methods consistently under different missing rates.  

A further survival analysis (Fig 4B) shows that TDimpute achieves the best C-index, followed by TDimpute-self, SVD method, and TOBMI method. 

Despite showing a worse performance in the imputation accuracy, SVD performs better than TOBMI in this evaluation metric. In addition, the C-index 

of TDimpute, TDimpute-self, and SVD are relatively robust to the missing rates compared to TOBMI that showed a 9% decrease in C-index with 90% 

of samples missing gene expression values. 

Table 2. The average PR-AUC for recovering prognosis-related genes according 

to the imputed relative to the actual gene expression data. The * indicates there is 

a significant difference from the results by TDimpute by paired T-test. 

Table 3. The average enrichment factors of top 100 prognosis-related genes 

overlapped with the genes collected in the Human Protein Atlas. The * indicates 

there is a significant difference from the results by TDimpute by paired T-test. 

 Missing rate SVD TOBMI TDimpute-self TDimpute 

10% 5.53* 5.83 5.71 5.91 

30% 3.46* 4.08 4.22 4.25 

50% 2.08* 2.74 2.94 3.06 

70% 1.14* 1.60* 1.87 2.03 

90% 0.56* 0.47* 0.89* 1.14 

Missing rate SVD TOBMI TDimpute-self TDimpute 

10% 0.856* 0.866* 0.876* 0.880 

30% 0.674* 0.709* 0.727* 0.742 

50% 0.532* 0.566* 0.594* 0.617 

70% 0.404* 0.429* 0.460* 0.494 

90% 0.275* 0.277* 0.295* 0.357 
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Real data application 

We downloaded Uterine corpus endometrial carcinoma (UCEC) data from TCGA, and obtained 439 samples with methylation data. Among the samples 

with methylation data, only 172 samples have expression data at the same time. The samples with both expression and methylation data were considered 

as training dataset. For the top 100 prognosis-related genes identified from the dataset imputed by TDimpute, 26 genes (Table S7) were found in The 

Human Protein Atlas [18], corresponding to an  enrichment factor of 3.05 (26/100/(1621/19027)). Among the 26 genes, 20 genes were previously reported 

to relevant to multiple types of cancer, of which 5 genes (TXN, UCHL1, GAL, CALCA, PEG10) connect to UCEC and 6 genes connect to gynecologic 

cancers (ovarian cancer and cervical cancer) and breast cancer.   

K-means method is used to cluster the 439 samples after imputation, and two resulted clusters are used to plot the survival curve. The log-rank test 

was used to evaluate the difference in prognosis of each cluster. As shown in Fig 5, TDimpute achieves more significant difference between the two 

clusters, where the p-value is decreased from 0.0095 to 0.000173. SVD and TDimpute-self have similar results with TOBMI with P-values of 0.0012 and 

0.0011, respectively. The survival analysis on the imputed dataset by TDimpute are also enhanced with the largest C-index of 0.588, compared to 

TDimpute-self, SVD, TOBMI with C-index of 0.575, 0.55, and 0.553, respectively.   

For all the mentioned experiments, the results per cancer dataset are detailed in S1-S5 Figs, and S2-S6 Tables. 

Discussion 

Fig 4. (A) The average adjusted rand index (ARI) of the clusters from the imputed and actual data, and (B) the average C-index by survival analyses based on imputed data over 16 

cancers. 

Fig 5.  Kaplan-Meier plot for the two clusters obtained from the UCEC dataset imputed by TDimpute and TOBMI, respectively. 
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Our TDimpute method is designed to impute multi-omics dataset where large, contiguous blocks of features (i.e., omics data) go missing at once. In this 

paper, TDimpute perform missing gene expression imputation by building a highly nonlinear mapping from DNA methylation data to gene expression 

data. Due to the limited size of cancer datasets in TCGA, we use transfer learning to capture the commonalties in pan-cancer dataset for parameter pre-

training. We compare TDimpute with/without transfer learning, SVD and TOBMI method in imputation accuracy of RMSE and correlation 𝑅2 , 

methylation-expression correlations. Since the main task of imputation is to recover biologically meaningful gene expression data for downstream analysis, 

we also evaluate the imputation performance for the identification of methylation-driving gene, prognosis-related genes, clustering analysis and survival 

prediction. It is worthy to note that although only methylation and gene expression data are illustrated in this paper, our method is capable of incorporating 

other omics data by following a similar framework.  

Experimental results on 16 cancer datasets confirm that our TDimpute method without transfer learning outperforms SVD and TOBMI method in 

different evaluation metrics. Based on transfer learning, our TDimpute method can further improve the performance especially at large missing rate. In 

addition, the ranking of SVD and TOBMI method by imputation accuracy (RMSE and correlation 𝑅2) are not strictly correlated with their performance 

in preservation of methylation-expression correlation, clustering analysis and survival prediction, but our TDimpute method provide approximately 

consistent performance in downstream analysis.  

Besides the outstanding performance of imputation accuracy and downstream analysis, another main benefit of our proposed methods is the 

computational efficiency and convenience. Based on GPU acceleration, our TDimpute method is capable of processing large-scale pan-cancer multi-

omics dataset including tens of thousands of samples and hundreds of thousands of features, while TOBMI and SVD suffer poor scalability due to the 

computational complexity of distance matrix computation and singular value decomposition operations. Based on pre-trained model, transfer learning 

framework can also accelerate the training process on the target dataset. In addition, our deep neural network model only needs to be trained one time and 

the trained model can be applied directly to any new samples for imputation, while TOBMI and SVD are not model-based method and have to recompute 

the whole dataset when new samples are given. This is very convenient in practice. 

Future work can focus on reducing the amount of model parameters and integrating more related training samples. Since we only use the correlation 

between omics for imputation, one possible direction is to leverage prior knowledge of gene-gene interaction network. The known relationships between 

variables/genes has demonstrated its ability to significantly reduce the model parameters by enforcing sparsity on the connections of neural network [19]. 

The performance of this approach is dependent on the quality of the gene-gene networks, and more investigation need to be done in this direction.  

Methods 

Datasets 

We obtained the data for 33 cancer types from The Cancer Genome Atlas (TCGA) using the R package TCGA-assembler [20], including RNA-seq gene 

expression data (UNC IlluminaHiSeq_RNASeqV2), DNA methylation data (JHU-USC HumanMethylation450), and clinical information with follow-up. 

Originally, 20531 genes and 485577 methylation sites were collected. We excluded genes with zero values in the RNA-seq data across all samples. The 

remained 19027 genes were converted by the log2(G + 1), where G is the raw gene expression value. For DNA methylation data, we excluded methylation 

sites with “NA” values, and 269023 methylation sites remain. By further removing sites with small variances (< 0.05) over all samples, 27717 CpG sites 

were kept. Here, for evaluating all imputing methods we kept only samples having both RNA-seq and DNA methylation data. Finally, the dataset contains 

8856 samples with expression data for genes and methylation values for 33 cancers, namely pan-cancer dataset.  
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To keep enough sample size for model building, we only selected cancer types containing > 200 samples with complete DNA methylation, gene 

expression, and clinical data, leading to 16 cancer types for test: Breast adenocarcinoma (BRCA), Thyroid carcinoma (THCA), Brain lower grade glioma 

(LGG), head and neck squamous cell carcinoma (HNSC), Prostate adenocarcinoma (PRAD), Lung adenocarcinoma (LUAD), Skin cutaneous melanoma 

(SKCM), Bladder urothelial carcinoma (BLCA), Liver hepatocellular carcinoma (LIHC), Lung squamous cell carcinoma (LUSC), Skin cutaneous 

melanoma (STAD), Kidney renal clear cell carcinoma (KIRC), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), Kidney 

renal papillary cell carcinoma (KIRP), Colon carcinoma (COAD), and Sarcoma (SARC). The cancer types and their sample sizes are detailed in Table 

S1. 

The architecture of our imputation method  

Deep neural network was employed for imputing missing gene expression values from the DNA methylation. To expand the sample size for training the 

model, we leverage the pan-cancer dataset to generate a model for all cancer types. Then, the model is fine-tuned respectively on each cancer type to 

obtain specific models.  

Deep neural network architecture. As shown in Fig 1, the deep neural network includes input layer, output layer, and one or multiple 

hidden layers. The nodes between layers are fully connected. Here, we use 𝑥0 to represent the input of network, and the output vector 𝑥𝑙 at lth layer can 

be formulated as  

                            𝒙𝑙 = 𝑓(𝑾𝑙𝒙𝑙−1 + 𝒃𝑙)                                       (1) 

where 𝒙𝑙−1 denotes the output of previous layer 𝑙 − 1, 𝑓(∙) is the activation function such as the sigmoid and Relu functions, and 𝑾 and 𝒃 are weight 

matrix and bias vector, respectively. 𝑾 and 𝒃 are parameters that need to be learned. 

The loss function for training is the root mean squared error (RMSE):  

                            𝐿(𝑦, y0) = √
1

𝑁
∑ (𝑦𝑖 − yi

0)2𝑁
𝑖=1                           (2)  

where 𝑦𝑖
0 and 𝑦𝑖 are the experimentally measured and predicted expression value for gene i, and 𝑁 is the dimension of output vector (i.e., the number of 

genes). The network can be considered as a highly nonlinear regression function that maps DNA methylation data (input) to gene expression data (output). 

Transfer learning-based models. To train the prediction model for one target cancer in the TCGA, the datasets of other cancer types 

are combined to generate a multi-cancer model that is then fine-tuned by the target cancer data (Fig 1). The data of the target cancer was excluded to train 

the multi-cancer model as we need to remove different portions of the data for the target cancer to evaluate our imputation model. A half number of 

epochs (300 relative to 150) during the fine-tune step was selected to avoid over-fitting over single cancer type. 

Parameters setting. For our deep neural network, we selected the following hype-parameters: 1 hidden layer (selected from 1 and 3) including 

4000 (from 500, 1000, 2000, and 4000), Sigmoid activation function (from Tanh, Relu, and Sigmoid), epochs of 100 (from 100, 150, 300, and 500), and 

batch size of 16 (from 16, 32, 64, and 128). Adam optimizer was used to optimize parameters. For the training of multi-cancer models, a batch size of 

128 was used to train 300 epochs because of the bigger training set by using 32 cancers (150 epochs were used for fine-tuning stage). All hyperparameters 

were selected after test and trials for a low value of RMSE. All methods were implemented with TensorFlow. Dropout wasn’t used as it decreased the 

performance.  
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Missing data simulation and other methods for comparison  

To simulate the missing values in omics, we randomly selected increasing fractions (10%, 30%, 50%, 70%, 90%) of samples in the full dataset and remove 

their gene expression data. The samples with missing gene expression are set as testing dataset and the remaining samples with complete omics are set as 

training dataset. At each level of missing rate, we repeat this procedure 5 times to obtain a robust evaluation of each method and the averaged results are 

reported in all the following experiments. The original full dataset is referred as a gold standard for our comparisons. For TDimpute and SVD method, 

gene expression data are scaled to the range of [0, 1].  

We compare our method with the Mean imputation method, TOBMI [5], and SVD imputation method [2]. The default or suggested parameters were 

used for these methods. 

Preservation of methylation-expression correlations and methylation-driving genes  

Here, we use the squared Pearson correlation coefficient 𝑅2 to evaluate the effect of imputation method on the correlations between DNA methylation 

and gene expression. Since one gene might be associated with multiple CpG sites, we only considered the CpG-gene pair with the strongest correlation 

in this paper. Based on the methylation-expression regulation, many studies have been conducted to identify cancer-related DNA methylation-driving 

(hyper and hypo methylated) genes [21]. Hence, we also evaluate the effect of imputation methods on the identification of methylation-driving genes. We 

define the methylation-driving genes (i.e., significantly correlated CpG-gene pairs) with the 𝑅2 ≥ 0.5 and FDR-𝑞 ≤  0.05. The pairs with 𝑅2 greater than 

a threshold are considered to be correlated, according to which we can obtain the area under precision-recall curve (PR-AUC). We also computed the 

overlap between the top 100 ranked genes identified from imputed datasets and the original full datasets.  

Preservation of prognosis-related genes 

A common task in the analysis of gene expression data is the identification of prognostic genes. In order to evaluate the effect of different imputation 

method on the identification of potentially prognosis-related gene, we build univariate Cox proportional hazard regression models to select statistically 

significant genes correlated with overall survivals. With the Cox model, each gene is assigned a p-value describing the significance of the relation between 

the gene and a target cancer. The prognosis-related genes are identified with p-value ≤ 0.05. We rank the genes by their p-values, and evaluate the 

consistency between the gene lists from imputed datasets and the original full datasets using PR-AUC and the overlapped top 100 ranked genes.  

To validate our gene rankings with independent information, we download the list of prognosis-related genes from The Human Protein Atlas (THPA) 

[18], and compare the enrichment factors of the top 100 ranked genes in the list from THPA. The enrichment factor is calculated with 𝐸𝐹 =

(𝑁True/𝑁selected)/(𝑁Active/𝑁Total), where 𝑁True is the number of true positives, 𝑁selected is the number of top k selected genes, 𝑁Active and 𝑁Total  are 

the number of prognosis-related genes and total number of genes in THPA, respectively. 

Impact on clustering analysis and survival analysis 

We evaluated the relation of genes to cancer survivals by p-values output from the univariate Cox model. By using the top 100 genes, their expression 

values were used to divided samples into 2 clusters by the K-means. The clustering performance was assessed by adjusted rand index (ARI), which is a 

measure of agreement between the predicted cluster labels (on imputed dataset) and the true cluster labels (on original full dataset). We further made 
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survival prediction with significantly related genes (p ≤ 0.05) by using the ridge regression regularized Cox model. Here, the glmnet package [22] in R 

was used for model construction, which is suitable for fitting regression model with high-dimensional data. The performance of the Cox model was 

assessed by the Harrell’s concordance index (C-index) that measures the concordance between predicted survival risks and actual survival times. We used 

5-fold cross validation (CV) to evaluate the performance.  

Supporting information 

S1 Fig. RMSE on 16 imputed cancer datasets with different missing rates.  

(TIF) 

 

S2 Fig. The squared Pearson correlation coefficients 𝑹𝟐 between each sample of the imputed data and the original full data on 16 imputed 

cancer datasets with different missing rates. 

(TIF) 

 

S3 Fig. The squared Pearson correlation coefficients 𝑹𝟐 between gene expression and methylation sites on 16 imputed cancer datasets with 

different missing rates. 

(TIF) 

 

S4 Fig. ARI on 16 imputed cancer datasets with different missing rates. 

(TIF) 

 

S5 Fig. C-index on 16 imputed cancer datasets with different missing rates. 
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S7 Table. The 26 genes validated in The Human Protein Atlas. 
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Supplementary Figure 1 

 
Fig S1. RMSE on 16 imputed cancer datasets with different missing rates. The results were averaged over 5 random 
replicas. The standard deviations are shown with error bars. 
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Supplementary Figure 2  

 
Fig S2. The squared Pearson correlation coefficients 𝑹𝟐 between each sample of the imputed data and the original 
full data on 16 imputed cancer datasets with different missing rates. The results were averaged over 5 random 
replicas. The standard deviations are shown with error bars. 
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Supplementary Figure 3 

Fig S3. The squared Pearson correlation coefficients 𝑹𝟐 between gene expression and methylation sites on 16 
imputed cancer datasets with different missing rates. The results were averaged over 5 random replicas. Dashed black 
line is drawn as a reference indicating the correlations from the original full dataset. 
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Supplementary Figure 4 

Fig S4. ARI on 16 imputed cancer datasets with different missing rates. The results were averaged over 5 random 
replicas. 
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Supplementary Figure 5 

 
Fig S5. C-index on 16 imputed cancer datasets with different missing rates. The results were averaged over 5 random 
replicas. 
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Table S1. The TCGA cancer types and their sample sizes used for test. 
Cancers Dataset size 

BRCA 867 

SARC 262 

LUSC  378 

BLCA 424 

KIRC 342 

LGG_ 541 

PRAD  532 

LUAD 477 

LIHC 416 

SKCM 472 

HNSC  541 

CESC 308 

COAD  297 

KIRP  297 

THCA 562 

STAD 371 
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Table S2. PR-AUC for detecting methylation-driving genes on imputed cancer datasets over 16 cancer types.

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 1 0.994 1 1 0.998 0.99 0.998 0.998

30% 0.978 0.972 0.988 0.99 0.98 0.97 0.986 0.986

50% 0.94 0.926 0.97 0.97 0.96 0.92 0.964 0.964

70% 0.872 0.862 0.932 0.94 0.926 0.854 0.932 0.934

90% 0.76 0.736 0.826 0.854 0.828 0.754 0.84 0.856

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.994 0.992 0.996 0.996 0.982 0.986 0.99 0.99

30% 0.978 0.974 0.98 0.984 0.93 0.95 0.956 0.964

50% 0.946 0.93 0.958 0.962 0.86 0.89 0.908 0.928

70% 0.9 0.834 0.918 0.926 0.76 0.782 0.812 0.85

90% 0.768 0.676 0.792 0.838 0.554 0.602 0.606 0.714

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.99 0.99 0.99 0.99 0.978 0.986 0.99 0.99

30% 0.954 0.95 0.968 0.97 0.92 0.948 0.96 0.964

50% 0.904 0.896 0.928 0.936 0.846 0.874 0.906 0.928

70% 0.836 0.814 0.866 0.882 0.73 0.77 0.824 0.862

90% 0.686 0.646 0.728 0.774 0.522 0.572 0.648 0.738

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.986 0.988 0.988 0.988 0.968 0.97 0.98 0.984

30% 0.94 0.944 0.96 0.966 0.92 0.924 0.942 0.952

50% 0.87 0.876 0.91 0.928 0.85 0.852 0.888 0.914

70% 0.758 0.746 0.814 0.856 0.764 0.75 0.804 0.85

90% 0.582 0.59 0.622 0.748 0.616 0.602 0.642 0.744

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.99 0.99 0.994 1 0.99 0.99 0.992 0.994

30% 0.966 0.964 0.976 0.98 0.958 0.956 0.972 0.98

50% 0.916 0.908 0.952 0.956 0.89 0.888 0.94 0.952

70% 0.814 0.816 0.898 0.906 0.778 0.776 0.856 0.896

90% 0.714 0.676 0.722 0.77 0.588 0.576 0.62 0.762

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.99 0.994 0.996 0.996 0.99 0.99 0.992 0.992

30% 0.964 0.97 0.98 0.982 0.962 0.966 0.974 0.978

50% 0.894 0.91 0.942 0.952 0.92 0.922 0.944 0.952

70% 0.78 0.798 0.866 0.9 0.86 0.862 0.896 0.916

90% 0.65 0.64 0.676 0.77 0.726 0.726 0.786 0.838

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.992 0.992 0.996 0.996 0.98 0.974 0.986 0.986

30% 0.97 0.976 0.984 0.986 0.928 0.898 0.938 0.948

50% 0.94 0.952 0.964 0.968 0.852 0.792 0.866 0.892

70% 0.894 0.91 0.934 0.94 0.742 0.646 0.764 0.822

90% 0.78 0.774 0.832 0.866 0.56 0.518 0.56 0.706

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.992 0.992 0.994 0.996 0.98 0.988 0.99 0.99

30% 0.968 0.97 0.978 0.98 0.946 0.958 0.964 0.97

50% 0.926 0.918 0.948 0.954 0.892 0.912 0.926 0.934

70% 0.856 0.852 0.902 0.922 0.82 0.838 0.86 0.876

90% 0.642 0.674 0.764 0.856 0.664 0.658 0.72 0.772

The results are averaged over 5 random replicas. Best results are highlighted in bold face.

COAD SARC

Missing rate

Missing rate

Missing rate

Missing rate

LGG HNSC

SKCM BLCA

STAD KIRC

Missing rate

Missing rate

Missing rate

BRCA  THCA

LIHC LUSC

LUADPRAD

Missing rate
CESC KIRP
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Table S3.1. Overlap of top 100 methylation-driving genes from imputed dataset and full dataset

Missing rate SVD TOBMI TDimpute-self TDimpute

10% 89.61
*

87.66
* 91.59 91.98

30% 76.03
*

71.83
*

83.14
* 84.00

50% 62.44
*

55.21
*

73.09
* 76.24

70% 45.43
*

37.70
*

57.96
* 65.66

90% 24.83 18.48
*

26.73
* 50.43

The results are averaged over 5 random replicas. Best results are highlighted in bold face. * indicates statistical 

significance (p-value < 0.05) between TDimpute and other three methods (SVD, TOBMI, TDimpute-self). 

Table S3.2. Overlap of top 100 methylation-driving genes between imputed dataset and full dataset over 16 cancer types

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 96.2 93 95.8 95.2 97.6 96 97.4 97.6

30% 93.2 82.8 92.2 93.4 94 87.2 94.8 94.2

50% 86.8 69.4 90.4 88.8 88 68.2 89.8 90.8

70% 73.6 44 81.6 85.8 75.6 57.6 83.2 85.4

90% 34.6 9.6 45.6 66.2 34.2 31.6 52.4 71

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 84.4 81 89 90.2 93.8 92.4 94.6 93.8

30% 61.8 59.4 78.8 77.4 84.4 82.4 87.2 87.6

50% 48.4 47.8 66.2 64.4 77.8 73.2 82.2 83.6

70% 38.6 37 51.2 52.6 63.8 63.4 73.8 77.8

90% 26.2 21.8 26.2 36 40.2 38.6 38.6 68.4

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 85.6 87.2 91.4 92 94.6 93.2 94 95.4

30% 72.6 72.4 80.6 81.6 86.4 83.4 89.6 89

50% 64.8 53.2 72.4 76.2 75.6 71 82.6 83.8

70% 50 25.2 56.6 60 51.4 46.2 75.2 78.4

90% 27.4 8.2 31 51.2 18.2 16.2 23.2 65

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 89.2 82.4 91 90.2 83.2 79.4 84.8 87.2

30% 73.2 64.2 78.8 82.2 68.4 57.8 74 78.2

50% 47 40.8 57.6 70.4 53.2 45 59.6 67

70% 30.4 30.6 33.2 54.2 37.6 22.8 42.8 54

90% 18.2 16.4 17.8 38.4 16.2 10.6 12 36.6

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 81.6 81.8 88.4 89.8 91.6 90.6 92.2 92

30% 67.2 63.6 75.8 79.2 80 79.8 84.6 83.4

50% 59.8 57.4 64 67.6 66.2 66.6 77.6 80.4

70% 48.2 45.2 52.2 53 42.6 52.6 65.6 72.8

90% 33.2 21.4 26.4 34.6 18.2 30.6 22.2 58.2

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 95.6 94.8 96.4 96.4 94.4 92.2 95 94.6

30% 86.2 83.6 91.4 92.6 85.6 78.6 90.2 90

50% 78.4 72 86.4 89.6 72 55.8 85.6 86.8

70% 60.4 47.2 71 78.4 51 36.2 72.2 80

90% 36 24.4 43.8 64.2 33.4 23.8 29.8 67

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 84.4 84.2 87.4 87.4 88.4 85.2 89.6 91

30% 69.4 69.8 81 79 71.4 66.6 74.8 77.8

50% 54.4 55.6 69.4 68.8 55.4 47.4 60.8 65.6

70% 36.4 41.6 55.2 61.6 36.8 30.8 45.4 54

90% 19.4 15.2 25.8 44 24.2 19.8 13.2 39.2

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 83.4 81.4 86.8 86.4 89.8 87.8 91.6 92.4

30% 47.6 55 71.4 72 75 62.6 85 86.4

50% 19 31.2 54.8 60.4 52.2 28.8 70 75.6

70% 5.4 12.6 27.4 42.6 25 10.2 40.8 60

90% 3.4 2 1.2 23.8 14.2 5.4 18.4 43

The results are averaged over 5 random replicas. Best results are highlighted in bold face.

Missing rate

Missing rate

Missing rate

Missing rate

Missing rate

BRCA THCA

LGG HNSC

PRAD LUAD

SKCM BLCA

KIRC

Missing rate
CESC KIRP

COAD SARC

Missing rate

Missing rate
LIHC LUSC

STAD
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Table S4. PR-AUC for detecting significantly prognostic gene on imputed datasets over 16 cancer types.

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.892 0.918 0.932 0.938 0.878 0.884 0.9 0.906

30% 0.738 0.82 0.844 0.852 0.658 0.642 0.714 0.718

50% 0.548 0.664 0.71 0.736 0.466 0.498 0.556 0.588

70% 0.382 0.446 0.526 0.542 0.344 0.352 0.42 0.468

90% 0.306 0.358 0.376 0.406 0.184 0.166 0.178 0.238

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.936 0.936 0.924 0.936 0.936 0.94 0.952 0.952

30% 0.65 0.648 0.638 0.67 0.814 0.846 0.87 0.882

50% 0.42 0.432 0.43 0.46 0.676 0.706 0.748 0.764

70% 0.294 0.3 0.3 0.316 0.536 0.564 0.596 0.654

90% 0.104 0.092 0.104 0.122 0.36 0.402 0.398 0.504

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.84 0.832 0.856 0.866 0.822 0.838 0.864 0.86

30% 0.614 0.648 0.676 0.704 0.556 0.544 0.574 0.602

50% 0.44 0.476 0.508 0.524 0.376 0.346 0.4 0.43

70% 0.288 0.308 0.356 0.418 0.22 0.21 0.236 0.27

90% 0.162 0.146 0.178 0.248 0.122 0.106 0.132 0.178

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.932 0.938 0.946 0.948 0.938 0.956 0.956 0.96

30% 0.802 0.816 0.828 0.842 0.812 0.864 0.866 0.884

50% 0.662 0.666 0.694 0.708 0.752 0.754 0.758 0.78

70% 0.47 0.438 0.516 0.534 0.582 0.642 0.608 0.658

90% 0.26 0.23 0.27 0.378 0.352 0.386 0.376 0.452

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.988 0.99 0.992 0.992 0.922 0.944 0.948 0.952

30% 0.964 0.966 0.97 0.97 0.754 0.82 0.83 0.84

50% 0.926 0.924 0.932 0.938 0.572 0.66 0.688 0.728

70% 0.872 0.868 0.878 0.886 0.448 0.496 0.518 0.57

90% 0.796 0.728 0.756 0.79 0.292 0.268 0.31 0.418

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.184 0.184 0.184 0.182 0.866 0.91 0.922 0.926

30% 0.182 0.184 0.182 0.182 0.592 0.732 0.764 0.778

50% 0.188 0.188 0.182 0.182 0.462 0.562 0.652 0.68

70% 0.188 0.188 0.182 0.18 0.342 0.412 0.496 0.554

90% 0.198 0.202 0.192 0.184 0.238 0.218 0.292 0.424

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.876 0.862 0.884 0.886 0.984 0.99 0.99 0.992

30% 0.544 0.6 0.65 0.656 0.944 0.962 0.966 0.968

50% 0.372 0.424 0.46 0.454 0.898 0.918 0.934 0.938

70% 0.158 0.224 0.246 0.248 0.802 0.84 0.872 0.882

90% 0.078 0.112 0.116 0.132 0.648 0.674 0.664 0.726

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 0.778 0.804 0.824 0.836 0.926 0.936 0.94 0.942

30% 0.42 0.458 0.462 0.512 0.738 0.79 0.8 0.816

50% 0.202 0.228 0.23 0.298 0.552 0.614 0.618 0.658

70% 0.118 0.122 0.136 0.194 0.424 0.454 0.472 0.528

90% 0.058 0.058 0.064 0.106 0.246 0.29 0.316 0.398

The results are averaged over 5 random replicas. Best results are highlighted in bold face.

Missing rate
LIHC LUSC

STAD KIRC

Missing rate

Missing rate

Missing rate

Missing rate
CESC KIRP

COAD SARC
Missing rate

Missing rate
BRCA THCA

LGG HNSC

Missing rate
PRAD LUAD

SKCM BLCA
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Table S5.1. Overlap of top 100 significantly prognostic genes identified by univariate Cox model between imputed datasets and full datasets.

Missing rate SVD TOBMI TDimpute-self TDimpute

10% 73.5
*

74.8
*

76.4
* 77.5

30% 50.6
*

52.3
* 56.6 57.3

50% 37.6
*

37.8
* 44.2 44.9

70% 27.3
*

26.6
*

33.2
* 35.2

90% 15.8
*

16
*

20.6
* 24.6

Table S5.2. Overlap of top 100 prognostic genes identified by univariate Cox model between imputed dataset and full dataset over 16 cancer types.

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 63.4 70 73 72.4 69.2 68.2 70.2 70.6

30% 40.6 52.2 52.8 54.8 46 42.2 49.4 49

50% 27.2 33.8 36.2 39.4 31.2 28.2 33.4 35.2

70% 13.8 18 21.2 24 22.2 18.4 25.2 23.8

90% 6.2 5.8 9.4 12.6 16.4 8 12.8 15.4

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 86 85.4 83.4 85.6 75.8 76.6 79.8 82.8

30% 51.4 49.2 52 54.6 58 53.8 66 64

50% 29.4 29 32.6 33.4 48 41.4 51.8 53

70% 18.6 19 19 19.4 33.2 27 37.8 47.2

90% 2.8 3.4 3.6 4.4 19.4 9.8 21 32

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 65 64.2 67.8 68 59.8 63 63.4 68.8

30% 45.2 48 53.2 50.2 32.6 35.4 38.6 38.6

50% 29.8 32.2 37 34.2 20.4 20.2 23.6 24.8

70% 23.2 19 21.4 22.2 10.4 9.4 11 14.2

90% 7.2 4.6 8 13 2.2 2 2.8 6

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 81.6 79.6 80.2 82.2 88.6 87.8 87.8 88.8

30% 58.8 60.4 59 63.6 85.2 68 85 81

50% 43.6 47.2 48.4 50.4 83.8 55.6 82.2 77.6

70% 21.2 21.4 31.2 30.2 80.2 57.4 83.2 82

90% 4.4 5.4 8.4 13 49.4 49.6 59.4 67.4

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 90.2 89.6 91.2 92.6 69 70.6 77.2 77.2

30% 87.4 87.2 88.6 88 47 50.4 52.2 56

50% 88 86.4 89 88 28.2 33.6 37.6 42.4

70% 84.4 90.4 90.6 91.2 16.4 18.8 22.2 28.4

90% 80.8 85.4 92.6 90 6.4 3.6 7.2 13.8

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 61 66.2 66.4 65.2 69.4 74.6 74.8 75.6

30% 30.2 37.2 37.4 39.2 37.6 47.6 54.6 54.2

50% 11.8 15.2 21 20.4 21.2 26.8 41.8 41.6

70% 3.2 6.2 8.6 11.8 14.6 15.2 27.2 31.8

90% 1.8 0.4 1.4 4.4 7.8 4.6 10.2 20.6

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 71.6 70.2 72.2 73 91.4 89.6 91.4 91.2

30% 37.8 42.4 44.4 45.2 75.8 72.6 81.8 83.2

50% 25.4 26.4 25.8 29.6 65.4 64.4 81.2 78.2

70% 8.2 9.4 12.2 12.6 57.8 58.6 76.6 72.4

90% 3.8 3.4 3.2 3.6 38.6 49.8 63.6 62

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 59.8 63.4 64.8 65.6 73.4 77 79.4 79.6

30% 30.4 33 32.8 37.8 45.8 57.2 57.8 58

50% 18.4 21 19.2 20.6 30 43 46 49

70% 7.8 6.6 9.2 15 20.8 30 35.2 37.2

90% 2 2.4 2.4 8.2 3.2 18.2 23.2 27

The results are averaged over 5 random replicas. Best results are highlighted in bold face.

Missing rate
BRCA THCA

LGG HNSC
Missing rate

Missing rate
PRAD LUAD

SKCM BLCA
Missing rate

Missing rate
LIHC LUSC

STAD KIRC
Missing rate

Missing rate
CESC KIRP

COAD SARC
Missing rate

The results are averaged over 5 random replicas. Best results are highlighted in bold face. * indicates statistical significance (p-value < 0.05) between TDimpute and 

other three methods (SVD, TOBMI, TDimpute-self). 
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Table S6. The enrichment factors of the top 100 ranked genes in the gene list from The Human Protein Atlas across 16 cancer types

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 7.637 8.625 8.493 8.888 8.664 9.102 8.554 9.102

30% 4.411 6.584 6.452 6.386 5.045 6.251 6.799 6.361

50% 2.765 4.740 5.267 5.267 3.400 4.058 4.496 4.496

70% 1.383 2.436 3.226 3.424 2.303 2.961 3.509 2.522

90% 0.790 0.988 1.580 1.843 1.755 1.206 2.303 1.864

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 14.60 15.08 13.40 14.12 8.476 8.476 8.944 8.944

30% 8.86 9.57 8.86 8.14 6.839 6.079 7.541 7.541

50% 4.31 5.74 4.55 4.55 5.436 4.618 5.904 5.962

70% 3.11 4.79 3.59 2.15 3.566 2.923 4.150 5.904

90% 0.96 1.68 2.15 1.44 2.455 0.877 2.747 4.092

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% NA 6.29 6.92 7.45 7.40

30% 3.84 4.71 5.00 5.53

50% 1.97 3.32 3.80 4.23

70% 0.96 1.63 2.21 2.64

90% 0.34 0.19 0.72 1.01

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 2.78 3.53 2.78 3.16 6.65 7.24 7.28 7.56

30% 1.11 2.41 2.23 1.86 3.13 4.94 5.74 5.71

50% 0.19 1.11 0.93 1.49 1.67 2.82 4.42 4.14

70% 0.00 0.74 0.00 1.11 0.91 1.57 2.79 3.31

90% 0.00 0.00 0.00 0.37 0.59 0.35 0.97 2.26

Missing rate

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 1.004 0.951 1.017 1.030 1.403 1.637 1.578 1.695

30% 0.700 0.647 0.700 0.674 0.760 1.169 1.286 1.461

50% 0.396 0.449 0.436 0.370 0.526 0.760 0.701 0.818

70% 0.304 0.225 0.225 0.277 0.292 0.526 0.292 0.468

90% 0.119 0.000 0.092 0.119 0.000 0.058 0.000 0.058

Missing rate

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 13.09 13.19 13.19 13.51 0.363 0.363 0.370 0.363

30% 9.62 10.62 10.04 10.83 0.351 0.287 0.351 0.332

50% 6.73 8.15 7.99 8.83 0.370 0.236 0.370 0.338

70% 2.58 3.68 4.73 5.10 0.332 0.300 0.363 0.338

90% 0.47 0.68 1.31 2.05 0.217 0.217 0.255 0.281

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 5.09 5.09 5.47 5.35 0.281 0.281 0.287 0.287

30% 2.80 2.80 3.18 3.69 0.255 0.261 0.255 0.268

50% 0.89 1.65 1.53 1.78 0.210 0.223 0.268 0.274

70% 0.00 0.38 0.89 0.76 0.185 0.204 0.249 0.268

90% 0.00 0.13 0.00 0.25 0.096 0.185 0.217 0.236

SVD TOBMI TDimpute-self TDimpute SVD TOBMI TDimpute-self TDimpute

10% 1.02 1.09 1.15 1.28 NA

30% 0.77 0.83 0.70 0.77

50% 0.32 0.45 0.51 0.32

70% 0.00 0.00 0.00 0.19

90% 0.06 0.06 0.06 0.13

The results are averaged over 5 random replicas. Best results are highlighted in bold face. 'NA' means that the cancer is not included in The Human Protein Atlas.

LIHC LUSC

KIRPCESC

Missing rate
PRAD LUAD

SKCM BLCA

Missing rate

Missing rate

Missing rate
BRCA THCA

LGG HNSC

COAD SARC

Missing rate

Missing rate

STAD KIRC
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Table S7. The 26 genes validated in The Human Protein Atlas. 
Gene cancer reported in 

literature 
Reference 

SAMM50 
  

POLR1B epithelial ovarian cancer Wei L, Xin C, Wang W, et al. Microarray analysis of obese women with polycystic ovary syndrome 

for key gene screening, key pathway identification and drug prediction[J]. Gene, 2018, 661: 85-94. 

ANKRD54 
  

C9orf103 acute myeloid leukemia Sweetser D A, Peniket A J, Haaland C, et al. Delineation of the minimal commonly deleted segment 

and identification of candidate tumor‐suppressor genes in del (9q) acute myeloid leukemia[J]. Genes, 

Chromosomes and Cancer, 2005, 44(3): 279-291. 

SGSM3 breast cancer Tan T, Zhang K, Sun W C. Genetic variants of ESR1 and SGSM3 are associated with the 

susceptibility of breast cancer in the Chinese population[J]. Breast Cancer, 2017, 24(3): 369-374. 

TXN endometrial cancer Simmons D G, Kennedy T G. Rat endometrial Vdup1 expression: changes related to sensitization for 

the decidual cell reaction and hormonal control[J]. Reproduction, 2004, 127(4): 475-482. 

FAM189B 
  

ASAP1 cervical cancer Guo L, Lu W, Zhang X, et al. Metastasis-associated colon cancer-1 is a novel prognostic marker for 

cervical cancer[J]. International journal of clinical and experimental pathology, 2014, 7(7): 4150. 

IRAK4 breast cancer Perrott K M, Wiley C D, Desprez P Y, et al. Apigenin suppresses the senescence-associated secretory 

phenotype and paracrine effects on breast cancer cells[J]. Geroscience, 2017, 39(2): 161-173. 

RILPL2 breast cancer Chen G, Sun L, Han J, et al. RILPL2 regulates breast cancer proliferation, metastasis, and 

chemoresistance via the TUBB3/PTEN pathway[J]. American journal of cancer research, 2019, 9(8): 

1583. 

USP36 Neuroblastoma Mondal T, Juvvuna P K, Kirkeby A, et al. Sense-antisense lncRNA pair encoded by locus 6p22. 3 

determines neuroblastoma susceptibility via the USP36-CHD7-SOX9 regulatory axis[J]. Cancer Cell, 

2018, 33(3): 417-434. e7. 

RPS6KA1 prostate cancer Yu G, Lee Y C, Cheng C J, et al. RSK promotes prostate cancer progression in bone through ING3, 

CKAP2, and PTK6-mediated cell survival[J]. Molecular Cancer Research, 2015, 13(2): 348-357. 

MBOAT2 pancreatic ductal 

adenocarcinoma 

Badea L, Herlea V, Dima S O, et al. Combined gene expression analysis of whole-tissue and 

microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor 

epithelia[J]. Hepato-gastroenterology, 2008, 55(88): 2016. 

UCHL1 endometrial cancer Nakao K, Hirakawa T, Suwa H, et al. High Expression of Ubiquitin C-terminal Hydrolase L1 Is 

Associated With Poor Prognosis in Endometrial Cancer Patients[J]. International Journal of 

Gynecologic Cancer, 2018, 28(4): 675-683. 

GAL endometrial cancer Mylonas I, Mayr D, Walzel H, et al. Mucin 1, Thomsen-Friedenreich expression and galectin-1 

binding in endometrioid adenocarcinoma: an immunohistochemical analysis[J]. Anticancer research, 

2007, 27(4A): 1975-1980. 

ANKRD22 non-small cell lung 

cancer 

Yin J, Fu W, Dai L, et al. ANKRD22 promotes progression of non-small cell lung cancer through 

transcriptional up-regulation of E2F1[J]. Scientific reports, 2017, 7(1): 4430. 

TTLL1 
  

CGREF1 
  

CLCN4 colon cancer Ishiguro T, Avila H, Lin S Y, et al. Gene trapping identifies chloride channel 4 as a novel inducer of 

colon cancer cell migration, invasion and metastases[J]. British journal of cancer, 2010, 102(4): 774. 

ALDH2 esophageal cancer Liu K, Song G, Zhu X, et al. Association between ALDH2 Glu487Lys polymorphism and the risk of 

esophageal cancer[J]. Medicine, 2017, 96(16). 

CALCA endometrial cancer Andronowska A, Chruściel M, Całka J. The localization and expression of NADPH-diaphorase and 

isoforms of nitric oxide synthase in the porcine gravid uterus[J]. Reproductive biology, 2008, 8(3): 

263-278. 

CBY1 breast cancer Glinskii A B, Glinsky G V, Lin H Y, et al. Modification of survival pathway gene expression in 

human breast cancer cells by tetraiodothyroacetic acid (tetrac)[J]. Cell Cycle, 2009, 8(21): 3562-3570. 

PEG10 endometrial cancer Van Der Horst P H, Wang Y, Vandenput I, et al. Progesterone inhibits epithelial-to-mesenchymal 

transition in endometrial cancer[J]. PLoS One, 2012, 7(1): e30840. 

CISH 
  

LMO3 gastric cancer Qiu Y S, Jiang N N, Zhou Y, et al. LMO3 promotes gastric cancer cell invasion and proliferation 

through Akt-mTOR and Akt-GSK3β signaling[J]. International journal of molecular medicine, 2018, 

41(5): 2755-2763. 

MAFG Liver cancer Liu T, Yang H, Fan W, et al. Mechanisms of MAFG dysregulation in cholestatic liver injury and 

development of liver cancer[J]. Gastroenterology, 2018, 155(2): 557-571. e14. 
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