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Unveiling the relationship between taxonomy and function of the microbiome is crucial to determine its 

contribution to ecosystem functioning. However, while there is a considerable amount of information on 

microbial taxonomic diversity, our understanding of its relationship to functional diversity is still scarce. 

Here we used a meta-analysis of 377 completely annotated and taxonomically different fungal genomes 

to predict the total fungal microbiome functionality on Earth with all known functions from level 3 of KEGG 

Orthology using both parametric and non-parametric estimations. The unsaturated model described the 

accumulation of functions with increasing species richness significantly better (P-value < 2.2e-16) than the 

saturated model suggesting the presence of widespread and rare functions. Consistent with the parametric 

approach, the non-parametric Chao-1 estimator that assumes a maximum functional richness did not 

reach a plateau. Based on previous estimates of fungal species richness on Earth, we propagated the 

unsaturated model to predict a total fungal microbiome functionality of 42.4 million. Of those, only 0.06% 

are known today since the vast majority belongs to yet unknown rare functions. Logically, our approach 

not only highlighted the presence of two types of functions but pointed towards the necessity of novel and 

more sophisticated methods to unveil the entirety of functions to fully understand the involvement of the 

fungal microbiome in ecosystem functioning. 

Ecosystem functioning 1–4 is mediated by biochemical transformations performed by a community 1 

of microbes from every domain of life 5; the microbiome. In every community, multiple organisms from 2 

different taxonomic groups can play similar if not identical roles in ecosystem functionality, the so-called 3 

functional redundancy 6. In fact, functional redundancy of certain functions was shown to be very high 4 

with several hundreds to thousands of different taxa expressing the same function within one habitat 7. 5 

These functions can be statistically inferred based upon homology to experimentally characterized genes 6 

and proteins in specific organisms to find orthologs in other organisms present in a given microbiome. 7 

This so-called ortholog annotation is performed in KEGG Orthology (KO) 8,9 that covers a wide range of 8 

functional classes (level 1 of KO) comprising cellular processes, environmental information processing, 9 

genetic information processing, human diseases, metabolism, organismal system, brite hierarchies and 10 
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functions not included in the annotation of the two databases pathway or brite. Logically, however, the 11 

bottleneck of describing microbiome functions is the low number of fully annotated specific organisms as 12 

they are limited to those that have undergone isolation and extensive characterization while the vast 13 

majority of organisms were not yet studied 10,11 and the annotation is based on the similarity to the 14 

genomes of the very few studied model organisms. As a consequence, fungal microbiome functionality 15 

can be inferred based on the composition of the fungal microbiome and its relation to functional 16 

parameters 12 as indicated by the frequent use of 18S and ITS2 metabarcoding (5,990 publications with 17 

the keyword “18S sequencing” and 2,466 with “ITS2 sequencing” in PubMed as of October 3rd 2019). 18 

However, as the mere description of the fungal community structure cannot directly assess functionality 19 

despite its proficient use to find variables driving the abundance of certain taxa or across multiple taxa 20 

down to the species level in complex communities, recently shotgun sequencing of genes (8,857) and 21 

transcripts (514) as well as metaproteomics (426) became more and more popular as a direct link between 22 

taxonomy and function. However, our understanding of functional diversity and its relationship to 23 

taxonomic diversity is still scarce. Here, we use both parametric and non-parametric estimators of 24 

functional richness to unveil the relationship between taxonomy and function in fungi with the aim to 25 

predict the total fungal microbiome functions on Earth. For this, we downloaded all taxonomically diverse 26 

and completely annotated fungal genomes (n=377) from the integrated microbial genomes and 27 

microbiomes (IMG) of the Joint Genome Institute (JGI) on August 7th 2019 with taxonomic annotation on 28 

species level and functional annotation on level 3 of KO. The parametric estimation comprised of an 29 

accumulation curve (AC) 13 of increasing functions with increasing species using 1,000 random 30 

permutations and its fit to a saturated and an unsaturated model of the Michaelis-Menten kinetics. 31 

Otherwise, Chao-1 for every 10% of species richness each with 20 replicates represented the non-32 

parametric estimator. We hypothesized limited functionality with a plateau at high species richness and 33 

thus a better fit of the saturated model of the parametric approach and a stagnating Chao-1 estimator 34 

with increasing species richness. 35 

The gene count of fungal phyla was not significantly (P-value > 0.5) different than the average 36 

gene count of all fungi (Figure 1a). Admittedly, the sequenced genomes are heavily in favor of Ascomycota 37 

(226 = 60.0%) and Basidiomycota (122 = 32.4%), and the sequencing of new genomes from the other phyla 38 

might reveal significant differences in genome size. Otherwise, significant (P-value < 0.5) differences were 39 

found in the number of KO functions were Ascomycota (2,666±222 KO functions) comprised of more 40 

functions than Basidiomycota (2,549±191) that, in turn, had more KO functions compared to 41 

Blastocladiomycota (2,071±268), Chytridiomycota (2,001±276), Mucoromycota (2,261±444) and 42 
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Zoopagomycota (2,062±277) (Figure 1b). Higher functional diversity in Ascomycota and Basidiomycota 43 

who belong to the subkingdom Dikarya may relate with their classification as higher fungi 14 but requires 44 

the sequencing and full annotation of additional genomes especially from the other phyla for validation. 45 

In the 377 analyzed fungal species, the median of interspecies functional redundancy was found to be 46 

0.03±0.41 (Figure 1c). Interspecies redundancy describes the performance of one metabolic function by 47 

multiple coexisting and taxonomically distinct organisms 15. In fact, most major biogeochemical reactions 48 

are driven by a limited set of metabolic pathways that are found in a variety of microbial clades 16. 49 

Consistent, taxonomic diversity strongly correlated with functional diversity and many ectomycorrhizal 50 

fungal species with similar ecological effects co-occurred in the same community 17 implying a high 51 

interspecies redundancy to mobilize nutrients from organic compounds 18,19. Here, interspecies 52 

redundancy was either high as 1,592 KO functions were more than 90% of the fungi or low with 4,537 KO 53 

functions in less than 10% of the species; together describing 77.3% of all KO functions. Hence, functions 54 

appear to diverge into highly redundant across fungal species or unique to only a few. The median of 55 

intraspecies functional redundancy was 2.0±1.1 gene copies per KO functions (Figure 1d). Generally, low 56 

intraspecies redundancy could derive from different KO functions performing functionally similar 57 

processes. In fact, all malate dehydrogenases perform the same metabolic function but are annotated by 58 

different KO functions (K00024-K00029) due to their involvement in a variety of metabolic pathways. The 59 

maximum intraspecies redundancy was found for the ascomycete Coccidioides immitis RS that comprised 60 

118 gene copies of the gustatory receptor (K08471) followed by 35 gene copies for the prolyl 4-61 

hydroxylase (K00472, EC 1.14.11.2) and 29 gene copies for the glutathione S-transferase (K00799, EC 62 

2.5.1.18); all of which are functions with low interspecies but high intraspecies redundancy. Noteworthy, 63 

the intraspecies redundancy of C. immitis RS of 1.6±2.5 was lower compared to the other fungi in the 64 

database, which could relate to a rather uncommon lifestyle with a higher share of unique but not 65 

essential functions. Indeed, comparative genomic analysis revealed that C. immitis is a primary pathogen 66 

of immunocompetent mammals 20. Functions with high interspecies and high intraspecies redundancy 67 

included the yeast amino acid transporter (K16261) with 14.5±8.2 gene copies found in 351 of the 377 68 

fungal species (93.1%), the salicylate hydroxylase (K00480, EC 1.14.13.1) with 13.9±9.5 gene copies 69 

(81.7%) and the glutathione S-transferase (K00799, EC 2.5.1.18) with 12.7±11.7 gene copies (98.9%). All 70 

of the above belong to the maintenance apparatus of the fungus, namely the transport of amino acids, 71 

the incorporation/reduction of oxygen by salicylate hydroxylase, and the detoxification of xenobiotic 72 

substrates by glutathione S-transferase. Hence, functions with high interspecies and high intraspecies 73 

redundancy are both widespread and essential to every fungus. Functions with high interspecies and low 74 
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intraspecies redundancy were not found in the 377 genomes. Logically, there might not exist widespread 75 

functions that are not essential. Surprisingly and different to our hypothesis, the unsaturated model 76 

described the AC significantly better (P-value < 2.2E-16) than the saturated model with both lower Akaike 77 

information criterion (AIC) and residual sum of squares (Table 1). The unsaturated model is described by 78 

the maximum functional richness fmax of 4,716±18*** across the 377 fungal species with an accretion rate 79 

Af of 2.1±0.1*** per fungal species, consistent with the estimate of intraspecies functional redundancy 80 

(Figure 2a). However, the relationship did not plateau as indicated by the constant of the additive term k 81 

that is 9.0±0.1***.  As it was suggested by the interspecies redundancy, the better fit of the unsaturated 82 

model inferred the presence of two types of microbiome functions. On the one hand, widespread 83 

functions rapidly increase with the number of species and are ubiquitously abundant in every living fungi. 84 

In total, nine functions were found in all of the 377 fungal species. All of which are crucial to sustain life 85 

such as the ribose-phosphate pyrophosphokinase (K00948, EC 2.7.6.1) necessary for nucleotide synthesis, 86 

the citrate synthase (K01647, EC 2.3.3.1) of the TCA cycle or the superoxide dismutase (K045654, EC 87 

1.15.1.1) that is an important antioxidant defense mechanism. The number of widespread functions is 88 

limited and the majority have been identified thus far amounting to, in total, 3,593±31 functions (with 89 

3,534-3,654 as 95% confidence intervals); nearly half of all known functions as of today. Otherwise, 90 

roughly 4,300 functions are rare and increase at a much slower rate with an increasing number of species 91 

but require time and the evolution of “dead ends”, i.e. species that were unable to evolve a particular 92 

function. The addition of more fungal genomes may increase the interspecies redundancy but it is 93 

questionable if a function only found in a few of the 377 fungal species can potentially be widespread 94 

amongst fungi. Given a species richness of 3.8 million fungi on Earth 21 and assuming that the yet unknown 95 

fungal microbiome functions are indeed rare, the propagation of the unsaturated model predicted the 96 

total fungal microbiome functionality on Earth to be 42,373,186±459,560 (with 41,574,275-43,376,938 as 97 

95% confidence intervals). This estimate was validated by using random subsets of 10, 20, 30, 40, 50, 60, 98 

70, 80 and 90% of all 377 fungal species, which yielded to a plateau of predicted functions when at least 99 

70% of the species were used (Table 2). Consistent with the better fit of the unsaturated model from the 100 

parametric approach, the non-parametric estimator of functional richness Chao-1 that assumes the 101 

existence of a maximum functional richness showed no plateau with increasing species richness of the 102 

lower bound estimate (Figure 2b) implying that the given species richness is too little to reach a potential 103 

maximum of functionality. Admittedly, the exploration beyond the limits of the data is likely to be 104 

imprecise and the predictions of fungal microbiome functionality may differ once additional fungal 105 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/804757doi: bioRxiv preprint 

https://doi.org/10.1101/804757
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

genomes with potentially new functions have been added. However, as of today, our understanding of 106 

fungal microbiome functionality is likely limited to a marginal part of all functions. 107 

Taken together, we suggest the presence of two types of fungal microbiome functions; 108 

widespread and rare functions. Our predictions revealed a potential for million more yet unknown rare 109 

functions that, logically, can only be unveiled by novel and more sophisticated methods. However, due to 110 

the vast amount of yet unknown functions, it is questionable if the relationship between taxonomy and 111 

function is in fact explained by an unsaturated model, if only two types of functions exist and if it is similar 112 

when different tools for the functional annotation are used. Noteworthy, the total bacterial microbiome 113 

functionality was not predicted as more than 70,000 bacterial genomes must be downloaded individually. 114 

At a rate of roughly a minute per genome, the estimated time to gather the information is more than 115 

1,167 hours (or 146 work days). However, given the 100 million bacterial species on Earth 22,23 together 116 

their lifestyle as micro-environment niche specialists 24, the total bacterial microbiome functionality is 117 

likely to be much higher and hence, our understanding of the involvement of microbes in ecosystem 118 

functioning even lower. 119 

Materials and Methods 120 

Metadata collection of the total known fungal microbiome functions 121 

To quantify the relationship between taxonomy and function, all genomes from taxonomically diverse 122 

fungal species (as taxonomic unit) were downloaded from the integrated microbial genomes and 123 

microbiomes (IMG) of the Joint Genome Institute (JGI) on August 7th 2019, containing the functional 124 

annotation from the level 3 of KEGG Orthology 8,9 (as functional unit) with counts of every gene per every 125 

genome. In total, the database comprised of 377 completely annotated fungal genomes with 7,926 KO 126 

functions. The gene counts and KO functions per fungal phylum and in all fungi were retrieved from the 127 

database. Interspecies redundancy was calculated as the number of KO functions covered by one 128 

randomly chosen species compared to the total number of functions in all species. Intraspecies 129 

redundancy or gene redundancy 25 was estimated as average of genes per individual KO function in any 130 

one species. 131 

Accumulation curves (AC) 132 

Fungal species were randomly added in intervals of one up to the maximum species richness of 377 with 133 

1,000 random permutations per step using the function specaccum from the R package vegan 26. The AC 134 
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of the database permutation was then fitted to a saturated (Equation 1) and an unsaturated model 135 

(Equation 2) with the critical point estimated by the term 3Af as previously described 27. The fit of the 136 

models was compared by analysis of variance (ANOVA) and Akaike Information Criterion (AIC) 28 with a 137 

penalty per parameter set to k equals two. The total number of KO functions in fungi on Earth was 138 

predicted using the global species richness estimate of 3.8 million fungi 21 and the Monte Carlo simulation 139 

of the function predictNLS in the R package propagate 29. To validate the Michaelis-Menten approach, 140 

random subsets of the 377 fungal species with different sizes were used to predict the total microbiome 141 

functions as described before. In addition, the non-parametric estimation of the lower bound of functional 142 

richness was calculated by Chao-1 again using random subsets of the 377 fungal species with different 143 

sizes and 20 replicates each (Equation 3). 144 

Eq. 1: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠 =
𝑓𝑚𝑎𝑥∗[𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠]

𝐴𝑓+[𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠]
 145 

Eq. 2: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠 =
𝑓𝑚𝑎𝑥∗[𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠]

𝐴𝑓+[𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠]
+ 𝑘 ∗ [𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠] 146 

Eq. 3:  𝐶ℎ𝑎𝑜1 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠 ∗
𝑎1

2

2𝑎2
 147 

Here, fmax is the maximum functional richness, Af the accretion rate of functions with an increasing number 148 

of species and k the constant of the additive term. Functions found only once or twice are indicated by a1 149 

as singletons and a2 as doubletons, respectively.  150 
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Figures 219 

Figure 1: Gene counts (a) and the number of KO functions (b) in fungal phyla given as average with 220 

standard deviation. The number of fungal genomes per phylum is given in italic. Data followed by the 221 

same letter is not statistically different according to the HSD-test (P-value > 0.5). Total share of KO 222 

functions within fungi relative to the total number of fungal species in the database as interspecies 223 

redundancy (c) and the number of replicated KO functions within one fungal species in the database as 224 

intraspecies redundancy (d). 225 

  226 
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Figure 2: Parametric (a) and non-parametric (b) estimation of total functional richness. The unsaturated 227 

model of the accumulation curves as grey points with error bars for the total known fungal microbiome 228 

functions derived from the KO database by 1,000 random permutations for every one species richness 229 

with 95% confidence intervals. The maximum functional richness is represented by fmax, Af is the accretion 230 

rate of functions with increasing number of species, and k is the constant of the additive term. Significance 231 

of the parameter estimates are indicated by asterisks (*** equals P < 0.001). The Chao-1 was calculated 232 

using 20 replicates shown in grey for every 10% of the total fungal species richness in the database starting 233 

with two species. 234 

  235 
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Tables 236 

Table 1: The fit of the saturated (S) and the unsaturated model (US) of the accumulation curve indicated 237 

by the Akaike’s An Information Criterion (AIC) and residual sum of squares (Res. Sum Sq), the P-value that 238 

describes the significant difference between the saturated and the unsaturated model, and the mean 239 

prediction with standard deviation (SD) and 95% confidence intervals (CI) at 3.8 million fungal species. 240 

Model AIC Res. Sum Sq P-value Prediction SD Lower CI Higher CI 

S 5,843.751 1.17E+08      
US 4,693.567 5514694 < 2.2E-16 42,373,186 459,560 41,574,275 43,376,938 
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Table 2: The mean prediction of total fungal microbiome functionality with standard deviation (SD) and 242 

95% confidence intervals (CI) given a richness of 3.8 million fungal species on Earth estimated by the 243 

Monte Carlo simulation when random subsamples of the 377 fungal species are used. The prediction 244 

stabilizes at around 40 million functions with at least 70% of the fungal species. 245 

Species (%) Prediction SD Lower CI Higher CI 

377 (100) 42,373,186 459,560 41,574,275 43,376,938 

339 (90) 37,575,880 658,902 36,285,040 38,868,781 

302 (80) 46,712,785 732,903 45,274,956 48,152,062 

264 (70) 38,412,964 315,475 37,794,156 39,031,118 

226 (60) 62,515,150 2,085,421 58,421,494 66,607,622 

189 (50) 63,362,037 1,645,403 60,134,332 66,591,118 

151 (40) 77,516,964 1,427,367 74,713,805 80,321,171 

113 (30) 97,942,669 7,026,524 84,131,304 111,757,847 

76 (20) 104,882,008 11,188,137 82,875,937 126,831,401 

38 (10) 107,435,329  3,650675  100,235,159  114,636,999  
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