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Abstract

Background: The human genome is far from completely annotated. Specifically, the locations ofgene-
distal regulatory enhancers are difficult to locate. Enhancers are binding sites of transcription factors and
occupied by nucleosomes with modified histones. The binding sites of transcription factors (TFs) and the
localization of histone modifications can be quantified by the chromatin immunoprecipitation assay coupled
with next generation sequencing (ChIP-seq). The resulting data has been successfully adopted for genome-
wide enhancer identification by several unsupervised and supervised machine learning methods. However,
the current methods predict different numbers and different sets of enhancers for the same cell type, and
they do not utilize the pattern of the ChIP-seq coverage profiles efficiently. It is also difficult to estimate
the accuracy and specificity of the genome-wide enhancer predictions.

Results:We developed PREPRINT, a PRobabilistic Enhancer PRedictloN Tool. We considered the pattern
of, for example, the ChIP-seq coverage profile around the enhancers. The data at the positive and negative
examples of enhancers was utilized to probabilistically model the enhancer coverage pattern and to train
a kernel-based classifier. We demonstrated the performance of the method using ENCODE data from two
cell lines. The predicted enhancers were computationally validated based on the TFs and co-regulatory
factor binding sites. We compared our enhancer predictions to the ones obtained by other methods. The
effects of different parameter choices during training, testing and validation were studied, and finally, the
approach to validate the genome-wide predictions was investigated.

Conclusion: PREPRINT performed comparably to the state-of-the-art methods and provided probabilistic
interpretation (i.e. uncertainty) for the predictions. PREPRINT generalized to data from cell type not
utilized for training, and often the performance of PREPRINT was superior to RFECS. We observed that
the choice of training data and the choice of parameter values at different steps of the enhancer prediction and
validation influenced on the final set of predictions. PREPRINT identifed biologically validated enhancers
not predicted by the competing methods. The enhancers predicted by PREPRINT can aid the genome
interpretation in functional genomics and clinical studies.
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Background

Large multinational consortia, such as the Encyclopedia of DNA Elements (ENCODE), the Functional Annota-
tion of the Mammalian Genome (FANTOM) and the reference genome annotation for human (GENCODE), aim
to annotate protein-coding genes, functional transcripts, and regulatory regions of the human genome [1, 2, 3].
Of the regulatory regions, enhancers have been ascertained to be the main regulators of the cell type-specific gene
expression, and they have an important function in the cell differentiation [4, 5, 6]. The number of enhancers in
the human genome is estimated to be hundreds of thousands. However, enhancers are difficult to locate as they
are independent in position, distance, and orientation with respect to their target genes [7, 8], and lack general
sequence specificities. An enhancer forms the regulatory interaction with its target gene promoter, for example,
through chromosomal looping interactions [9, 5|. Enhancers are estimated to be overrepresented (60-80%) in
the discoveries of genome-wide association studies (GWAS) aiming to detect single nucleotide polymorphisms
(SNPs) associated with both rare and common diseases [10, 11, 12]. Therefore, strategies to locate the enhancers
in the human genome in all cell types and patient-derived tissue samples are needed.

Enhancers possess certain genomic features which can be utilized to identify them genome-wide: the location
of nucleosomes at enhancers can be quantified applying micrococcal nuclease digestion followed by sequencing
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(MNase-seq) [13, 14]. The modifications in the histone tails of nucleosomes and the binding sites of transcrip-
tion factors (TFs) and co-regulatory factors can be quantified by Chromatin Immunoprecipitation coupled with
Sequencing (ChIP-seq) [15, 16]. Due to the binding of regulatory proteins, enhancers exhibit DNase I hyper-
sensitivity (DNase I HS) signal quantified by DNase I HS sequencing (DNase-seq) or Formaldehyde-Assisted
Isolation of Regulatory Elements and sequencing (FAIRE-seq) [17, 18]. These data sets have been adopted
in several studies to locate enhancers [19, 20, 21, 22, 23, 24, 5, 25, 26]. The features measured by different
techniques generate a set of signals along the genome. The signals can be processed with machine learning
methods to cluster and classify the genomic loci. Machine learning methods predicting enhancers in different
organisms based on different data types and combinations of data have been earlier reviewed and compared
[27, 28, 29, 30, 31, 32]. Among the most popular methods is an unsupervised method, ChromHMM, based on
a hidden Markov model to learn a small number of chromatin states from the histone modification ChIP-seq
data [33, 34]. Some of the learned states display typical features of enhancers. Before learning ChromHMM,
the ChIP-seq coverage is converted to binary values (present or absent) depending on a predefined threshold,
and the resulting signal is modeled with independent Bernoulli distributions conditioned on the hidden state.
The choice of threshold is non-trivial, and due to the binarization, the quantitative information of the ChIP-
seq coverage is lost. Moreover, ChromHMM considers the coverage in 200 base pair (bp) bins and does not
exploit the special pattern of the coverage profile observed at the regulatory regions. Another drawback of
the unsupervised methods is that the correspondence between the identified clusters and regulatory elements is
often unknown. In addition, only 30% of the enhancer loci identified by unsupervised approaches of ENCODE
Consortium displayed functional activity in massive parallel reporter assays (MPRA) [35].

A supervised random forest classification method called RFECS has been introduced for the enhancer pre-
diction task [36]. RFECS considers the coverage pattern vectors of different histone modification ChIP-seq
data as the different features. The data is extracted in a 2 kilo base (kb) window centered at the genomic
loci of interest, the window is divided into 20 bins of length 100 bps, hence one feature of one genomic loci
is a 20-dimensional vector. When training RFECS, at each node in a tree, a subset of features are randomly
selected from the feature set, and the single feature that produces the best separation of classes according
to a predetermined criterion is utilized to partition the training data. To reduce the dimension of a feature
from 20 to 1, at each node, RFECS applies Fisher Linear Discriminant Analysis, an example of a multi-variate
node-splitting technique. The authors of RFECS claim that this approach allows the utilization of the coverage
pattern as well as the abundance information. Rajagopal et al.[36] demonstrated that RFECS outperformed
the other supervised methods Chromia [37], CSTANN([38], and ChromaGenSVM [39]. RFECS does not make
any distributional assumptions of the data, and the algorithm automatically discovers the optimal subset of
the features. Another supervised approach, a deep neural network trained on the FANTOM enhancer atlas [40]
has been introduced for enhancer prediction [41]. In terms of data, the authors used the mean value of the
coverage signal at 200 bp windows along the genome and the predictions were made on the 200 bp windows.
This approach did not likely capture the whole coverage pattern at the regulatory regions. In addition, training
the classifier with the FANTOM enhancer atlas might bias the results: The FANTOM enhancer atlas contains
only around 40000 enhancers across tens of different cell types. The FANTOM enhancers are identified by
quantifying the transcription of non-coding enhancer RNA (eRNA) [42, 43] with the Cap Analysis of Gene Ex-
pression (CAGE-seq) [44]. Another technique to measure eRNA is the global run-on and sequencing GRO-seq
[45]. The enhancer RNA is highly unstable and degrades rapidly; thus sufficient sequencing depth is required
for CAGE-seq and GRO-seq to capture all enhancer RNA transcription. The FANTOM enhancers are likely
ones representing the strongest eRNA signals, and clearly their number is an underestimate of the enhancers in
the human genome.

The different machine learning methods predict different sets of enhancers for the same cell type, they do
not generalize well between cell types, and the predicted enhancers may have different properties [31, 32, 46, 47].
Moreover, the lengths of enhancers predicted by different methods vary (from a few hundreds to a few thousands
of bps), and the set of enhancers might not be saturated; more enhancers could be identified by lowering the
prediction thresholds, or by analyzing more cell types [47]. The inconsistencies between the sets of predicted
enhancers are likely due to many factors: First, most methods utilize the ChIP-seq coverages within a large
genomic window as features and do not efficiently utilize the pattern of the coverage signal in subsequent small
windows within the large window. Regions with a low signal intensity may still have the characteristic enhancer
coverage pattern. Second, training data definition and the features used for enhancer prediction likely hae a
large impact on the genome-wide predictions. Most enhancer prediction methods exploit only a subset of all
possible data that can be utilized for enhancer prediction. In this work, the data contain histone modification
ChIP-seq data, MNase-seq data, DNase-seq data, and RNA polymerase I (RNA Pol II) and CCCTC-binding
factor (CTCF) ChlIP-seq data. Particularly, the utilization of RNA Pol 1T occupancy and MNase-seq data are
less exploited to predict enhancers, although the occupancy of RNA Pol IT ChIP-seq is easier to measure than
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the native eRNA produced at enhancers. Fourth, the prediction scores of the classifiers should be calibrated,
for example to control the false positive rate. Finally, it is difficult to estimate the accuracy and specificity
of the genome-wide predictions as there are no large gold standard set of enhancers for the human cells. In
this work, we introduce PRobabilistic Enhancer PRedictloN Tool PREPRINT, which is based on constructing
a profile pattern characteristic of an enhancer and a probabilistic classification. If the query genomic region
is close to the enhancer pattern, the region is characterized as an enhancer. In terms of data, we employ the
above-mentioned next-generation sequencing data from ENCODE for the myelogenous leukemia cell line (K562)
and the lymphoblastoid cell line (GM12878). We assess the probability of misclassification of whole-genome
predictions in advance and build a general tool that once trained can predict enhancers on data originating from
any cell type. Moreover, we experiment with different definitions of the training data and present a principled
way to validate the genome-wide predictions.

Results

Evaluating the generalization performance of the classifiers

The classification performance of PREPRINT and RFECS was evaluated using the area under the receiver
operating characteristics curve (AUC) values. The performance of the methods were first evaluated on small
sets of 1000 enhancers, 1000 promoters and 1000 random regions, defined either in cell line K562 or GM12878.
The K562 data is denoted as a training data, and the GM12878 data as a test data. The random regions
were defined in two ways: either purely random regions were considered (pure random) or random regions with
the coverage values above a certain threshold (random regions with signal). For more details, see Methods.
The training data from cell line K562 was divided into cross-validation (CV) sets to evaluate the classification
performance of the methods on data from a single cell line. The test data from cell line GM12878 was used
to test the generalization performance of the methods between the cell lines. The AUC values for the different
methods and data sets are shown in Table 1. The classification performance on the K562 CV data set was almost
perfect (0.99), and the performance decreased only slightly when predicting enhancers on GM12878 data using
classifier trained on K562 data. As expected, enhancers were easier to separate from the pure random regions
than from the random regions with signal. This is especially the case in the GM12878 cell line. In addition,
RFECS separated enhancers from the pure random regions better in cell line GM12878 than the probabilistic
maximum likelihood (ML) and Bayesian methods. Nevertheless, among the methods trained on the random
regions with signal, the Bayesian approach generalized to the GM12878 data the best. However, classifying
the small set of highly significant enhancers and promoters is a rather simple task, and next we present the
evaluations of the whole-genome predictions.

Table 1: The classification performance (AUC) of PREPRINT and RFECS in the 5-fold CV data set from
cell line K562 and test data from the cell line GM12878. For RFECS, we did not compute the AUC values
on the K562 CV data. The method with the best generalization performance on the GM12878 data is
indicated with the bold font.

AUC

Method

Cell line

Pure random regions

Random regions with signal

ML
RFECS

GM12878
GM12878

0.982
0.987

Bayesian | K562 0.993 0.988
ML K562 0.993 0.990
Bayesian | GM12878 0.982 0.960

0.938
0.959

PREPRINT predicted a larger amount and shorter enhancers than RFECS and

ChromHMM

PREPRINT and RFECS trained on the whole training data from cell line K562 predicted enhancers genome-wide
in both cell lines. Both PREPRINT and RFECS scan the genome in subsequent 2 kb windows advancing in 100
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bp shifts along the genome. For each of the genomic windows, PREPRINT and RFECS assign a prediction score.
If the prediction score is above a certain threshold, the window is predicted as an enhancer. First, a prediction
threshold 0.5 was utilized for both PREPRINT and RFECS: In order for RFECS to predict a genomic region as
an enhancer, 50% or more of the trees of the random forest need to vote for an enhancer class. By contrast, in
order for PREPRINT to predict a genomic region as an enhancer, the enhancer class probability needs to exceed
0.5. The prediction threshold 0.5 is likely suboptimal and not well calibrated. Hence, for PREPRINT, the best
operating point threshold and 1% false positive rate (FPR) threshold were estimated from the performance
evaluation measures on the K562 CV data set. In addition, the best operaing point threshold and the 1%
FPR threshold for cell line GM12878 data were estimated from the performance evaluation measures on the
GM12878 test data. However, the prediction thresholds optimized for the K562 data should be adopted when
predicting enhancers in other cell types, since no test regions might be available for the other cell type. With the
prediction threshold 0.5, RFECS predicted notably less enhancers than PREPRINT (see Table 2). Therefore,
to equalize the number of enhancers predicted by RFECS and PREPRINT, the prediction threshold for RFECS
was lowered to a sufficient degree. Furthermore, the training data enhancers and promoters were removed from
the final genome-wide predictions. In addition to PREPRINT and RFECS, ChromHMM Strong Enhancer and
Weak Enhancer clusters obtained from ENCODE were included in the method comparison [33, 34].

Predicting enhancers by PREPRINT and RFECS results in subsequent windows having a prediction score
higher than the chosen threshold. To increase the resolution of predictions, one or several single windows
need to be chosen within a wider region. RFECS predicts very wide regions and aims to find multiple local
maxima within a region. In turn, PREPRINT chooses only the window with the maximum prediction score.
If multiple windows have the same maximum score, one is selected at random. However, instead of predicting
an enhancer as a single window, we could also consider the whole region of subsequent enhancer predictions
as an enhancer. Consequently, we computed the normalized frequencies of lengths of predictions obtained
by the different methods. For RFECS and PREPRINT, we utilized two different thresholds (0.5 and 0.75).
Figure 1 plots the normalized frequencies recorded when PREPRINT and RFECS were trained on the pure
random regions. Figure 1 shows that PREPRINT and RFECS predicted proportionally shorter enhancers
than ChromHMM), which predicted mostly enhancers of length 1 — 10 kb. In addition, RFECS predicted
proportionally more enhancers of length 100 bp and of length larger than 1 kb, whereas PREPRINT predicted
proportionally more enhancers of length 200 bp — 1 kb. From now on, the enhancers of length 100-1000 bp
are denoted as short enhancers, and the enhancers of length larger than 1 kb are denoted as long enhancers.
The proportions of short and long enhancers predicted by RFECS are increased and decreased, respectively,
when adopting the more stringent threshold (0.75). This behaviour is expected, because with the more stringent
threshold, large prediction regions were divided into separate smaller regions, or they became shorter or both.
By contrast, when adopting the more stringent threshold for PREPRINT, the proportional frequencies remained
almost the same. This suggests that the prediction scores of PREPRINT advance from a low value to a high
value and back within a short region (within a low number of the window shifts), whereas the prediction scores
of RFECS increase and decrease smoothly within a large genomic window. To conclude, the lengths of the
PREPRINT enhancers are less sensitive to changes in the prediction threshold.

Supplementary Figure S4, Additional File 1, plots the normalized frequencies of enhancer lengths when the
PREPRINT and RFECS were trained on the K562 data and on the random regions with signal. In comparison
to Figure 1, the differences in the proportional frequencies of the long RFECS enhancers predicted by the two
thresholds were even more evident. In general, proportional frequencies of the short enhancers were higher for
the methods trained with the random regions with signal compared to the methods trained the pure random
regions. Moreover, the normalized frequencies of very short (< 400 bp) PREPRINT enhancers are higher than
the corresponding frequencies for RFECS. Similar results are obtained for the data from cell line GM12878
(Supplementary Figures S5 and S6, Additional File 1). Finally, a large proportion of predicted enhancers
consist of only one window (100 bp), or of short enhancers (< 2 kb), suggesting that defining the location of the
PREPRINT enhancers by choosing the window with the maximal score within a larger region is an adequate
approach.

The number of genome-wide enhancer predictions for each method and threshold are provided in Table 2. The
numbers were recorded before and after T'SS removal. When predicting enhancers in cell line GM12878, we used
either the best operating point threshold or the 1% FPR threshold estimated from the K562 CV, or the thresholds
estimated from the GM 12878 test data. The best operating point thresholds for the K562 cell line were all close to
0.5, whereas for the GM12878 cell line, when PREPRINT was trained on the random regions with signal, the best
operating point thresholds were close to 0.3, resulting in a very high number of enhancers. In general, RFECS
predicted less enhancers than ChromHMM and PREPRINT with the 0.5 prediction threshold. Specifically,
the numbers of predictions obtained by PREPRINT with the 1% FPR threshold are still higher than the
numbers of predictions obtained by RFECS with the prediction threshold 0.5. Furthermore, with the prediction


https://doi.org/10.1101/804625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/804625; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Normalized frequency of lengths of enhancers predicted by different methods
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Figure 1: The normalized frequencies of varying lengths of enhancers predicted in cell line K562 by different
methods using two prediction thresholds (0.5 and 0.75). PREPRINT and RFECS were trained on the
pure random regions. For each method and threshold, the frequencies were divided by the total number
of regions predicted as enhancers by each method. The regions were formed by combining the subsequent
enhancer predictions into one region.

threshold 0.5, RFECS trained on the random regions with signal predicted much less enhancers compared to
when trained on the pure random regions. When using a lower prediction threshold for RFECS (0.25), the
numbers of enhancers were comparable between the different random data definitions. By contrast, with the
prediction threshold 0.5 and the best operating point threshold, PREPRINT predicted more enhancers when
trained on the random regions with signal compared to the pure random regions. With the 1% FPR thresholds,
the number of PREPRINT enhancers were comparable between the different random data definitions. The
Bayesian approach predicted a lower number of enhancers than the ML approach, except in cell line GM12878
when PREPRINT was trained on the random regions with signal. Finally, the 1% FPR thresholds estimated
from the GM12878 test data were notably higher compared to the 1% FPR thresholds estimated from the K562
CV data. Therefore, one should be cautious when generalizing the prediction thresholds between data from
different cell lines. To conclude, the larger number of enhancer predictions for PREPRINT may result from
PREPRINT predicting proportionally more short enhancers than RFECS, as seen, for example, in Figures 1
and S4, Additional File 1. In addition, the random region definition affected the estimated thresholds and the
number of enhancer predictions, depending on the cell line and the threshold setting (0.5, the best operating
point, or the 1% FPR threshold).
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Table 2: The number of genome-wide enhancers predicted by different methods and thresholds.

Threshold 0.5 The best operating FPR 1% Threshold
point
or threshold 0.25 for
RFECS

Method Cell random all without TSS | threshold all without TSS | threshold all without TSS
ML K562 pure 145208 127857 0.442 157057 138760 0.735 106161 92509
Bayesian K562 pure 105386 89859 0.526 101986 86768 0.827 62210 51838
RFECS K562 pure 37072 30593 0.250 76412 63216
ML K562 with signal | 310477 288243 0.579 225970 206912 0.747 108428 94998
Bayesian K562 with signal | 227902 208035 0.591 162421 145801 0.771 80755 69210
RFECS K562 with signal | 18655 15622 0.250 63850 53773
ChromHMM Weak Enhancer K562 180471 176912
ChromHMM Strong Enhancer K562 69019 66888
ML GM12878 pure 151732 127438 0.442 173101 147286 0.735 129013 106737
Bayesian GM12878 pure 64594 55818 0.526 130019 109373 0.827 96939 80762
RFECS GM12878 pure 37287 33227 0.250 113662 101117
ML GM12878 with signal | 266968 415960 0.579 200436 179475 0.747 102566 87379
Bayesian GM12878 with signal | 287042 265754 0.591 210085 192613 0.771 101388 90428
RFECS GM12878 with signal | 20670 18359 0.250 113609 103588
ChromHMM Weak Enhancer  GM12878 178474 175487
ChromHMM Strong Enhancer GM12878 64052 62599
Thresholds estimated for the GM12878 cell line
ML GM12878 pure 0.572 151732 127438 0.927 96283 78287
Bayesian GM12878 pure 0.656 116236 97127 0.940 74434 62508
ML GM12878 with signal 0.359 446790 415960 0.962 23925 16296
Bayesian GM12878 with signal 0.303 562483 530530 0.843 67722 59307

Enhancers uniquely predicted by PREPRINT validated with a small number of
overlapping transcription factor binding sites

The genome-wide enhancer predictions were validated by inspecting the overlap between the predicted enhancers
and the histone acetyltransferase (p300) binding sites (SydhK562P300Iggrab and SydhGm12878P300Iggmus
ChIP-seq peak sets). In addition, a large set of TF and other co-regulatory protein binding sites from the
Transcription factor ChIP-seq Uniform peaks from ENCODE were utilized for validation. The peaks for RNA
Pol II, CTCF, CREB-binding protein (CBP) and p300 were removed from the Uniform peak set resulting in
peaks for 111 and 76 individual DNA binding proteins for cell lines K562 and GM12878, respectively. For more
details about the validation data, see Additional File 2. However, using the ChIP-seq peaks for validation can
be problematic: first, not all TSS-distal protein binding sites are enhancers; the binding sites can be some other
functional genomic regions, such as silencers or insulators. Second, the DNA binding proteins may contain both
activating and repressing factors. Hence, the enhancers expressing repressing chromatin features are validated
as enhancers, not only the active ones. The prediction of the repressed enhancers is a relevant task itself, but
is not supported by the choice of the enhancer coverage patterns used in this work.

An enhancer was validated if the 2 kb prediction window overlaps at least 1 bp of at least 1 peak in the
validation peak sets. The ChromHMM enhancer clusters contain regions with varying sizes; these were validated
similarly. Instead of requiring at least 1 overlapping Uniform ChIP-seq peak to validate a prediction, a more
rigorous requirement for the number of overlapping peaks could be adopted. However, to chooce the threshold
for the required number of overlapping peaks might not be straightforward. Figure 2 shows the proportions of
enhancer predictions having an overlap with varying numbers of TF or co-regulatory protein binding sites. The
predictions were obtained in the K562 cell line by PRERINT and RFECS, and in each comparison (a,b,c or d),
an equal number of enhancers were predicted by the methods; in comparisons a and b, the number of enhancers
were 30593 and 15622, respectively. These were the numbers of enhancers predicted by RFECS with threshold
0.5. In comparisons ¢ and d, the numbers 51838 and 69210 corresponded to the number of enhancers predicted
by PREPRINT with the Bayesian approach using the 1% FPR threshold. In comparisons a and c, the pure
random regions, and in comparisons b and d, the random regions with signal, respectively, were utilized when
training the model. In comparisons a and b, smaller numbers of top enhancer predictions were considered, and
the proportions of predictions having 0 TF or co-regulatory binding site were higher for PREPRINT than for
RFECS. In addition, the proportions of predictions overlapping 5-20 TF or co-regulatory binding sites were
slightly higher for RFECS. Conversely, the proportions of enhancers overlapping a small number (1-2) of TF
or co-regulatory binding sites were higher for PREPRINT. The proportions became comparable between the
different methods when increasing the number of predictions (comparisons ¢ and d).

Similar results were obtained for the predictions in cell line GM12878 (see Supplementary Figure S7, Addi-
tional File 1). The comparisons a—d were the same as in Figure 2, and the comparisons e and f corresponded to
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the 1% FPR thresholds estimated from the GM12878 test data. By contrast to the results seen in comparisons
¢ and d in Figure2, the proportions of predictions having zero TF or co-regulatory binding sites are lower for
PREPRINT than for RFECS (see comparisons ¢, d and e in Supplementary Figure S7, Additional File 1). This
is especially seen for the both ML and Bayesian approaches when the methods were trained on the pure random
regions. Moreover, the proportions of enhancers having a small number (1-3) of TF or co-regulatory binding
sites were higher for PREPRINT than for RFECS. In comparison f, the number of enhancers predicted by
PREPRINT with the 1% FPR threshold (16295) was similar to the number of enhancers predicted by RFECS
with threshold 0.5 (18359); hence, the comparisons b and f resulted in similar graphs.

To conclude, first, it would be preferable that the proportion of predictions having zero TF or co-regulatory
binding sites were low for a set of predictions. RFECS predictions in cell line K562 contain less predictions with
zero peaks compared to PREPRINT predictions, especially among the predictions with the largest prediction
scores (comparisons a and b). Second, in comparisons a and b in both cell lines, the RFECS predictions con-
tained proportionally more enhancers overlapping 5-20 different validation peaks than the predictions obtained
by PREPRINT. By contrast, PREPRINT predicted proportionally more enhancers with a small number (1-3) of
overlapping peaks; these enhancers may display weaker chromatin feature signals and may be missed by RFECS,
while they are still weakly validated. Third, the frequency distributions between RFECS and PREPRINT be-
came comparable when the number of predictions increases (comparisons ¢ and d). Finally, in cell line GM12878,
the frequency of predictions having zero TF or co-regulatory binding sites, and the frequency of enhancers val-
idating with a small number of (1-3) of overlapping peaks are lower and higher, respectively, for PRERPRINT
methods compared to RFECS. This might reflect a good generalization performance of PREPRINT to the data
from the GM12878 cell line. Based on these results, it is still challenging to define the threshold for the required
number of overlapping validation peaks. Therefore, in the following sections, the validation was still founded
on the requirement of at least 1 overlapping ChIP-seq peak.

To study the performance of the methods to predict enhancers in the whole human genome, we selected an
equal amount of enhancers and non-enhancers predicted by PREPRINT and RFECS. The non-enhancers were
chosen randomly among all regions having the prediction scores less or equal to 0.5. The predicted enhancers and
non-enhancers were labelled either as true positives, false positives, true negatives or false negatives considering
the overlap between the regions and the validation data ChIP-seq peaks. For both RFECS and PREPRINT,
the number of enhancers and non-enhancers was set to the number of enhancers predicted by RFECS with
prediction threshold 0.5. Table 3 provides the AUC values for the genome-wide predictions. RFECS obtained
the highest AUC scores in almost all four settings (p300 or TF, K562 or GM12878). Nevertheless, PREPRINT
with the ML approach reached the best AUC value 0.837 in cell line K562 when the method was trained on the
pure random regions, and the predictions were validated using the p300 peaks.

Moreover, in cell line GM12878, PREPRINT trained on the pure random regions with the ML approach
resulted in the AUC value 0.91 when the predictions were validated with the Uniform TF peak set, reaching
comparable performance to RFECS (0.936). Of the PREPRINT methods, the ML approach is always better
than the Bayesian approach, and the genome-wide enhancers predicted by PREPRINT trained on the pure
random regions validate better than enhancers predicted by PREPRINT trained on the random regions with
signal. Conversely, enhancers predicted by RFECS trained on the random regions with signal validate better;
this likely resulted from RFECS predicting much less enhancers when trained on the random regions with signal
compared to trained on the pure random regions. In addition, in cell line GM12878, there was no difference
between the performance of RFECS trained on different random data definitions, whereas in cell line K562 there
were more differences between the AUC values: 0.821 vs. 0.916 when validation was based on the p300 binding
sites, and 0.907 vs. 0.929 when the validation was based on TF and co-regulatory binding sites. By constrast,
the differences in the AUC values of PREPRINT trained on the different random definitions are larger in cell
line GM12878 than in cell line K562. To conclude, the validation performance of the genome-wide predictions
were comparable across methods, and the ML approach reached a good generalization performance between
data from different cell lines. However, the different settings, e.g. the cell line used for training and prediction,
the type of validation data, and the definition of the random regions, lead to divergent results.

To further investigate the performance of the methods to predict the enhancers genome wide, we computed
the proportion of validated enhancers, e.g. the validation rate, for a varying number of the top genome-wide
predictions. Figure 3 illustrates the validation rates for the predictions obtained in cell line K562 by the different
methods trained on the the pure random regions. In Figure 3, the numbers on x-axis correspond to number
of enhancers predicted by: RFECS with the prediction threshold 0.5 (30593), the Bayesian approach with the
1% FPR threshold (51838), the Bayesian approach with the threshold 0.5 (89859), the ML approach with the
1%FPR threshold (92509), and the ML approach with the threshold 0.5 (127857). In addition to computing
the validation rates of the top predictions, the validation rates for the random regions of equal size were also
computed. For comparison, the validation rates of the ChromHMM Weak and Strong Enhancers clusters were
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Figure 2: The proportions of the genome-wide enhancer predictions having an overlap with the varying
number of ChIP-seq peaks in cell line K562. The proportions are shown for the different random region
definitions and for the different thresholds. In a and c, the methods were trained on the pure random
regions, and in b and d, the methods were trained on the random regions with signal. The number of
enhancers in each comparison are shown above the figure. In a and b, the number of enhancers was the
minimum number of enhancers predicted by any of the methods with the threshold 0.5, and in ¢ and d,
the number of enhancers was the minimum number of enhancers predicted by PREPRINT methods with
their 1% FPR thresholds.

provided. To conclude, the validation rates of enhancers predicted by any of the methods were clearly higher
than the validation rates of the random regions. When comparing the different methods, the validation rates
were higher for RFECS than for PREPRINT when the number of enhancer predictions were low (30593 and
51838), but when considering a high number of enhancers (89859 and higher), PREPRINT reached comparable
or even higher validation rates. Notably, for the high number of enhancers, the predictions obtained by the
ML approach have higher validation rate than than the predictions obtained by RFECS. Similar results were
obtained in cell line K562 when the methods were trained on the random regions with signal (See Supplementary
Figure S8, Additional File 1). When trained on the random regions with signal, the validation rates were in
general lower than for the methods trained on the pure random regions. In addition, there were less differences
in the validation rates between the PREPRINT methods. Supplementary Figures S9 and S10, Additional File
1, shows the validation rates in cell line GM12878. In cell line GM12878, the validation rates were higher for
PREPRINT than for RFECS even on a modest number of enhancers (80000-90000), especially for the ML
approach. These results suggest that RFECS may predict a restricted set of enhancers with the strongest
chromatin feature signals, whereas PREPRINT can predict a larger number of enhancers, containing enhancers
with both strong and weak feature signals. When requiring the methods to predict a larger number of enhancers,
the PREPRINT enhancers have a higher validation rate.
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Table 3: The AUC values for the genome-wide predictions. The true labels of the predictions were based
on the overlap between the predictions and the validation data ChIP-seq peaks. An equal number of
enhancers predicted by PREPRINT and RFECS were chosen; the number was the minimum number
predicted with threshold 0.5 over all methods. In each setting of the validation data, method, and the
random data definition, the AUC value of the best method was highlighted with the bold font. In addition,
the AUC value of the TF validation data, the GM12878 cell line, the PREPRINT ML approach, and the
pure random set was highlighted due to comparable generalization performance (AUC = 0.91) to RFECS.

AUC p300 AUC TF

Cell line | method | pure  with signal | pure  with signal

K562 ML 0.837 0.826 0.884 0.854
Bayesian | 0.809 0.797 0.839 0.811
RFECS | 0.821 0.916 0.907 0.929

GM12878 | ML 0.831 0.792 0.910 0.841
Bayesian | 0.821  0.750 0.879  0.765
RFECS | 0.875 0.876 0.936 0.943

The overlap between predictions made by different methods

We investigated the overlap of predictions obtained by the different methods. PREPRINT and RFECS predic-
tions were considered as 2 kb windows. For an overlap of any two enhancers predicted by any two methods,

Validation rate of enhancers obtained by different methods and thresholds
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Figure 3: The validation rate of the genome-wide enhancer predictions obtained by the different methods
and thresholds in cell line K562. The methods were trained on the pure random regions. An enhancer
prediction was validated if it overlapped at least 1 bp of at least one TF or co-regulatory ChIP-seq peak.
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the minimum required overlap was 1 bp. As an enhancer predicted by the one method might overlap with two
enhancers predicted by the other method, the overlaps between enhancers predicted by different methods are
not symmetric for each pair of methods. Hence, the overlap was computed in both directions. The numbers
of unique and overlapping genome-wide predictions obtained by the different methods were illustrated as Venn
diagrams. In each are of the Venn diagram circles, the percentages of the validated enhancers were provided.
The validation was again performed as described above. Figure 4 shows a Venn diagram of the predictions
obtained in cell line K562. In the Venn diagrams, the numbers of PREPRINT and RFECS enhancers were the
same, and the number was chosen to be the minimum number of enhancers predicted by PREPRINT or RFECS
with the 0.5 prediction threshold. In Figure 4, around half of the enhancers predicted by PREPRINT or RFECS
were predicted by the all three methods, and this set had the highest validation rate (around 90%). In the set of
predictions shared by all methods, the number of enhancers predicted by ChromHMM was much larger. Hence,
their validation rate was lower (around 70%), likely reflecting the fact that ChromHMM enhancers were not
very precise, or the cluster labels along the genome were altered quite often between the enhancer state and the
other states, or both. Furthermore, the enhancer predictions shared by two methods had rather high validation
rates (60-90%), and the enhancers predicted uniquely by only one method had the validation rate range of
40-90%. Of the enhancers uniquely predicted by the different methods, the RFECS enhancers tended to have
the highest validation rate, although the number of unique RFECS enhancers was smaller than the number of
unique enhancers for PREPRINT or ChromHMM.

Supplementary Figure S11, Additional File 1, shows the Venn diagrams for larger sets of enhancer predictions
in cell line K562. The number of enhancers were equal to the number of enhancers predicted by PREPRINT
with the 1% FPR threshold. In accordance with the results obtained for the smaller set enhancers shown in
Figure 4, the unique RFECS enhancers validated better than the unique PREPRINT enhancers, in spite of
the fact the number of the unique PREPRINT enhancers was smaller than the unique RFECS enhancers. The
validation rates were overall smaller than in Figure 4, except for the unique enhancers predicted by ChromHMM.
This was a result of PREPRINT and RFECS beginning to cover come ChromHMM enhancers when lowering
their prediction thresholds; the unique enhancer set for ChromHMM became smaller, and their validation rate
improved. In addition, the number of overlapping regions between PREPRINT and RFECS was higher for
PREPRINT, which is also observed in Figure 4, implying that one RFECS prediction overlapped with multiple
neighbouring PREPRINT predictions. Finally, the Supplementary Figure S12, Additional File 1, shows the
Venn diagrams between predictions obtained by PREPRINT and RFECS utilizing different thresholds and the
random data definitions. The number of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>