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Abstract 

Genes in linear proximity often share regulatory inputs, expression and evolutionary
patterns,  even in complex eukaryote genomes with extensive intergenic sequences.
Gene regulation, on the other hand, is effected through the co-ordinated activation (or
suppression) of genes participating in common biological pathways, which are often
transcribed from distant loci.  Existing approaches for the study of gene expression
focus  on  the  functional  aspect,  taking  positional  constraints  into  account  only
marginally. 

In this work we propose a novel concept for the study of gene expression, through the
combination  of  topological  and  functional  information  into  bipartite  networks.
Starting  from  genome-wide expression  profiles,  we  define  extended  chromosomal
regions with consistent patterns of differential  gene expression and then associate
these domains with enriched functional pathways. By analyzing the resulting networks
in  terms of  size,  connectivity  and modularity  we can draw conclusions  on the way
genome organization may underlie the gene regulation program.

We  implement  our  approach  in  a  detailed  RNASeq  profiling  of  sustained  TNF
stimulation of mouse synovial fibroblasts. Bipartite network analysis suggests that the
cytokine response set by TNF, progresses through two distinct transitions. An early
generalization  of  the  inflammatory  response,  marked  by  an  increase  in  related
functions and high connectivity of corresponding genomic loci, that is followed by a
late  shutdown  of  immune  functions  and  the  redistribution  of  expression  to
developmental and cell adhesion pathways and distinct chromosomal regions. 

Our results  suggest  that  the incorporation  of topological  information may provide
additional  insights  in  the  underlying topological  constraints  that  are  shaping  gene
expression.
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1. Introduction

From the analysis of the first genome-wide expression experiments, it became clear
that expression levels were related to the organization of genes in linear dimension
(1).  More  recent  studies  have  shown  that  transcriptional  activation  may  spread  in
“waves”  that  affect  nearby  genes  (2) and  that  a  significant  proportion  of  gene
expression events may be attributed to  genomic position  (3).  Such tendencies are
reflected on evolutionary constraints,  with genes in close proximity showing similar
patterns  of  evolution  (4–6).  These constraints  inevitably  lead to genes, involved in
common functional pathways to be lying closer to each other in the linear genome (7,
8), but also in the genome’s three dimensional structure  (9). These preferences are
more pronounced in vertebrate  mammals  and insects  (6).  They often  overlap with
characteristic  epigenetic  modification  patterns  (10,  11),  different  combinations  of
which  have  been  shown  to  delineate  epigenetic  “chromatin  states”  that  reflect
different levels of regulatory and transcriptional activity  (12–14). Overall, there is an
increasing interest  in the concept of genome compartmentalization focusing on its
underlying regulatory and transcriptional activity, evident in recent approaches on cis-
regulatory domains (15) and in attempts to model gene expression levels on the basis
of genomic position (3). The biomedical importance of this organization is particularly
important in various types of cancer, where extensive genomic translocations are the
main cause for aberrant regulation of genes and eventually for pathogenesis (16).

Despite the large number of indications for the existence of neighbour effects in the
regulation of gene expression, the study of possible underlying mechanisms has been
limited. Early works in the simple eukaryotic genome of  S. cerevisiae have shown the
existence  of  regions  of  gene  expression  correlation  (17)  and  referred  to  their
dynamics  (18).  At  the  level  of  functional  gene  regulation,  we  have  sufficient
knowledge of how transcription programs are performed through the activation of
specific pathways and gene regulatory networks (19) . We also have a variety of tools
for assessing the importance of cellular processes and biological pathways through
functional analyses of gene expression (20, 21). Nevertheless, there is a growing need
for methods that will  incorporate spatial  information and, until recently,  the use of
chromosomal  linear  distance  as  a  predictive  marker  of  gene  expression  has  been
limited to a few, large-scale projects with availability of  a large number of additional
measurements (22).  
In the past we have studied the positional footprint on gene deregulation in models of
genome  compartmentalization  in  yeast  (23,  24),  where  we  have  shown  both
transcriptional regulation and local nucleosomal structure to be delineating distinct
genomic domains. In this work we propose an approach that can act complementary to
existing  functional  enrichment  analyses  (20,  25,  26) with  an  additional  layer  of
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information coming from the level of genome organization. By analyzing the spatial
distribution of differential  gene expression, we define regions with consistent gene
deregulation  profiles,  that   form  extensive  (of  the  order  of  Mbp)  chromosomal
domains,  where  limited  fluctuation  of  gene  expression  changes  is  suggestive  of
underlying organizing principles.  Association of these regions with functional terms
and  pathways,  through  typical  gene  enrichment  analyses,  leads  to  the  creation  of
topological-functional bipartite networks that may then be studied at multiple levels.
We showcase this concept in the context of a well-studied gene regulatory program,
the activation of cells that is triggered by TNF. 

TNF is the archetype of major activating cytokines, which orchestrate the process of
the inflammatory  response.  The succession  of  steps upon TNF induction  has  been
shown  to  involve  dynamic  RNA  turnover  (27,  28) but  to  be  also  accompanied  by
changes  in  the  chromatin  landscape  (29) and  the  organization  of  transcription
factories (30). Sustained expression of TNF can have devastating effects as is evident
in transgenic animal models of inflammatory diseases (31). We have recently analyzed
the transcriptome dynamics of fibroblasts originating from such an animal model (32)
to  show  that  a  gradual  activation  of  inflammatory  and  immune-related  pathways
accurately  mirrors  the  phenotype  of  progressive  inflammatory  polyarthritis. While
valuable from the biomedical viewpoint however, in vivo approaches do not allow the
precise modeling of gene regulation due to cellular cross-talk. In this work, we chose
to focus on an in vitro gene expression profiling of synovial fibroblasts, a particular cell
type that  has been shown to be a  key  receptor  of cytokine cues  and a very  likely
effector of inflammatory diseases such as rheumatoid arthritis (31).

Through  the  analysis  of  time-course  gene  expression  profiles  with  the  use  of
positional enrichments and topological/functional bipartite networks, we monitor the
progression of the cytokine response in space and time.  We show that fibroblasts
under prolonged TNF exposure undergo two major transitions that are reflected not
only  in  the  activated  pathways  but  also  in  the  clustering  of  deregulated  genes  in
particular genomic domains.  

2. Methods

2.1 Gene Expression Profiling

Mouse synovial  fibroblasts were isolated from C57BL/6 littermate mice. All animals
were housed under specific pathogen–free conditions. Three biologic replicates were
isolated per experimental  condition,  and for  each condition, a mixed-sex pool of 3
mice  was  used.  Purity  of  all  isolations  was  assessed  by  fluorescence-activated  cell
sorting,  with  the following acceptance criteria:  .85% positive for  CD90.2  and ,2.5%
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positive for CD45. RNA was extracted from mouse synovial fibroblasts with the use of
an  Absolutely  RNA  Miniprep  kit  (Agilent  Technologies)  and  from  human  synovial
fibroblasts with use of a miRNeasy Mini kit (Qiagen).  All  library preparations,  next-
generation  sequencing,  and  quality  control  steps  were  performed  at  the  McGill
University and Genome Quebec Innovation Centre (Montreal, Quebec, Canada). More
specifically, for RNA-Seq, TruSeq RNA libraries were prepared and samples were run
on an Illumina HiSeq2000 platform using a 100-bp paired-end setup. 

2.2 Differential Expression Analysis
RNA-seq was performed with three replicates for 5 different timepoints at 1, 3, 6, 24
hours and 7 days after TNF exposure, alongside a 0h control. Mapping was performed
with TopHat2  (33) and differential expression was calculated against the 0h control
profile with Cufflinks/CuffDiff (34). Differentially  expressed genes were defined on
the basis of standard thresholds for analysis with |log2(FC)|>=1, p-value<=0.05, after
adjusting for multiple comparisons.

Functional  analysis  was  performed  with  the  use  of  gProfileR  (26) through  its  R
implementation. Enrichments were studied at the levels of Gene Ontology (GO), KEGG
pathways, Transcription Factors (TF) and Human Phenotypes (HP). 

Clustering  was  performed  with  agglomerative  hierarchical  clustering  using  Ward’s
minimum variance criterion. Number of clusters was defined based on a simple elbow
rule on the within sums of squares values of a k-means clustering approach. Profile
similarity calculation was performed through the calculation of euclidean differences
in mean cluster differential expression as described in (35).

2.3 Creation of Domains of Focal Deregulation
We implemented a method based on unbiased recursive partitioning as described in
(36). Differential  gene  expression  data  were  used  as  values  and  their  genomic
coordinates as a discrete “time-like” variable. A custom R script was written with the
used of the  R function “breakpoints”  from the Package “strucchange”  (37, 38).  The
function performs genome partitioning on the basis of an F-test (Chow Test) applied
on consecutive linear models. Once the breakpoints are defined, the script creates a
complete partitioning of the genome in discrete regions, each of which is described by
a) the number of contained genes and b) their mean differential expression score. An
arbitrary criterion of an absolute mean differential expression score >=0.1 was used to
call significant DFDs. These were used in the creation of bipartite networks.

Overlaps  between DFDs and differentially  expressed genes,  gene clusters  or other
sets  of  genomic  coordinates  were  reported  as  Jaccard  Indexes  and  assessed
statistically through a permutation test performed with a custom script as described in
(39).
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2.4 Topological-Functional Bipartite Networks
These were created in the following way: 

1. Starting from a  given expression profile, a list of differentially expressed genes
is extracted and a set of significant DFDs is called (see above).

2. For each DFD, the differentially expressed genes are being extracted and then
passed to gProfileR for gene set enrichment analysis.

3. Functional  categories  fulfilling  significance  criteria  (Number  of  Genes  in
Category >=50, adjusted p-value <=0.05) are associated with the given DFD.

4. The bipartite network is created as an edge list with one vertex being the DFD
and the other being its enriched functions.

Networks  were  analyzed  for  modularity  and  visualized  with  the  use  of  R’s  igraph
Package (40). 

3. Results

3.1 Complex Patterns of Differentially Expressed Genes in the prolonged
stimulation of fibroblasts by TNF

Clustering of the 1595 differentially expressed genes in at least one of the analyzed
timepoints revealed some very interesting aspects regarding the prolonged exposure
of  fibroblasts  to  TNF.  An  initial  small  set  (~330)  of  deregulated  genes  (at  1h)  is
replaced by a much larger (~640) at 3 hours of stimulation, with less than one third (97)
of  the  genes  being  shared  between  the  two  timepoints.  A  similar  pattern  of
expression is observed between 3 and 6 hours of stimulation before another abrupt
transition at 24 hours with only 55 genes being commonly deregulated between 6h
(378 DE genes) and 24h (190 genes). A much longer period extending to 7 days for the
last  timepoint shows smaller  discrepancies  in the expression profile.  Thus it  seems
that  the  state  acquired  by  the  cells  at  24h  remains  relatively  stable.  Overall,  the
expression data suggest two clear transition points between h1  h3 (early) and h6 → h3 (early) and h6 → → h3 (early) and h6 →
h24 (late), which may be seen more clearly through the clustering of genes in 8 distinct
clusters (Figure 1A, top).

The aforementioned clustering helps us distinguish between genes that are initially
over-expressed  but  gradually  restored  to  normal  (unstimulated)  levels  (Dark  red
cluster), or even reversed to under-expression (Light green cluster). More importantly,
we  find  most  of  the  clusters  to  be  reflecting  clear  timepoint-specific  expression
tendencies.  Thus there are clearly under-expressed clusters for early (h1, Dark blue

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803817doi: bioRxiv preprint 

https://doi.org/10.1101/803817
http://creativecommons.org/licenses/by-nc-nd/4.0/


cluster),  intermediate (h3 and h6, Yellow cluster)  or late (h24, d7, Orange and Dark
Green  Clusters)  timepoints.   Similarly  the  Purple  and  Light  Blue  clusters  are  also
reflecting time-specific intermediate (h3 and h6) and late (h24 and primarily d7) over-
expression respectively (Figure 1A, bottom).

3.2 Functional Enrichment Analysis suggest two points of transition in the
cytokine response 

Clustering of gene expression profiles allows us to better dissect the dynamics of the
implicated functions.  We thus analyzed the functional  enrichments  of the genes in
each  of  the  8  clusters.  A  clear  progression  of  gene activation  may be seen  in  the
functional enrichments of the over-expressed gene clusters (Figure 1B). Going from
early (1h) to intermediate (3h,6h) to late (24h,7d) timepoints, the functions are shifting
from an initial,  acute inflammatory response,  to more generalized functions  of the
immune system, to finally become associated with functions related to developmental
pathways, apoptosis and the extracellular matrix. It thus appears that fibroblasts, after
initially sensing the cytokine cue of TNF, undergo a slow process of switching on major
developmental  and  apoptotic  pathways.  Given  our  limited  time  resolution  we  can
position this transition sometime between 6h and 24h after the initial stimulation. 

The shift  to developmental  functions  is  also apparent  in the down-regulated gene
clusters  (Figure  1C).  Under-expression  is  strongly  associated  with  transcriptional
regulation  in  the  early  stage  (1h  after  stimulation).  Clusters  related  to  under-
expression after 3h are mostly associated with developmental functions, while those
that are specific to the later stages are additionally related to cell-cell  interactions
such as adhesion and migration. This may suggest that an initial regulatory program
gets underway since relatively  early.  It  crystalizes,  later  on,  into major transfoming
functions that significantly alter the properties of the cells. One gene cluster (Light
Green)  is  particularly  interesting  in  the  sense  that  it  reflects  this  gradual
transformation, containing genes that are very over-expressed in the early timepoint,
eventually becoming almost completely repressed after 24h. This cluster is strongly
enriched  in  primary  metabolic  pathways  as  well  as  transcriptional  regulation
(Supplementary Figure 1). The fact that its genes are readily restored to normal levels
(at 3h) and then, subsequently suppressed makes the hypothesis of a re-setting of the
initial response rather plausible.

3.3  Domains  of  Focal  Deregulation  (DFD)  reflect  spatial  preferences  of
gene expression

Functional enrichment analyses are important but they cannot provide insight into the
mechanisms, with which the cells utilize their genome in effecting dynamic changes in
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the regulatory program. We thus set out to investigate the positional aspect of the
gene expression process using a topological enrichment approach. Our goal was to
identify chromosomal regions with consistent differential expression in our search for
links between the genome architecture and the effected gene expression program.

Through a computational approach inspired by signal processing and applied to gene
expression  data  (see  Methods)  we were  able to  create  segmentation  maps of  the
genome based on the underlying differential gene expression values. An average of
~300 such regions were defined in each of the five conditions in our dataset, each of
which was assigned with a mean differential expression score, directly calculated from
the values of the genes it contained. Regions with increased negative or positive score
correspond to areas where gene deregulation is topologically consistent. By setting an
arbitrary threshold of a mean absolute score of 0.1, we defined the most significantly
enriched of these regions, which we will  from hereon refer to as Domains of Focal
Deregulation (DFD).  The DFD chromosomal positions,  size in bases as well  as their
mean expression scores are visualized in Figure 2A.

The  Domainograms  of  Figure  2A  reveal  significant  differences  between  the  five
timepoints. Few DFDs in the early timepoint (1h) undergo two waves of expansion at
the  already  discussed  transition  points  of  3h  and  24h.  At  the  same  time,  this
quantitative  expansion  in  genome  coverage  is  not  coming  from  the  same
chromosomal regions, as a number of DFDs emerge and others are depleted between
consecutive timepoints. This may be seen in Figure 2B, where we plot the percentage
of  genome  coverage  at  each  timepoint,  alongside  the  corresponding  coverage
percentages of the sets of overlapping DFDs between them.

It is obvious from Figures 2A and 2B that there are two points of expansion, with the
percentage of genome covered almost doubling at 3h and 24h. At the same time, the
transitions we have underlined from the functional analyses are also reflected in the
similarity between DFD distribution, as may be seen in the dendrogram of Figure 2B.
Almost 75% of the DFDs are shared between 24h and 7days and more than half are
common between 3h and 6h, but less than one third of the early DFDs are overlapping
with those in subsequent timepoints.

The expansion of DFDs, associated with the two transition points is also evident in
their size distribution as DFDs at 3h and 24h are significantly longer (Figure 2C). This
cannot  be  directly  attributed  to  the  extent  of  differential  gene  expression  as  the
corresponding  DEG  numbers  are  quite  different  (643  and  190  for  3h  and  24h
respectively). Rather, it may be that it is a reflection of a general reorganization of the
genome  at  topological  level  that  occurs  through  the  clustering  of  genes  with
particular functional roles. In the following we provide evidence in support of this.

In all, we see that changes in gene regulation associated with the transition from 1h to
3h and from 6h to 24h are also reflected in the topological distribution of genes in
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linear chromosomal space. At both transition points we observe an expansion in the
number and size of DFDs. In the following we turn our attention to the study of this
spatial enrichment of gene deregulation, coupled with its functional fingerprint.

3.4 DFDs reflect variable clustering of differentially expressed genes and
are primarily associated with gene repression

Comparison of the extent and size of DFDs in the domainograms of Figure 2A and the
numbers of deregulated genes (see Supplementary Table 1) suggests that they are not
directly related. The emergence of DFDs is due to a local clustering of differentially
expressed  genes  rather  than  to  their  overall  abundance.  In  order  to  test  this  we
calculated the global and local enrichments of DFDs in differentially expressed genes
in  each  timepoint  as  described  in  Methods  (Figure  3A).  Even  though,  general
enrichment  of  DEGs  in  DFD  is  expected  by  definition,  the  enrichment  patterns
observed show great variability that reflects the progression of gene expression. We
found a decreasing degree in the overall  enrichment with time suggesting that the
general trend is one towards a spreading out of gene deregulation. 

Early (1h) DFDs were more enriched in differentially expressed genes but this effect
gradually diminished. More interestingly the largest part of DEG clustering occurs in
the case of gene repression as may be seen when we plot enrichments separately for
over-  and  under-exressed  genes  (Figure  3A).  Under-expressed  genes  are  highly
enriched in the early timepoint, with their preference for DFDs dropping to almost half
at the first transition point (3h). In the opposite manner, clustering of over-expressed
genes increases in DFDs after the first transition and then also stably returns to the
levels  of random expectancy.  The tendency of under-expressed genes to cluster in
DFDs  may  be also  seen  directly  in  the  domainograms  of  Figure  2A  (where  under-
expression is shown in blue and over-expression in red), as well as in the distribution of
differential expression scores (Supplementary Figure 3), where the majority of DFDs
show significantly low (negative) scores.

The overall enrichments shown above can be masked by effects that are related to the
size  distributions  of  DFDs,  which  as  we  saw  earlier  are  also  significantly  variable
between timepoints. In order to have a clearer view of DEG clustering, we calculated
DEG  enrichments  at  local  level,  that  is  for  each  DFD  separately.  Here  we  find  a
significant clustering at both the initial (1h) and the 24h timepoints (Figure 3B). It thus
appears  that  while  the  initial  timepoint  may  represent  an  early  bookmarking  of
particular regions, a general redistribution of differential  gene expression occurs at
24h. Notice that in Figure 3B both transitions (1h  3h) and (6h  24h) show highly→ h3 (early) and h6 → → h3 (early) and h6 →
significant changes in terms of enrichments. The first of the two is accompanied by a
drop (1h  3h) while the second by an increase,  which are suggestive of different→ h3 (early) and h6 →
topological tendencies between them. Hence, the transition from 1h to 3h appears to
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be more one of DFD expansion, with the subsequent “dilution” of DEG enrichment,
while the one from 6h  24h is more likely reflecting a general re-distribution of DFDs→ h3 (early) and h6 →
with the overal degree of DEG clustering in them increasing .

At a different level, when we analyzed the enrichments of DFDs for genes belonging
to  the  eight  time-dependent  clusters  we  also  found  few  but  representative
enrichments  in agreement with the overall  tendency  for under-expressed genes to
cluster  in  DFDs  (Supplementary  Figure  4).  In  this  analysis  we  find  early  under-
expressed genes to be particularly enriched in DFD (see also Figure 3A), while over-
expressed genes in both intermediate (3h, 6h) and late timepoints (24h, 7d) show a
general  avoidance  for  DFD  clustering.  These  findings  are  suggestive  of  different
topological  clustering  tendencies  for  different  functional  categories,  the  study  of
which is the primary goal of this work. We next turned to the combined analysis of
spatial/topological and functional enrichments in gene expression profiles through the
introduction of bipartite topological-functional networks.

3.5  Topological-Functional  Bipartite  Networks  monitor  gene  regulation
progression

The main hypothesis for this work has been the link between genome organization and
the functional outcome of a gene regulation program. Having already established a
methodology to assess enrichments at both functional and positional level we went on
to  combine  the  two  aspects.  We  defined  bipartite  positional-functional  gene
enrichment networks as described in Methods.  After constructing bipartite networks
for each of the five timepoints, we performed a modularity analysis  (41) in order to
indentify network modules, which in this context,  would represent genomic regions
strongly  connected  with  a  particular  set  of  functions.  Inspection  of  the  resulting
networks leads to a number of interesting observations (Figure 4).

Firstly,  that  the  number  of  DFDs  and  associated  functions  are,  to  some  extent,
reflected on the size of the networks.  The early (1h) consists of only four modules
while the late (24h and 7d) contain 7 and 10 modules respectively. The modularity of
the networks is also increasing with time, raising from 0.45 to 0.80 for 24h, which is
suggestive of stronger links between chromosomal regions and associated functions
as time progresses.

More detailed examination of the networks reveals a number of key elements related
to the way cells are affected by the prolonged stimulation by TNF. Initial stimulation
(1h) affects a pair of core modules associated with cytokine and chemokine signaling.
These are located in chromosomes 4 and 5 respectively but they are not both affected
in  the  same  way.  The  cytokine  module  (chr4)  consists  primarily  of  over-expressed
genes, while the chemokine and chemotaxis is enriched in under-expressed genes. 
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This core pair of modules is also part of the first of the intermediate networks (3h), in
which  it  is  expanded  through  the  addition  of  an  interferon/TNF-related  module
(chr11). One major change in the 1h  3h transition is the activation of the chemokine/→ h3 (early) and h6 →
chemotaxis module, which leads to the formation of a core of three activated modules
(cytokine,  chemokine  and  interferon)  bridging  parts  of  chromosomes  4,  5  and  11
respectively.  A  set  of  additional,  smaller  modules,  associated  with  the  immune
response, development and apoptosis also arise at this stage. Progression to 6h brings
about  two  major  changes.  First,  an  expansion  of  the  chemokine  module  with  an
additional module associated to chr9 and second, the switch of the cytokine module,
which still forms part of the network core, to under-expression. This is an indication of
the first signs of a shutdown of inflammatory functions which will be generalised in
later stages. A set of under-expressed modules related to cell  adhesion, apoptosis,
development complete the network.

The  second  major  transition  from  6h  to  24h  is  accompanied  by  the  complete
disappearance  of  the  cytokine-chemokine-interferon  core.  The  highly  modular  24h
network is the most fragmented one,  comprising a set of isolated modules among
which a number of functions such as cell adhesion, development and differentiation
are  associated  with  under-expression.  These  last  three  modules  become  over-
expressed in the network of day 7, in which, we additionally observe the re-emergence
of the cytokine-chemokine initial core, now strongly associated with under-expression.

3.6  Functional  dynamics  of  bipartite  networks  are  consistent  with  two
transition points at 3h and 24h.

Having observed extensive changes in the bipartite networks we went on to assess the
changes in a quantitative manner by examining the number and type of functional
modules  that  are  emerging,  removed,  expanded  or  contracted  in  the  networks.  A
simple analysis of the number of times a function appears in each network is shown in
Figure 5A and is again representative of two major transition points in the system
under study. Figure 5A shows an initial, large increase in the number of functions as we
move  from  1h  to  3h.  The  3h-acquired  functions  are  related  to  chemotaxis  and
interferon signaling as suggested by the network  modules.  There are overall  large
similarities in the functional patterns of 3h and 6h, but these are followed by a radical
depletion of the largest part of the functions in 24h. Thus, this second transition point
is marked by extensive re-organization of functions. 

Most of the inflammation and immune response-related functions are not present at
24h. Instead they have been substituted by pathways associated with development,
cell  adhesion  and  cell  motility,  which  are  suggestive  of  major  transformations
occurring in fibroblasts under prolonged TNF stimulation. A subsequent expansion of
similar developmentally-related functions occurs in the latest timepoint (7 days). Most
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of the intermediate stage (3h, 6h) functions are absent but functional terms such as
cell adhesion, cell differentiation and and cell migration are prominent.

3.7  Dual  dynamics  of  positional  and  functional  enrichments  suggest
intermediate expansion followed by late re-organization

The  changes  in  the  functional  footprint  through  time,  discussed  above,  are  also
accompanied  with  changes  in  the  domains  of  focal  deregulation.  As  domain
boundaries are more difficult to identify directly,  we implemented a computational
approach based on chromosomal coordinate overlap to assess the qualitative nature
of the change. In this way, domains that are present in a given condition (timepoint)
but  not  overlapping  any  corresponding  domain  in  a  subsequent  timepoint  are
considered to be “depleted”,  while the opposite are assigned as “emergent”.  More
complex  cases  of  domains  which overlap  were  identified  as  either  “contracted”  or
“expanded”  depending  on  whether  their  boundaries  were  stretched  or  withdrawn
between consecutive timepoints.

The results of this analysis are shown in Figure 5B, where the percentage of each of
the four categories of domain changes was calculated over the total extent of DFD
coverage.  The  two  transition  points  (h1   h3)  and  (h6   h24)  show  the greatest→ h3 (early) and h6 → → h3 (early) and h6 →
degree of domain changes but in different ways. The early transition point (h1  h3) is→ h3 (early) and h6 →
marked by the emergence of a large number of new domains (>50% of the total),
while the rest correspond to expansions. One the other hand, the h6  h24 transition→ h3 (early) and h6 →
is  the  only  such  that  contains  contracted  domains  with  a  similar  proportion  of
expansion, deletion and emergence signifying a general domain re-organization.

3.8 Prolonged TNF stimulation goes through an initial expansion and a late-
stage contraction of activated functions

Figure 5A suggests  two major shifts  in the number of enriched functions  between
timepoints. Since these changes are tightly linked to DFD dynamics we wanted to test
this  further  by  looking  into  each  DFD  separately.  We  calculated  the  number  of
functions  attributed  to  each  DFD  and  compared  them  between  consecutive
timepoints, distinguishing between “gained” and “lost” functions. We then plotted the
corresponding numbers for each DFD and grouping for the four transitions (h1  h3,→ h3 (early) and h6 →
h3  h6, h6  h24 and h24  d7) in Figure 5C. The plot shows two distinct trends in→ h3 (early) and h6 → → h3 (early) and h6 → → h3 (early) and h6 →
the shape of the bubbles (with horizontal and vertical orientations corresponding to
predominant gain and loss of functions respectively). One can see that h1  h3 and→ h3 (early) and h6 →
h24  d7 transitions are associated with function gain, while h3  h6 and h6  h24→ h3 (early) and h6 → → h3 (early) and h6 → → h3 (early) and h6 →
with function loss, while it is also clear that the effects are stronger for the h1  h3→ h3 (early) and h6 →
expansion and the h6  h24 contraction. Indeed, it is these two transitions that are→ h3 (early) and h6 →
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also statistically  significant  in terms of number of acquired/lost  functions  per  DFD
(Supplementary Figure 5).

An overview of the analyses of our bipartite network approach strongly suggests that
the two major transition points in the prolonged stimulation of fibroblasts by TNF are
also qualitatively different, with the an early expansion that is probably reflecting the
generalization of the immune signaling response,  followed by a major shutdown of
immune-related pathways in 24h.

3.9 Focal  functions attract a greater  number of  differentially expressed
genes

Our data suggest complex dynamics of enriched functions, being lost and gained from
equally volatile DFDs. This dynamics is, however, confined to the subset of functions
that  are  associated  with  DFDs.  A  large  number  of  functional  categories  are  also
enriched in differentially expressed genes without being linked to focal deregulation.
These are being enriched in genes that are distributed more broadly in genome space
and may thus be subject to different expression biases. We tested these differences
through a  comparison  of enrichment  p-values  for  functional  terms  associated  with
DFDs (focal functions) against non-focal functions, that are enriched but not linked to
particular  chromosomal  regions  (Figure  5D).  Interestingly,  we  find  significant
differences  between  early  (1h)  and  late  (24h)  stages.  At  the  early  stage,  focal
functions  are  significantly  more  enriched  than  non-focal  ones,  while  the  opposite
holds  for  the  24h  timepoint.  This  result,  also  implied  by  the  bipartite  network
modularity analysis, is suggestive of an increased fragmentation of differential gene
expression into distinct regions and functions.

4. Discussion

Our work constitutes one of the first attempts to incorporate positional information in
the  analyses  of  gene  expression.  The  starting  hypothesis  is  that  differential  gene
expression  may  be  clustered  in  confined  regions  of  the  linear  genome  due  to
regulatory,  epigenetic  and  structural  constraints.  Indeed,  elements  of  the  three-
dimensional  genome  structure  such  as  TADs  (42) have  been  shown  to  delineate
genomic space with particular transcriptional tendencies, while we (23) and others (43)
have demonstrated  focally  increased transcription  in TAD boundaries.  More  recent
works  have  focused  on  the  regulatory  potential  of  self-contained  linear  genomic
regions,  thus called cis-regulatory domains (CRDs)  (15).  Through a relatively  simple
approach, we herein demonstrate that regions of consistent differential  expression
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are common and may, moreover provide insight in the way a gene expression program
develops in time. 

When addressing the level of differential  gene expression clustering in our defined
DFDs  we  find  a  significant  enrichment  for  under-expressed  compared  to  over-
expressed  genes.  Even  though  we  cannot  exclude  that  it  may  be  a  particular
characteristic of the system under study, it is worth noticing that repressive domains
are readily formed in eukaryotic genomes mediated by Polycomp-Group (PcG) proteins
(44) or through the association of genomic regions with the nuclear lamina (45). Thus it
will not be surprising to find that there is a stronger overall clustering tendency for
repressive genes in order to maintain transcriptional silencing.

Another interesting aspect that comes out of our time-dependent study is related to
the progressive expansion of the genome space that is covered by DFDs. Since this is
not correlated with the number of differentially expressed genes (coverage by DFDs
peaks at 24h, where we have the smallest number of DEGs) we may assume that it
reflects  a  propensity  for  increased  genome compartmentalization.  Indeed,  we find
that, with time and independently of the number of differentially expressed genes,
expression tends to be more “focal” and this is, moreover, accompanied by an increase
of the bipartite network modularity. Again, while this may be a singular property of
the  cytokine  response,  it  deserves  to  be  studied  in  more  detail  and  in  different
systems.

Besides providing insight on the functional modularity of gene expression profiles, the
bipartite networks that we describe in this work may also assist in the formulation of
hypotheses  on genome organization.  Interacting modules observed in the bipartite
networks of the intermediate stages (3h and 6h) show strong functional interactions
between  regions  from  different  chromosomes  (chr4,  chr5,  chr9  and  chr11  in
particular). It would be really interesting to investigate whether such interactions are
also reflected upon the three-dimensional organization of the genome. Even though
trans-chromosomal interactions are inherently difficult to detect, new methodological
approaches such as SPRITE (46) and GAM (47) would probably allow us to test similar
hypotheses. 

Another promising aspect of our work is related to the analysis of genes belonging to
focal vs non-focal functional categories. Functional categories that tend to have their
genes clustered in close proximity are more likely to be enriched depending on the
stage of the process under study and this may be an indication of a more focal or more
widespread  expression  program.  One  interesting  question  would  be  to  examine
genes, whose expression may be attributed to their relative position rather than their
participation  in  a  certain  pathway.  We  would  call  these  “by-stander  genes”  as,  in
essence,  one could suggest that their  mis-expression is driven by nearest  neighbor
effects. Modeling the likelihood for positional vs functional drive of such by-standers is
a very interesting prospect for follow up studies.
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Overall,  our  combined  analyses  of  DFDs  and  bipartite  network  dynamics  strongly
support  the  notion  of  genome  architecture  having  a  fundamental  role  in  the
development  of  gene  regulation.  Implementation  of  this  approach  in  different
systems and more comprehensive datasets is bound to provide additional insights on
the underlying mechanisms.

Funding

This  work  was  supported  by  the  Operational  Program  "Human  Resources
Development, Education and Lifelong Learning" and is co-financed by the European
Union  (European  Social  Fund)  and  Greek  national  funds.  (Grant  Number:  10038 to
Christoforos Nikolaou).

Supplementary Material

Supplementary material can be found in the online version of this article. 

Data Availability

Processed Gene Expression data, differential gene expression lists, details on the gene
clusters, DFDs and bipartite networks as well as custom R scripts used in the analyses
are deposited in Mendeley Data:   doi:10.17632/fytpjj5ny5.1.

Acknowledgments

The authors are grateful to Prof. George Kollias for providing access to experimental
facilities  at  BSRC  “Alexander  Fleming”,  Greece.  We  would  also  like  to  thank  Dr.
Vangelis  Ntougkos  for  assistance  in  the  performance  of  experiments  and  Eleni
Lianoudaki for proofreading this manuscript. 

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803817doi: bioRxiv preprint 

https://doi.org/10.1101/803817
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

 

1. Caron,H., van Schaik,B., van der Mee,M., Baas,F., Riggins,G., van Sluis,P., Hermus,M.C.,
van Asperen,R., Boon,K., Voûte,P. a, et al. (2001) The human transcriptome map: 
clustering of highly expressed genes in chromosomal domains. Science, 291, 
1289–92.

2. Ebisuya,M., Yamamoto,T., Nakajima,M. and Nishida,E. (2008) Ripples from 
neighbouring transcription. Nat. Cell Biol., 10, 1106–1113.

3. Rennie,S., Dalby,M., van Duin,L. and Andersson,R. (2018) Transcriptional 
decomposition reveals active chromatin architectures and cell specific regulatory 
interactions. Nat. Commun., 9(1), 487.

4. Ghanbarian,A.T. and Hurst,L.D. (2015) Neighboring Genes Show Correlated Evolution
in Gene Expression. Mol. Biol. Evol., 32, 1748–1766.

5. Batada,N. and Hurst,L. (2007) Evolution of chromosome organization driven by 
selection for reduced gene expression noise. Nat. Genet., 39, 945–949.

6. Hurst,L.D., Pál,C. and Lercher,M.J. (2004) The evolutionary dynamics of eukaryotic 
gene order. Nat. Rev. Genet., 5, 299–310.

7. Lee,J.M. and Sonnhammer,E.L.L. (2003) Genomic gene clustering analysis of 
pathways in eukaryotes. Genome Res., 13, 875–882.

8. Tiirikka,T., Siermala,M. and Vihinen,M. (2014) Clustering of gene ontology terms in 
genomes. Gene, 550, 155–164.

9. Krefting,J., Andrade-Navarro,M.A. and Ibn-Salem,J. (2018) Evolutionary stability of 
topologically associating domains is associated with conserved gene regulation. 
BMC Biol., 16, 87.

10. Coolen,M.W., Stirzaker,C., Song,J.Z., Statham,A.L., Kassir,Z., Moreno,C.S., 
Young,A.N., Varma,V., Speed,T.P., Cowley,M., et al. (2010) Consolidation of the 
cancer genome into domains of repressive chromatin by long-range epigenetic 
silencing (LRES) reduces transcriptional plasticity. Nat. Cell Biol., 12, 235–46.

11. Tanay,A. and Cavalli,G. (2013) Chromosomal domains: epigenetic contexts and 
functional implications of genomic compartmentalization. Curr. Opin. Genet. Dev., 
23, 197–203.

12. Ernst,J. and Kellis,M. (2010) Discovery and characterization of chromatin states for 
systematic annotation of the human genome. Nat. Biotechnol., 28, 817–25.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803817doi: bioRxiv preprint 

https://doi.org/10.1101/803817
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Ernst,J. and Kellis,M. (2013) Interplay between chromatin state, regulator binding, 
and regulatory motifs in six human cell types. Genome Res., 23 (7), 1143-1154.

14. Kharchenko,P. V, Alekseyenko,A.A., Schwartz,Y.B., Minoda,A., Riddle,N.C., Ernst,J., 
Sabo,P.J., Larschan,E., Gorchakov,A. a, Gu,T., et al. (2011) Comprehensive analysis 
of the chromatin landscape in Drosophila melanogaster. Nature, 471, 480–5.

15. Delaneau,O., Zazhytska,M., Borel,C., Giannuzzi,G., Rey,G., Howald,C., Kumar,S., 
Ongen,H., Popadin,K., Marbach,D., et al. (2019) Chromatin three-dimensional 
interactions mediate genetic effects on gene expression. Science , 364, eaat8266.

16. Mitelman,F., Johansson,B. and Mertens,F. (2007) The impact of translocations and 
gene fusions on cancer causation. Nat. Rev. Cancer, 7, 233–45.

17. Cohen,B. a, Mitra,R.D., Hughes,J.D. and Church,G.M. (2000) A computational 
analysis of whole-genome expression data reveals chromosomal domains of gene 
expression. Nat. Genet., 26, 183–186.

18. Kosak,S.T. and Groudine,M. (2004) Gene order and dynamic domains. Science, 306, 
644–647.

19. Gerstein,M.B., Kundaje,A., Hariharan,M., Landt,S.G., Yan,K.-K., Cheng,C., Mu,X.J., 
Khurana,E., Rozowsky,J., Alexander,R., et al. (2012) Architecture of the human 
regulatory network derived from ENCODE data. Nature, 489, 91–100.

20. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S. and Ebert,B.L. (2005) Gene 
set enrichment analysis : A knowledge-based approach for interpreting genome-
wide. Proc Natl Acad Sci U S A, 102, 15545–15550.

21. Huang,D.W., Sherman,B.T. and Lempicki,R. a (2009) Bioinformatics enrichment 
tools: paths toward the comprehensive functional analysis of large gene lists. 
Nucleic Acids Res., 37, 1–13.

22. Chiaromonte,F., Miller,W. and Bouhassira,E.E. (2003) Gene length and proximity to 
neighbors affect genome-wide expression levels. Genome Res., 13, 2602–8.

23. Tsochatzidou,M., Malliarou,M., Papanikolaou,N., Roca,J. and Nikolaou,C. (2017) 
Genome urbanization: clusters of topologically co-regulated genes delineate 
functional compartments in the genome of Saccharomyces cerevisiae. Nucleic 
Acids Res., 45, 5818–5828.

24. Nikolaou,C. (2018) Invisible cities: segregated domains in the yeast genome with 
distinct structural and functional attributes. Curr. Genet., 64, 247–258.

25. Chen,E.Y., Tan,C.M., Kou,Y., Duan,Q., Wang,Z., Meirelles,G.V., Clark,N.R. and 
Ma’ayan,A. (2013) Enrichr: interactive and collaborative HTML5 gene list 
enrichment analysis tool. BMC Bioinformatics, 14, 128.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803817doi: bioRxiv preprint 

https://doi.org/10.1101/803817
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Reimand,J., Kull,M., Peterson,H., Hansen,J. and Vilo,J. (2007) G:Profiler-a web-
based toolset for functional profiling of gene lists from large-scale experiments. 
Nucleic Acids Res., 35, W193–W200.

27. Hao,S. and Baltimore,D. (2013) RNA splicing regulates the temporal order of TNF-
induced gene expression. Proc. Natl. Acad. Sci., 110 (29), 11934-11939.

28. Hao,S. and Baltimore,D. (2009) The stability of mRNA influences the temporal 
order of the induction of genes encoding inflammatory molecules. Nat. Immunol., 
10, 281–8.

29. Diermeier,S., Kolovos,P., Heizinger,L., Schwarz,U., Georgomanolis,T., Zirkel,A., 
Wedemann,G., Grosveld,F., Knoch,T.A., Merkl,R., et al. (2014) TNFα signalling 
primes chromatin for NF-κB binding and induces rapid and widespread B binding and induces rapid and widespread 
nucleosome repositioning. Genome Biol., 15, 536

30. Papantonis,A., Kohro,T., Baboo,S., Larkin,J.D., Deng,B., Short,P., Tsutsumi,S., 
Taylor,S., Kanki,Y., Kobayashi,M., et al. (2012) TNFα signals through specialized 
factories where responsive coding and miRNA genes are transcribed. EMBO J., 44,
1–11.

31. Keffer,J., Probert,L., Cazlaris,H., Georgopoulos,S., Kaslaris,E., Kioussis,D. and 
Kollias,G. (1991) Transgenic mice expressing human tumour necrosis factor: a 
predictive genetic model of arthritis. EMBO J., 10, 4025–31.

32. Ntougkos,E., Chouvardas,P., Roumelioti,F., Ospelt,C., Frank-Bertoncelj,M., Filer,A., 
Buckley,C.D., Gay,S., Nikolaou,C. and Kollias,G. (2017) Genomic Responses of 
Mouse Synovial Fibroblasts During Tumor Necrosis Factor-Driven Arthritogenesis 
Greatly Mimic Those in Human Rheumatoid Arthritis. Arthritis Rheumatol. 
(Hoboken, N.J.), 69, 1588–1600.

33. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with Bowtie 2. 
Nat. Methods, 9, 357–359.

34. Trapnell,C., Williams,B.A., Pertea,G., Mortazavi,A., Kwan,G., van Baren,M.J., 
Salzberg,S.L., Wold,B.J. and Pachter,L. (2010) Transcript assembly and 
quantification by RNA-Seq reveals unannotated transcripts and isoform switching 
during cell differentiation. Nat. Biotechnol., 28, 511–515.

35. Karagianni,N., Kranidioti,K., Fikas,N., Tsochatzidou,M., Chouvardas,P., Denis,M.C., 
Kollias,G. and Nikolaou,C. (2019) An integrative transcriptome analysis framework
for drug efficacy and similarity reveals drug-specific signatures of anti-TNF 
treatment in a mouse model of inflammatory polyarthritis. PLOS Comput. Biol., 15,
e1006933.

36. Hothorn,T., Hornik,K. and Zeileis,A. (2006) Unbiased Recursive Partitioning: A 
Conditional Inference Framework. J. Comput. Graph. Stat., 15, 651–674.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803817doi: bioRxiv preprint 

https://doi.org/10.1101/803817
http://creativecommons.org/licenses/by-nc-nd/4.0/


37. Zeileis,A., Leisch,F., Hornik,K., Kleiber,C., Zeileis,A., Leisch,F., Hornik,K. and 
Kleiber,C. (2001) Strucchange: An R package for testing for structural change in 
linear regression models.

38. Zeileis,A., Leisch,F., Hornik,K., Kleiber,C., Zeileis,A., Leisch,F., Hornik,K. and 
Kleiber,C. (2001) Strucchange: An R package for testing for structural change in 
linear regression models. 

39. Andreadis,C., Nikolaou,C., Fragiadakis,G.S., Tsiliki,G. and Alexandraki,D. (2014) Rad9
interacts with Aft1 to facilitate genome surveillance in fragile genomic sites 
under non-DNA damage-inducing conditions in S. cerevisiae. Nucleic Acids Res., 42 
(20), 12650-12667.

40. Csardi,G. and Nepusz,T. (2006) The igraph software package for complex network 
research. InterJournal, Complex Sy, 1695.

41. Barber,M.J. (2007) Modularity and community detection in bipartite networks. 
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 76, 066102.

42. Dixon,J.R., Selvaraj,S., Yue,F., Kim,A., Li,Y., Shen,Y., Hu,M., Liu,J.S. and Ren,B. (2012) 
Topological domains in mammalian genomes identified by analysis of chromatin 
interactions. Nature, 485, 376–380.

43. Ulianov,S., Razin,S. and Shevelyov,Y. (2015) Active chromatin and transcription play 
a key role in chromosome partitioning into TADs. Genome Res., 26 (1), 70-84.

44. Kundu,S., Ji,F., Sunwoo,H., Jain,G., Lee,J.T., Sadreyev,R.I., Dekker,J. and 
Kingston,R.E. (2017) Polycomb Repressive Complex 1 Generates Discrete 
Compacted Domains that Change during Differentiation. Mol. Cell, 65, 432-
446.e5.

45. van Steensel,B. and Belmont,A.S. (2017) Lamina-Associated Domains: Links with 
Chromosome Architecture, Heterochromatin, and Gene Repression. Cell, 169 (5), 
780-791.

46. Quinodoz,S.A., Ollikainen,N., Tabak,B., Palla,A., Schmidt,J.M., Detmar,E., Lai,M.M., 
Shishkin,A.A., Bhat,P., Takei,Y., et al. (2018) Higher-Order Inter-chromosomal Hubs
Shape 3D Genome Organization in the Nucleus. Cell, 174, 744-757.e24.

47. Beagrie,R.A., Scialdone,A., Schueler,M., Kraemer,D.C.A., Chotalia,M., Xie,S.Q., 
Barbieri,M., de Santiago,I., Lavitas,L.-M., Branco,M.R., et al. (2017) Complex multi-
enhancer contacts captured by genome architecture mapping. Nature, 543(7646), 
519-524.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/803817doi: bioRxiv preprint 

https://doi.org/10.1101/803817
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends

Figure 1. Gene expression clustering and functional analysis

A.  (Top)  Clustering  of  gene  expression  for  1595  genes  that  were  differentially
expressed (|log2FC|>=1, p.value<=0.05) in at least one timepoint. Red corresponds to
over-  and  blue  to  under-expression.  The 8  clusters  created  are  shown in  different
colours  in  the  left  side  of  the  heatmap.  (Bottom)  Summarization  of  the  extended
heatmap with mean differential expression value for each cluster. Clusters are shown
in  the  same  colour  coding  as  above.  Cluster  names  on  the  right  correspond  to  a
general description based on their expression pattern.

B,  C.  Functional  analysis  of  over-  (B)  and  under-  (C)  expressed  clusters.  Names  of
clusters are the same as in (A), with the exception of Late Repression where both “Late
Down” clusters from (A) are pooled together.  Enriched terms were deduced from a
gProfileR analysis. The top 20 enriched terms on the basis of p-values are reported for
each cluster. (Functional analysis of the same type for the “EarlyUpLateDown” cluster
provided as separate Supplementary Figure 1).

Figure 2. Domains of Focal Deregulation

A. Mouse genome Domainograms showing significant Domains of Focal Deregulation
(DFD) with a mean absolute score >= 0.1.  Red is  positive (over-expression),  blue is
negative (under-expression) color-coded for intensity. The expansion of the size and
number of DFDs is evident, as is the predominance of negative domains, suggestive of
an increased clustering of under-expressed genes.

B. Genome coverage by DFD as a function of time. Values in the diagonal correspond
to  genome  coverage  for  each  timepoint  separately,  while  the  rest  of  the  values
correspond to the percentage of the genome covered by DFDs that are overlapping
between  timepoints.  Notice  how  coverage  is  clustered  in  three  groups  (early:1h,
intermediate: 3h, 6h and late: 24h, 7d). 

C. Size distributions of DFDs for different timepoints. Significant expansions in the size
of the DFDs (p.value<=0.05) are observed for the two transition points (1h 3h and→ h3 (early) and h6 →
6h 24h).→ h3 (early) and h6 →
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Figure 3. Gene Expression in Domains of Focal Deregulation 

A. Overlap enrichments of differentially expressed genes (DEGs) in DFDs for all, over-
and under-expressed DEGs.  Height of bars corresponds to observed over  expected
ratios of overlap. Significance levels shown on top of bars are: ***: <0.001, **:<0.01,
*:<0.05. 

B. Distributions of DEG enrichment values on a per DFD basis. Significant drops are
observed  between 1h 3h,  6h 24h and 24h 7d.  The drop in the first transition is→ h3 (early) and h6 → → h3 (early) and h6 → → h3 (early) and h6 →
towards smaller enrichments (diffusion of DEGs) while the one in the second transition
is towards greater enrichments (clustering of DEGs)

Figure 4. Bipartite Networks for early, intermediate and late stages of stimulation

Bipartite  networks  for  early,  intermediate  and  late  stages.  Only  names  of  DFD
coordinates  are  shown,  while  functions  are  summarised  in  distinct  modules.  The
expansion with time is evident as is the increase in modularity, which corresponds to a
an increasing compartmentalization of functions. 

Figure 5. Bipartite network dynamics

A. DFDs numbers per function in bipartite networks. Each cell in the heatmap shows
the number of DFDs associated with each function. Functions with 0 DFD (blue) are
absent  from  the  corresponding  bipartite  network.  An  expansion  at  3h  and  a
subsequent decrease and redistribution at 24h is evident.

B. Percentage of DFDs belonging to each dynamic category for comparisons between
consecutive  timepoints.  Emergence  is  prominent  for  the  early  transition,  while
deletion is quite significant for the late one.

C.  Number  of  gained/lost  functions  per  DFD in  the bipartite  network  comparisons
between  consecutive  timepoints.  h1 h3  transition  is  marked  by  an  acquisition  of→ h3 (early) and h6 →
functions while h6 h24 by a general loss.→ h3 (early) and h6 →

D.  Functions  clustered  to  DFDs  behave  differently  between  timepoints.  Enriched
functions  were divided into those associated with a DFD in bipartite networks and
those that were not. Mean enrichment of functions that are associated with DFDs is
smaller than the one of functions that are not attached to a DFD for the early stage.
The situation is inversed for the 24h timepoint.
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Supplementary Material

Supplementary Table 1

Numbers  of  differentially  expressed  genes  (over-expressed,  under-expressed  and
general total) for each timepoint.

Supplementary Figure 1

Functional Enrichment analysis of the High-Low expression cluster (top 20 enriched
terms).  Functionally  enriched  terms  almost  entirely  belonged  to  transcriptional
regulatory  factors  affecting  primary  functions  such as  metabolism,  in  particular  of
macromolecules. 

Supplementary Figure 2

Distributions of differential expression values for each of the 8 defined clusters across
timepoints.

Supplementary Figure 3

Distributions of mean DFD diffential expression scores across timepoints. 

Supplementary Figure 4

DFD enrichments (in log2 scale) for genes belonging in each of the 8 defined clusters.
Few positive enrichments are all associated with down-regulated clusters.  Negative
enrichments, suggesting overall avoidance are associated with up-regulated clusters.  

Supplementary Figure 5

Distribution  of  the  difference  between  Gained  and  Lost  functions  (Ngain-Nloss)  for
bipartite networks of consecutive timepoints. An initial gain for the h1 h3 transition→ h3 (early) and h6 →
is reversed to a predominance of lost functions for h6 h24. → h3 (early) and h6 →
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Over-Expressed
Genes

Under-Expressed
Genes

Total DE Genes

1h 192 146 338
3h 303 347 650
6h 117 266 383
24h 40 152 192
7d 281 394 675
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