Indirect versus Direct Effects of Freshwater Browning on Larval Fish Foraging

- 4 Dina M. Leech, Troy L. Clift, Jessica L. Littlefield, Nicholas R. Ravagli, and Jacob E.
- 5 Spain

- 7 Department of Biological and Environmental Sciences
- 8 Longwood University Farmville, VA 23901
- **Corresponding Author:** Dina M. Leech, Department of Biological and Environmental
- Sciences, 201 High Street, Longwood University, Farmville, VA, 23909; Office #: 434.395.4966;
- 12 Email: leechdm@longwood.edu
- **Keywords:** brownification, fish larvae, foraging, predation, zooplankton
- **Running Title:** Browning and larval fish foraging

Browning and larval fish foraging -- 2

38 ABSTRACT

39

39 40	Fish foraging and energy flow are both predicted to decline with freshwater 'browning'
41	due to reductions in light availability. Studies investigating these predictions have focused on
42	juveniles and adults; however, the larval stage represents a 'critical period' in fish development.
43	We investigated the indirect versus direct effects of browning on zooplankton-larval fish
44	interactions by altering water color with SuperHume (absorbance at 440 nm = $1.6 - 10.8$ m ⁻¹).
45	Phytoplankton and zooplankton densities were monitored across experimental tanks in the
46	laboratory for one month leading up to fish spawning. Larval largemouth bass were then
47	introduced to assess indirect effects on fish feeding rates and growth. Direct effects on foraging
48	of largemouth bass and bluegill were determined with separate short-term feeding
49	experiments. Browning did not directly alter the ability of larval fish to capture prey. However,
50	significant indirect effects on larval fish foraging, growth, and survival were observed as
51	phytoplankton and zooplankton decreased with increased browning. Our data suggest lake
52	browning will reduce energy transfer to larval fish due to a reduction in prey availability but not
53	visual foraging.
54	
55	
56	
57	
58	
59	
60	

Browning and larval fish foraging -- 3

Introduction 61

62 63	In recent decades, many freshwater and coastal ecosystems in the Northern
64	Hemisphere have become browner in color due to an increased export of chromophoric
65	dissolved organic matter (cDOM) from the terrestrial watershed (Monteith et al. 2007;
66	Erlandsson et al. 2008; Haaland et al. 2010; Solomon et al. 2015). The mechanisms underlying
67	this 'browning' are currently debated and include changes in climate, hydrology, and land use,
68	reduced atmospheric acid deposition, and increased inputs of dissolved iron (Freeman et al.
69	2001; Monteith et al. 2007; Erlandsson et al. 2008; Kritzberg and Ekström 2012). Whatever the
70	mechanism, this phenomenon has far reaching ecological consequences for the structure and
71	function of aquatic ecosystems, including energy flow.
72	One concern is the effect of browning on the underwater light environment. As waters
73	become browner in color, the quantity of light in the water column is reduced, resulting in a
74	shallower euphotic zone (Bukaveckas and Robbins-Forbes 2000; Einem and Graneli 2010). In
75	addition, shorter wavelength ultraviolet and visible radiation are more readily absorbed by
76	cDOM compared to longer wavelengths (Morris et al. 1995; Wetzel 2001). Consequently, the
77	light environment shifts to the red portion of the visible spectrum. These alterations in the
78	quantity and quality of light have the potential to affect zooplankton-fish interactions
79	indirectly through reduced energy transfer up the food chain and directly through reduced
80	foraging efficiency.
81	While recent studies have shown that the initial browning of low productive systems
82	can stimulate primary production (Ask et al. 2012; Seekell et al. 2015; Williamson et al. 2015),

excessive browning of fresh waters can reduce rates of photosynthesis due to competition for 83

Browning and larval fish foraging -- 4

84	photons (Kirk 1994). cDOM has been reported to sequester 10 times more photons within the
85	visible spectrum (400 - 700 nm) compared to photosynthetic pigments (Thrane et al. 2014). As
86	a consequence, areal primary production often decreases with increased water color (Jones
87	1992; Carpenter et al. 1998; Ask et al. 2009; Karlsson et al. 2009; Thrane et al. 2014), and
88	pelagic primary production typically exceeds benthic primary production (Vasconcelos et al.
89	2018; Vasconcelos et al. 2019). Phytoplankton community composition can also shift to
90	predominantly cyanobacteria, which are generally less nutritious or inedible to zooplankton
91	(Ekvall et al. 2013; Robidoux et al. 2015). Overall, aquatic ecosystems often become net
92	heterotrophic with increased browning as bacterial production exceeds primary production
93	(Cole et al. 1994; Ask et al. 2012).
94	Reductions in the quantity and quality of basal resources then 'cascade up' the grazer

antity and quain 95 food chain to influence zooplankton and fish. For example, Robidoux et al. (2015) observed decreases in crustacean zooplankton biomass and density with increased water color while 96 97 Craig et al. (2017) found that bluegill in lakes of increasing color were smaller in size and had 98 lower fecundity compared to those living in lakes with less color. Taipale et al. (2018) noted 99 that zooplankton and fish had poorer nutritional quality in browner systems because the 100 phytoplankton on which they fed had lower concentrations of essential fatty acids, proteins, 101 lipids, and carbohydrates. Combined, these results suggest that freshwater browning indirectly 102 alters energy flow to higher trophic levels.

103 Trophodynamics between larval fish and zooplankton are particularly important as the 104 larval stage represents a critical phase in fish development that ultimately affects population 105 growth and biomass (Fuiman and Werner 2002; Karlsson et al. 2009; Karlsson et al. 2015).

106	Generally, in temperate climates, increased primary production in the late spring/early summer
107	leads to increased zooplankton production. Shortly thereafter, many fish species begin to
108	spawn, matching larval fish hatching with an abundance of zooplankton prey (Mills et al. 1989;
109	Mehner and Thiel 1999; Hansson et al. 2007). However, as fresh waters continue to brown and
110	energy flow to zooplankton is reduced, fish larvae may compete for fewer zooplankton prey.
111	Freshwater browning may also directly affect fish foraging behavior by altering the light
112	environment to which fish are adapted. Many fish are visually orienting predators, depending
113	on the quantity (i.e. intensity) and quality (i.e. spectra) of underwater light to locate and
114	capture prey (Guthrie and Muntz 1993; Leech and Johnsen 2009). Results from studies
115	investigating the direct effects of browning on fish foraging are varied, ranging from no effect
116	to enhanced effects (e.g. Stasko et al. 2012; Jönsson et al. 2013; Weidel et al. 2017). However,
117	this research has focused on juvenile and adult life history stages, with no knowledge of the
118	effect of browning on fish larvae.
119	Foraging in early life history stages may be particularly affected by freshwater browning
120	due the rapid attenuation of shorter wavelength light. Over evolutionary time, the visual
121	system of fishes spectrally tunes to the intensity and wavelengths of light present in their
122	environment, varying with age and behavior (Douglas and Djamgoz 1990). Larval fish spend
123	most of their time foraging in the top few meters of the epilimnion, and many species have
124	been shown to possess UV photoreceptors during only their early stages of development
125	(reviewed in Leech and Johnsen 2009). Thus, fish larvae may rely on short-wavelength
126	ultraviolet and blue radiation to forage (Leech and Johnsen 2009 and references therein).
127	Alternatively, as light levels decline, fish larvae may rely on other sensory mechanisms to

128	forage, such as olfactory cues or mechanoreception, as demonstrated in marine fish larvae and
129	zebrafish (Jones and Janssen 1992; Cobcroft and Pankhurst, 2003; Sampson et al. 2013; Carillo
130	and McHenry 2016).
131	Here, we use laboratory experiments to assess the indirect versus direct effects of
132	browning on larval fish foraging at the time of hatching (i.e., late spring/early summer in central
133	Virginia, USA). Based on the primary literature, we hypothesized that increased browning will
134	reduce phytoplankton biomass, leading to a reduction in zooplankton abundance, and
135	consequently larval fish foraging efficiency, growth, and survival during an early, critical stage in
136	development. We then used the same laboratory set up to examine the direct effects of
137	browning on fish feeding rate and prey selectivity when given equal zooplankton prey,
138	hypothesizing that fish larvae will consume less prey as water color increases due to a reduction
139	in light availability for foraging.
140	Methods
141	Indirect Effects of Browning
142	Laboratory experiments were conducted in twelve 20 L glass aquaria assembled on
143	three shelves with four tanks per shelf. The entire shelving unit, including individual shelves,
144	was covered in black plastic with additional black plastic placed in between each tank.
145	Experimental tanks were arranged in a randomized block design, with at least one tank from
146	each treatment on each shelf. Nine tanks were filled with 17 L of artificial lake water made from
147	the COMBO medium recipe, which provides macro- and micronutrients in relatively high

- 148 concentrations to support growth (Kilham et al. 1998). SuperHume, a commercially available
- source of humic acid, was then added to the tanks at varying concentrations to adjust the

150	brown color of the water. Three tanks received 7 μ g/L of SuperHume to serve as a light brown
151	treatment (water color measured as absorbance at 440 nm (a_{440}) = 1.6 m ⁻¹), three tanks
152	received 33 μ g/L to serve as a moderate brown treatment (a ₄₄₀ = 5.7 m ⁻¹), and three tanks
153	received 66 μ g/L to serve as a dark brown treatment (a ₄₄₀ = 10.8 m ⁻¹). While SuperHume adds
154	carbon to the system, it does not add nutrients. Thus, despite differences in water color, and
155	consequently light transparency, our treatments had similar nutrient concentrations. We
156	adjusted the pH of all tanks to ~7 with approximately 2 μ L of 2N HCl.
157	Although the experimental use of SuperHume has been previous tested (Lennon et al.
158	2013; Övergaard 2019), some have cited toxicity concerns for zooplankton (Robidoux et al.
159	2015). We therefore filled the remaining three tanks with 17 L of lake water from Sandy River
160	Reservoir, Farmville, VA (a ₄₄₀ = 1.5 m ⁻¹) to serve as a comparison with our light brown
161	SuperHume treatment. Lake water was passed through a GF/F filter to remove bacterio-,
162	phyto-, and zooplankton, as best as possible. Sandy River Reservoir water was not used as the
163	base water for all browning treatments because of the logistics of transporting and filtering the
164	necessary large volume of water needed for the experiment.
165	Light was provided by 1.2 m long grow lamps containing two Lumichrome [®] Full
166	Spectrum Plus fluorescent, 32W bulbs suspended approximately 10 cm above the water surface
167	of the tanks on each shelf and placed on a 14-hr light, 10-hr dark cycle. While lamps cannot
168	exactly reproduce the solar spectrum, these specific bulbs were selected based on their broad
169	coverage of the ultraviolet and visible spectra. An Ocean Optics Red Tide USB650 UV
170	spectrophotometer was used to measure the light spectrum, based on photon counts, from 250
171	to 800 nm in each treatment (Figure 1). After the experiment had concluded, we acquired a

172	LiCor LI-192 quantum sensor to estimate photosynthetically active radiation (PAR) across our
173	treatments. The sensor was placed in the center of the tank at a depth of 0.09 m. PAR ranged
174	from approximately 15 μ mol m ⁻² s ⁻¹ in the dark brown treatment, 22 μ mol m ⁻² s ⁻¹ in the
175	moderate brown treatment, and 31 – 35 μ mol m ⁻² s ⁻¹ in the lake water and light brown
176	treatments. These light levels are comparable to those experienced during crepuscular periods,
177	when larvae often actively forage (Keast and Welsh 1968; Leech and Johnsen 2009). They are
178	also representative of light levels experienced at midday in the summer between approximately
179	1.0 – 2.5 m depth in local, natural systems (i.e. ~ 1800 μ mol m ⁻² s ⁻¹ surface irradiance, Figure
180	S1). All tanks stabilized to a room temperature of 22 - 23 $^{ m o}$ C under both light and dark
181	conditions.
182	At the beginning of the experiment, each tank received a dense mixture of
183	phytoplankton containing equal parts of Ankistrodesmus sp., Chlorella sp., Scenedesmus sp.,
184	and Selenastrum sp., which resulted in an initial chlorophyll-a concentration of approximately
184 185	and <i>Selenastrum</i> sp., which resulted in an initial chlorophyll- <i>a</i> concentration of approximately 10 μg/L in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO
185	10 $\mu\text{g/L}$ in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO
185 186	10 μ g/L in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO medium prior to the experiment. A mixed assemblage of zooplankton was then added to each
185 186 187	10 μ g/L in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO medium prior to the experiment. A mixed assemblage of zooplankton was then added to each tank. Zooplankton were collected from Sandy River Reservoir the day before the experiment by
185 186 187 188	10 μ g/L in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO medium prior to the experiment. A mixed assemblage of zooplankton was then added to each tank. Zooplankton were collected from Sandy River Reservoir the day before the experiment by towing a 64 μ m mesh bongo net from 0 - 6 m several times. Prior to introduction, zooplankton
185 186 187 188 189	$10 \ \mu$ g/L in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO medium prior to the experiment. A mixed assemblage of zooplankton was then added to each tank. Zooplankton were collected from Sandy River Reservoir the day before the experiment by towing a 64 μ m mesh bongo net from 0 - 6 m several times. Prior to introduction, zooplankton were concentrated into a single 4 L container, mixed, and then 50 mL aliquots were introduced
185 186 187 188 189 190	10 μ g/L in all tanks. Algae were purchased from Carolina Biological and cultured in COMBO medium prior to the experiment. A mixed assemblage of zooplankton was then added to each tank. Zooplankton were collected from Sandy River Reservoir the day before the experiment by towing a 64 μ m mesh bongo net from 0 - 6 m several times. Prior to introduction, zooplankton were concentrated into a single 4 L container, mixed, and then 50 mL aliquots were introduced into each tank to provide a starting density of approximately 26 zooplankton per liter in each

Browning and larval fish foraging -- 9

194 15% cladocerans (*Daphnia* sp. and *Bosmina* sp.), and 5% rotifers (*Keratella* sp.). We removed all
195 *Chaoborus* before introducing the zooplankton to the tanks to minimize zooplankton mortality
196 due to predation.

197 Over the course of the next month, phytoplankton biomass and zooplankton abundance 198 were measured at 0, 3, 7, 14, 21 and 28 days. Before each sampling, tanks were gently mixed 199 with a broad, plastic spoon. For phytoplankton, two replicate 50 mL water samples were 200 removed from each tank and filtered through Whatman GF/F filters to measure chlorophyll-a 201 concentration as a proxy for phytoplankton biomass. Filters were placed in 90% acetone 202 overnight in the freezer and then chlorophyll-*a* concentration was measured on a Shimadzu 203 Trilogy Fluorometer using the non-acidification module. Chlorophyll-a concentrations are 204 reported as the average of these two replicates. One hundred milliliters of DI water were added 205 to each tank to replace the 100 mL removed for chlorophyll-a analysis, keeping the volume at 206 ~17 L.

For zooplankton, 3 L of water from each tank was passed through a 64 µm mesh cup,
and then the water was immediately returned to the tank to maintain a constant volume.
Zooplankton collected on the mesh were rinsed into a sample cup and preserved with 70%
ethanol. Zooplankton were identified and enumerated under a dissecting microscope at 40x in
a Ward counting wheel. Zooplankton density (individuals per liter) was determined by counting
the total number of rotifers, copepods, and cladocerans in each sample collection and then
dividing by the total volume of water sampled (i.e. 3 L).

214 Because bacteria can serve as an alternate food source for zooplankton, either directly 215 or through the microbial loop (Sanders and Porter 1990; Wylie and Currie 1991), we measured

Browning and larval fish foraging -- 10

bacterial abundance at Days 0 and 28. Five milliliters of water were collected from each tank
with a serological pipet, placed in a sterile culture tube, and preserved with glutaraldehyde.
Samples were refrigerated until analysis. Bacterial abundance was determined by counting
DAPI stained cells under an epifluorescent microscope at a magnification of 100x, based on the
methods of Porter and Feig (1980). A minimum of 400 cells were counted per sample to
determine cell density per milliliter.

222 After 28 days, two larval largemouth bass (*Micropterus salmonoides*), 10-12 mm in 223 standard length (i.e. body length excluding tail), were introduced to each tank. Preliminary 224 experiments determined the fish behaved better in pairs compared to single introductions. We 225 chose to introduce the larvae after one month to simulate the timing of fish hatching in nature 226 following an increase in algae and zooplankton in late spring (Mills et al. 1989; Mehner and 227 Thiel 1999; Hansson et al. 2007). Because we were unable to successfully obtain fish larvae 228 from Sandy River Reservoir prior to the experiment, we used larvae from a local pond with 229 similar optical characteristics. Fish larvae were collected using light traps (Aquatic Instruments, 230 Inc., Hope, ID) anchored in the littoral zone of the pond overnight. Fish were immediately 231 transported back to the lab and housed for 24 hours without food. Fish collection and care 232 followed approved institutional animal care and use protocols.

233 Once introduced to the experimental tanks, the fish larvae were allowed to feed for 24 234 hours. After which, zooplankton were sampled as described above. This provided an estimate 235 of daily zooplankton consumption in each treatment, assuming that total zooplankton 236 consumed was represented by the difference in zooplankton density at the beginning and end 237 of fish feeding. We also assumed that the two fish in each tank fed equally, such that the

Browning and larval fish foraging -- 11

238 difference in zooplankton density was divided by 2 to estimate daily consumption rates per fish
239 larva.

240 Fish were then allowed to feed in the tanks for another 5 days with survival monitored 241 daily. After which, fish larvae were euthanized in MS-222, and final measurements were taken 242 of their body length under a dissecting microscope to estimate growth. Because we could not 243 clearly distinguish the two fish in each tank, growth was estimated as the average size of the 244 two fish at the beginning versus the end of the experiment. A final collection was also made of 245 zooplankton density in the tanks. However, zooplankton abundance was too low in all the tanks 246 to make accurate counts. 247 Throughout the experiment, a YSI 600 XLM sonde was used to measure water 248 temperature, conductivity, pH, and dissolved oxygen concentration in each tank. To monitor 249 potential changes in water color over time, a Shimadzu UV/Vis spectrophotometer was used to 250 measure absorbance at 440 nm of water filtered through a GF/F filter. Dissolved organic carbon 251 (DOC) concentration was also monitored during the experiment using GF/F filtrate. Samples 252 were run on a Shimadzu TOC-L analyzer.

253 Direct Effects of Browning

The same experimental setup was used to investigate direct effects of browning on fish foraging efficiency. However, we did not use a lake water control. Light to dark brown water color treatments consisted of four replicate tanks assembled in a randomized, block design on the three shelves. After adding SuperHume to the tanks, we noted that water color ranged from $a_{440} = 1.6$ to 13.1 m^{-1} . In each tank, the pH was adjusted to approximately 7, and the water was allowed to equilibrate to room temperature (22 - 23°C). A YSI 600 XLM sonde was

260	used to determine the water temperature, conductivity, dissolved oxygen concentration, and
261	pH of each tank prior to the beginning of each feeding experiment.
262	Both zooplankton and larval Micropterus salmonoides were collected from Sandy River
263	Reservoir. Fish larvae were starved for 24 hours prior to the experiment. For each experimental
264	tank, two larval fish (~13 mm in length) were introduced and allowed to acclimate for a
265	minimum of 1 hour. After which, a known concentration of zooplankton prey (i.e. \sim 20
266	zooplankton/L) was added, and the fish were allowed to feed for 30 minutes. We staggered the
267	introduction of the zooplankton every 10-15 minutes to allow time for disassembling each tank
268	at the end of the timed feeding trial. The zooplankton community consisted of approximately
269	40% cladocearans (mostly <i>Daphnia</i> sp.), 27% adult calanoid copepods, 24% <i>Chaoborus</i> , 7%
270	copepodids, and 2% adult cyclopoid copepods.
271	Fish were removed from the tank and placed in MS-222 for euthanization. The
272	remaining zooplankton were collected by filtering the water in each tank through a 64 μm
273	mesh. Zooplankton were rinsed off the mesh and into a sample cup with 70% ethanol.
274	Zooplankton were identified and enumerated under a dissecting microscope at 10 - 40x in a
275	Ward counting wheel. Zooplankton density per liter was calculated as the total number of
276	counted zooplankton divided by the total volume of water in the tank (i.e. 17 L). The total
277	zooplankton consumed per minute by each fish larvae was then calculated as the difference in
278	zooplankton density at the beginning versus the end of an experiment divided by 30 minutes
279	and then divided by 2 larvae. We assumed each fish in each tank fed equally during the
280	experiment. We chose this method rather than examining gut contents to be consistent with

281	previous experiments. Preliminary studies filling and emptying tanks with zooplankton resulted
282	in ~99% recovery, providing confidence in our methodology (unpublished data).
283	To further explore the direct effects of browning on larval fish foraging, we performed
284	three additional experiments using the same experimental setup but with bluegill Lepomis
285	machrochirus (~13-15 mm in standard length) collected from a local pond. The goal of these
286	experiments was to test the limits of larval fish foraging under increasing water color by
287	reducing the foraging time and number of prey. For each experiment, fish larvae were collected
288	with light traps 24 - 48 hours before the experiment. Two larvae were placed in each tank and
289	allowed to acclimate for 24 hours prior to the introduction of zooplankton prey. A YSI sonde
290	was used to confirm that temperature, pH, conductivity, dissolved oxygen concentrations were
291	similar across all tanks. For the first experiment, fish larvae fed for 24-hours with a relatively
292	high density of prey (i.e., 130 zooplankton per liter) to estimate daily feeding rates under ideal
293	conditions. We then conducted two experiments with reduced time and prey concentration to
294	test the limits of larval fish foraging: 1) a 10-minute feeding trial with 4 zooplankton per liter
295	and 2) a 5-minute feeding trial with 2 zooplankton per liter. Zooplankton prey remaining in each
296	tank were collected at the end of each experiment to assess fish feeding rates and prey
297	selectivity. For all three experiments, zooplankton were collected from the same pond as the
298	fish larvae and consisted of approximately 80% cladocearans (mostly Daphnia sp.), 15%
299	cyclopoid copepods, 3% Chaoborus, and 2% rotifers (Keratella sp. and Asplanchna sp.).
300	Statistical Analyses
301	All statistical tests were performed using the R Statistical Environment (R Core Team
302	2018). For the indirect effects experiment, we used the <i>nlme</i> package (Pinheiro et al. 2020) to

303	conduct repeated measures ANOVAs in combination with post hoc Tukey tests to assess
304	differences in water temperature, conductivity, pH, and dissolved oxygen with browning
305	treatment, time, and the interaction between time and treatment. Temperature and
306	conductivity data were log transformed for normality. ANOVAs were computed as linear mixed
307	models using the Ime function, including terms for random effects associated with tank number
308	(i.e. random function) and, in some cases, autoregressive effects associated with time points
309	being unequally spaced (i.e. <i>corAR1</i> function). The <i>anova</i> function from the <i>car</i> package was
310	used to report the results of the models (Fox and Weisberg 2019). If significant, we used the <i>cld</i>
311	function in the <i>Ismeans</i> package (Lenth 2016) to summarize the Tukey results. Residuals from
312	each test were calculated using the <i>residuals</i> function and then plotted with the
313	plotNormalHistorgram function from the rcompanion package (Mangiafico 2020). Akaike
314	Information Criteria were used to select the best model, particularly if autoregressive
314 315	Information Criteria were used to select the best model, particularly if autoregressive correlations improved the model.
315	correlations improved the model.
315 316	correlations improved the model. Repeated measures ANOVA with post hoc Tukey tests were also performed on log
315 316 317	correlations improved the model. Repeated measures ANOVA with post hoc Tukey tests were also performed on log transformed chlorophyll- <i>a</i> concentrations to assess differences in algal biomass with treatment,
315 316 317 318	correlations improved the model. Repeated measures ANOVA with post hoc Tukey tests were also performed on log transformed chlorophyll- <i>a</i> concentrations to assess differences in algal biomass with treatment, time, and interactions between treatment and time. The test was performed as described
 315 316 317 318 319 	correlations improved the model. Repeated measures ANOVA with post hoc Tukey tests were also performed on log transformed chlorophyll- <i>a</i> concentrations to assess differences in algal biomass with treatment, time, and interactions between treatment and time. The test was performed as described above. In addition, linear regressions of chlorophyll- <i>a</i> concentrations in each treatment over
 315 316 317 318 319 320 	correlations improved the model. Repeated measures ANOVA with post hoc Tukey tests were also performed on log transformed chlorophyll- <i>a</i> concentrations to assess differences in algal biomass with treatment, time, and interactions between treatment and time. The test was performed as described above. In addition, linear regressions of chlorophyll- <i>a</i> concentrations in each treatment over the first week (Days 0, 3, and 7) were performed to determine initial phytoplankton growth
 315 316 317 318 319 320 321 	correlations improved the model. Repeated measures ANOVA with post hoc Tukey tests were also performed on log transformed chlorophyll- <i>a</i> concentrations to assess differences in algal biomass with treatment, time, and interactions between treatment and time. The test was performed as described above. In addition, linear regressions of chlorophyll- <i>a</i> concentrations in each treatment over the first week (Days 0, 3, and 7) were performed to determine initial phytoplankton growth rates, using the slope as an estimate of added algal biomass per day.

325	paired with a post hoc Games-Howell test to compute pairwise comparisons of treatments. We
326	used the <i>welch_anova_test</i> function from the <i>rstatix</i> package (Kassambara 2020). Results from
327	the Welch's ANOVAs were used to compute effect sizes based on omega squared values.
328	A two-way ANOVA combined with a post hoc Tukey test was used to compare bacterial
329	abundance across treatments between Day 0 and Day 28. A Shapiro-Wilk's test confirmed data
330	normality prior to running the ANOVA. The <i>Ime</i> function in the <i>nIme</i> package was used to run
331	the model, using tank number as a random variable. Summary results were presented with the
332	anova function and residuals were checked with the residuals and plotNormalHistogram
333	functions. Results of the Tukey test were observed using the <i>Ismeans</i> and <i>cld</i> functions as
334	described above.
335	For the fish data in the indirect effects experiment, we again observed unequal variance
336	across treatments, and therefore, used Welch's ANOVAs with post hoc Game-Howell tests to
337	assess potential differences in zooplankton consumption and growth with water color. Because
338	we noted variability in zooplankton abundance within our treatments, we also calculated
339	Pearson correlation coefficients between zooplankton prey availability at the time of fish
340	introduction and zooplankton consumption rates after 24 hours as well as larval fish growth
341	after 6 days. E*Indices were calculated to determine potential differences in prey selectivity
342	with browning (Lechowicz 1982). Values were checked for normality and then a two-way
343	ANOVA was performed to test for significant differences in prey selectivity between treatment,
344	zooplankton taxa, and interactions between treatment and taxa. Tukey pairwise comparisons
345	were performed for significant results.

Browning and larval fish foraging -- 16

346	For the direct effect experiment with largemouth bass, we observed differences in the
347	absorbance coefficients within treatments. We therefore used linear regression analysis to
348	assess the relationship between zooplankton consumption and water color (i.e. absorbance at
349	440 nm). For the bluegill experiments, absorbance coefficients were similar within treatments,
350	and thus, we assessed differences in zooplankton consumption across water color treatments
351	with Welch's ANOVAs, using omega squared values to estimate effect sizes. E*Indices were
352	again calculated, and two-way ANOVAs were performed to assess significant differences in prey
353	selectivity with treatment, zooplankton taxa, and their interaction. For the largemouth bass
354	experiment, this required us to bin tanks into light, moderate, and dark brown treatments
355	based on similarities in a ₄₄₀ , with 4 replicates per treatment.

356 **Results**

357 Indirect Effects of Browning

358 Over the course of the 28-day experiment, there were no significant differences in water temperature, pH, or dissolved oxygen concentration among the 12 tanks with time or 359 360 treatment (Table 1). Conductivity did not significantly vary with time but was significantly lower 361 in the lake water treatment compared to the SuperHume treatments (Table 1). Absorbance at 362 440 nm was similar in the light brown and lake water treatments but significantly differed in the 363 moderate and dark brown treatments (Table 1). Water color decreased during the first week in all treatments and then remained relatively constant (Figure S2). On average, absorbance 364 coefficients at 440 nm were 1.3 m⁻¹ in the light brown and lake water treatments, 5.0 m⁻¹ in the 365 366 moderate brown treatment, and 9.7 m⁻¹ in the dark brown treatment. DOC concentration 367 significantly differed among the four treatments, with the light brown treatment having the

368	lowest DOC concentration (2.6 mg/L) and the lake water treatment having the highest DOC
369	concentration (5.1 mg/L) (Table 1). DOC concentration initially increased by $0.3 - 0.8$ mg/L over
370	the first week of the experiment and then declined by ~0.5 mg/L over the next 3 weeks, except
371	in the lake water treatment, which did not significantly differ over the next three weeks (Figure
372	S2). Interestingly, only marginal increases in DOC concentration were observed with
373	SuperHume additions despite an approximate 10 times increase in water color. Higher DOC
374	concentrations in the lake water treatment, compared to the SuperHume treatments, were due
375	to high inputs of non-chromophoric, algal-derived organic carbon in the eutrophic reservoir.
376	Bacterial abundance significantly differed with time ($F_{(1)}$ =32.95, p=0.0004, n=12) and
377	treatment ($F_{(3)}$ =24.11, p < 0.0001, n=12). Based on the results of the Tukey test, bacterial
378	abundance in the lake water treatment (i.e., 2.86 x 10^6 cells per mL \pm 1.4 x 10^5 S.E.) was
379	significantly greater than all other treatments (i.e., approximately 7.1 x 10^5 cells per mL \pm 1.5 x
380	10^5 S.E. in the light brown treatment and approximately 1.3 x 10^6 cells per mL <u>+</u> 9 x 10^5 S.E. in
381	the moderate and dark brown treatments). This suggests that not all bacteria were removed
382	from the lake water treatment during the initial set-up, and bacteria were introduced with the
383	addition of SuperHume. By the end of the experiment, bacterial abundance did not significantly
384	differ across the light, moderate, and dark brown treatments but was significantly higher in the
385	lake water treatment (i.e., \sim 3.19 x 10 ⁶ cells per mL in the lake water treatment compared to \sim 2
386	x 10 ⁶ cells per mL in the SuperHume treatments). Interestingly, bacterial abundance differed
387	by only 10 \pm 9% between Day 0 and Day 28 in the lake water treatment while in the low,
388	moderate, and dark brown treatments, bacterial abundance was 64 \pm 5%, 35 \pm 5%, and 23 \pm 3%
389	higher on Day 28, respectively.

390	Phytoplankton biomass, as estimated by chlorophyll- <i>a</i> concentration, significantly
391	differed with treatment ($F_{(3)}$ = 33.79, p < 0.0001, n=12), time ($F_{(1)}$ = 8.07, p=0.004, n=12), and the
392	interaction between treatment and time ($F_{(3)}$ =20.18, p=0.0002, n=12) (Table 1; Figure 2). The
393	highest chlorophyll- <i>a</i> concentrations throughout the experiment were observed in the light
394	brown treatment (i.e., 46.1 μ g/L by Day 28, Figure 2) while there was no significant difference
395	in the moderate brown, dark brown and lake water treatments (i.e., declining to 2 -7 μ g/L by
396	Day 28, Figure 2). Based on slopes from regression analyses, algal growth during the first week
397	was fastest in the light brown treatment (5.61 μ g/L per day <u>+</u> 0.25 S.E.) followed by the lake
398	water (4.15 µg/L per day <u>+</u> 0.22 S.E), moderate brown (2.36 µg/L per day <u>+</u> 0.28 S.E), and dark
399	brown treatments (1.51 μg/L per day <u>+</u> 0.2 S.E).
400	After 28 days, total zooplankton abundance was significantly different between
401	treatments (F _(3,3.35) =34.4, p=0.005, n=12, est ω^2 = 0.89: 95% CI [0.0, 0.97]). Based on post hoc
402	pairwise comparisons, zooplankton in the lake water (mean = 190 individuals per L \pm 25 S.E.)
403	and light brown (mean = 120 individuals per L <u>+</u> 35 S.E.) treatments were not significantly
404	different (p>0.05), but the lake water treatment was significantly greater than the moderate
405	brown (mean = 72 individuals per L \pm 7 S.E., p=0.02) and dark brown treatments (mean = 47
406	individuals per L \pm 10 S.E., p = 0.003) (Figure 3A). Removing one outlier from the light treatment
407	resulted in significant differences between all three SuperHume treatments at the p \leq 0.01
408	level. Overall, the cladoceran Bosmina sp. was the most abundant zooplankton in all treatments
409	by Day 28 (Figure 3B). Despite being the dominant zooplanktors at the beginning of the
410	experiment, copepods represented only 12% of the zooplankton community in the lake water
411	treatment and 5% of the zooplankton community in the SuperHume treatments by Day 28

412	(Figure 3D & 3E). <i>Daphnia</i> sp. abundance was low in all treatments by Day 28, except for the
413	light brown treatment (Figure 3C). While counting the zooplankton under the microscope,
414	flocculant SuperHume was observed, but not quantified, in the guts of cladocerans (i.e.,
415	Daphnia and Bosmina) but not calanoid or cyclopoid copepods (Figure 4). Rotifers rapidly
416	decreased in abundance and were not observed in any of the treatments after Day 7.
417	All fish survived the 6-day incubation in the lake water and light brown treatments.
418	However, there was a 33% mortality rate in both the moderate and dark brown treatments.
419	One dead fish was found in two replicate tanks of each treatment after 5-6 days, at which point
420	most zooplankton were visually depleted in the tanks. In the first 24 hours, fish consumed twice
421	as many prey in the lake water treatment (i.e. \sim 610 zooplankton per larva) compared to the
422	light brown treatment (~323 zooplankton per larva) and four times as many prey than in the
423	dark brown treatment (~143 zooplankton per larva). However, because of the variability in
424	zooplankton abundance within treatments, zooplankton consumption by larval fish did not
425	significantly differ with water color ($F_{(3,3.49)}$ =4.79, p=0.09, n=12, est ω^2 = 0.48: 95% CI [0.0, 0.78]).
426	Rather, zooplankton consumption in the first 24 hours correlated highly with zooplankton
427	densities at the time fish were introduced to the experimental tanks (Pearson Correlation
428	Coefficient =0.88, P=0.0002; Figure 5A). Proportionally, fish larvae primarily consumed Bosmina
429	in all treatments as they were the most numerous species in the tanks. However, Daphnia had
430	a higher electivity value (E*= 0.24 \pm 0.0004), followed by <i>Bosmina</i> (E*= -0.12 \pm 0.02) and then
431	copepods (E*= -0.64 \pm 0.02). These differences in selectivity of zooplankton taxa were
432	statistically significant based on a two-way ANOVA ($F_{(2,20)}$ =250.9, p < 0.0001, n=12). No
433	statistical differences in electivity were observed across treatment ($F(_{2,20})=0.44$, p = 0.78, n=12)

Browning and larval fish foraging -- 20

434 or the interaction between treatment and taxa ($F_{(8,20)}=0.64$, p = 0.73, n =12). Note that one dark 435 brown tank had to be eliminated from the two-way ANOVA because of a lack of *Daphnia* at the 436 time the fish were introduced.

437 Fish growth over the 6-day feeding experiment was generally greater in the lake water

438 and light brown treatments compared to the moderate and dark brown treatments; however,

439 these differences were not significantly different ($F_{(3,4.02)}$ =3.17, p=0.15, n=12, est ω^2 = 0.35: 95%

440 CI [0.0, 0.68]). On average, fish grew ~1.2 – 1.5 mm in the lake water and light brown

441 treatments, ~0.66 mm in the moderate brown treatment, and ~0.33 mm in the dark brown

442 treatment. Growth was moderately correlated with initial zooplankton abundance in the tank

443 (Pearson Correlation Coefficient =0.62, P=0.03; Figure 5B). After 6 days, the surviving fish larvae

444 in the moderate and dark brown treatments displayed empty and concave stomachs while

those in the lake water and light brown treatments were full with zooplankton prey (Figure 5C).

446 Note that previous studies have reported that it takes 4 – 6 hours for larvae to fully evacuate

their guts (Werner 1969).

448 Direct Effects of Browning

In the experiment with largemouth bass, we observed no significant differences in fish foraging efficiency with increased browning over the 30-minute feeding trial based on linear regression (Figure 6). Fish consumed on average 2.5 zooplankton per minute \pm 0.3 S.E. across all treatments, consuming mostly *Daphnia* sp. (percent consumed = 61% \pm 0.03 S.E.) and *Chaoborus* sp. (percent consumed = 57% \pm 0.07 S.E.) followed by copepods (percent consumed = 0.07% \pm 0.02 S.E.). E*Index values significantly differ across zooplankton taxa (F_(2,27)= 71.14, p < 0.0001, n=12), with *Daphnia* sp. (E* Index= 0.19 \pm 0.02 S.E.) and *Chaoborus* sp. (E* Index =

Browning and larval fish foraging -- 21

456	0.15 <u>+</u> 0.03 S.E.) prey preferred over copepods (E* Index= -0.7 <u>+</u> 0.07 S.E.). However, prey
457	selectivity did not significantly differ with treatment ($F_{(2,27)}$ = 0.07, p = 0.93, n=12) or the
458	interaction between treatment and zooplankton taxa ($F_{(4,27)}$ = 0.38, p = 0.82, n=12).
459	Similar patterns were observed in the experiments with bluegill (Tables 2 and 3).
460	Despite reducing zooplankton prey concentration and foraging time, no significant differences
461	in foraging rate were detected with increasing water color (Table 2). Similar to largemouth
462	bass, larval bluegill primarily consumed Daphnia sp. and Chaoborus sp. prey compared to
463	copepods in all treatments (Table 3). In the 24-hour experiment, larval bluegill in all treatments
464	consumed ~80% of the zooplankton in their respective tanks, with low consumption rates for
465	rotifers (Table 2).
100	Disquesion
466	Discussion
466	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish
467	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish
467 468	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish development, characterized by high mortality rates that influence longer-term population
467 468 469	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish development, characterized by high mortality rates that influence longer-term population growth (Fuiman and Werner 2002). Here, we demonstrate that browning may add stress to this
467 468 469 470	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish development, characterized by high mortality rates that influence longer-term population growth (Fuiman and Werner 2002). Here, we demonstrate that browning may add stress to this critical stage by decreasing zooplankton prey availability. Browning did not, however, directly
467 468 469 470 471	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish development, characterized by high mortality rates that influence longer-term population growth (Fuiman and Werner 2002). Here, we demonstrate that browning may add stress to this critical stage by decreasing zooplankton prey availability. Browning did not, however, directly alter larval fish feeding efficiency or prey selectivity, suggesting plasticity in foraging behavior
467 468 469 470 471 472	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish development, characterized by high mortality rates that influence longer-term population growth (Fuiman and Werner 2002). Here, we demonstrate that browning may add stress to this critical stage by decreasing zooplankton prey availability. Browning did not, however, directly alter larval fish feeding efficiency or prey selectivity, suggesting plasticity in foraging behavior under varying light conditions. To our knowledge, this is the first study examining the effects of
467 468 469 470 471 472 473	The transition from endogenous to exogenous feeding is a 'critical period' in larval fish development, characterized by high mortality rates that influence longer-term population growth (Fuiman and Werner 2002). Here, we demonstrate that browning may add stress to this critical stage by decreasing zooplankton prey availability. Browning did not, however, directly alter larval fish feeding efficiency or prey selectivity, suggesting plasticity in foraging behavior under varying light conditions. To our knowledge, this is the first study examining the effects of freshwater browning on larval fishes. Understanding the balance between direct versus indirect

477

Browning and larval fish foraging -- 22

478 Indirect Effects of Browning

479 The transfer of energy through the traditional grazer food chain depends on basal 480 resources to support higher trophic levels. Therefore, one of the most profound effects of 481 freshwater browning is the reduction in primary production, due to increased light attenuation (Wetzel 2001; Thrane et al. 2014; Solomon et al. 2015), that subsequently reduces energy flow 482 483 to zooplankton and fish (Jones et al. 2012; Solomon et al. 2015; Creed et al. 2018). Our study supports these general observations and raises concerns for larval fish. With increasing brown 484 485 color, we observed a reduction in the quantity of light, decreased phytoplankton biomass, and 486 decreased zooplankton densities. In turn, the foraging rate, growth, and survival of larval largemouth bass declined. 487

488 Starvation affects larval fish more than juvenile or adult stages because of their high metabolic demands coupled with low energy reserves in their tissues (Fuiman 2002). Within 4 -489 490 5 days at 25 - 30 °C, larvae will likely starve to death given low to no food rations (Fuiman 2002). In the present study, after 6 days at 22 - 23°C, fish larvae in the moderate and dark 491 492 brown treatments exhibited a 33% mortality rate while the surviving larvae in these treatments 493 displayed concave-shaped, empty stomachs. Although we did not quantify gut fullness, these 494 observations suggest a positive relationship between browning and starvation risk. Fish larvae were found dead in the darker brown treatments near the end of the experiment (Day 5 or 6) 495 496 when zooplankton densities were already visibly depleted.

497 At the time fish larvae were introduced to our experimental tanks, zooplankton 498 densities in the moderate and dark brown treatments were 2 to 4 times less than in the light 499 brown and lake water treatments (i.e. 46 - 72 individuals per liter compared to 120 - 190

Browning and larval fish foraging -- 23

500	individuals per liter). Daily consumption rates for larval fish are often greater than a larvae's
501	own biomass (Post 1990). We did not directly measure zooplankton or larval fish biomass in
502	our study. However, based on published length-weight regressions (larval fish: Brecker 1993;
503	zooplankton: reviewed in Watkins et al. 2011), we roughly estimate that larval fish biomass was
504	~2020 μ g dry weight per fish at the time of their introduction to the experimental tanks while
505	total zooplankton biomass was ~1577 \pm 447 $\mu \mathrm{g}$ dry weight in the dark brown treatment, ~2965
506	\pm 361 $\mu{ m g}$ dry weight in the moderate brown treatment, ~6300 \pm 1582 $\mu{ m g}$ dry weight in the light
507	brown treatment, and ~4962 \pm 228 $\mu \mathrm{g}$ dry weight in the lake water treatment. This resulted in a
508	ratio of zooplankton:fish biomass of 0.8, 1.5, 3.1, and 2.5 in the dark brown, moderate brown,
509	light brown, and lake water treatments, respectively. After 24 hours, fish larvae consumed
510	approximately 0.26, 0.54, 1.0, and 1.5 grams of zooplankton per gram of fish in the dark brown,
511	moderate brown, light brown, and lake water treatments, respectively. Based on data from
512	Houde and Zastrow (1990), freshwater fish should consume a minimum of \sim 0.5 - 0.7 grams of
513	prey per gram of fish per day at 23 °C to meet mean weight-specific growth rates. This suggests
514	that larvae in the moderate and dark brown treatments were food limited.
515	We placed two larvae in each tank to encourage routine behavior, which resulted in a
516	fish density of ~118 larvae m ⁻³ . This is relatively high but not uncommon in nature, particularly
517	during the early months of fish hatching (Santucci et al. 2003). Previous studies have shown
518	that when zooplankton consumption outweighs zooplankton reproduction, fish larvae may

rapidly deplete their food source, affecting future growth and survival (Mehner and Thiel 1999;

520 Santucci et al. 2003; Hansson et al. 2007). This may occur more often in brown systems if

521 zooplankton abundances are low at the time of fish hatching. Furthermore, as surface water

Browning and larval fish foraging -- 24

522	temperatures rise as a result of global climate change, fish feeding rates are predicted to
523	increase as a consequence of higher metabolic rates (van Dorst et al. 2019). Brown waters are
524	likely to increase in temperature more rapidly due to the increased absorption of solar
525	radiation (Solomon et al. 2015), further exacerbating competition for limited resources in these
526	systems.

527 Unlike prey abundance, we did not see significant differences in zooplankton 528 community composition with increased water color. Others studies have also noted minimal 529 changes in zooplankton community composition with freshwater browning, and there does not 530 seem to be a clear pattern in positive versus negative effects on specific zooplankton groups 531 (Nicolle et al. 2012; Ekvall and Hansson 2012; Kelly et al. 2014; Robidoux et al. 2015; Lebret et 532 al. 2018; Leech et al. 2018). In the present study, the zooplankton community shifted from 533 copepod to cladoceran dominated across all treatments, with smaller-bodied Bosmina the 534 dominant zooplankton prior to larval fish introduction. Abundances of large-bodied Daphnia 535 were similar in all treatments during the first two weeks of the experiment, but for unknown 536 reasons, continued to increase only in the light brown treatment (i.e., ~ 30 individuals per L at 537 Day 28). It is possible that the light brown treatment provided the ideal diet for Daphnia, with 538 sufficient carbon and nutrients from both algal- and terrestrially-derived resources (Lennon et 539 al. 2013; Gall et al. 2017; Tang et al. 2018).

540 Overall, the zooplankton community that developed in our experiment provided a 541 standard diet for fish larvae. Typically, larger crustacean zooplankton promote foraging success, 542 growth, and survival (Crowder et al. 1987; Mills et al. 1989). However, for younger larvae that 543 are gape-limited, smaller prey, like *Bosming* spp., can be more beneficial (Mehner and Thiel

Browning and larval fish foraging -- 25

544 1999). Nevertheless, zooplankton prey abundance in the moderate and dark brown treatments545 was too low to support larval development.

546	Similar to previous studies (Batt et al. 2015; Karlsson et al. 2015; Solomon et al. 2015),
547	reduced zooplankton abundance coincided with reduced phytoplankton biomass as browning
548	increased. Interestingly, despite having similar water color, the light brown and lake water
549	treatments displayed opposite trends in phytoplankton biomass after Day 14. In the lake water
550	treatment, increased zooplankton abundance likely resulted in greater consumption of
551	phytoplankton biomass. However, we are uncertain why the same pattern did not occur in the
552	light brown treatment. It is possible that the light brown treatment, made with the COMBO
553	medium, provided phytoplankton with more nutrients for growth to keep up with zooplankton
554	consumption. We were unable to measure nutrient concentrations at the time of these
555	experiments; however, water quality monitoring data collected by the Virginia Department of
556	Environmental Quality for Sandy River Reservoir indicate generally lower nitrogen and
557	phosphorus concentrations than present in the COMBO medium.
558	Phytoplankton species composition and nutritional quality were not assessed as part of
559	our study; however, we recognize that these factors can also influence energy and nutrient
560	availability for zooplankton, and consequently larval fish (Taipale et al. 2018; Creed et al. 2018).
561	Because of logistics, we chose to use an artificial assemblage of green algal species that are
562	generally favorable foods. In nature, phytoplankton communities can shift towards
563	cyanobacteria with increased water color, which could further reduce zooplankton densities
564	(Ekvall et al. 2013; Robidoux et al. 2015). It is also possible that the algae used in our
565	experiment may not have been adapted to the low light conditions of brown water systems

Browning and larval fish foraging -- 26

given that they were purchased from Carolina Biological. However, our results are comparable
to field studies examining natural communities along a water color gradient (Ask et al. 2009;
Karlsson et al. 2009; Thrane et al. 2014).

569 Reductions in prey consumption, and possibly less nutritious prey, ultimately led to 570 reductions in fish growth. Fish larvae in the lake water and light brown treatments, on average, 571 grew twice as fast as the larvae in the moderate brown treatment and four times faster than 572 the larvae in the dark brown treatment. Although, we recognize that there was relatively high 573 unexplained variability in growth within our treatments (e.g. fish in two replicate tanks of the 574 moderate brown treatment exhibited no growth while the third replicate exhibited relatively 575 high growth). Growth rates are important for several reasons. Larval fish become better at 576 avoiding predators and detecting prey as swimming strength and visual acuity increases with 577 body size (Fuiman 2002). In addition, larger larvae consume bigger, more energy-rich prey. 578 Growth in juvenile and adult fish is often slower in brown compared to blue lakes, resulting in a 579 smaller length-at-age (Estlander et al. 2010; Horppila et al. 2010; Benoit et al. 2016; van Dorst 580 et al. 2018), and our data suggest similar patterns for larval fish. These reductions in individual 581 growth lead to further reductions in population growth and fish biomass as lakes darken in 582 color (Karlsson et al. 2009, 2015; Finstad et al. 2014), which can alter food web structure and lower fisheries vields. 583

Importantly, the results of our indirect effects experiment were influenced by the timing of fish introduction at Day 28. If the fish had been introduced at earlier time points, when zooplankton densities were similar in all treatments, we likely would have observed no effect of browning on larval fish. Indeed, in systems with low prey availability, fish foraging, growth, and

588	survival are reduced regardless of water color (Mehner and Thiel 1999; Santucci et al. 2003;
589	Hansson et al. 2007). Nonetheless, similar to our experimental results, browning has been
590	demonstrated in field and laboratory studies to reduce zooplankton densities (e.g. Ekvall et al.
591	2013; Robidoux et al. 2015; Leech et al. 2018). Moreover, it is often stated that these
592	differences in prey availability affect fish growth and survival, but experimental evidence is
593	limited. Here, we provide quantitative data on how alterations in prey densities, due to
594	increased browning, may affect larval fish foraging, growth, and survival in nature. We argue
595	that these valuable data can served as a starting point to design larger-scaled mesocosm
596	experiments or observational studies.
597	Direct Effects of Browning
598	When given an equal abundance of zooplankton prey, neither the foraging efficiency
599	nor prey selectivity of larval largemouth bass or bluegill were affected by increased browning.
600	Our results are similar to Stasko et al. (2012), which found no significant effect of browning on
601	juvenile roach feeding rates but are contrary to Jönsson et al. (2013), which reported decreases
602	in reactive distance and capture success of piscivorous Northern pike (Esox lucius) feeding on
603	roach (Rutilus rutilus) with increased water color. Weidel et al. (2017) reported significant
604	effects of browning on juvenile largemouth bass and bluegill foraging, but water color explained
605	only ~25-28% of the variation in foraging rates. Combined, results from our study and others
606	(Estlander et al. 2012; Ranaker et al. 2012; Nurminen et al. 2014) suggest that effects of
607	browning on fish foraging rates may be age- or species-specific.
608	Light intensities across all our treatments (i.e. ~15 – 35 μ mol m ⁻² s ⁻¹ PAR) may have been
609	adequate for larval fish foraging, resulting in the lack of direct effects. For example, Miner and

610	Stein (1993) reported that larval bluegill successfully feed on zooplankton at light intensities
611	above 450 lux (i.e., ~8 $\mu mol~m^{-2}~s^{-1}$ based on the conversion factor for sunlight). Some have
612	suggested that reductions in light levels have a greater effect on later life history stages of fish
613	because of the positive relationship between sighting distance and body size (Askne and Giske
614	1993; Fiksen et al. 2002). If browning does directly affect visual foraging, it may do so by
615	limiting the thickness and daily duration of the photic zone, such that there is a spatiotemporal
616	contraction of foraging habitat critical to growth and survival. Additionally, the metabolic costs
617	associated with searching for prey may increase with reductions in light levels, particularly if
618	prey availability declines with increased browning.
619	Larval fish used in our experiments may have been pre-adapted to the low-light
620	environment of brown water systems. In general, the man-made reservoirs and ponds of
621	central Virginia, USA have relatively high light attenuation due to increased cDOM inputs
622	and/or increased phytoplankton growth (Figure S1). Compared to local lakes and ponds in the
623	region, our dark brown treatment increased water color approximately 10 times. However, we
624	may have seen direct effects of browning on fish feeding had we continued to add organic
625	matter to the tanks. Moreover, fish inhabiting clear, blue lakes may show a greater response to
626	freshwater browning than those in our study (Stasko et al. 2015), and we encourage further
627	experimentation with larvae from these systems.
628	Because foraging success plays a critical role in survival and reproduction, there is likely
629	strong selection pressure to adapt to changing environmental conditions. As light availability for
630	visual foraging declines with browning, fish may shift from vision to other sensory mechanisms,
631	such as mechanoreception or olfactory cues, to detect zooplankton prey. For example, previous

632	research ablating the function of superficial neuromasts with neomycin or streptomycin has
633	shown reduced feeding rates in marine fish larvae (Jones and Janssen 1992; Cobcroft and
634	Pankhurst, 2003; Sampson et al. 2013). Larval zebrafish have been shown to learn to use
635	mechanoreception to feed in the dark (Carillo and McHenry 2016). There is also recent
636	evidence that juvenile bluegill may actually feed more in the open pelagic water column at
637	night and horizontally migrate towards the littoral zone during the day to avoid piscivorous
638	predators (Shoup et al. 2014). Future research should investigate the potential for alternative
639	feeding strategies as waters brown in color and be cautious about our biases as human
640	researchers relying on light and vision (Cumming et al. 2018).
641	Small Enclosures versus Natural Systems
642	We recognize that our experiment was conducted in relatively small containers and that
643	caution must be applied when scaling up results to natural systems. Nevertheless, our
644	observations of phytoplankton, zooplankton, and fish responses to browning are similar to
645	those reported by recent field-based studies (Karlsson et al. 2009, 2015; Finstad et al. 2014 and
646	others mentioned above), providing confidence in our results. Working with fragile fish larvae is
647	challenging, and smaller containers minimize some of the logistical constraints. Yet, the small,
648	confined tank could have influenced feeding rates. Given the size of larvae used in our
649	experiments (10 - 13 mm), their visual acuity, or reaction distance, is approximately one body
650	length (Werner 1969). However, we do not know how long it took larvae to search the tank.
651	Larger containers may have revealed greater differences in feeding rates across treatments,
652	similar to Weidel et al. (2017).

Browning and larval fish foraging -- 30

653	We also did not quantify the spatial distribution of zooplankton in the tanks, which
654	could have influenced feeding rates. Experimental tanks were covered during the feeding trials
655	to avoid distracting the fish. Zooplankton are known to swim downward in the presence of light
656	and fish, and it is possible that the zooplankton could have clumped at the bottom of the tanks,
657	making them easier to find and capture. However, this behavioral pattern in the zooplankton
658	was not obviously apparent to us while breaking down the tanks.

Interestingly, Seekell et al. (2018) reported that the relationship between fish biomass and water color was more negative in deep lakes compared to shallow lakes within the boreal region of Sweden. The authors state that the negative effects of browning associated with light extinction and decreased primary production are minimized in shallow lakes because light often reaches the lake bottom. Moreover, most fish inhabiting deeper lakes were observed in the littoral zone. Moving into shallow waters may provide fish adequate light to forage in brown

665 waters, as supported by our results in shallow, experimental tanks (i.e., ~0.2 m depth).

666 Implications and Applications

667 Given increasing trends in temperature and precipitation with global climate change, 668 the browning of inland and coastal waters is predicted to continue, with far reaching 669 consequences for aquatic ecosystems (de Wit et al. 2016; Weyhenmeyer et al. 2016). Here, we 670 demonstrate that freshwater browning reduces energy flow to higher trophic levels, negatively 671 affecting larval fish growth and survival during a 'critical period'. Because of their ecological and 672 economic value, fish population dynamics are closely monitored and predicted by natural 673 resource managers and conservationists. While current population growth models focus on the importance of temperature and nutrients (e.g., Deslauriers et al. 2017), our study and others, 674

- 675 highlight the need to incorporate water color (i.e. cDOM) to more accurately predict
- 676 recruitment strength, sustainable yields, and food web stability in systems affected by
- 677 browning.

Browning and larval fish foraging -- 32

710 Acknowledgements

- 711 We thank David and Navona Hart for granting access to their pond and Mark Rolfing for his
- assistance in counting bacteria samples. Funding for this research came from the Longwood
- 713 University PRISM Summer Research Program and a faculty development grant to DML from
- Longwood University. Collection of larval bluegill and largemouth bass was approved by the
- 715 Virginia Department of Game and Inland Fisheries, Permit# 051397. This manuscript was
- 716 improved by thoughtful comments from Sönke Johnsen, Tessa DeWalt, and two anonymous
- 717 reviewers.

742	References
742	Aksnes, D. L. and Giske, J. 1993. A theoretical model of aquatic visual feeding. Ecol. Model. 67 :
744	233-250.
745	
746	Ask, J., Karlsson, J. and Jansson M. 2012. Net ecosystem production in clear-water and brown-
747	water lakes. Glob. Biogeochem. Cyc. 26 7. doi:10.1029/2010GB003951.
748	
749	Bartels, P., Hirsch, P. E., Svanbäck, R. and Eklöv, P. 2016. Dissolved organic carbon reduces
750	habitat coupling by top predators in lake ecosystems. Ecosystems 19 : 955-967.
751	
752	Batt, R. D., Carpenter, S.R., Cole, J.J., Pace, M.L. Johnson, R.A., Kurtzweil, J.T. and Wilkinson,
753	G.M. 2015. Altered energy flow in the food web of an experimentally darkened lake.
754	Ecosphere 6 (3): 33. http://dx.doi.org/10.1890/ES14-00241.1.
755	
756	Benoît, P.O., Beisner, B.E, and Solomon, C.T. 2016. Growth rate and abundance of common
757	fishes is negatively related to dissolved organic carbon concentration in lakes. Can. J.
758	Fish. Aq. Sci. 73 (8): 1230-1236. https://doi.org/10.1139/cjfas-2015-0340.
759	
760	Breck, J. Hurry up and wait: Growth of young bluegill in ponds and in simulations with an
761	individual-based model. Trans Amer Fish Soc 122: 467-480.
762	
763	Bukaveckas, P.A. & Robbins-Forbes, M. 2000. Role of dissolved organic carbon in the
764	attenuation of photosynthetically active and ultraviolet radiation in Adirondack lakes.
765	Freshw. Biol. 43 (3): 339–354.
766	
767	Carrillo, A, and McHenry, M.J. 2016. Zebrafish learn to forage in the dark. J. Exper. Biol. 219 :
768	582- 589 . doi: 10.1242/jeb.128918.
769	Consider C.B. Color H. Kitchell, J.C. & Deer M.L. 1999, Longer J. (Disselled Operation Control
770	Carpenter, S.R., Cole, J.J., Kitchell, J.F. & Pace, M.L. 1998. Impact of Dissolved Organic Carbon,
771 772	Phosphorus, and Grazing on Phytoplankton Biomass and Production in Experimental
772 272	Lakes. Limnol. Oceanogr. 43 (1): 73–80.
773 774	Cole, J. J., Caraco, N.F., Kling, G.W. and Kratz, T.K. 1994. Carbon dioxide supersaturation in the
775	surface waters of lakes. Science 265 : 1568–1570.
776	Surface waters of lakes. Science 205 . 1508–1570.
777	Cobcroft, J. M. and Pankhurst, P. M. 2003. Sensory organ development in cultured striped
778	trumpeter larvae <i>Latris lineata</i> : implications for feeding behaviour. Mar. Freshw. Res.
779	54 : 669-682.
780	
781	Craig, N., Jones, S.E., Weidel, B.C., and Solomon, C.T. 2017. Life history constraints explain
782	negative relationship between fish productivity and dissolved organic carbon in lakes.
783	Ecol. Evol. 7 (16): 6201–6209. doi:10.1002/ece3. 3108.
784	

785 786 787 788 789	Creed, IF, Bergström, A-K, Trick, C.G., Grimm, N.B., Hessen, D.O., Karlsson, J Weyhenmeyer, G.A. 2018. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Glob. Chan. Biol. 24 : 3692–3714. https://doi.org/10.1111/gcb.14129.
790 791 792 793	Crowder, L.B., McDonald, M.E., and Rice, J.A. 1987. Understanding recruitment of Lake Michigan fishes: the importance of size-based interactions between fish and zooplankton. Can. J. Fish. Aq. Sci. 44 (2): 141-147.
794 795 796	Cummings ME, Endler JA, Rebecca C. Fuller. 2018. 25 Years of sensory drive: the evidence and its watery bias. Curr Zool. 64: 471-484.
797 798 799 800	Deslauriers, D., Rosburg, A.J., and Chipps, S.R. 2017. Development of a foraging model framework to reliably estimate daily food consumption by young fishes Can. J. Fish. Aq. Sci. 74 : 1668-1681. https://doi.org/10.1139/cjfas-2016-0331.
800 801 802 803 804 805	de Wit, H.A., Valinia, S., Weyhenmeyer, G.A., Futter, M.N., Kortelainen, P., Austnes, K., Hessen, D.O., Räike, A., Laudon, H. and Vuorenmaa, H. 2016. Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. Environ. Sci. Tech. Let. 3 (12): 430- 435. DOI: 10.1021/acs.estlett.6b00396.
805 806 807	Douglas, R.H. and Djamgoz, M. 1990. The Visual system of fish. Chapman and Hall.
808 809 810 811	Einem, J. von and Granéli, W. 2010. Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. Limnol. Oceanogr. 55: 920–930.
812 813 814 815	Ekvall, M.K. and Hansson L-A. 2012. Differences in Recruitment and Life-History Strategy Alter Zooplankton Spring Dynamics Under Climate-Change Conditions. <i>PLoS ONE</i> 7 (9): e44614. https://doi.org/10.1371/journal.pone.0044614
815 816 817 818 819	Ekvall, M.K., De la Calle M.J., Faassen, E.J., Gustafsson, S., Lürling, M., and Hansson, L-A. 2013. Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58 : 2414–2422.
820 821 822 823 824	Erlandsson, M., Buffam, I., Folster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G.A., and Bishop, K. 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. <i>Global Change Biol.</i> 14 : 1191–1198.
824 825 826 827 828	Estlander, S., Nurminen, L., Olin, M., Vinni, M., Immonen, S., Rask, M., and Lehtonen, H. 2010. Diet shifts and food selection of perch <i>Perca fluviatilis</i> and roach <i>Rutilus rutilus</i> in humic lakes of varying water colour. J. Fish Biol. 77 (1): 241–256. https://doi.org/10.1111/j.1095-8649.2010.02682.x.

829 830 831 832 833 834	Fiksen, Ø., Aksnes, D.L., Flyum, M.H. and Giske, J. 2002. The influence of turbidity on growth and survival of fish larvae: a numerical analysis. Hydrobiologia 484 : 49–59. https://doi.org/10.1023/A:1021396719733
835 836 837	Finstad, A. G., Helland, I.P., Ugedal, O., Hesthagen, T., and Hessen, D.O. 2014. Unimodal response of fish yield to dissolved organic carbon. Ecol. Let. 17 : 36–43.
838 839 840	Fox J, Weisberg S. 2019. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
841 842 843	Freeman, C., Evans, C.D, Monteith, D.T., Reynolds, B., and Fenner, N. 2001. Export of organic carbon from peat soils. <i>Nature</i> 412 : 785–786. doi:10.1038/35090628.
844 845 846 847	Fuiman L.A. 2002. Special considerations of fish eggs and larvae, pp. 1-32. <i>In</i> L.A. Fuiman and G.W. Robert (eds.), Fishery Science, The unique contributions of early life stages. Blackwell publishing, 326 pp.
848 849 850	Fuiman, L.A. and R.G. Werner, eds. 2002. Fishery Science: The Unique Contributions of Early Life Stages. Blackwell Science, Oxford.
851 852 853 854	Gall, A., Kainz, M., and Rasconi, S. 2017. Daphnia magna fitness during low food supply under different water temperature and brownification scenarios. J. Limnol. 76: 161-169. DOI: 10.4081/jlimnol.2016.1450.
855 856 857	Guthrie, D. M. and Muntz, W. R. A. 1993. Role of vision in fish behavior. <i>In</i> Behavior of Teleost Fishes, 2nd edn (ed Pitcher, T. P.), pp. 89-121. London: Chapman and Hall.
858 859 860 861	Haaland, S., Hongve, D., Laudon, H., Riise, G., and Vogt, R.D. 2010. Quantifying the drivers of the increasing colored organic matter in boreal surface waters. Environ. Sci. Tech. 44: 2975–2980.
862 863 864 865	Hansson, L-A., Nicolle, A., Brodersen, J., Romare, P., Anders Nilsson, P., Brönmark, C., & Skov, C. 2007. Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. <i>Limnol. Oceanogr.</i> 52 : 696–706.
866 867 868	Houde, E.D. and Zastrow, C.E. 1993, Ecosystem- and taxon-specific dynamic and energetics properties of larval fish assemblages. <i>Bulletin of Marine Science</i> 53: 290-335.
869 870 871 872	Horppila, J., Olin, M., Vinni, M., Estlander, S., Nurminen, L., Rask, M., Ruuhijärvi, J. and Lehtonen, H. 2010. Perch production in forest lakes: the contribution of abiotic and biotic factors. Ecol. Freshw. Fish 19 : 257-266.

873 874 875	Jones, R.I. 1992. The influence of humic substances on lacustrine planktonic food chains. <i>Hydrobiolog</i> . 229 : 73–91.
876 877 878	Jones, W. R. and Janssen, J. 1992. Lateral line development and feeding behavior in the mottled sculpin, <i>Cottus bairdi</i> (Scorpaeniformes: Cottidae). <i>Copeia</i> 1992 : 485-492.
879 880 881	Kassambara, A. 2020. Rstatix: Pipe-Friendly framework for basic statistical tests. https://rpkgs.datanovia.com/rstatix/
882 883 884	Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L. and Jansson, M. 2009. Light limitation of nutrient-poor lake ecosystems. <i>Nature</i> 460 (7254): 506–509.
885 886 887 888	Karlsson, J., Bergstrom, A.K., Bystrom, P., Gudasz, C., Rodriguez, P., and Hein, C. 2015. Terrestrial organic matter input suppresses biomass production in lake ecosystems. Ecology 96: 2870– 2876. doi:10.1890/15-0515.1.
889 890 891	Keast, A., and Welsh L. 1968. Daily feeding periodicities, food uptake rates, and dietary changes with hour of day in some lake fishes. <i>J. Fish. Res. Board. Can.</i> 25: 1133-1144.
892 893 894	Kilham, S.S., Kreeger, D.A., Lynn, S.G., Goulden, C.E., and Herrera, L. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. <i>Hydrobiolog.</i> 377 : 147-159.
895 896 897	Kirk, J.T. O. 1994. Light and photosynthesis in aquatic ecosystems. Melbourne: Cambridge University Press. http://www.loc.gov/catdir/toc/cam025/93037395.html
898 899 900 901 902	Koizumi S., Craig, N., Zwart, J.A., Kelly, P.T., Ziegler, J.P., Weidel, B.C., Jones, S.E., & Solomon, C.T. 2018. Experimental whole-lake dissolved organic carbon increase alters fish diet and density but not growth or productivity. Can. J. Fish. Aq. Sci. 75 : 1859-1867. https://doi.org/10.1139/cjfas-2017-0283.
903 904 905	Kritzberg, E.S. and Ekström, S.M. 2012. Increasing iron concentrations in surface waters – a factor behind brownification? <i>Biogeosciences</i> 9 (4): 1465–1478.
906 907 908 909	Lebret, K., Langenheder, S., Colinas, N., Östman, Ö., & Lindström, E.S. 2018. Increased water colour affects freshwater plankton communities in a mesocosm study. Aq. Microb. Ecol. 81 : 1–17. https://doi.org/10.3354/ame01858
910 911	Lechowicz, M.J. 1982. The sampling characteristics of electivity indices. <i>Oecologia</i> 52 : 22–30.
912 913 914	Leech, D.M. and Johnsen, S. 2009. Light and biological receptors. <i>In</i> Encyclopedia of Inland Waters. Editor, G. Likens. Pp. 671-681.

915 916 917 918	Leech, D.M., Pollard, A.I., Labou, S.G., and Hampton, S.E. 2018. Fewer blue lakes and more murky lakes in the U.S.: Implications for planktonic food webs. Limnol. Oceanogr. 63 : 2661-2680. doi.org/10.1002/lno.10967.
919 920 921	Lenth, R.V. 2016. Least-Squares Means: The R Package Ismeans. Journal of Statistical Software, 69(1), 1-33.doi:10.18637/jss.v069.i01
922 923 924	Mangiafico, S. 2020. Rcompanion: Functions to Support Extension Education Program Evaluation. http://rcompanion.org
925 926 927 928	Mehner, T. and Thiel, R. 1999. A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. <i>Environ. Biol. Fish.</i> 56: 169–181.
929 930 931 932	Mills, E. L., Sherman, R. and Robson, D.S. 1989. Effect of zooplankton abundance and body size on growth of age-0 yellow perch (<i>Perca flavescens</i>) in Oneida Lake, New York, 1975- 1986. Can. J. Fish. Aq. Sci. 46 : 880- 886.
933 934 935 936	Miner, J.G., and R.A. Stein. 1993. Interactive influence of turbidity and light on larval bluegill (<i>Lepomis macrochirus</i>) foraging. Can. j. Fish. Aquat. Sci. 50 : 704-788.
937 938 939 940 941	Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, Heleen A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J. and Vesely, J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. <i>Nature</i> 450 (7169): 537–540.
942 943 944 945	Morris D.P., Zagarese, H., Williamson, C.E., Balseiro, E.G., Hargreaves, B.R., Modenutti, B., Moeller, R., and Queimalinos, C. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. <i>Limnol. Oceanogr.</i> 40 : 1381–1391.
946 947 948 949	Nicolle, A., Hallgren P., Von Einem J., Kritzberg E.S., Graneli W., Persson A Hansson, L-A. 2012. Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: an enclosure study. Freshw. Biol. 57: 684–695.
950 951 952 953	Nurminen, L, Estlander S, Olin M, and Lehtonen H. 2014. Feeding efficiency of planktivores under disturbance, the effect of water colour, predation threat and shoal composition: feeding of planktivores under disturbance. J. Fish Biol. 84 : 1195–1201.
954 955 956 957	Övergaard, R. 2019. The effects of different browning agents SuperHume, HuminFeed, and Reverse Osmosis Concentrate on the fitness and survival of <i>Daphnia magna</i> (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392705

958	Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2020). nlme: Linear and Nonlinear Mixed
959	<i>Effects Models</i> . R package version 3.1-149. https://CRAN.R-project.org/package=nlme.
960	
961	Porter, K.G. and Feig, Y. S. 1980. The use of DAPI for identifying and counting aquatic
962	microflora. Limnol. Oceanogr. 25 : doi: 10.4319/lo.1980.25.5.0943.
963	
964	R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for
965	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
966	
967	Ranåker L, Jönsson M, Nilsson PA, and Brönmark C. 2012. Effects of brown and turbid water on
968	piscivore–prey fish interactions along a visibility gradient. Freshw. Biol. 57 (9): 1761-
969	1768.
970	
971	Sampson, J.A., Duston, J., and Croll, R.P. 2013. Superficial neuromasts facilitate non-visual
972	feeding by larval striped bass (<i>Morone saxatilis</i>). J. Exper. Biol. 216 : 3522-3530. doi:
973	10.1242/jeb.087395.
974	
975	Santucci, V.J., Jr., and Wahl, D.H. 2003. The effects of growth, predation, and first-winter
976	mortality on recruitment of bluegill cohorts. Trans. Amer. Fish. Soc. 132 : 346-360.
977	
978	Seekell, D. A., Lapierre, JF., Ask, J., Bergström, AK., Deininger, A., Rodríguez, P., & Karlsson, J.
979	2015. The influence of dissolved organic carbon on primary production in northern
980	lakes. Limnol. Oceanogr. 60 : 1276–1285. doi:10.1002/lno.10096.
981	
982	Seekell, D. A., Byström, P. and Karlsson, J. 2018. Lake morphometry moderates the relationship
983	between water color and fish biomass in small boreal lakes. Limnol. Oceanogr. 63: 2171-
984	2178. doi:10.1002/lno.10931
985	
986	Shoup, D.E., Boswell, K.M. and Wahl, D.H. 2014. Diel Littoral–Pelagic Movements by Juvenile
987	Bluegills in a Small Lake. Trans. Amer. Fish. Soc. 143 (3): 796-801.
988	Solomon, C. T., S. E. Jones, B. C. Weidel, and others. 2015. Ecosystem Consequences of
989	Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge
990	and Future Challenges. Ecosystems 18: 376–389. doi:10.1007/s10021-015-9848-y
991	
992	Stasko, A.D., Gunn, J.M., and Johnston, T.A. 2012. Role of ambient light in structuring north
993	temperate fish communities: potential effects of increasing dissolved organic carbon
994	concentration with a changing climate. <i>Environ. Rev.</i> 20 (3): 173-190. doi:10.1139/a2012-
995	010.
996	Stasko AD, Johnston TA, and Gunn JM. 2015. Effects of water clarity and other environmental
997	factors on trophic niches of two sympatric piscivores. Freshw. Biol. 60: 1459–1474.
998	
999	Taipale, S. J., Kahilainen, K. K., Holtgrieve, G. W., and Peltomaa, E. T. 2018. Simulated
1000	eutrophication and browning alters zooplankton nutritional quality and determines
1001	juvenile fish growth and survival. Ecol. Evol. 8(5): 2671–2687. doi:10.1002/ece3.3832.

1002	
1002	Tang V. Vang V. Vu. P. Zhang V. Liu, Z. Zhang V. and Dumont H. I. 2010. Heterotrophic
1003	Tang, Y., Yang, X., Xu, R., Zhang, X., Liu, Z., Zhang, Y. and Dumont, H. J. 2019. Heterotrophic
	microbes upgrade food value of a terrestrial carbon resource for <i>Daphnia magna</i> . Limol.
1005	Oceanogr. 64: 474-482. doi:10.1002/lno.11052.
1006	
1007	Thrane, JE., Hessen, D.O. and Andersen, T. 2014. The Absorption of Light in Lakes: Negative
1008	Impact of Dissolved Organic Carbon on Primary Productivity. <i>Ecosystems</i> 17: 1040–1052.
1009	
1010	van Dorst, R.M., Gårdmark, A., Svanbäck, R., Beier, U., Weyhenmeyer, G.A., and Huss, M. 2019.
1011	Warmer and browner waters decrease fish biomass production. Global Change Biol. 25:
1012	1395– 1408. https://doi.org/10.1111/gcb.14551.
1013	
1014	Vasconcelos, F.R., Diehl, S., Rodríguez, P., Karlsson, J., and Byström, P. 2018. Effects of
1015	terrestrial organic matter on aquatic primary production as mediated by pelagic-benthic
1016	resource fluxes. Ecosystems 21: 1255. https://doi.org/10.1007/s10021-017-0217-x.
1017	
1018	Vasconcelos, FR, Diehl, S, Rodríguez, P, Hedström, P, Karlsson, J, and Byström, P. 2019. Bottom-
1019	up and top-down effects of browning and warming on shallow lake food webs. Global
1020	Change Biol. 25: 504– 521. https://doi.org/10.1111/gcb.14521.
1021	
1022	Watkins, J., Rudstam, L., and Holeck, K. 2011. Length-weight regressions for zooplankton
1023	biomass calculations – A review and a suggestion for standard equations. Technical
1024	Report. Cornell University. Available at https://hdl.handle.net/1813/24566.
1025	
1026	Weidel, B.C., Baglini, K., Jones, S.E., Kelly, P.T., Solomon, C.T., and Zwart, J.A. 2017. Light climate
1027	and dissolved organic carbon concentration influence species-specific changes in fish
1028	zooplanktivory. Inland Waters 7 (2): 210-217. doi:10.1080/20442041.2017.1329121.
1029	
1030	Werner, R.G. 1969. Ecology of Limnetic Bluegill (<i>Lepomis macrochirus</i>) Fry in Crane Lake,
1031	Indiana. The American Midland Naturalist 81(1): 164-181.
1032	Wetzel, R. G. 2001. Limnology: Lake and river ecosystems, 3rd ed. Academic Press.
1033	
1034	Weyhenmeyer, G.A., Müller, R.A., Norman, M., and Tranvik, L.J. 2016. Sensitivity of freshwaters
1035	to browning in response to future climate change. Climatic Change 134: 225-239.
1036	https://doi.org/10.1007/s10584-015-1514-z.
1037	
1038	Williamson, C. E., Overholt, E.P., Pilla, R.M., Leach, T.H., Brentrup, J.A., Knoll, L.B., Mette, E.M.
1039	and Moeller, R.E. 2015. Ecological consequences of long-term browning in lakes.
1040	Scientific Reports 5 : srep18666. doi:10.1038/srep18666.
1041	
1042	Wylie, J.L. and Currie, D.J. 1991. The relative importance of bacteria and algae as food sources
1043	for crustacean zooplankton. Limnol. Oceanogr. 36 : 708-728. doi:
1044	10.4319/lo.1991.36.4.0708.
1045	
_0.0	

Table 1. Mean <u>+</u> S.E. of major physical and chemical parameters across water color treatments.
 Significance is denoted in the last column, with, T = treatment effect, D =Day, I = Treatment:Day
 interaction, and NS = not significant. Lowercase letters indicate which treatments were
 significantly different from one another based on treatment effect.

	Lake Water	Light Brown	Moderate Brown	Dark Brown	Significance
Temperature (°C)	22.1 <u>+</u> 0.18	22.09 <u>+</u> 0.16	22.04 <u>+</u> 0.16	22.03 <u>+</u> 0.15	(T) NS (D) NS (I) NS
Dissolved Oxygen (mg/L)	9.05 <u>+</u> 0.09	9.12 <u>+</u> 0.09	8.89 <u>+</u> 0.04	8.83 <u>+</u> 0.03	(T) NS (D) <0.0001 (I) NS
Conductivity (mS/cm)	0.08 <u>+</u> 0 a	0.25 <u>+</u> 0.01 b	0.25 <u>+</u> 0 b	0.25 <u>+</u> 0.01 b	(T) <0.0001 (D) 0.01 (I) NS
рН	7.36 <u>+</u> 0.04	7.25 <u>+</u> 0.04	7.15 <u>+</u> 0.22	7.14 <u>+</u> 0.02	(T) NS (D) NS (I) NS
a440	1.77 <u>+</u> 0.65 a	0.99 <u>+</u> 0.08 a	4.84 <u>+</u> 0.12 b	9.83 <u>+</u> 0.17 c	(T) <0.0002 (D) 0.003 (I) NS
Chl-a (ug/L)	16.34 <u>+</u> 2.69 ab	29.65 <u>+</u> 3.83 b	12.4 <u>+</u> 2.12 a	8.66 <u>+</u> 1.57 a	(T) <0.0001 (D) 0.004 (I) 0.0002
DOC (mg/L)	5.22 <u>+</u> 0.05 a	2.58 <u>+</u> 0.07 b	3.40 <u>+</u> 0.06 c	4.66 <u>+</u> 0.07 d	(T) <0.000 (D) 0.02 (I) NS

bioRxiv preprint doi: https://doi.org/10.1101/804070; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Browning and larval fish foraging -- 41

Table 2. Results from the three foraging experiments with larval bluegill (*Lepomis machrochirus*), including the
 mean ± S.E. consumption rates. The approximate total number of each zooplankton type in the tanks at the start
 of a feeding trial is provided in parentheses in the first column. Welch's ANOVA results and omega-squared
 estimates of effect size were calculated for total zooplankton consumed only.

1063

	(d	Consumption Rates ay ⁻¹ larva ⁻¹ or min ⁻¹ la	
	Light	Moderate	Dark
Experiment 1: 24 hours, ~130 zooplan	kton L ⁻¹		
Large Cladocerans (210)	99 <u>+</u> 4	101 <u>+</u> 2	102 <u>+</u> 1
Small Cladocerans (1817)	884 <u>+</u> 7	876 <u>+</u> 8	876 <u>+</u> 11
Chaoborus (33)	23 <u>+</u> 0	23 <u>+</u> 0	23 <u>+</u> 0
Copepods (47)	16 <u>+</u> 0.1	16 <u>+</u> 0.2	16 <u>+</u> 0.2
Rotifers (77)	33 <u>+</u> 1	34 <u>+</u> 1	35 <u>+</u> 0.1
Total (2183)	1055 <u>+</u> 6	1051 <u>+</u> 9	1052 <u>+</u> 10
Welch's ANOVA Omega Squared Estimate	$F_{(2, 5.7)} = 0.081, p$ est $\omega^2 = 0.18: 95^{\circ}$	•	
Experiment 2: 10 minutes, ~4 zooplan	kton L ⁻¹		
Large Cladocerans (39)	2 <u>+</u> 0.03	2 <u>+</u> 0.1	2 <u>+</u> 0.03
Chaoborus (5)	0.3 <u>+</u> 0	0.3 <u>+</u> 0	0.25 <u>+</u> 0
Copepods (23)	1 <u>+</u> 0.02	1 <u>+</u> 0.04	0.8 <u>+</u> 0.1
Total (67)	3 <u>+</u> 0.01	3 <u>+</u> 0.2	2.8 <u>+</u> 0.4
Welch's ANOVA Omega Squared Estimate	$F_{(2, 4.0)} = 1.53, p =$ est $\omega^2 = 0.08: 95\%$	•	
Experiment 3: 5 minutes, ~2 zooplank	ton L ⁻¹		
Large Cladocerans (22)	1.3 <u>+</u> 0.2	1.5 + 0.08	1.4 <u>+</u> 0.2
Small Cladoceran (7)	0.3 <u>+</u> 0.1	0.5 + 0.1	0.38 <u>+</u> 0.1
Copepods (11)	0.5 <u>+</u> 0.2	0.7 + 0.2	0.5 <u>+</u> 0.1
Total (40)	2 <u>+</u> 0.3	2 <u>+</u> 0.2	2 <u>+</u> 0.5
Welch's ANOVA Omega Squared Estimate	$F_{(2, 5.3)} = 1.45, p =$ est $\omega^2 = 0.08: 95^{\circ}$		

bioRxiv preprint doi: https://doi.org/10.1101/804070; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Browning and larval fish foraging -- 42

Table 3. E* Index values from the three foraging experiments with larval bluegill (*Lepomis*

1065 *machrochirus*), including the mean <u>+</u> S.E. for prey selectivity. The E* Index ranges from 1 to -1,

- 1066 where 1 represents a strong selection for a prey type, -1 equals strong avoidance of a prey type,
- 1067 and 0 equals random feeding. Two-way ANOVAs were performed to assess significant
- 1068 differences with treatment, zooplankton taxa, and their interaction.

	Light	Moderate	Dark	
Experiment 1: 24 hours, ~130 z	ooplankton L ⁻¹			
Large Cladocerans	-0.007 <u>+</u> 0.02	0.004 <u>+</u> 0.004	0.007 <u>+</u> 0.006	
Small Cladocerans	0.01 <u>+</u> 0.005	0.003 <u>+</u> 0.005	0.003 <u>+</u> 0.005	
Chaoborus	0.02 <u>+</u> 0.002	0.02 <u>+</u> 0.005	0.02 <u>+</u> 0.002	
Copepods	0.01 + 0.003	0.006 <u>+</u> 0.003	-0.01 <u>+</u> 0.005	
Rotifers	-0.04 <u>+</u> 0.02	-0.04 <u>+</u> 0.01	-0.03 <u>+</u> 0.004	
ANOVA Results:	: Treatment: $F_{(2,45)} = 0.09$; p = 0.91, n= 12 Zooplankton Taxa: $F_{(2,45)} = 20.62$; p < 0.0001, n= 12 Treatment:Zooplankton: Taxa: $F_{(8,45)} = 0.84$; p = 0.57, n= 12			
Experiment 2: 10 minutes, ~4 z	ooplankton L ⁻¹			
Large Cladocerans	0.004 <u>+</u> 0.008	0.006 <u>+</u> 0.02	-0.03 <u>+</u> 0.06	
Chaoborus	0.01 <u>+</u> 0.002	0.04 <u>+</u> 0.02	0.06 <u>+</u> 0.06	
Copepods	- 0.02 <u>+</u> 0.009	-0.05 <u>+</u> 0.007	-0.06 <u>+</u> 0.03	
ANOVA Results:	: Treatment: $F_{(2,27)} = 0.10$; p = 0.91, n= 12 Zooplankton Taxa: $F_{(2,27)} = 4.81$; p = 0.02, n= 12 Treatment:Zooplankton: Taxa: $F_{(4,27)} = 0.72$; p = 0.58, n= 12			
Experiment 3: 5 minutes, ~2 zo	oplankton L ⁻¹			
Large Cladocerans	0.16 <u>+</u> 0.07	-0.01 <u>+</u> 0.07	0.10 <u>+</u> 0.06	
Small Cladocerans	-0.23 <u>+</u> 0.26	-0.05 <u>+</u> 0.08	-0.2 <u>+</u> 0.3	
Copepods	-0.25 <u>+</u> 0.29	-0.02 <u>+</u> 0.03	-0.08 <u>+</u> 0.07	
ANOVA Results:	Treatment: F _(2,27) = 0.15; p = 0.86, n= 12 Zooplankton Taxa: F _(2,27) = 1.96; p = 0.17, n= 12			

Treatment:Zooplankton: Taxa: $F_{(4,27)} = 0.48$; p = 0.75, n= 12

bioRxiv preprint doi: https://doi.org/10.1101/804070; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Browning and larval fish foraging -- 43

1069 Figure Legends

1070

Figure 1. Spectral characteristics of the four treatments measured in photon counts per
 wavelength. Data were collected by an Ocean Optics Red Tide USB650 UV spectrophotometer
 from 250 to 800 nm with the sensor placed at the bottom of the tank pointing straight up

- 1074 toward the overhead grow lamps.
- 1075

Figure 2. Mean phytoplankton biomass, as estimated by chlorophyll-*a* concentration, in the
 four treatments during the 28-day experiment. Error bars represent the standard error of three
 replicate tanks per treatment. Phytoplankton biomass increased in all treatments during the
 first 7 days but was comparatively lower in treatments with increased water color throughout
 the experiment.

1081

Figure 3. Zooplankton densities (individuals per Liter) in the four treatments during the 28-day
 experiment. Error bars represent the standard error of three replicate tanks per treatment. The
 top panel displays changes in total zooplankton densities (A) while the bottom panels display
 individual zooplankton genera or groups, including the cladocerans *Bosmina* (B) and *Daphnia* (C) as well as cyclopoid (D) and calanoid (E) copepods. In general, the zooplankton community
 shifted from copepod to cladoceran dominated and abundance was significantly lower in
 treatments with increased water color.

1089

Figure 4. Flocculant organic matter was observed in the guts of cladocerans, including *Bosmina* and *Daphnia*, but not copepods in the moderate and dark brown treatments. Brown arrows
 highlight cladoceran gut contents. Image taken at 40x magnification.

1093

Figure 5. Daily prey consumption (A) and total growth over 6 days (B) in relation to zooplankton
prey availability at the time fish were introduced to the experimental tanks. Note that there are
2 points for the moderate brown treatment with ~1400 zooplankton prey and 0 mm growth.
After 6-days, surviving larval fish in the moderate and dark brown treatments displayed
concave empty stomachs while those in the light brown and lake water treatments had full
stomachs. Photos show example larvae from the light brown and dark brown treatments (C).
Red tick marks below fish are in millimeters.

1101

Figure 6. Zooplankton consumption rates for larval largemouth bass with increasing water
 color, as measured by absorbance at 440 nm. When given equal prey concentrations in all
 treatments (i.e., 20 individuals per liter), there was no significant difference in the number of
 prey consumed during the 30-minute feeding trial. This suggests no direct effect of browning
 on visual foraging.

- 1107
- 1108
- 1109
- 1110
- 1111
- 1112

1113

1115

1114 Supplementary Materials

- 1116 **Figure S1**. Representative downwelling irradiance curves for photosynthetically active radiation
- 1117 (PAR) in Sandy River Reservoir and Hart Pond. Both are located near Farmville, VA, USA and
- 1118 were used as our study systems to collect larval fish and zooplankton. Measurements were
- taken with a Biospherical Instruments, Inc. BIC profiling radiometer in June 2014.
- 1120
- 1121 **Figure S2**. Mean <u>+</u> S.E. of (A) a₄₄₀ and (B) dissolved organic carbon concentrations over time
- during the Indirect Effects experiment. Data were collected at Day 0, 3, 7, 14, 21, and 28 as
- 1123 described in the Methods.

Sampling Day

bioRxiv preprint doi: https://doi.org/10.1101/804070; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 3

Figure 4

С

Figure 6

