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ABSTRACT 28 

BACKGROUND: Angiogenesis is closely associated with angiogenesis-dependent diseases including 29 

cancers and ocular diseases. Anti-angiogenic therapeutics have been focusing on the (VEGF)/VEGFR 30 

signaling axis. However, the clinical resistance, high cost and frequent administration of anti-VEGF drugs 31 

make it urgent to discover novel angiogenic pathways.VE-PTP (ptprb) is a novel target with great anti-32 

angiogenic potential. However, it is unclear whether upstream signaling pathways targeting VE-PTP exist in 33 

angiogenesis. 34 

METHODS: Whole genome and embryo transcriptome sequencing were applied to discover the new gene 35 

nxhl. Transgenic zebrafish model, morpholino knockdown and small interfering RNA were used to explore 36 

the role of nxhl in angiogenesis both in vitro and in vivo. RNA pulldown, RIP and ChIRP-MS were used to 37 

identify interactions between RNA and protein. 38 

RESULTS: We discovered a novel zebrafish gene nxhl which is a homologue of the conserved gene nxh 39 

that co-expressed with some key genes essential for embryo development in vertebrate. Nxhl deletion causes 40 

angiogenesis defects in embryo. Moreover, nxhl is essential to mediate effects of angiogenesis in vivo and in 41 

vitro, and ptprb depletion duplicates the phenotypes of nxhl deficiency. Importantly, nxhl acts upstream of 42 

ptprb and regulates many extreme important ptprb-linked angiogenic genes by targeting VE-PTP (ptprb) 43 

through interactions with NCL. Notably, nxhl deletion decreases the phosphorylation of NCL T76 and 44 

increases the acetylation of NCL K88, suggesting nxhl may regulate downstream VE-PTP signaling 45 

pathways by mediation of NCL posttranslational modification. This is the first description of the interaction 46 

between nxhl and NCL, NCL and VE-PTP (ptprb), uncovering a novel nxhl-NCL-VE-PTP signaling pathway 47 

on angiogenesis regulation.  48 

CONCLUSIONS: Our study identifies nxhl controlling angiogenesis by targeting VE-PTP through 49 

interactions with NCL, uncovering novel upstream controllers of VE-PTP. This nxhl-NCL-VE-PTP pathway 50 

may be a therapeutic target in the treatment of angiogenesis-dependent diseases. 51 

Key Words: Angiogenesis, nxhl, VE-PTP, ptprb, nucleolin, WGD, cancer. 52 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/804609doi: bioRxiv preprint 

https://doi.org/10.1101/804609
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

 53 

Clinical Perspective 54 

What Is New? 55 

• We report a novel nxhl-NCL-VE-PTP signaling pathway that controls angiogenesis. 56 

• We for the first time demonstrate that nxhl interacts with NCL which simultaneously binds to VE-PTP 57 

that plays key roles on EC adherens junction, integrity and vascular homeostasis. 58 

• Nxhl also controls some other crucial VE-PTP-linked downstream angiogenic genes (such as Tie2, 59 

VEGFaa, VEGFR2, Erbb2, S1pr1 and Hey2) which explain the phenotypes induced by the nxhl 60 

deficiency. 61 

• Our study indicates the key role of nxhl on controlling angiogenesis as an upstream regulator of VE-PTP. 62 

What Are the Clinical Implications? 63 

• There are several ongoing researches investigating the utility of VE-PTP or NCL inhibitors on treatment 64 

of angiogenesis-dependent diseases including a range of cancers and nonneoplastic diseases, such as AMD, 65 

DME, RA and atherosclerosis. 66 

• Targeting the nxhl-NCL-VE-PTP pathway may facilitate therapeutic angiogenesis in patients with cancers 67 

or ocular diseases such as DME. 68 

• Our study highlights the great potential of nxhl on anti-angiogenic therapeutics by targeting VE-PTP. 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 
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Angiogenesis is a process of new blood-vessel spreading that is orchestrated by various angiogenic factors. 78 

It plays critical roles in reproduction, organ development and wound repair. Pathologically, it is closely 79 

related to “angiogenesis-dependent diseases” including a range of tumors and nonneoplastic diseases, such 80 

as age-related macular degeneration (AMD) ,1 diabetic macular edema (DME) ,2 rheumatoid arthritis (RA)3 81 

and atherosclerosis.4 Judah Folkman suggested to consider angiogenesis as an ‘organizing principle’ in 82 

biology.5 This conception shifted therapeutic strategies from tumor cell-centered to anti-angiogenesis-83 

centered.6 In the past decades, milestone discoveries of anti-angiogenic therapeutics have been mainly 84 

focused on the vascular endothelial growth factor (VEGF)/VEGFR signaling axis. Various inhibitors of this 85 

axis, such as Ramucirumab, have been approved for several solid cancers by FDA.7 Over 3000 anti-86 

angiogenic drugs have been registered clinical trials for cancer treatment and ocular neovascular diseases,8 87 

highlighting the significant value of anti-angiogenic drugs for clinical applications. However, in the clinical 88 

setting, simply blocking the existing VEGF signaling pathway or other angiogenic pathways appears to be 89 

less effective for advanced cases and often causes treatment resistance.9 High cost of currently used anti-90 

VEGF drugs and their frequent dosing make new drugs targeting novel angiogenic pathways clinically 91 

necessary and highly desirable.  92 

We specially concern the protein vascular endothelial protein tyrosine phosphatase (VE-PTP, namely 93 

ptprb in zebrafish) in endothelial cells (ECs), which determine the permeability and integrity of the blood 94 

vessel wall and thereby is essential for angiogenesis. VE-PTP is a member of the R3-subclass of R-PTPs 95 

and consists of 2251 amino acids with 18 domains.10 It is indispensable during mouse vessel development11-96 

13 due to the overactivated Tie2 and increased vessel enlargement.11, 12, 14 Evidence shows that VE-PTP plays 97 

crucial roles in angiogenesis, EC adherens junction, integrity and vascular homeostasis.12, 15-18 It binds to 98 

VEGFR2, resulting in increase of VEGFR2 phosphorylation and activation.19 It also binds to Tie2 and 99 

negatively controls Tie2-induced vascular remodeling and angiogenesis by dephosphorylation.14 100 
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Suppressing VE‐PTP, either by genetic deletion or specific VE-PTP inhibitor (AKB-9778 or ARP-1536) 101 

activates Tie2 and thereby regulates EC permeability, integrity and angiogenesis.20, 21 Its specific inhibitor 102 

AKB-9778 has been investigated in cancer22, 23 and retinal neovascularization,24, 25 such as breast cancer26 103 

and DME,28 and has exhibited its great clinical potential. Logically, targeting the upstream genes that directly 104 

or indirectly interact with VE-PTP might be a promising strategy to overcome limitations of current anti-105 

VEGF agents. However, few in vivo studies have been conducted to investigate how VE-PTP is regulated 106 

by its upstream regulators. Notably, such regulators are still unreported. 107 

Nucleolin (NCL) is also a highly conserved gene that highly expressed in ECs. 26, 27 Cell surface NCL 108 

plays crucial roles in the regulation of angiogenesis and tumorigenesis via interactions with various ligands, 109 

such as VEGF,26 EGFR,28 endostatin,29 and HER2 (ErbB2).30 For instance, VEGF is required for NCL cell 110 

surface localization in ECs, which strengthens its contribution to the angiogenesis.
31, 32 In addition, inhibition 111 

of cell surface NCL in ECs significantly suppresses the EC migration and prevents capillary tubule 112 

formation.31 Previous researches demonstrate that anti-NCL pseudopeptides N6L impairs angiogenesis both 113 

in vitro and in vivo by targeting ECs and tumor vessels.33, 34 Increased NCL expression is related to worse 114 

prognosis of many cancers, such as diffuse large B-cell lymphoma35 and pancreatic ductal cancer. 34 For now, 115 

a variety of aptamers or antibodies targeting NCL, such as AS1411, are under clinical investigation for 116 

anticancer treatment and demonstrating promising perspectives,36 highlighting its potential as a therapeutic 117 

target for anti-cancer therapy. 118 

Similar functions of VE-PTP and NCL on angiogenesis provide us clues for further study. So far, it is 119 

unclear whether both genes closely associate and thereby mediate angiogenesis process. This should be 120 

investigated in an advanced model that facilitates in vivo angiogenesis assay. Zebrafish is such a valuable 121 

model system for investigation of vascular development. Experimental evidences have indicated that 122 

developmental angiogenesis in the zebrafish embryo might be an useful tool for angiogenesis research in 123 
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vertebrate because of its high similarity vascular network formation and expression patterns of key genes 124 

with humans and other vertebrates. 37, 38 The transparency and external development of embryo and the 125 

ability to produce various transgenic germ line fish, as well as the small size and rapid development make 126 

vasculature manipulation in zebrafish feasible and more cost-effective.39 Conserved angiogenic signaling 127 

pathways make zebrafish as an ideal system for human angiogenesis researches and anti-angiogenic or anti-128 

cancer drug screening.40, 41 129 

Herein, we identified a novel conserved gene nxhl, a homologue of nxh which is reserved after whole 130 

genome duplication (WGD) in a teleost embryo transcriptome, by combination genome and embryo 131 

transcriptome and zebrafish model. Nxhl strongly controls angiogenesis both in vitro and in vivo, and acts as 132 

a critical upstream regulator of VE-PTP through interactions with NCL that binds to VE-PTP. It is a potential 133 

therapeutic target for angiogenesis-dependent diseases.  134 

 135 

METHODS 136 

Materials and raw data that support the findings of this study are available upon request to the corresponding 137 

authors. A detailed description of genome sequencing associated Materials and Methods is available in the 138 

Supplemental information. 139 

 140 

Zebrafish Care and Maintenance 141 

Adult wild-type AB strain zebrafish were maintained at 28.5°C on a 14 h light/10 h dark cycle. 42 Five to six 142 

pairs of zebrafish were set up for nature mating every time. On average, 200–300 embryos were generated. 143 

Embryos were maintained at 28.5°C in fish water (0.2% Instant Ocean Salt in deionized water). The embryos 144 

were washed and staged according to.43 The establishment and characterization of the TG (zlyz:EGFP) 145 

transgenic lines have been described elsewhere.39, 44 The zebrafish facility at SMOC (Shanghai Model 146 
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Organisms Center, Inc.) is accredited by the Association for Assessment and Accreditation of Laboratory 147 

Animal Care (AAALAC) International.  148 

 149 

Zebrafish Microinjections 150 

Gene Tools, LLC (http://www.gene-tools.com/) designed the morpholino (MO). Antisense MO (GeneTools) 151 

were microinjected into fertilized one-cell stage embryos according to standard protocols.39 Translation-152 

blocking (ATG-MO) and splice-blocking morpholinos of the nxhl (zgc:113227, NM_001014319.2) and 153 

ptprb (NM_001316727.1) were designed, respectively. The standard control morpholino was used as Control 154 

MO (Gene Tools). The amount of the MOs used for injection was as follows: Control MO, ATG-MO and 155 

splice-blocking -MO, 4 ng per embryo. Effectiveness of nxhl and ptprb knockdown was confirmed by qPCR 156 

(Quantitative Real-Time PCR). For the morpholinos and primers, see Table S28.  157 

 158 

Zebrafish Angiogenesis Studies and Image Acquisition 159 

To evaluate blood vessel formation in zebrafish, fertilized one-cell fli1a-EGFP transgenic lines embryos 160 

were injected with 4 ng nxhl-e1i1-MO, nxhl-ATG-MO, control-MO, and ptprb-e4i4-MO, ptprb-ATG-MO, 161 

control-MO, respectively. At 52 phf (nxhl MO) and 2 dpf (ptprb MO), embryos were dechorionated, 162 

anesthetized with 0.016% MS-222 (tricaine methanesulfonate, Sigma-Aldrich, St. Louis, MO). Zebrafish 163 

were then oriented on the lateral side (anterior, left; posterior, right; dorsal, top), and mounted with 3% 164 

methylcellulose in a depression slide for observation by fluorescence microscopy. The phenotypes of 165 

complete intersegmental vessels (ISVs) (i.e., the number of ISVs that connect the DA to the DLAV), 166 

parachordal vessels (PAV) and caudal vein plexus (CVP) were analyzed.  Embryos and larvae were 167 

analyzed with Nikon SMZ 1500 Fluorescence microscope and subsequently photographed with digital 168 

cameras. A subset of images was adjusted for levels, brightness, contrast, hue and saturation with Adobe 169 
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Photoshop 7.0 software (Adobe, San Jose, California) to visualize the expression patterns optimally. 170 

Quantitative image analyses processed using image based morphometric analysis (NIS-Elements D3.1, 171 

Japan) and ImageJ software (U.S. National Institutes of Health, Bethesda, MD, USA; 172 

http://rsbweb.nih.gov/ij/). Inverted fluorescent images were used for processing. Positive signals were 173 

defined by particle number using ImageJ. Ten animals for each treatment were quantified and the total signal 174 

per animal was averaged.  175 

 176 

Quantitative Real-Time PCR 177 

Total RNA was extracted from 30 to 50 embryos per group in Trizol (Roche) according to the manufacturer's 178 

instructions. RNA was reverse transcribed using the PrimeScript RT reagent Kit with gDNA Eraser (Takara). 179 

Quantification of gene expression was performed in triplicates using Bio-rad iQ SYBR Green Supermix 180 

(Bio-rad) with detection on the Realplex system (Eppendorf). Relative gene expression quantification was 181 

based on the comparative threshold cycle method (2−ΔΔCt) using ef1α as an endogenous control gene. qPCR 182 

on HUVECs were performed as similar procedures. All of the primers are listed in Table S28.  183 

 184 

RNA-Seq 185 

Control MO-injected embryos and embryos injected with nxhl MO at 3 dpf were frozen for RNA-seq analysis. 186 

Three biological replicates of 30 embryos each were analyzed in each group. RNA was purified using 187 

RNAqueous Total RNA isolation kit (Thermo Fisher). Libraries were prepared with TruSeq RNA library 188 

Prep kit v2 (Illumina) according to the manufacturer’s protocol. Libraries were sequenced at the CCHMC 189 

Core Facility using Illumina HiSeq 2500 device (Illumina) to generate 75 bp paired-end reads. Quality of 190 

the RNA-Seq reads was checked using Fastqc [http://www.bioinformatics.bab raham.ac.uk/projects/fastqc/]. 191 

All of the low-quality reads were trimmed using trimmomatic [http://www.usadellab.org/cms/?page=trimmo 192 
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matic]. The trimmed RNA-Seq reads were mapped and quantified to latest Zebrafish genome assembly 193 

GRCz10 for each sample at default thresholds using RSEM [http://deweylab.github.io/RSEM/]. The mRNA 194 

levels were identified using TopHat v2.0.9 and Cufflinks and normalized by the Fragments Per Kilobase of 195 

exon model per Million mapped reads (FPKM). Differential expression was analyzed by using CSBB’s 196 

[https://github.com/skygenomics/CSBB-v1.0]. Criteria of false discovery rate (FDR) <0.01 and fold changes 197 

<0.5 or >2.0 (<−1 or >1 log2 ratio value, p value < 0.05) were used to identify differentially expressed genes. 198 

Gene Ontology (GO) annotation, domain annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) 199 

pathway annotation and enrichment were performed using ToppGene [https://top gene.cchmc.org/].  200 

 201 

Transwell Migration and Invasion Assays 202 

To examine the function of human Harbi1, the homologous gene of nxh and nxhl, siRNA targeting human 203 

Harbi1 gene (NM_173811.4) was designed (see Table S28). HUVECs cells (ATCC, Manassas, Virginia, 204 

USA) were cultured in DMEM/F12 (Hyclone, USA) with 10% FBS (Gibco BRL. Co. Ltd.) and 1% 205 

penicillin-streptomycin (Sangon Biotech, China.) at 37°C in 5% CO2 incubator. Three experimental groups 206 

HUVECs, HUVECs + si-Harbi1 NC and HUVECs+si-Harbi1 were set and 30 pmol si-Harbi1 per well in 207 

the 24-well plates (Corning-Costa) were transferred using 9 μl Lipofectamine RNAi MAX Reagent 208 

(Invitrogen, USA). The cell migration and invasion capacity of Harbi1 on HUVECs cells were determined 209 

by transwell insert chambers (Corning, NY, USA) covered with or without 50 µl of Matrigel (1:3 dilution, 210 

BD, NJ, USA). Cells were then harvested and dissociated into a single-cell suspension. 5×104 cells in serum-211 

free medium were added to the upper chamber and 600 µl of 20% FBS-containing medium was added to the 212 

lower chamber. The chambers were then incubated for 72 h (5% CO2, 37 °C). Cells on the upper chamber 213 

were discarded, while cells on the lower chamber were fixed with 4% paraformaldehyde for 30 min and then 214 

stained with 0.1% crystal violet for 10 min. Cells that underwent migration or invasion were counted in 215 

triplicates in microscopic fields. The migration of nucleolin (NM_005381.3) was also examined by similar 216 
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protocol above. The siRNA of NCL is listed in Tale S28. 217 

 218 

Tube Formation Assay  219 

The HUVECs’ culture conditions and experimental set were identical to the transwell migration and invasion 220 

assays. Thirty pmol si-Harbi1 or si-NCL per well of the 24-well plates (Corning-Costa) were transferred by 221 

using 9 μl Lipofectamine RNAi MAX Reagent (Invitrogen, USA). Matrigel (250 μl per well, BD 222 

Biosciences, USA) was added to the plates and cultured at 37 °C for 30 min. Then, a suspension containing 223 

5×104 HUVECs was added to each well and cultured at 37℃ in 5% CO2 incubator. A final concentration of 224 

50 μM Calcein-AM (Solarbio, China) per well was added to the plates and incubated for 30 min at 37℃. Six 225 

hours later, the tube formation was observed and counted under the fluorescence microscope. The number 226 

of formed tubes represented the tube forming capability of HUVECs.  227 

 228 

Comprehensive Identification of RNA-binding Proteins by Mass Spectrometry (ChIRP-MS)  229 

Zebrafish embryos (3 dpf) were collected and a total of 2 × 107 cells were prepared and re-suspended in 230 

precooled PBS buffer followed by crosslinking with 3% formaldehyde for 30 min at 25℃. The reaction was 231 

stopped by incubation with 0.125 M glycine for 5 min. After centrifugation at 1,000 RCF for 3 min, the pre-232 

binding probes (100 pmol per 2 × 107 cells; probes see Table S28) were incubated with streptavidin beads 233 

for 30 min. The unbound probes were removed by washing three times. The beads with probes were 234 

incubated with the cell lysate and hybridized at 37°C overnight with shaking. All of the beads were washed 235 

3 times with pre-warmed wash buffer for 5 min. A small aliquot (1/20 of the beads) of post-ChIRP beads 236 

were reserved for RNA extraction and qPCR analysis. Then 100 μL of elution buffer (12.5mM biotin, 7.5mM 237 

HEPES pH 7.5, 75mM NaCl, 1.5mM EDTA, 0.15% SDS, 0.075% sarkosyl, 0.02% Na-Deoxycholate, and 238 
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20 U benzonase) was added and the protein was eluted at 37°C for 1 h. The eluent was transferred to a fresh 239 

low-binding tube and the beads were eluted again with 100 μL of elution buffer. The two eluents were 240 

combined and the reverse-crosslinking was performed at 95°C for 30 min. The protein was precipitated with 241 

0.1% SDC and 10% TCA by centrifugation at 4°C for 2 h. The pellets were then washed with precooled 80% 242 

acetone three times before the proteins were used for mass spectrometry (MS) analysis. Then 5 μL peptides 243 

of each sample were collected and separated by nano-UPLC easy-nLC1200 liquid phase system before they 244 

were detected using an on-line mass spectrometer (Q-Exactive) at a solution of 70,000. All of the original 245 

MS data were queried against zebrafish protein database (UNIPROT_zebrafish_2016_09). Only those 246 

proteins with an FDR < 0.01 and an adjusted p-value < 0.05 were considered differentially expressed. The 247 

identified proteins were then further examined using bioinformatics, including GO) and KEGG pathway 248 

annotations. 249 

 250 

Nxhl Protein Expression and Antibody Preparation  251 

Briefly, nxhl gene (zgc:113227, NM_001014319.2) was synthesized and the expression plasmid pET-B2m-252 

nxhl-His was constructed using the seamless cloning technology (Figure S13 and Figure S14). The plasmid 253 

was transferred into the Escherichia coli strain B21 (DH3) for protein expression and the resulting protein 254 

was purified by Ni-NTA chromatography column. The purified nxhl protein was used to immunize Japanese 255 

big ear rabbits to produce polyclonal antibody. The specificity of polyclonal antibody was detected by anti-256 

His Western blotting and its immunity was verified by ELISA. We purified 6mg of fusion protein (62.0 kDa) 257 

with 85% purity. After immunization in rabbits，a nxhl polyclonal antibody with a titer of 1:256,000 was 258 

obtained. The concentration of the nxhl antibody purified by Protein G affinity chromatography column was 259 

10 mg/mL and the purity was 90%. The obtained nxhl antibody was used to perform Western blotting assays. 260 

 261 
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Western Blotting Assays 262 

Zebrafish tissues from knock-down group and control were treated with 1 mL of tissue lysate (50 mmol/L 263 

Tris, 0.1% SDS,150 mmol/L NaCl, 1% NP-40, 5 mmol/L EDTA, 5 μg/mL aprotinin and 2 mmoL/L PMSF 264 

followed by lysis with protein lysate at 4°C for 30 min). All of the samples were centrifuged at 12,000 r/min 265 

at 4°C for 20 min and the supernatant was removed to detect the protein concentration using a bicinchoninic 266 

acid (BCA) kit (CWBIO. Co., Ltd., Shanghai, China). Samples were resolved by SDS-PAGE using a 267 

NuPAGE 4–12% gel (Life Technologies). Proteins were transferred onto a nitrocellulose filter (BioRad, 268 

Hercules, CA, USA) and sealed at 4°C overnight by 5% dried skimmed milk. The membranes were incubated 269 

with diluted primary rabbit polyclonal ptprb (VE-PTP)(PA5-68309, Invitrogen, USA) (1:1000), Hey2(PA5-270 

72676, Invitrogen, USA) (1：2000), Dot1L(ab72454, Abcam, UK) (1:2000) , S1pr1(PA5-72648, Invitrogen, 271 

USA) (1：1000), HAND2 (PA5-68502, Invitrogen, USA) (1ug/mL) , Nucleolin (ab50279, Abcam, UK) 272 

(1:1000), Nucleolin (phosphor T76,  ab168363, Abcam, UK) (1:1000), Nucleolin (phosphor T84, ab196338, 273 

Abcam, UK) (1:1000), Nucleolin (acetyl K88, ab196345, Abcam, UK) （1:1000), nxhl (Lab made, 1:1000) 274 

and ptprb (Lab made, 1:1000) antibodies overnight at 4°C followed by washing with PBS at room 275 

temperature. The membranes were treated with goat-anti-rabbit, rabbit-anti-goat or goat-anti-mouse IgG-276 

HRP secondary antibody (1: 2000, CWBiotech., Ltd., Beijing, China) and incubated at 37°C for 2 h. After 277 

washing with PBS, the membrane was soaked in enhanced chemiluminescence (ECL) kit (CW Biotech., 278 

Ltd., Beijing, China) according to the manufacturer’s protocols.  279 

 280 

RNA Binding Protein Immunoprecipitation Assay (RIP) 281 

To detect the interactions between nxhl mRNA and nucleolin protein, and VE-PTP mRNA and nucleolin 282 

protein, RIP was conducted as follows: constructed nxhl-pcDNA3.1 (pcDNA3.1 vector V79020, Invitrogen, 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/804609doi: bioRxiv preprint 

https://doi.org/10.1101/804609
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

USA) was transferred into 293T cells and its overexpression was verified by qPCR. Then 107 293T cells 284 

were suspended and lysed for 20 mins with 1 ml RIPA lysis buffer (Thermo Fisher Scientific, USA) 285 

containing 1 μl of protease inhibitor (Beyotime, China). Twenty μl of cell lysates were used as input, for the 286 

IgG and IP experimental group. Magnetic beads were pretreated with an anti-rabbit IgG (Beyotime, China; 287 

negative control) or anti-Nucleolin (ab50279, Abcam, UK) for 1 h at room temperature, and cell extracts 288 

were immunoprecipitated with the beads-antibody complexes at 4℃ overnight.The retrieved RNA was 289 

purified by using the phenol-chloroform method and subjected to real-time qPCR and general reverse-290 

transcription PCR for nxhl and VE-PTP analysis. Primers are list in Table S28. 291 

 292 

RNA Pull-down Assay 293 

To detect the interactions between VE-PTP mRNA and nucleolin protein in 293T cells, and ptprb mRNA 294 

and nucleolin protein in zebrafish tissues, probes for VE-PTP (human) and ptprb (zebrafish) were designed 295 

and synthesized. Probes were list in Table S28. Probes are labeled with 3 μg biotin then heated at 95℃ for 2 296 

min followed by standing at room temperature for 30 min. Magnetic beads were washed and resuspended in 297 

50 μl RIP buffer, then the biotinylated and denatured probes were added and incubated for 1 h at room 298 

temperature. The nucleolin protein was extracted with 1 ml RIP buffer, sonicated, centrifuged at 12,000 rpm 299 

for 15 min, and the supernatant (nucleolin protein) was retained. A magnetic separator was used to remove 300 

the liquid and the protein solution was rinsed three times using RIP buffer. The protein solution was added 301 

to the magnetic bead-probe mixture, and RNase inhibitor was added to the lysate.The mixture was incubated 302 

at room temperature for 1 h and washed five times with 1 ml RIP buffer once. Then 2×SDS loading buffer 303 

was added to the mixture, denatured at 95℃ for 10 min, and used for subsequent Western blotting. The 304 

Western blotting was performed as described above. The antibody Nucleolin (ab50279, Abcam, UK) (1:1000) 305 

was used in the detection of VE-PTP (human) and ptprb (zebrafish) in 293T cells and zebrafish tissue. 306 
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 307 

Statistical Analysis 308 

All data are presented as mean ± SEM. Statistical analysis and graphical representation of the data were 309 

performed using GraphPad Prism 7.0 (GraphPad Software, San Diego, CA). Statistical evaluation was 310 

performed by using a Student’s t test, ANOVA, or χ2 test as appropriate. p value of less than 0.05 was 311 

considered statistically significant. Statistical significance is indicated by * or p value. * represents p < 0.05, 312 

and *** indicates p < 0.0001. The results are representative of at least three independent experiments. 313 

 314 

RESULTS  315 

WGD Drives Teleost Karyotypes Stability in Embryo 316 

We have been thinking that whether the reserved genes after WGD in vertebrate function in regulation of 317 

angiogenesis. We tried to find such gene conserved in vertebrate. We used a teleost golden pompano which 318 

underwent WGD as an experimental model. We firstly obtained a high-quality genome by de novo 319 

sequencing, assembling and annotation of this teleost (Figure S1, S2, S3; TableS1-S17). The genomic 320 

landscape of genes, repetitive sequences, genome map markers, Hi-C data, and GC content of the golden 321 

pompano genome is visualized by circus 45 in Figure 1A. Then, we reconstructed the evolutionary history of 322 

teleost fishes with spotted gar, zebrafish and other teleosts to examine the evolutionary position of the teleost 323 

in vertebrate (Figure 1B, Figure S4). Assuming a constant rate of distribution of silent substitutions (dS)46 324 

of 1.5e-8, we revealed the dates of WGD (Ts3R) and Ss4R at 350 Mya and 96 Mya, respectively (Figure 325 

1C). Genome collinearity comparison (Figure 1D, and Table S18) implied that teleost-ancestral karyotypes 326 

are considerably conserved in post-Ts3R rediploidization with large fissions, fusions or translocations 327 

(Figure 1E, and Table S19-S20). Next, we classified the Ts3R subgenomes according to the integrity of gene 328 

as belonging to the LF, MF, and Other subgenome.47 The component of rediploidization-driven subgenomes 329 
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is unequally distributed among subgenomes (Figure 2A), suggesting an asymmetric retention of ancestral 330 

subgenomes in teleosts.48, 49 For now, knowledge on the relationship between rediploidization process and 331 

embryo development stability is largely unclear. We then compared the genome-wide transcriptional levels 332 

of LF, MF, and Other karyotypes from whole-embryo development stages (OSP to YAPS) (Figure 2B). 333 

Karyotypes-retained regions (LF and MF) showed comparable expression levels during the embryo 334 

development, while karyotypes-loss regions (Other) were expressed at significantly lower levels (signed-335 

rank sum test, P < 0.01) (Figure 2B, Figure S5). The Ks/Ks values of karyotypes-retained regions are 336 

significantly lower than those of karyotypes-loss regions (Figure 2C). This observation indicated that 337 

karyotypes-loss genes evolved faster than did the karyotypes-retained regions. We propose that karyotypes-338 

retained genes are crucial for retaining embryo development stability and that karyotypes-loss genes are 339 

more prone to contribute to genetic diversity. Detail descriptions about subgenome and evolution can be 340 

found in supplementary information.  341 

 342 

Nxhl Is A Conserved Homologue of Nxh Retained after WGD 343 

Then we analyzed the gene expression pattern of golden pompano embryo (Figure S6 and Table S21-344 

S26), and found that all 57 of the samples were separated into two components (Figure S6). The first 33 345 

samples (from OSP to MGS) cluster into a clade and the residual 24 samples (from LGS to YAPS) cluster 346 

into another. The genes in the first clade were non-redundant reserved hub-genes and clearly “silenced” 347 

compared with those of the second clade, in which the gene levels show an explosive increase. We also 348 

noticed that before LGS, a group of genes in three stages, HBS, EGS, and MGS, are highly expressed in the 349 

first clade (Figure S6). We clustered these genes by using the WGCNA R package and found that most of 350 

them clustered into the purple_module and are co-expressed in a close network, indicating regulatory roles 351 

for these genes (Figure 2 DE). Among them, EVM0008813 (designated as New XingHuo, nxh; Figure 2F) 352 
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is retained one copy after WGD and dominantly expresses in HBS, EGS and MGS stages. It is closely co-353 

expressed with some key genes (Figure 2E), such as eomesa, dkk2 and mixl1, which play essential roles on 354 

embryo development.50-52 We purposed that nxh could be a crucial controller that regulates key steps of 355 

embryo development. We found that nxh contains 3 exons with two introns and its expression (qPCR) in 356 

EGS, MGS and LGS is highly identical to our sequencing data (FPKM, Figure 2F). We noticed that nxh is a 357 

WGD-specific gene and belongs to the karyotypes-retained genes (MF), implicating its important conserve 358 

function during evolution. We then searched its homologene in NCBI database by BLASTp and only one 359 

gene zgc:113227 (designated as New XingHuo-like; nxhl) shares 54.7% similarity to nxh at the amino acid 360 

level in zebrafish. Also, the collinear analysis confirmed nxhl as its homologue gene in zebrafish (Figure 361 

2G). We found that nxh and nxhl have the same functional domain DDE_Tnp_4 as the other seven genes in 362 

different species have (Figure 2H), suggesting they may have similar biological functions during embryo 363 

development. So, we asked what could the function of nxhl be?  364 

 365 

Nxhl Affects Angiogenic Phenotypes In Vitro and In Vivo 366 

Firstly, we investigated whether loss of nxhl affects morphology development in zebrafish. We observed that 367 

both nxhl e1i1 and nxhl ATG morphants resulted in nearly identical phenotypes of pericardial oedema, body 368 

axis bending, and caudal fin defects (Figure 3A, Figure S7, and Figure S8) at 3 days post fertilization (dpf), 369 

confirming that the phenotype of nxhl knockdown is nxhl-specific (Figure 3A). Regarding the vascular 370 

system, embryos injected with nxhl e1i1 MO present thinner ISVs (yellow arrows) and ectopic sprouts 371 

(asterisk) of dorsal aorta compared with controls, and the nxhl knockdown prevents the parachordal vessel 372 

(PAV) formation, the precursor to the lymphatic system. Moreover, heartbeat and circulation in the caudal 373 

vein (CV) is visible in the control fish, but is abnormal in nxhl-MO-injected fish  (Supplementary Movie1, 374 

2). Both nxhl e1i1 and nxhl ATG morphants dramatically disrupted normal splicing of nxhl (Figure 3A), 375 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/804609doi: bioRxiv preprint 

file:///C:/Users/lhlwjj/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Heart%20beat%20(control%20MO%20vs.zgc-MO).mp4
file:///C:/Users/lhlwjj/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/CV%20circulation%20(control%20MO%20vs.zgc-MO).mp4
https://doi.org/10.1101/804609
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

indicating high efficiency and specificity of the morpholino knockdown of nxhl. Consistent with this, nxhl 376 

morphants resulted in a high percentage of embryos with defects (81.55%, n=103 embryos in nxhl e1i1 MO 377 

and 100%, n=106 embryos in nxhl ATG MO) and low survival rate (45.78%, n=225 embryos in nxhl e1i1 MO 378 

and 17.68%, n=198 embryos in nxhl ATG MO) compared with controls (n=218 embryos) at 3 dpf (Figure 3A 379 

and Figure S7B). This confirmed that knockdown of nxhl certainly causes morphological defects in the heart 380 

and caudal fin in zebrafish. 381 

We then used the Tg(fli1a:EGFP)y1 zebrafish as a model to investigate the connections between the 382 

vascular system and these phenotypes. Embryos were injected with 4 ng control MO or nxhl e1i1 MO. We 383 

found that loss of nxhl caused intersegmental vessel (ISV) growth defect and disruption of the honeycomb 384 

structure in the CVP at 52 hpf (Figure 3B). Also, nxhl e1i1 morphant resulted in a thinner ISV growth and 385 

ectopic sprouts of dorsal aorta at the rear-somite with only 10% of complete ISVs (n=365 embryos) 386 

compared with 98% of complete ISVs in controls (n=335 embryos). We observed that the nxhl knockdown 387 

prevented the PAV formation (Figure 3B) and caused specific defects in CVP formation (Figure 3C). 388 

Quantification of loop formation and the area at CVP showed a 8.2-fold and 3-fold decrease in nxhl e1i1 389 

morphants (n=10 embryos) at 52 hpf, respectively (Figure 3C). Our data indicate that nxhl plays a critical 390 

role in controlling PAV, ISV and CVP formation and vascular integrity during angiogenesis, which is an 391 

explanation strongly consistent with the heart and caudal fin phenotypes observed. What is the mechanism 392 

behind? 393 

Endothelial cells (ECs) line the inner lumen of vessels and are the building elements of blood vessels, 394 

we then speculated that nxhl may affect angiogenesis via ECs. This is supported by the significant enrichment 395 

of the genes involved in blood vessel morphogenesis when nxhl was knocked down (Table S29). Since 396 

human Harbi1 gene shares DDE_Tnp_4 domain with nxhl (Figure 2E), it is supposed that both genes play 397 

similar roles. We used human umbilical vein endothelial cells (HUVECs) as a vascular epithelioid cells 398 
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model in vitro. Next, we designed siRNAs targeting human Harbi1, transferred siRNA into HUVECs and 399 

investigated their cell migration, invasion, and tube formation. Silence of Harbi1 significantly inhibited the 400 

tube formation and cell migration compared with controls (Figure 3D). Furthermore, the invasion abilities 401 

in Harbi1 defect cells are also significantly inhibited compared with controls (Figure 3D). Moreover, silence 402 

of Harbi1 significantly inhibited the angiogenesis of non-small cell lung cancer cell (A548) and human colon 403 

cancer cell (HCT116) in vitro (Figure S9). This highlights the pro-angiogenesis function of Harbi1 and 404 

indicates that nxhl like their human homolog Harbi1, play role in angiogenesis and anti-cancer process via 405 

ECs. 406 

 407 

Nxhl Regulates Ptprb Expression and Angiogenic Networks 408 

To investigate how nxhl mediates angiogenesis, we firstly examined transcriptome sequencing (RNA-seq) 409 

data from zebrafish after injection of 4 ng nxhl e1i1 MO at 3 dpf. We found that loss of nxhl greatly changes 410 

the transcriptome with 1955 down-regulated and 698 up-regulated (Figure S10; Table S21). We noticed that 411 

in the KEGG pathways associated with angiogenesis development are significantly enriched in the nxhl-412 

silenced group (Figure S11; Table S22-26). We speculated that the transcription of genes linked to 413 

angiogenesis development may also be significantly changed in the nxhl-silenced zebrafish. We then 414 

screened and examined the expression of 18 genes that previously documented to be closely related to heart 415 

defects and/ or angiogenesis.53-57 Consistent with the RNA-seq data, we found that 13 of these genes (ptprb, 416 

tie2, nr2f1a, s1pr1, hey2, dot1L, hand2, erbb2, klf2a, mef2cb, mef2aa, ephB2a and cx40.8) were significantly 417 

decreased while two genes (vegfaa and vegfr2) increased sharply. S1pr2, egfl7, and nrg2a were kept 418 

unchanged (Figure 4A-D). Notably, the arterial marker ephB2a and venous marker erbb2 were decreased in 419 

nxhl morphants compared to the wild-type (Figure 4D). Normally, the increase of vegfaa and vegfr2 is linked 420 

to the enhancement of vascular system.58, 59 However, in our study, both genes increased while others 421 
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decreased when nxhl was silenced. We speculated this is a consequence of a negative feedback regulation to 422 

avoid an excessive decrease in the vascular system. We found that nxhl e1i1 morphants result in decrease of 423 

the nxhl at protein level. Ptprb, the most decreased gene at mRNA level, is also greatly reduced at the protein 424 

level. The s1pr1, hand2, dot1L, and hey2 proteins were also downregulated compared with controls (Figure 425 

4E). As previously reported, ptprb, tie2, nr2f1a, s1pr1, vegfaa and vegfr2 normally contribute to vascular 426 

development and deletion of each of them leads to defects on the vascular system during embryo 427 

development,14, 58-61 while loss of dot1L, hand2, erbb2, mef2cb, mef2aa, ephB2a or cx40.8 always results in 428 

angiogenesis system or heart development defects.55, 62-68 Hey2 and klf2a have been implicated in the 429 

regulation of both angiogenesis and heart development.69, 70 Based on these reports, we built a schematic 430 

diagram of the network as shown in Figure 4F. This network demonstrates that silence of nxhl does 431 

downregulate the key genes that are essential for heart and /or vascular development. To this end, our results 432 

showed that loss of nxhl greatly affects the expression of these key genes in the network, suggesting that the 433 

heart and vascular phenotypes caused by nxhl deletion are greatly due to the regulation of these genes, and 434 

the expression profiles of these genes explain the nxhl deficient-induced phenotypes. Thus, we then asked 435 

how nxhl controls the angiogenesis and angiogenic networks. 436 

 437 

Loss of Ptprb Duplicates the Phenotypes of Nxhl Deficiency 438 

As described above, we noticed that ptprb is the most downregulated gene after silence of nxhl and is the 439 

one that closely linked to both vascular integrity and angiogenesis as well.11, 13, 19, 71-73 To test whether there 440 

is a positive connection between nxhl and ptprb, we silenced ptprb by injection of 4 ng ptprb e4i4 and ptprb 441 

ATG morphants designed (Figure S12, Table S30). Both ptprb morphants resulted in slight pericardial edema, 442 

shortened body axis and severe body axis bending in zebrafish (Figure 5A；Figure S12). Moreover, heartbeat 443 

and circulation in the caudal vein (CV) is visible in the control fish (Supplementary Movie 3,4), but is 444 
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abnormal in ptprb-MO-injected fish (Supplementary Movie 5-8). Ptprb morphants also resulted in a high 445 

percentage of embryos with defects (75.48%, n=208 embryos in ptprb MO and 0.94%, n=212 embryos in 446 

control) and lower survival rate compared with controls at 50 hpf (Figure 5A). Both ptprb morphants 447 

dramatically disrupted normal splicing of ptprb (Figure 5B-D), decreased the survival rate, but unchanged 448 

the nxhl expression, indicating high efficiency and specificity of the morpholino knockdown of ptprb. In the 449 

vascular system, loss of ptprb leads to an indefinite absence or deformity of DLAVs (blue arrowhead) and 450 

ISVs in the tail end (white and yellow arrowhead), and a decrease of PAV (red arrowhead) formation (Figure 451 

5E). Knockdown of ptprb caused significantly decrease of the mean diameter of ISVs compared with 452 

controls (Figure 5F). Also, ptprb morphants caused CVP sinus cavities defects (Figure 5G), and resulted in 453 

a 5.6-fold and 2.2-fold decrease of CVP loop formation and CVP area (n=83 embryos) at 50 hpf, respectively 454 

(Figure 5G). These data are to some extent consistent with previous reports57 and strongly suggest that loss 455 

of ptprb phenocopies nxhl deficiency. Moreover, We found that most of the 15 genes in ptprb-knockdown 456 

experiment present an expression profile similar to that in nxhl-knockdown experiment, except vegfaa and 457 

vegfr2 (Figure 5H). To this end, we logically concluded that knockdown of ptprb mimics phenotypes of nxhl 458 

deficiency, and both should act in the same signaling pathway. However, which one is downstream of the 459 

other is unclear. Therefore, we examined the nxhl expression after silence of ptprb, and we found that it was 460 

kept unchanged (Figure 5D), but we observed a significant decrease of ptprb expression after silence of nxhl. 461 

This confirms that ptprb acts at the downstream of nxhl.  462 

 463 

Nxhl Regulates VE-PTP (ptprb) through Interactions with NCL 464 

As mentioned above, among the 18 genes associated with heart and vascular development, 15 genes were 465 

significantly changed by both nxhl and ptprb morphants. We suppose these genes may be part of a regulatory 466 

network of their own. We then built a schematic diagram of the network according to previous reports (Figure 467 
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4F). This network presents connections between most of these genes, suggesting a cooperative regulation 468 

mechanism on the heart and vascular development. As we already knew that ptprb acts downstream of nxhl, 469 

we next asked if nxhl directly interacts with ptprb to mediate these genes. Thus, we designed nxhl probes 470 

and conducted a ChIRP-MS experiment in zebrafish to find out those proteins binding to nxhl. Eleven 471 

proteins with change folds above 2 were discovered (Figure 6A). This indicates that the nxhl RNA may 472 

interact with these proteins. Unexpectedly, ptprb was not found in these proteins (Figure 6A). This suggests 473 

that proteins other than ptprb may interact with nxhl. We next focused on the proteins that are associated 474 

with the vascular system, and nucleolin (NCL) (Figure 6A) aroused our interest because of its molecular 475 

conservation and important functions on angiogenesis.31, 74 Loss of NCL in zebrafish causes oedema and 476 

body axis bending,75 as well as suppression of adhesion, proliferation and migration of HUVECs.76  These 477 

phenotypes are identical to the phenotypes caused by nxhl depletion, suggesting NCL may associate with 478 

nxhl. To figure out whether nxhl interacts with NCL, we performed RNA Immunoprecipitation (RIP) using 479 

the NCL protein as bait protein in 293T cells (Figure S13, S14, S15) and then detected the nxhl RNA using 480 

qPCR. We found that nxhl RNA is significantly higher than that in IgG control in the RNAs pulled-down by 481 

the NCL protein (Figure 6B). The RNA pulled down was amplified and the sequencing results confirmed 482 

that it is nxhl mRNA. This indicates that the NCL protein reversely interacts with nxhl RNA. Therefore, 483 

these experiments prove that nxhl RNA and NCL protein interact physically.  484 

However, still no evidence was found on the interaction between nxhl and ptprb. Could it be that NCL 485 

interacts with ptprb, thus bridging nxhl and ptprb? Such scenario was never proposed or documented before. 486 

However, a report showed that VEGF interacts with NCL.77 As nxhl acts similarly to VEGF on angiogenesis 487 

development, we then supposed that NCL might also interact with ptprb or its human homologue VE-PTP, 488 

the key molecule in angiogenesis. To test this hypothesis, we detected VE-PTP mRNA using the same RNAs 489 

pulled-down by NCL protein, and we found that VE-PTP mRNA is significantly higher than that in IgG 490 
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control. The RNA pulled down was amplified and the sequencing results proved that it is VE-PTP mRNA. 491 

This confirms that the NCL protein can also interact with VE-PTP mRNA physically (Figure 6B). We next 492 

verified this interaction in 293T cells using the VE-PTP RNA pulldown experiment in the reverse way, and 493 

the result of western blotting against NCL protein supports the existence of interaction between VE-PTP and 494 

NCL (Figure 6C). However, whether this interaction occurs between NCL and ptprb in zebrafish is unclear. 495 

We next designed a zebrafish ptprb gene-specific probe to pull down the proteins that interact with ptprb in 496 

the juvenile zebrafish. We found that the NCL protein strongly binds with ptprb (Figure 6C). These results 497 

indicate that the NCL protein not only interacts with VEP-PTP in 293T cells but also with ptprb in zebrafish.  498 

So far, we proved that nxhl and NCL, NCL and VEP-PTP (ptprb) interact physically. However, how 499 

nxhl regulates NCL and ptprb is unclear. To address this issue, we micro-injected 4 ng nxhl-e1i1-MO in one 500 

cell stage embryo, and found that resemble phenotypes were induced as that shown in Figure 3AB and Figure 501 

S16. Meanwhile, we found that loss of nxhl not only causes a significant decrease of NCL mRNA and total 502 

protein level but also leads to decrease of phosphorylated T76 and increase of the acetylated K88 of the NCL 503 

protein (Figure 6D). This suggests that knockdown of nxhl significantly affects the expression of NCL, which 504 

plays vital functions in angiogenesis,31 although the impact of phosphorylation and acetylation of NCL 505 

protein on the heart and vascular development have not been deeply understood yet.74 Then we investigated 506 

the expression of the downstream gene ptprb, and found that loss of nxhl also decreases ptprb at both mRNA 507 

and protein levels (Figure 6D). These results suggest that silence of nxhl leads to angiogenesis defects due 508 

to the downregulation of both NCL and ptprb via the interactions of nxhl-NCL and NCL-ptprb, which 509 

consequently mediates the angiogenesis-linked landmark gene network. 510 

 511 

NCL Regulates Angiogenesis and VE-PTP in vitro 512 

Although the physical interactions between nxhl and NCL and NCL and ptprb (VE-PTP) and regulatory role 513 
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of nxhl on NCL and ptprb (VE-PTP) are confirmed in our study, whether NCL regulates ptprb (VE-PTP) is 514 

still unknown. We next examined the functions of NCL on angiogenesis and expression of VE-PTP by silence 515 

of NCL in HUVECs. As shown in Figure 7, silence of NCL not only significantly inhibited the tube formation 516 

but also the cell migration of HUVECs comparing with the controls. Notably, silence of NCL greatly 517 

decreased the expression of VE-PTP at both mRNA and protein levels, suggesting that NCL not only interacts 518 

with VE-PTP but also regulates its expression. This highlights the pro-angiogenesis function of NCL and its 519 

direct regulatory role on VE-PTP expression, and proves that the nxhl-NCL-VE-PTP (ptprb) signaling 520 

pathway is logical and reasonable for angiogenesis. 521 

 522 

Nxhl Controls Angiogenesis by Targeting VE-PTP (ptprb)and Linking Angiogenesis Regulatory Genes 523 

It is confirmed that loss of nxhl not only downregulates ptprb but the angiogenesis landmark genes (Figure 524 

4F), with the addition of finding that nxhl binds to NCL which interacts with VE-PTP (ptprb), we conclude 525 

that nxhl controls angiogenesis through nxhl-NCL-VE-PTP (ptprb)-linked angiogenesis regulatory genes. 526 

This, for the first time, uncovers the existence of upstream regulatory genes of VE-PTP (ptprb). Based on 527 

these data, we built a new schematic diagram based on the network in Figure 4F that shows the novel nxhl-528 

NCL-VE-PTP (ptprb) signaling links to the keystone angiogenesis genes (Figure 8A vs. Figure 4F). We also 529 

made a schematic diagram to describe the possible mechanism underlying nxhl-induced phenotypes of 530 

pericardial oedema and vascular patterning defects (Figure 8B). Knockdown of nxhl significantly and 531 

broadly downregulates angiogenesis-associated landmark genes, including dot1L, hand2, erbb2, mef2aa, 532 

n2rf1a, hey2, s1pr1, tie2, ptprb, meff2cb, ephB2a, klf2a and cx40.8, through nxhl-NCL-VE-PTP 533 

(ptprb)pathway, while vegfr2 and vegfaa negative feedback control this downregulation. Moreover, loss of 534 

nxhl increases the phosphorylation of NCL(T76) and decreases the acetylation NCL (K88), indicating that 535 

nxhl may control angiogenesis by impacting NCL posttranslational modification to regulate downstream VE-536 

PTP signaling pathways. This highlights the crucial role of nxhl on angiogenesis development via a hitherto 537 
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unreported nxhl-NCL-VE-PTP (ptprb) pathway, which extends the upstream regulatory member of keystone 538 

gene VE-PTP (ptprb). We conclude that nxhl controls angiogenesis by targeting VE-PTP (ptprb) through 539 

interaction with NCL and linking vascular keystone regulatory genes. Given the extreme importance of the 540 

angiogenesis development, and the broad connections with landmark genes, we believe the finding of this 541 

novel signaling pathway to be of considerable importance for the study of the angiogenesis development and 542 

angiogenesis-dependent diseases.  543 

 544 

DISCUSSION 545 

Previous studies showed that VE-PTP is a key player in regulation of angiogenesis and EC adherens 546 

junction,12-15 and is a potential therapeutic target for angiogenesis-dependent diseases.7, 8 It binds to some 547 

proteins, such as Tie2, VEGFR2, VE-cadherin and FGD5, that mediate angiogenic signaling pathways.18, 25-548 

27, 29 In the present study, we identified a novel zebrafish gene nxhl. It controls angiogenic processes in vitro 549 

and in vivo. Deletion of nxhl causes angiogenesis-associated phenotypes. Loss of VE-PTP duplicates the 550 

phenotypes caused by the upstream nxhl deficiency, confirming both act in the same angiogenic signaling 551 

pathway. We for the first time show that nxhl physically binds to NCL which interacts with VE-PTP and 552 

thereby controls angiogenesis. Our study defines a novel nxhl-NCL-VE-PTP signaling pathway for 553 

angiogenesis regulation.  554 

Anti-angiogenic drugs have been a focus of study and lots of inhibitors of angiogenesis are currently 555 

used as monotherapy or in combination with chemotherapy or cytokine treatment.78 Previous studies showed 556 

that AKB-9778, a specific inhibitor of VE-PTP, has demonstrated promising clinic perspective for treatment 557 

of angiogenesis-dependent diseases, although it is still under clinical investigation.31-34 This highlights the 558 

great value of VE-PTP on anti-angiogenic agents. Logically, targeting the upstream regulator of VE-PTP 559 

may achieve the same or better effects to that of AKB-9778, because its broader and stronger modulatory 560 

forces. However, few upstream regulation mechanisms of VE-PTP has been documented yet. In this study, 561 
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we identify nxhl as a novel powerful upstream regulator of VE-PTP. We find that nxhl plays a role in 562 

angiogenesis not only because it sharply decreases expressions of VE-PTP and other key angiogenic genes, 563 

but also the nxhl deletion-caused angiogenesis phenotypes, such as pericardial oedema, defects of caudal fin, 564 

intersegmental vessel and caudal vein plexus, are duplicated by the VE-PTP deficiency. These phenotypes 565 

of VE-PTP knockdown are mostly identical to a previous study using different morphants to ours.57 566 

Additionally, no changes occur in nxhl expression upon VE-PTP knockdown, but the expression of VE-PTP 567 

significantly decreases upon loss of nxhl. This highly implicates that nxhl regulates VE-PTP at its upstream 568 

and both act in a same signaling pathway. Importantly, the splice-blocking nxhl MO displayed phenotypes 569 

which are totally overlapping with the translation-blocking MOs, confirming the specificity of phenotypes 570 

obtained by nxhl injection rather than MO off-target effects. Moreover, nxhl controls angiogenesis via ECs 571 

migration and tube formation, which is consists with the angiogenic characteristics of VE-PTP on EC 572 

adhesion and integrity,16-18 confirming its angiogenesis controlling function acts via ECs. This is also 573 

strongly supported by our findings that silence of the highly conserve human homologue of nxhl not only 574 

inhibits the HUVECs migration and tube formation but suppresses the migrations and invasions of cancer 575 

cell lines by inhibiting ECs (Figure S9). All these data suggest that nxhl is a powerful upstream angiogenesis 576 

governor targeting VE-PTP.  577 

On the other hand, the effects of nxhl controlling angiogenesis depend on its binding with NCL, which  578 

simultaneously bridges nxhl and VE-PTP. To our best knowledge, this is the first description on the 579 

interactions between nxhl and NCL, NCL and VE-PTP, uncovering a novel angiogenesis signaling complex 580 

at the upstream of VE-PTP. NCL expresses broadly in all cells in a proliferation-dependent manner 79 and 581 

almost all compartments of cells. Like VEP-TP, NCL also associates both cancer and other angiogenic 582 

diseases. However, this function is more likely related to the cell surface NCL rather than that in other 583 

compartments. The cell surface NCL is clustered and highly expressed in ECs of angiogenic blood vessels 584 
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during angiogenesis,26, 27, 80 suggesting that NCL functions as an angiogenic gene. Also, it expresses at the 585 

surface of tumor cells, including tumor cells and tumor vasculature. This allows the targeting of different 586 

cellular compartments of solid tumors. Additionally, cell surface NCL has been identified in cancer stem 587 

cells (CSCs) from different breast cancer cells lines.81 Since CSCs are highly tumorigenic,82, 83 the 588 

association of NCL with the stemness highlights the value of NCL as a potential therapeutic target.84 589 

Importantly, dysregulation of NCL associates with higher risk of recurrence or poorer overall survival for 590 

some cancers.85 These define NCL as both prognostic marker and therapeutic target, highlighting its great 591 

value on development of anti-angiogenic drugs.31, 74 In this study, we identified the direct interactions 592 

between nxhl and NCL, and NCL and VE-PTP (ptprb) in both zebrafish and 293T cells by ChIRP, RNA 593 

Immunoprecipitation and RNA pulldown methods, although we did not yet figure out which subset of NCL 594 

(surface, nucleolar or cytoplasmic NCL) participates in this interaction. Importantly, we proved that silence 595 

of NCL inhibits angiogenesis of HUVECs and expression of VE-PTP at both mRNA and protein levels. This 596 

further supports that NCL plays key roles on angiogenesis by directly controlling downstream VE-PTP. 597 

Moreover, deletion of nxhl causes a significant decrease of NCL at both mRNA and total protein levels, 598 

suggesting that nxhl significantly affects and regulates the NCL. This is further supported by the decrease of 599 

the phosphorylated T76 and increase of the acetylated K88 of NCL protein upon the nxhl knockdown (Figure 600 

6D). Previous study suggested that NCL phosphorylation status heavily affects its cellular 601 

compartmentalization.86 It promotes EGFR phosphorylation, dimerization and cell growth.28, 87 It also 602 

promotes HER2 (namely Erbb2) phosphorylation and subsequent MAPK/ Erk pathway activation.30 603 

Clinically, combination treatment with NCL and HER2 inhibitors exhibited superior efficacy compared with 604 

single treatment in the invasion capacity of breast cancer cells.88 Except EGF and HER2, NCL also binds to 605 

VEGF,26 whose receptor VEGFR2 is tightly associated with VE-PTP resulting in increase of VEGFR2 606 

phosphorylation and activation.19 Since EGFR, HER2 and VE-PTP/VEGFR2 have been tightly associated 607 
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with angiogenesis, we consider nxhl may control angiogenesis by affecting NCL phosphorylation which 608 

regulates downstream EGFR, HER2 or VE-PTP/VEGFR2 signaling pathways. Notably, in our study, 609 

expressions of VEGFR2 and Erbb2 are significantly affected by nxhl knockdown, partially supporting this 610 

point of view. However, this needs to be investigated in our future works. In addition, NCL acetylation at 611 

K88 was previously described in vivo and in vitro, and this post-translational modification sharply changes 612 

its cellular localization. Previous study suggested that NCL may be involved in pre-mRNA synthesis or 613 

metabolism because of the presence of NCL-K88ac in nuclear speckles.89 However, the characterization and 614 

functional significance of NCL acetylation in angiogenesis are still unclear. What the consequences of NCL-615 

K88ac increase on nxhl or VE-PTP and subsequent pathways needs further investigation. Taken together, 616 

our data enabled us to conclude that nxhl regulates the angiogenesis via the nxhl-NCL-VE-PTP (ptprb) 617 

pathway. 618 

The strong power of nxhl on angiogenesis controlling also relies on the effects of some other crucial 619 

downstream angiogenic genes (such as Tie2, VEGFaa, VEGFR2, S1pr1 and Hey2) which broadly associate 620 

VE-PTP signaling (Figure 4, Figure 8). What needs to be stressed is that the expressions of these genes 621 

explain the phenotypes induced by the nxhl deficiency. They all play irreplaceable roles in multiple aspects 622 

of angiogenesis development. For instance, Hand2 is vital in heart development in zebrafish and mouse.90, 623 

91 It has been identified as a specifier of outflow tract cells in the mouse by single cell sequencing.92 Hey2 624 

mediates the dynamics of cardiac progenitor cells addition to the zebrafish heart.69 It is identified as a 625 

component of the NKX2-5 cardiac transcriptional network regulating the early stage of the human heart 626 

development.93 The Dot1L,63 Mef2aa,64 Mef2cb,65 Erbb2,66 Klf2a70 and EphB2a94 also play key roles in the 627 

growth of the chamber, cardiomyocyte differentiation, myocardial cell addition, cardiac trabeculation, atrial 628 

fibrillation, gap junction, valvulogenesis and myocardial trabeculation during heart development. 629 

Importantly, the heart and vascular development are always linked. Previous studies showed that silence of 630 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/804609doi: bioRxiv preprint 

https://doi.org/10.1101/804609
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

zebrafish S1pr1 not only leads to global and pericardial edema, lack of blood circulation, altered posterior 631 

cardinal vein structure, reduced vascularization in ISVs and CVPs,61 but also regulates the endothelial barrier 632 

integrity via the S1pr1/VE-cadherin/EphB4a pathway.95 Similar phenotypes can be induced by the 633 

knockdown of Nr2fla in zebrafish due to the decrease of cell proliferation and migration instead of cell death 634 

in ECs.60 Moreover, mutation of Nr2f1a results in smaller atria due to a specific reduction in the atrial 635 

cardiomyocyte number and an increase of the rate of atrial cardiomyocyte differentiation.96 Another key gene, 636 

Tie2, is essentially required for ISV growth, sprouting, migration, and proliferation of tip cells and acts 637 

coordinately with VEGF signaling to control angiogenesis in vivo.97 Loss of Tie2 leads to death at E10.5 due 638 

to vessel remodeling defects and lack of trabeculation.98 Notably, Ang-Tie2 system is indispensable for 639 

vascular and lymphatic development.99 The anti-angiogenic effects of VE-PTP inhibitor, AKB-9778, likely 640 

rely on the Ang-Tie2 pathway.17 In our study, nxhl deletion leads to significant decrease of Tie2, suggesting 641 

it regulates not only VE-PTP but also Ang-Tie2 system, which crosstalk with VE-PTP. From this point of 642 

review, nxhl is a multifunctional master of angiogenesis process. This explains our findings that the 643 

phenotypes induced by nxhl knockdown mostly resemble the phenotypes caused by deletion of these genes 644 

associate with VE-PTP. Although the specific mechanisms underlying need further elucidation, given the 645 

extreme importance of these genes in angiogenesis development, we consider the phenotypes caused by nxhl 646 

morphants as direct or indirect consequences of the down-regulation of VE-PTP and these key genes. We 647 

believe the fire-new nxhl-NCL-VE-PTP signaling pathway is a highlight for vertebrate angiogenesis 648 

development regulation.  649 

In conclusion, we clearly demonstrate that a novel gene nxhl controls angiogenesis by targeting VE-650 

PTP through interaction with NCL whose posttranslational modification (phosphorylation and acetylation) 651 

may affect downstream VE-PTP signaling pathways. Furthermore, we have elucidated some of the crucial 652 

downstream pathways that may be implicated in regulating the angiogenesis. This study reveals a fire-new 653 
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nxhl-NCL-VE-PTP signaling pathway governing vertebrate angiogenesis development, implicating its great 654 

potential as therapeutic target for angiogenesis-dependent diseases.  655 
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FIGURE LEGENDS 1008 

 1009 

Figure 1. WGD of golden pompano notifies vertebrate karyotypes evolution. A, Overview of golden 1010 

pompano (Trachinotus ovatus). Numbers on the circumference are at the megabase scale. a Gene density of 1011 

female T. ovatus (window size = 500 Kb). b TE content density of female T. ovatus (window size = 500 Kb). 1012 

c Genome markers (optical) density of female T. ovatus (window size = 500 Kb). d Hi-C depth of female T. 1013 

ovatus (window size = 500 Kb). e GC content of female T. ovatus (window size = 500 Kb). f Color bands in 1014 

the middle of the Circos plot connect segmental duplication (minimum five gene pairs) from Teleost-specific 1015 
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whole genome duplication (Ts3R) events. B, Phylogenetic relationship of Perciformes and relevant teleost 1016 

lineages. The position of golden pompano is highlighted in red. Red circles represent the Teleost specific 1017 

whole genome duplication (Ts3R), Salmonid-specific whole genome duplication (Ss4R), respectively. The 1018 

divergence time was estimated using the nodes with calibration times derived from the Time Tree database, 1019 

which were marked by a black rectangle. C, Inspection of whole genome duplication events based on 1020 

synonymous mutation rate (Ks) distribution. The x axis shows the synonymous distance until a Ks cut-off 1021 

of 5.2. D, Internal genome synteny of golden pompano. Double-conserved synteny between the golden 1022 

pompano and spot gar genomes. Only genes anchored to chromosomes are represented. E, Macro-synteny 1023 

comparison between spotted gar and golden pompano shows the overall one-to-two double-conserved 1024 

synteny relationship between spotted gar to a post-Ts3R teleost genome.  1025 

 1026 

 1027 

Figure 2. Nxhl is a conserved homologue of nxh retained after WGD. A, Component of less fragment 1028 

(LF) and major fragment (MF) subgenomes within golden pompano genome. B, Boxplot of expression level 1029 

of LF, MF and Other gene sets. C, Selection bias associated with ancestral subgenomes fragmentation. The 1030 

Ka/Ks values were calculated by orthologous pairs between golden pompano and spotted gar which is 1031 

outgroup species without Ts3R genome duplication events. D, WGCNA analysis of embryonic development 1032 

stages revealed gene-network modules enriched. E, Hub-gene network of the purple module. Size of the dots 1033 

represents hubness. Color of the dots represents the increasing expression level from low to high. Bold text 1034 

highlights the genes known for nxh (EVM0008813) gene. F, Validation of expression level for nxh by QPCR 1035 

technology. 18s RNA was considered as internal marker. Gene structure of nxh was showed at upper region. 1036 

G, Micro-synteny analysis of nxh locus among spotted gar, zebrafish, gold pompano and stickleback. Two 1037 

inversions and one insertion occurred in nxh locus region of golden pompano genomes. H, Domains of nxh 1038 

and other homologous protein. The domains were identified in SMART database (http://smart.embl.de/). 1039 
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 1040 

Figure 3. Nxhl affects angiogenic phenotypes in vivo and in vitro. A, Gross morphology at 3 dpf in wild-1041 

type AB strain. Knock down nxhl present pericardial oedema (red arrow) and caudal fin defects (blue arrow). 1042 

The bar graph shows the validation of MO against nxhl, and the percentage of embryos with development 1043 

defects after knockdown of nxhl with e1i1-MO and ATG-MO. B, knockdown of nxhl causes angiogenic 1044 

defects in Tg(fli1a:EGFP)y1 zebrafish. Images represent bright field and fluorescent filed of 1045 

Tg(fli1a:EGFP)y1 embryos at 52 hpf, with the angiogenic structures visualized by GFP fluorescence and 1046 

labelled ISV and DLAV. The bar graph shows the percentage of embryos with angiogenic defects after 1047 

knockdown of nxhl with nxhl-e1i1-MO. C, nxhl knockdown impairs formation of the CVP in zebrafish. 1048 

Quantification of loop formation and area at CVP at 52 hpf. CA, caudal artery; CV, caudal vein. NISV, normal 1049 

intersegmental vessel; TISV, thinner intersegmental vessel. D, Silence of Harbi1 inhibits angiogenic 1050 

development in vitro. The tube formation, cell migration and invasion potential of HUVECs treated with si-1051 

Harbi1 was determined by using transwell chambers as described in the “Materials and methods” section. 1052 

Scale bars, 50 μm. Representative images of cells stained in si-Harbi1 treated HUVEC cells. The data 1053 

represent as mean±SEM from three independent experiments. *p<0.05 p<0.05, **p< 0.001 represents 1054 

statistically significant.  1055 

 1056 

Figure 4. Nxhl modulates ptprb expression and angiogenic networks. A, Heatmap of the 15 selected genes 1057 

from zebrafishes after injection of 4ng nxhl e1i1 MO at 3 dpf examined by RNA-seq. B, Expression of nxhl 1058 

post injection of nxhl e1i1 MO 3 dpf. C, Expression of genes associated with angiopoiesis post injection of 1059 

nxhl e1i1 MO 3 dpf using QPCR. D, Expression of genes associated with heart development post injection of 1060 

nxhl e1i1 MO 3 dpf using QPCR. E, Networks of the genes previously reported to be associated with 1061 

angiopoiesis and heart development. Cytoscope V3.6.1 was used to build this network. F, Protein levels of 1062 

the selected genes associated with angiopoiesis and heart development post injection of nxhl e1i1 MO 3 dpf 1063 
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by using Western blotting. β-actin antibody was used as internal control. The data above represent as 1064 

mean±SEM from three independent experiments. *p<0.05 p<0.05, **p< 0.001 represents statistically 1065 

significant. 1066 

 1067 

Figure 5. Loss of ptprb phenocopies nxhl deficiency. A, Gross morphology at 3 dpf. Knock down ptprb 1068 

present pericardial oedema (red arrow) and caudal fin defects (blue arrow). The bar graph shows the 1069 

percentage of embryos with development defects after knockdown of ptprb. B, Endogenous ptprb in control 1070 

and ptprb morphants were assessed by qPCR. C, A time-course plot of percent survival in control and ptprb 1071 

morphants for 3 days. dpf, days post fertilization. D, Expression of nxhl post injection of ptprb MO 3 dpf. 1072 

E, Morpholino knockdown of ptprb causes angiogenic defects. Representative bright field and fluorescent 1073 

images of Tg(fli1a:EGFP)y1 embryos at 50 hpf with the vascular structures visualized by eGFP fluorescence 1074 

and labelled ISV and DLAV. The boxed regions are shown at higher magnification in the bottom panels. F, 1075 

Quantification of the mean diametre of ISVs shows significantly decrease in ptprb-MO injected embryos. 1076 

Columns, mean; SEM (n =10; ANOVA;) DLAV, dorsal longitudinal anastomotic vessels; ISV, intersegmental 1077 

vessel. G, ptprb knockdown impairs formation of the CVP in zebrafish. Bars show the quantification of loop 1078 

formation and area at CVP. CA, caudal artery; CV, caudal vein. H, Expression of genes associated with 1079 

angiopoiesis (above) and heart development (down) post injection of ptprb MO 50 hpf using QPCR. The 1080 

data represent as mean±SEM from three independent experiments. *p<0.05 p<0.05, **p< 0.001 represents 1081 

statistically significant. 1082 

 1083 

Figure 6. Nxhl regulates VE-PTP (ptprb) through interactions with NCL. A, ChIRP-MS identification 1084 

of nxhl RNA binding proteins. qPCR identification of nxhl RNA in the eluted RNAs. Graph shows more 1085 

than 90% nxhl RNA was retrieved, and no GAPDH was detected. Heat map shows major proteins are 1086 
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enriched and significantly (change fold >2 and p<0.05) retrieved by nxhl and control probes, analyzed by 1087 

LC/MS-MS. NCL protein (purple boxed) was selected as candidate for follow-up study. The Centroid of 1088 

NCL protein shows that NCL protein is pull down and identified by LC/MS-MS. The specific peptide 1089 

identifies NCL protein. B, RIP-qPCR assay to detect the interaction between nxhl, VE-PTP mRNA and NCL 1090 

protein. The mRNA expression of nxhl was determined by qPCR and Western blotting against Flag antibody 1091 

was performed to identify the successful expression of pcDNA3.1- Flag-nxhl plasmid in 293T cells. Bars 1092 

show the interaction between nxhl mRNA and NCL protein. The interaction between VE-PTP mRNA and 1093 

NCL protein is shown too, and qPCR shows the detection for VE-PTP mRNA expression in the NCL-pulled 1094 

down RNA. C, Pull down assay to detect the interaction between nxhl, VE-PTP mRNA and NCL protein. 1095 

Gels show the interaction between VE-PTP mRNA and NCL protein. Western blotting was performed to 1096 

detect NCL protein in the VE-PTP-biotin probe -pulled down proteins in 293T cells. The interaction between 1097 

ptprb mRNA and NCL protein is shown too. D, Loss of nxhl affects the expression of NCL at both mRNA 1098 

and protein levels. The mRNA expression of NCL and ptpr were determined by qPCR. The total NCL protein, 1099 

phosphorylated NCL, acetylated NCL, total nxhl and ptprb protein were detected by Western blotting using 1100 

specific NCL antibodies. The mRNA expression of ptprb was determined by qPCR. The data represent as 1101 

mean±SEM from three independent experiments. *p<0.05, p<0.05, **p< 0.001 represents statistically 1102 

significant. 1103 

 1104 

Figure 7. Silence of NCL inhibits angiogenesis and expression of VE-PTP in vitro. A, Silence of NCL 1105 

inhibits angiogenesis of HUVECs in vitro. The tube formation and cell migration potential of HUVECs 1106 

treated with si-NCL was determined by using transwell chambers as described in the “Materials and methods” 1107 

section. Scale bars, 20 μm. Representative images of cells stained in si-NCL treated HUVEC cells. The data 1108 

represent as mean±SEM from three independent experiments. *p<0.05 p<0.05, **p< 0.001 represents 1109 
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statistically significant. B, Silence of NCL inhibits the expression of VE-PTP at both mRNA and protein 1110 

levels. The expression of NCL and VE-PTP was quantified by qPCR. Protein levels of NCL and VE-PTP 1111 

were examined by using Western blotting post silence of NCL. GAPDH antibody was used as internal 1112 

control. The gray intensities of the WB images were calculated and present as mean±SEM from three 1113 

independent experiments. *p<0.05 p<0.05, **p< 0.001 represents statistically significant. 1114 

 1115 

Figure 8. Nxhl controls angiogenesis by targeting VE-PTP (ptprb)-related angiogenic genes. A, 1116 

Schematic model illustrating the mechanism of nxhl in zebrafish angiogenesis and heart development. The 1117 

interactions between nxhl mRNA and NCL protein, NCL protein and ptprb mRNA are new-found 1118 

interactions in this study. B, Possible mechanism of nxhl in zebrafish angiogenesis and heart development. 1119 

Knockdown of nxhl may downregulate the nxhl-NCL-ptprb complex, subsequently regulate the proteins 1120 

associated with angiogenesis and heart development, and finally result in heart pericardial oedema, 1121 

vascular patterning and integrity defects. 1122 
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