1	
2	
3	
4 5	Cognition across the lifespan: age, gender, and
5 6	sociodemographic influences
7	
8	Nichols, E. S. ^{a,b*} , Wild, C. J. ^b , Owen, A. M. ^{b,c,d} & Soddu, A. ^{b,e}
9	
10	^a Faculty of Education, Western University, London, Ontario, Canada
11	^b Brain and Mind Institute, Western University, London, Ontario, Canada
12	^c The Department of Physiology and Pharmacology, Western University, London,
13	Ontario, Canada
14	^d The Department of Psychology, Western University, London, Ontario, Canada
15	^e The Department of Physics and Astronomy, Western University, London, Ontario,
16	Canada
17	
18	*Corresponding author information:
19	Emily S. Nichols
20	1137 Western Rd
21	London, Ontario, Canada
22	e-mail: enicho4@uwo.ca
23	
24	Word count: 4,999

2

25 Abstract

26	Maintaining cognitive health across the lifespan has been the focus of a multi-billion-dollar
27	industry. In order to guide treatment and interventions, a clear understanding of the way that
28	proficiency in different cognitive domains develops and declines across the lifespan is
29	necessary. Additionally, there are gender differences in a range of other factors, such as anxiety
30	and substance use, that are also known to affect cognition, although the scale of this
31	interaction is unknown. Our objective was to assess differences in cognitive function across the
32	lifespan in men and women in a large, representative sample. Leveraging online cognitive
33	testing, a sample of 18,902 men and women ranging in age from 12-69 matched on socio-
34	demographic factors were studied. Segmented regression was used to model three cognitive
35	domains – short-term memory, verbal abilities, and reasoning. Gender differences in all three
36	domains were minimal; however, after broadening the sample in terms of socio-demographic
37	factors, gender differences appeared. These results suggest that cognition across the lifespan
38	differs for men and women, but is greatly influenced by environmental factors. We discuss
39	these findings within a framework that describes gender differences in cognition as likely
40	guided by a complex interplay between biology and environment.
41	

42 Keywords: Cognition, Aging, Gender, Cognitive Decline, Statistical Modeling

- 44
- 45
- 46

3

47 Introduction

48	By 2020, roughly 22% of the world's population will be over 65, a total of approximately
49	1.7 billion people (United Nations Department of Economic and Social Affairs, 2019). The
50	consequences of our aging population are many, including an increasing focus on maintaining
51	cognitive health; more so than ever before, individuals are seeking ways to keep their minds
52	sharp. In order to be able to evaluate different tools and treatments for addressing cognitive
53	aging, it is important that we first have a clear understanding of how cognition changes across
54	the lifespan in average, healthy individuals. Additionally, because of the often-cited cognitive
55	differences between women and men (Anderson et al., 2000; Feng et al., 2007; Karapetsas &
56	Vlachos, 1997; Krikorian & Bartok, 1998), we must characterize cognition in each population; if
57	gender differences in cognitive abilities do exist, then men and women may respond differently
58	to cognitive aging interventions.
58 59	to cognitive aging interventions. In healthy individuals, cognitive abilities develop rapidly throughout childhood
59	In healthy individuals, cognitive abilities develop rapidly throughout childhood
59 60	In healthy individuals, cognitive abilities develop rapidly throughout childhood (Anderson, 2002; Anderson et al., 2001a; Diamond, 2013; Rizeq et al., 2017). By 18, executive
59 60 61	In healthy individuals, cognitive abilities develop rapidly throughout childhood (Anderson, 2002; Anderson et al., 2001a; Diamond, 2013; Rizeq et al., 2017). By 18, executive function is thought to be mature (Lee et al., 2013), although research suggests that some
59 60 61 62	In healthy individuals, cognitive abilities develop rapidly throughout childhood (Anderson, 2002; Anderson et al., 2001a; Diamond, 2013; Rizeq et al., 2017). By 18, executive function is thought to be mature (Lee et al., 2013), although research suggests that some processes continue to develop in early adulthood (Hartshorne & Germine, 2015). Young
59 60 61 62 63	In healthy individuals, cognitive abilities develop rapidly throughout childhood (Anderson, 2002; Anderson et al., 2001a; Diamond, 2013; Rizeq et al., 2017). By 18, executive function is thought to be mature (Lee et al., 2013), although research suggests that some processes continue to develop in early adulthood (Hartshorne & Germine, 2015). Young adulthood is where most researchers agree that cognitive abilities peak; however there is large
59 60 61 62 63 64	In healthy individuals, cognitive abilities develop rapidly throughout childhood (Anderson, 2002; Anderson et al., 2001a; Diamond, 2013; Rizeq et al., 2017). By 18, executive function is thought to be mature (Lee et al., 2013), although research suggests that some processes continue to develop in early adulthood (Hartshorne & Germine, 2015). Young adulthood is where most researchers agree that cognitive abilities peak; however there is large variability within this period across different cognitive functions (Anderson, 2002; Hartshorne &

4

68 Differences in cognitive abilities between men and women are less clear; although 69 several gender disparities in cognitive abilities appear to exist, recent studies have found these 70 differences to be mediated by underlying factors related to gender, such as socio-cultural 71 factors, rather than being inherent to biological factors of sex. For example, Krinzinger and 72 colleagues (2012) found that number processing advantages in boys were mediated by 73 attitudes toward mathematics, and similar results have been found in young adults (Sokolowski 74 et al., 2019). Differences in verbal processing have been less clear, with some suggesting that 75 they are due to variability in instruction and strategy (Scheuringer et al., 2017; Scheuringer & 76 Pletzer, 2017), and others suggesting a hormonal link (Burton et al., 2005; Griksiene & 77 Ruksenas, 2011). Reports of gender differences in age-related cognitive decline are largely thought to be the result of cohort effects (Cornelis et al., 2019; Lipnicki et al., 2017; Wu et al., 78 79 2012), although others have found gender-specific links to brain-derived neurotrophic factor 80 (Laing et al., 2012) and brain metabolic activity (Malpetti et al., 2017). Realistically, the truth 81 likely lies somewhere in between, with a multifaceted interaction of biology and environment 82 (Malpetti et al., 2017; Miller & Halpern, 2014). 83 Finally, there are a number of sociodemographic factors known to affect cognition. For example, it is generally agreed that higher socioeconomic status (SES) predicts better 84 85 performance on cognitive tasks (Blums et al., 2017; Lubinski, 2009). Additionally, anxiety, depression, and substance abuse also have known detrimental effects on cognition, with higher 86 87 levels of all three being associated with poorer cognitive outcomes (Crego et al., 2009; Hampshire et al., 2012; Zaremba et al., 2019). Such factors also interact with gender; women 88 tend to experience higher levels of anxiety (McLean et al., 2011) and depression (Parker & 89

Brotchie, 2010), while men experience higher levels of substance abuse (Compton et al., 2007),

90

5

91 although women may be more at risk specifically for alcohol abuse (Grant et al., 2017, but see 92 Bratberg et al., 2016). Thus, there is a complex interaction of age, gender, and other 93 sociodemographic variables that must be considered when studying cognitive abilities across 94 the lifespan. 95 The internet provides a unique opportunity for examining cognition across the lifespan in the general population on a huge scale, allowing data to be sampled from participants from a 96 97 broad range of SES, geographical, and educational backgrounds. Leveraging the power of the 98 internet provides us with a cross-sectional snapshot of both demographics and cognition from a 99 larger and more diverse sample than would be possible to collect in the laboratory. The first goal of the present study was to characterize cognitive abilities across the 100 101 lifespan, ranging from adolescence to late adulthood. Specifically, we sought to address 102 whether differences exist between cognitive domains; do different cognitive domains show the 103 same pattern, or are they at their peak at different ages? Do they show the same rate of decline, or do some remain resilient to aging more so than others? The second goal was to 104 105 examine whether age effects differed between genders, and what factors may influence these 106 differences. Specifically, do gender differences exist in some cognitive domains and not others? 107 Do men and women attain their highest scores at the same age, and do they decline at the same rate? Further, we explored the demographic and social factors that affect the genders 108 109 differently, and whether controlling for these differences affects the observed pattern of

110 cognitive abilities across the lifespan. Taking into account studies of the effects of mental health

and sociodemographic variables on cognition, we predicted that matching groups on these

	,	

112	factors would eliminate gender differences in cognitive abilities. However, based on smaller
113	studies using more limited time windows, we predicted that when not controlling for these
114	factors, gender differences would manifest with men outperforming women in memory and
115	reasoning, but with women outperforming men in verbal abilities, and that the pattern of these
116	abilities would show an increase up to early adulthood, and a slow decline into mid and late
117	adulthood.
118	Materials and Methods
119	Participants
120	All data for this study were collected with the CBS (www.
121	cambridgebrainsciences.com) online platform, which has previously been used for other large-
122	scale studies of cognition (Nichols et al., 2020; Wild et al., 2018). From a database of 65,994
123	participants, two tightly matched samples of men and women were created, with 9,451
124	participants in each. A summary of the sample's demographics is included in Table 1. All
125	participants gave informed consent, and ethics approval was obtained through the local
126	Research Ethics Committee (2010.62).
127	Materials
128	Sociodemographic, lifestyle, psychological, and sleep questionnaire
120	The sector decision was here the standard sector is a standard sector was attended to the inclusion of

129 The sociodemographic, lifestyle, psychological, and sleep questionnaire included 130 questions about the individual's age and gender, lifestyle such as exercise, substance use, and 131 sleep, mental health such as depressive symptoms and anxiety, and other information such as 132 education, employment, and level of technical savviness. When these data were collected,

133 gen	der was presente	d as a binary	response (ma	iale/female), therefore w	e do not have
---------	------------------	---------------	--------------	-------------	----------------	---------------

- information on non-binary individuals. Data included in the present study are listed in Table 1.
- 135 The questions used in the present study are included in the Supplementary Material.

136 **Cognitive battery**

- 137 Prior to filling in the questionnaire, participants completed the 12 tests in the CBS
- 138 battery. Test order was fixed across participants. Detailed descriptions of the tests can be found
- in the Supplementary Material, but in brief they are: (1) 'Monkey Ladder' (visuospatial working
- 140 memory); (2) 'Grammatical Reasoning' (verbal reasoning); (3) 'Double Trouble' (a modified
- 141 Stroop task); (4) 'Odd One Out' (deductive reasoning); (5) 'Spatial Span' (short-term memory);
- 142 (6) 'Rotations' (mental rotation); (7) 'Feature Match' (feature-based attention and
- 143 concentration); (8) 'Digit Span' (verbal working memory); (9) 'Spatial Planning' (planning and
- 144 executive function); (10) 'Paired Associates' (shape-location associative memory); (11)
- 145 'Interlocking Polygons' (visuospatial processing); and (12) 'Token Search' (working memory and

146 strategy).

147 **Factor analysis**

The 12 tests were used to create three "composite" scores reflecting performance based on a previous factor analysis described in Hampshire et al. (2012). The three composite scores, labeled as short-term memory, reasoning, and verbal abilities, were calculated as follows. First, the individual test scores were normalized (M = 0.0, SD = 1.0). Then, the three cognitive domain scores were calculated using the formula $Y = X(Ar^{+})^{T}$, where Y is the N × 3 matrix of domain scores, X is the N × 12 matrix of test z-scores, and Ar is the 12 × 3 matrix of

varimax-rotated principal component weights from Hampshire et al. All 12 tests contributed to
each domain score, as determined by their component weights.

156 Statistical analyses

Data were analyzed in R (version 3.5.2, R Core Team, 2018) and RStudio (version 1.1.463). Specific packages included: 'Segmented' (Muggeo, 2008) for computing regressions with breakpoints, 'Matchlt' (Ho et al., 2011) for matching samples on demographic variables, 'parallel' for parallel computing, and 'boot' (Canty & Ripley, 2019) for calculating confidence intervals. Figures were produced using 'ggplot2' (Wickham, 2016). Two groups of 9,451 men and 9,451 women were created, matched on with the nearest neighbour matching method for all variables listed in Table 1.

164 To examine the differences in demographic variables between genders, three different 165 tests were used: Welch's t-tests for continuous variables, Wilcoxon Rank Sum tests for ordinal 166 variables, and chi-square tests for categorical variables. P-values were corrected for multiple comparisons using a false discovery rate and were considered significant at p < .01. Effect size 167 was calculated using the appropriate measures for each test: Cohen's d for t-tests, r for 168 169 Wilcoxon Rank Sum tests, and Cramer's V for chi-square tests. Measures of skew and kurtosis 170 indicated that domain scores were normally distributed, and histograms are shown in Figure 1. 171 Segmented linear regression models were constructed to predict each of the 3 domain 172 scores from participants' reported age and were estimated using maximum likelihood 173 estimation. Segmented regression was used to fit a model in which there is a change in the 174 linear relationship – such as a "peak" that indicates a transition from increasing to decreasing 175 performance across different ages – without imposing a pre-determined shape (e.g., quadratic

176 or cubic) through adding one or more piecewise linear relationships (Muggeo, 2003, 2008). The 177 value of the independent variable (i.e., age) at which this change occurs is referred to as a 178 breakpoint. The relationship between cognitive performance and age was modeled separately 179 for each gender. 180 The segmented regression technique used here requires that the number of 181 breakpoints, and (optionally) initial estimates of their locations, are provided. To determine the 182 number of these points in each score, we fit each segmented regression model multiple times 183 with one or more breakpoints and selected the model with the lowest Bayesian Information 184 Criterion (BIC) (Muggeo, 2008; Tiwari et al., 2005). The number of breakpoints was estimated 185 separately for each domain score and gender. The algorithm converged on consistent breakpoint locations regardless of whether initial estimates were provided (from visual 186 187 inspection of local regression curves, shown in Figure S1), or not. To confirm that a model with 188 one or more breakpoints predicted the data better than a linear model, the Davies' test (Davies, 2002) was used to determine whether there was a statistically significant change in slope. The 189 190 estimated breakpoint location was taken as the age that was associated with peak performance 191 in all regression models except for two cases. First, in men's verbal scores, in which there were 192 two breakpoints and the breakpoint with the highest score was used as the age at which 193 performance peaked. Second, in women's reasoning scores, in which the highest score was at 194 the lower boundary of our age range. Slopes of the increasing and decreasing segments, as well 195 as the middle segment for men's verbal scores, were obtained using the 'slope' function of the 'segmented' package, and 95% confidence intervals (CIs) were calculated for peak age, score at 196 197 peak age, and all slopes.

198 Differences in these parameters between men and women were analyzed by 199 bootstrapping with 10,000 replications the difference of the estimated parameter values from 200 models that were separately estimated for men and women. To determine whether these 201 values differed significantly between genders, the lower and upper 2.5% quantiles of the 202 bootstrapped difference values were produced; if these bounds included zero, then it could be 203 interpreted as no significant difference between the genders. 204 In segmented models where multiple breakpoints were deemed a better solution than a 205 single point as determined using BIC, the increasing or decreasing portion of the curve (i.e., the 206 data to the left or right of the "peak") was characterized by two increasing or decreasing linear 207 segments with different slopes (as can be seen in Figure 2C, women's reasoning scores). In 208 order to compare slopes between the genders in these cases, bootstrapping was conducted by 209 fitting the segmented model, then calculating the average slope to the left (in the case of men's 210 verbal scores) or right (in the case of women's reasoning scores) of the peak. The rest of the 211 bootstrapping parameters were kept the same as described above.

212 Secondary analyses

Although matching groups on sociodemographic measures allows us to more accurately determine what the influence of gender alone is on cognitive performance, men and women do realistically differ on measures such as anxiety and sleep, and such factors are known to affect cognition. Thus, a second set of analyses were run on the full database (after cleaning of missing data and outliers, described below), to determine what differences may exist in a sample that is reflective of the sociodemographic variance we see in the population.

219	Only data from the participants who completed all questionnaire items and all 12 tests
220	were included in analysis. 65,994 participants met these requirements. Test scores were then
221	filtered for outliers in two passes: scores greater than six standard deviations were assumed to
222	be technical errors and were first removed. Then, scores greater than four standard deviations
223	from the recalculated mean were identified, assumed to be performance outliers, and
224	removed. Finally, individuals younger than 12 and older than 69 were removed because of low
225	numbers outside of this age range. 45,779 participants were included in the final analysis.
226	Descriptive information for these two new samples is summarized in Table S1. Scores
227	are plotted against age in Figure S2, and histograms of domain scores are shown in Figure S3.
228	Local regression curves are shown in Figure S4. The same set of analyses were performed as
229	outlined in the section above, however because the total sample of men was larger than
230	women, a random sample of 13,444 men were selected upon each bootstrap iteration in order
231	to match the female sample size.
232	Results
233	Cognitive domain scores
234	Short-term memory
235	Results are reported in Table 2. A model with one breakpoint was found to best
236	estimate women's memory scores. The highest point in women's STM scores occurred at age
237	20.42 [95% CI = 19.36, 21.48], with a score of 0.046 [95% CI = -0.009, 0.101]. The slopes of the
238	segments to the left and right of the breakpoint were 0.036 [95% CI = 0.019, 0.053] and -0.023
239	[95% CI = -0.025, -0.022], respectively, indicating that age was a significant predictor of STM

240	performance in these age ranges; specifically, increasing age was associated with increasing
241	scores up to the age of 20 years, after which it was associated with decreasing performance.
242	Davies' test for a change in slope was significant ($p < .001$), indicating that the linear
243	relationship changed at the breakpoint, as can be seen in Figure 2A.
244	Men's memory scores were also best estimated by a segmented model with one
245	breakpoint. The highest point in men's STM score occurred at age 19.65 [95% CI = 18.61, 21.48],
246	with a score of 0.259 [95% CI = 0.187, 0.330]. Slope of the increasing segment was 0.049 [95%
247	CI = 0.022, 0.075], and slope of the decreasing segment was -0.025 [95% CI = -0.027, -0.023],
248	showing a significant effect of age on STM score in men. The change in slope was significant, as
249	measured by the Davies' test ($p < .001$). As can be seen in Table 3, there was no significant
250	difference in the age at which women and men peaked in STM performance. However, men
251	reached a significantly higher overall score than women at their peak ages, a difference of 0.21
252	standard deviations. When comparing how STM scores increased leading up to peak age and
253	how quickly they declined afterward, women and men did not differ significantly.
254	Verbal abilities
255	Results of segmented regression of verbal scores are also summarized in Table 2. A

model with two breakpoints was found to best estimate women's verbal scores. Women first had a breakpoint at age 16.49, at which point the rate at which scores were increasing, slowed (Figure 2B). The highest point in women's verbal scores occurred at age 24.89 [95% CI = 22.26, 27.52] with a score of 0.071 [95% CI = 0.033, 0.108]. Slope of the initial increasing segment was 0.153 [95% CI = 0.093, 0.214], the slope of the second increasing segment was 0.022 [95% CI = 261 0.009, 0.035] and slope of the decreasing segment was -0.006 [95% CI = -0.008, -0.003],

262	showing a significant relationship between age and verbal abilities. Davies' test for a change in
263	slope was significant (p < .001), indicating that the linear relationship changed at the
264	breakpoint.
265	Men's verbal scores were best estimated by a segmented model with two breakpoints.
266	As can be seen in Figure 2B, men first had a breakpoint at age 17.16, at which point the rate at
267	which scores were increasing, slowed. The highest point in men's verbal score occurred at age
268	28.42 [95% CI = 25.33, 31.52], with a score of 0.104 [95% CI = 0.050, 0.158]. Slope of the initial
269	increasing segment was 0.146 [95% CI = 0.094, 0.198], the slope of the second increasing
270	segment was 0.015 [95% CI = 0.006, 0.023] and slope of the decreasing segment was -0.008
271	[95% CI = -0.011, -0.005], indicating a significant relationship between age and verbal abilities ir
272	all three sections. The change in slope was significant, as measured by the Davies' test (p <
273	.001).
274	As summarized in Table 3, there were no significant differences in the age at which
275	women and men's scores reached a maximum in verbal abilities, scores at peak age, nor in the
276	slopes of the increase and decrease in scores surrounding peak age
277	Reasoning
278	A model with one breakpoint was again found to best estimate women's reasoning
279	scores. However, this breakpoint occurred at age 38.12 years, and indicated a transition from a
280	gradual to steeper decline: scores declined with a slope of -0.014 [95% CI = -0.017, -0.011] from
281	age 12 to age 38.12, at which point the negative slope increased to -0.029 [95% CI = -0.035, -
282	0.024]. Davies' test for a change in slope was significant ($p < .001$), indicating that the linear
283	relationship changed. As can be seen in Figure 2C, the highest predicted scores for women

284	occurred at age 12 with a score of 0.223 [95% CI = 0.187, 0.271]. However, because this is the
285	cut-off age of our sample, it is not possible to determine whether this is indeed a true peak, or
286	if scores are higher at earlier ages.
287	Men's reasoning scores were best estimated by a segmented model with one

breakpoint. The breakpoint in men's reasoning score occurred at age 19.62 (95% CI = 17.70,

289 21.54), with a score of 0.131 [95% CI = 0.060, 0.201]. The change in slope was significant, as

290 measured by the Davies' test (p < .001), however the slope of the initial segment was 0.015

291 [95% CI = -0.012, 0.041], and slope of the decreasing segment was -0.025 [95% CI = -0.027, -

292 0.023], indicating that only the second segment showed a significant effect of age. Similar to

293 women, this suggests that we did not capture a developmental increase in reasoning abilities

within the current sample, and it is possible that the true peak occurs earlier than age 12.

Because we do not have a reliable measure of peak age in either gender, we compared between genders the age at which reasoning scores began to decline. Women began to decline significantly earlier than men, however reasoning scores at that age did not differ between genders (Table 3). Because women did not show an increase in reasoning scores within our age range, we could not compare men and women on this measure. However, when comparing how scores declined after peak age, men declined significantly faster than women.

301 Unmatched samples

302	Women and men differed on several demographic factors, but not for age, education,
303	exercise, and number of siblings. While all significant <i>p</i> -values were \leq .003, the largest effect
304	sizes were seen in hours of sleep (Cohen's $d = 0.10$), units of caffeine per day (Cohen's $d = -$
305	0.19), anxiety level (Wilcoxon's $r = 0.15$), and technical savviness (Cramer's $V = 0.24$).
306	Short-term memory
307	Results of the segmented regression for STM scores of both genders in the socio-
308	demographically unmatched sample are reported in Table 4. Both women and men showed a
309	significant change in slope as measured by the Davies' test (p < .001 for both genders). As can
310	be seen in Table 5 and Figure 3A, no significant differences were found in the age at which
311	women and men reached the highest point in STM, nor in the slopes of the increase and
312	decrease in scores surrounding peak age. However, men reached a higher overall score than
313	women at their peak ages by a standard deviation of 0.28.
314	Verbal abilities
315	Both women and men showed a significant change in slope as measured by the Davies'
316	test (p < .001 in all tests). A model with a single breakpoint best estimated women's scores,
317	while men's scores were still estimated best by a model with two breakpoints. As summarized
318	in Table 5, men reached the highest point in verbal abilities at a significantly later age than
319	women. Men also had significantly higher scores at peak age, with a difference of 0.05 standard
320	deviations. When comparing how scores increased up to peak age, women's scores improved at

321 a faster rate than men's, however there was no difference when comparing the rate of decline322 from peak age to age 69.

323 **Reasoning**

- Reasoning scores in our sample of women began to decrease at a significantly earlier
- 325 age than men, however scores at that age did not differ between genders. While we did not
- 326 capture an increase in reasoning abilities in either gender in our sample, reasoning scores
- 327 decreased significantly faster in men than women (Table 5).

328 **Discussion**

329 After creating three cognitive domain scores from the 12 cognitive tests based on their 330 underlying factor structure, we replicated previous findings that not all cognitive domains 331 develop and decline in the same way. Specifically, STM increased rapidly from age 12 to the 332 early 20s, at which point it decreased at a steady rate until age 69, the upper limit of our 333 sample's age range. Verbal abilities also peaked in early adulthood, while reasoning did not 334 show a clear peak in scores, instead being characterized by either a decline from age 12, or a 335 plateau followed by a decline. These results were consistent with previous studies showing that 336 cognition is not a unitary concept, and different cognitive abilities have separable 337 developmental trajectories (Hartshorne & Germine, 2015; Salthouse, 2009). However, they 338 extend the results of those studies in several important ways: 339 Interpreting gender differences in cognitive data is complicated by the differences in socio-demographic factors. Several factors that were matched across groups, such as sleep and 340 341 anxiety, have known effects on cognitive function (Wild et al., 2018), making it difficult to

determine what is driving the observed gender differences in samples unmatched on these
variables. Additionally, because these socio-demographic factors are gender-dependent, it is
not possible to include them in the model due to issues with multicollinearity. By matching men
and women on these factors, however, we were able to limit their effect on the data as much
as possible, and this greatly reduced or eliminated the differences in cognitive performance and
aging. Of course, there are numerous factors that we did not control for, such as reproductive
health and occupation, and it is impossible to truly capture all of them. Additionally, there are
socio-demographic differences that may have biological underpinnings. For example,
depression is more prevalent in women, perhaps due to the presence of sex-specific forms such
as premenstrual dysphoric disorder (Albert, 2015). It is therefore difficult to disentangle the
environment from biological sex differences, however accounting for these differences,
regardless of their origin, is necessary for describing gender differences in cognition alone.
While these results are presumed to be reflective of the cognitive performance in a
tightly controlled sample, when examining the progression of STM, verbal abilities, and
reasoning in men and women in the broader database, all three cognitive domains showed
unique differences. Although men and women's scores reached peak STM performance at the
same age, men reached a slightly higher score than women. In verbal abilities, women peaked
faster and earlier, but men again reached higher scores. While women's reasoning began to
decline earlier than men's, men declined at a faster rate. These results extend what is known
from previous gender research. For example, there is evidence that men lose grey matter
volume more rapidly with age than women, especially in fronto-temporal regions (Kryspin-
Exner et al., 2011; A. K. H. Miller et al., 1980; Sowell et al., 2007); this in turn may lead to faster

364 decline in cognitive function, fitting the pattern observed here in the reasoning domain. In 365 contrast, women are thought to have better verbal processing than men; however we see the 366 opposite here, with men reaching a higher peak score than women. One possible explanation 367 for this discrepancy could be the age at which verbal abilities are tested. Burton and colleagues 368 (19) tested a sample of university students, which is common in Psychology research. Looking 369 at the pattern of verbal abilities in men and women in the current unmatched sample, women 370 seem to outperform men at age 23, which, if we were to only examine individuals around this 371 age, may lead to the erroneous conclusion that women have superior verbal abilities. Similarly, 372 men are frequently reported to be better at mental rotation than women (Burton et al., 2005), 373 a test included in our reasoning domain. Here, we found that peak reasoning scores did not 374 differ between genders, but women declined much earlier than men. Again, comparing genders 375 within a limited age range would have led to the erroneous conclusion that men outperform 376 women in this domain, when in reality it is a difference in trajectory of reasoning abilities. The 377 present results underline the need to take the progression of cognitive abilities across the 378 lifespan into account when studying gender differences. 379 As noted above, creating broader groups in terms of gender-specific differences in 380 socio-demographic factors increased the differences in cognitive performance and aging. In the 381 case of STM, the gender difference between peak scores increased from .21 SDs to .28 SDs. 382 Notably, differences in verbal abilities appeared, with women reaching a peak age significantly 383 earlier, and men having a significantly higher peak score by 0.05 of one standard deviation.

However, although the gender gap was smaller (or absent) in the matched sample, this does

385 not mean that differences in the unmatched sample should be ignored. While they may not

386	necessarily be inherent to biology, environmental influences are a part of life, and they do drive
387	gender differences in cognitive abilities. Thus, it is reasonable to conclude that gender
388	differences in cognition, based on biological sex alone, are minimal; however, there are notable
389	effects of environmental factors that in turn drive gender differences in cognition.
390	One large area of disparity that remained even when controlling for environmental
391	factors was with respect to the age at which reasoning abilities began to decline. Women
392	declined significantly earlier than men, even when controlling for demographic factors. We
393	were also not able to capture a reliable measure of the age at which reasoning abilities peak in
394	either gender. In women, scores declined from 12 years of age. This could be because 12 is the
395	age at which women's reasoning abilities do indeed peak. However, it is also possible that
396	women peak earlier, but due to lack of data we were unable to determine the true peak from
397	the current sample. Similarly, both unmatched and matched samples of men showed a plateau
398	in reasoning scores until the point at which they began to decline. There are several possible
399	explanations here. First, it is possible that men do peak in early adulthood, somewhere
400	between 18 and 24 years of age, but the increase in reasoning abilities was not captured due to
401	too small a sample size or noisy data. Second, they could follow a similar trajectory to women,
402	with a slow decline before a steeper one, again not captured due to a lack of data. Because our
403	sample of men was very large (over 32,000 in the unmatched sample), it is unlikely that either
404	of these options are the case. Third, this plateau could be a true peak in reasoning, lasting
405	several years, before beginning to decline. Previous research does suggest that reasoning
406	abilities are relatively mature by age 12 (Anderson, 2002; Anderson et al., 2001b), and another
407	large-scale study has shown that by age 18, reasoning abilities have begun to decline

408 (Salthouse, 2009). Thus, although it is not possible to confirm that decline begins around age 12
409 in the current sample of women, the data follow a pattern that fits previous research and
410 supports this claim.
411 The results presented here offer some insight into how to tailor interventions for
412 cognitive decline appropriately for each gender. For example, women are known to experience
413 more anxiety than men (McLean et al., 2011), a fact reflected in the current sample. Anxiety is

414 known to correlate negatively with working memory (Moran, 2016). Thus, to improve working

415 memory, or protect against its decline, therapies should perhaps focus on reducing anxiety in

416 everyone, with a targeted focus on women. Another example is substance abuse, which is more

417 prevalent in men (Compton et al., 2007). Because substance abuse negatively affects cognition

418 (Crego et al., 2009), especially with respect to aging (Woods et al., 2016), a focused campaign

419 aimed to reduce drug and alcohol consumption in men may yield a slowing in cognitive decline

420 at the male population level. These gender-focused interventions can be combined with other

421 treatments known to provide protection from cognitive decline, such as frequent exercise

422 (Erickson et al., 2011) for a well-rounded defence against cognitive aging.

423 Acknowledgements:

- 424 This research was funded by a Canada Excellence Research Chair (CERC) program grant
- 425 (#215063) to A.M.O., an AGE-WELL NCE and Women's Brain Health Initiative (WBHI) grant to
- 426 E.S.N., a Mitacs Elevate postdoctoral fellowship to E.S.N., and NSERC Discovery Grant to A.S..
- 427 A.M.O. is a CIFAR fellow.
- 428

429 **Declaration of Interest Statement:**

- 430 The cognitive tests used in this study are marketed by Cambridge Brain Sciences Inc., of which
- 431 Dr. Owen is the Chief Scientific Officer. Under the terms of the existing licensing agreement, Dr.
- 432 Owen and his collaborators are free to use the platform at no cost for their scientific studies
- 433 and such research projects neither contribute to, nor are influenced by, the activities of the
- 434 company. As such, there is no overlap between the current study and the activities of
- 435 Cambridge Brain Sciences Inc., nor was there any cost to the authors, funding bodies or
- 436 participants who were involved in the study.

437 **References**

- 438 Albert, P. R. (2015). Why is depression more prevalent in women? Journal of Psychiatry and
- 439 *Neuroscience*, *40*(4), 219–221. https://doi.org/10.1503/jpn.150205
- 440 Anderson, P. (2002). Assessment and Development of Executive Function (EF) During
- 441 Childhood. *Child Neuropsychology*, *8*(2), 71–82. https://doi.org/10.1076/chin.8.2.71.8724
- 442 Anderson, P., Anderson, V., Northam, E., & Taylor, H. G. (2000). Standardization of the
- 443 Contingency Naming Test (CNT) for school-age children: a measure of reactive flexibility.
- 444 Clinical Neuropsychological Assessment, 1, 247–273.
- 445 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standardization+of+the
- +Contingency+NamingTest+(CNT)+for+school+aged+children:+A+measure+of+reactive+fle
 xibility#0
- 7
- 448 Anderson, V., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001a). Development of
- 449 Executive Functions Through Late Childhood and Adolescence in an Australian Sample.
- 450 Developmental Neuropsychology, 20(1), 385–406.
- 451 https://doi.org/10.1207/S15326942DN2001
- 452 Anderson, V., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001b). Developmental
- 453 Neuropsychology Differential Development of Attention and Executive Functions in 3- to
- 454 12-Year-Old Finnish Children. *Developmental Neuropsychology*, 20(1), 385–406.
- 455 https://doi.org/10.1207/S15326942DN2001
- 456 Blums, A., Belsky, J., Grimm, K., & Chen, Z. (2017). Building Links Between Early Socioeconomic
- 457 Status, Cognitive Ability, and Math and Science Achievement. *Journal of Cognition and*
- 458 *Development, 18*(1), 16–40. https://doi.org/10.1080/15248372.2016.1228652

- 459 Bratberg, G. H., Wilsnack, S. C., Wilsnack, R., Håvås Haugland, S., Krokstad, S., Sund, E. R., &
- 460 Bjørngaard, J. H. (2016). Gender differences and gender convergence in alcohol use over
- the past three decades (1984-2008), the HUNT Study, Norway. *BMC Public Health*, 16(1),
- 462 1–12. https://doi.org/10.1186/s12889-016-3384-3
- 463 Burton, L. A., Henninger, D., & Hafetz, J. (2005). Gender differences in relations of mental
- 464 rotation, verbal fluency, and SAT scores to finger length ratios as hormonal indexes.
- 465 Developmental Neuropsychology, 28(1), 493–505.
- 466 https://doi.org/10.1207/s15326942dn2801_3
- 467 Canty, A., & Ripley, B. (2019). boot: Bootstrap R(S-Plus) Functions. *R Package Version 1.3-20*.
- 468 Compton, W., Thomas, Y. F., Stinson, F. S., & Grant, B. F. (2007). Prevalence, Correlates,
- 469 Disability, and Comorbidity of DSM-IV Drug Abuse and Dependence in the United States.
- 470 Archives of General Psychiatry, 64, 566–576.
- 471 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2707116&tool=pmcentrez&r
- 472 endertype=abstract
- 473 Cornelis, M. C., Wang, Y., Holland, T., Agarwal, P., Weintraub, S., & Morris, M. C. (2019). Age
- and cognitive decline in the UK Biobank. *PLoS ONE*, *14*(3), 1–16.
- 475 https://doi.org/10.1371/journal.pone.0213948
- 476 Crego, A., Holguín, S. R., Parada, M., Mota, N., Corral, M., & Cadaveira, F. (2009). Binge drinking
- 477 affects attentional and visual working memory processing in young university students.
- 478 Alcoholism: Clinical and Experimental Research, 33(11), 1870–1879.
- 479 https://doi.org/10.1111/j.1530-0277.2009.01025.x
- 480 Davies, R. B. (2002). Hypothesis Testing when a Nuisance Parameter is Present Only Under the

- 24
- 481 Alternatives Published by D: Oxford University Press on behalf of Biometrika Trust Stable
- 482 URLIP: http://www.jstor.org/stable/2336019 Your use of the JSTOR archive indica.
- 483 *Biometrika*, *89*(2), 484–489.
- 484 Diamond, A. (2013). Executive Function. *Annual Review of Psychology*, 64, 135–168.
- 485 https://doi.org/10.1016/B978-0-12-385157-4.01147-7
- 486 Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S.,
- 487 Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D.,
- 488 Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of
- 489 hippocampus and improves memory. *Proceedings of the National Academy of Sciences*,
- 490 *108*(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108
- 491 Feng, J., Spence, I., & Pratt, J. (2007). Playing an Action Video Game in Reduces Gender

492 Differences Spatial Cognition. *Psychological Science*, *18*(10), 850–855.

- 493 Grant, B. F., Chou, S. P., Saha, T. D., Pickering, R. P., Kerridge, B. T., Ruan, W. J., Huang, B., Jung,
- 494 J., Zhang, H., Fan, A., & Hasin, D. S. (2017). Prevalence of 12-month alcohol use, high-risk
- drinking, and DSM-IV alcohol use disorder in the United States, 2001-2002 to 2012-2013:
- 496 Results from the National Epidemiologic Survey on Alcohol and Related Conditions. JAMA
- 497 *Psychiatry*, 74(9), 911–923. https://doi.org/10.1001/jamapsychiatry.2017.2161
- 498 Griksiene, R., & Ruksenas, O. (2011). Effects of hormonal contraceptives on mental rotation and
- 499 verbal fluency. *Psychoneuroendocrinology*, *36*(8), 1239–1248.
- 500 https://doi.org/10.1016/j.psyneuen.2011.03.001
- 501 Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating Human
- 502 Intelligence. *Neuron*, *76*(6), 1225–1237. https://doi.org/10.1016/j.neuron.2012.06.022

503	Hartshorne, J. K., 8	Germine, L	T. (2015).	When Does	s Cognitive	Functioning Peak? ⁻	Гhе
-----	----------------------	------------	------------	-----------	-------------	--------------------------------	-----

- 504 Asynchronous Rise and Fall of Different Cognitive Abilities Across the Life Span.
- 505 *Psychological Science*, *26*(4), 433–443. https://doi.org/10.1177/0956797614567339
- Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric Preprocessing for.
- 507 Journal Of Statistical Software, 42(8), 1–28. http://www.jstatsoft.org/v42/i08
- 508 Karapetsas, A. B., & Vlachos, F. M. (1997). Sex and Handedness in Development of Visuomotor
- 509 Skills. *Perceptual and Motor Skills*, *85*, 131–140. https://doi.org/10.2466/pms.85.5.131-140
- 510 Krikorian, R., & Bartok, J. A. (1998). Developmental Data for the Porteus Maze Test. *The Clinical*
- 511 *Neuropsychologist*, *12*(3), 305–310. https://doi.org/10.1076/clin.12.3.305.1984
- 512 Krinzinger, H., Wood, G., & Willmes, K. (2012). What accounts for individual and gender
- 513 differences in the multi-digit number processing of primary school children? *Zeitschrift Fur*
- 514 *Psychologie / Journal of Psychology, 220*(2), 78–89. https://doi.org/10.1027/2151-
- 515 2604/a000099
- 516 Kryspin-Exner, I., Lamplmayr, E., & Felnhofer, A. (2011). Geropsychology: The gender gap in
- 517 human aging-a mini-review. *Gerontology*, *57*(6), 539–548.
- 518 https://doi.org/10.1159/000323154
- Laing, K. R., Mitchell, D., Wersching, H., Czira, M. E., Berger, K., & Baune, B. T. (2012). Brain-
- 520 derived neurotrophic factor (BDNF) gene: A gender-specific role in cognitive function
- 521 during normal cognitive aging of the MEMO-Study? *Age*, *34*(4), 1011–1022.
- 522 https://doi.org/10.1007/s11357-011-9275-8
- 523 Lee, K., Bull, R., & Ho, R. (2013). Developmental Changes in Executive Functioning. *Child*
- 524 *Development, 84*(6), 1933–1953. https://doi.org/10.1111/cdev.l2096

- 525 Lipnicki, D. M., Crawford, J. D., Dutta, R., Thalamuthu, A., Kochan, N. A., Andrews, G., Lipnicki,
- 526 D. M., Crawford, J. D., Dutta, R., Thalamuthu, A., Kochan, N. A., Andrews, G., Lima-costa, F.,
- 527 Castro-costa, E., Brayne, C., Matthews, F. E., Stephan, B. C. M., Lipton, R. B., Mindy, J., ...
- 528 Dardiotis, E. (2017). Age-related cognitive decline and associations with sex, education and
- 529 apolipoprotein E genotype across ethnocultural groups and geographic regions: a
- 530 collaborative cohort study. *PLoS Medicine*, *14*(3).
- 531 Lubinski, D. (2009). Cognitive epidemiology: With emphasis on untangling cognitive ability and
- 532 socioeconomic status. *Intelligence*, *37*(6), 625–633.
- 533 https://doi.org/10.1016/j.intell.2009.09.001
- 534 Malpetti, M., Ballarini, T., Presotto, L., Garibotto, V., Tettamanti, M., & Perani, D. (2017).
- 535 Gender differences in healthy aging and Alzheimer's Dementia: A 18F-FDG-PET study of
- 536 brain and cognitive reserve. *Human Brain Mapping*, *38*(8), 4212–4227.
- 537 https://doi.org/10.1002/hbm.23659
- 538 McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences in anxiety
- 539 disorders: Prevalence, course of illness, comorbidity and burden of illness. *Journal of*
- 540 *Psychiatric Research*, 45(8), 1027–1035. https://doi.org/10.1016/j.jpsychires.2011.03.006
- 541 Miller, A. K. H., Alston, R. L., & Corsellis, J. A. N. (1980). Variation with age in the volumes of
- 542 grey and white matter in the cerebral hemispheres of man: measurements with an image
- 543 analyser. *Neuropathology and Applied Neurobiology*, 6(2), 119–132.
- 544 https://doi.org/doi:10.1111/j.1365-2990.1980.tb00283.x
- 545 Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. *Trends in*
- 546 *Cognitive Sciences*, *18*(1), 37–45. https://doi.org/10.1016/j.tics.2013.10.011

547	Moran, T. P. (2	2016). Anxiety and	Working Memo	ory Capacity: A I	Meta-Analysis and	Narrative

- 548 Review. *Psychological Bulletin*, 142(5). https://doi.org/10.1037/bul0000051.supp
- 549 Muggeo, V. M. R. (2003). Estimating regression models with unknown break-points. Statistics in
- 550 *Medicine*, 22(19), 3055–3071. https://doi.org/10.1002/sim.1545
- 551 Muggeo, V. M. R. (2008). segmented: An R package to fit regression models with broken-line
- 552 relationships. *R News*, *8*(1), 20–25. https://doi.org/http://dx.doi.org/10.1192/bjp.195.1.A6
- 553 Nichols, E. S., Wild, C. J., Stojanoski, B., Battista, M. E., & Owen, A. M. (2020). Bilingualism
- 554 Affords No General Cognitive Advantages: A Population Study of Executive Function in
- 555 11,000 People. *Psychological Science*, 1–20. https://doi.org/10.1177/0956797620903113
- 556 Parker, G., & Brotchie, H. (2010). Gender differences in depression. International Review of
- 557 *Psychiatry*, 22(5), 429–436. https://doi.org/10.3109/09540261.2010.492391
- 558 Rizeq, J., Flora, D. B., & Toplak, M. E. (2017). Changing relations among cognitive abilities across
- 559 development: implications for measurement and research. Clinical Neuropsychologist,
- 560 *31*(8), 1353–1374. https://doi.org/10.1080/13854046.2017.1317034
- 561 Salthouse, T. A. (2009). When does age-related cognitive decline begin? *Neurobiology of Aging*,
- 562 *30*(4), 507–514. https://doi.org/10.1016/j.neurobiolaging.2008.09.023
- 563 Scheuringer, A., & Pletzer, B. (2017). Sex differences and menstrual cycle dependent changes in
- 564 cognitive strategies during spatial navigation and verbal fluency. *Frontiers in Psychology*,
- 565 8(MAR), 1–12. https://doi.org/10.3389/fpsyg.2017.00381
- 566 Scheuringer, A., Wittig, R., & Pletzer, B. (2017). Sex differences in verbal fluency: the role of
- 567 strategies and instructions. *Cognitive Processing*, *18*(4), 407–417.
- 568 https://doi.org/10.1007/s10339-017-0801-1

- 569 Sokolowski, H. M., Hawes, Z., & Lyons, I. M. (2019). What explains sex differences in math
- 570 anxiety? A closer look at the role of spatial processing. *Cognition, 182*(October 2018), 193–
- 571 212. https://doi.org/10.1016/j.cognition.2018.10.005
- 572 Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., Xu, D., Zhu, H.,
- 573 Thompson, P. M., & Toga, A. W. (2007). Sex differences in cortical thickness mapped in 176
- 574 healthy individuals between 7 and 87 years of age. *Cerebral Cortex, 17*(7), 1550–1560.
- 575 https://doi.org/10.1093/cercor/bhl066
- 576 Tiwari, R. C., Cronin, K. A., Davis, W., Feuer, E. J., Yu, B., & Chib, S. (2005). Bayesian model
- selection for join point regression with application to age-adjusted cancer rates. *Journal of*

578 the Royal Statistical Society. Series C: Applied Statistics, 54(5), 919–939.

- 579 https://doi.org/10.1111/j.1467-9876.2005.00518.x
- 580 United Nations Department of Economic and Social Affairs. (2019). *World Population Prospects*
- 581 2019: Highlights (Issue June).
- 582 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. *Springer-Verlag New York*.
- 583 Wild, C. J., Nichols, E. S., Battista, M. E., Stojanoski, B., & Owen, A. M. (2018). Dissociable effect
- of self-reported daily sleep duration on high-level cognitive abilities. *Sleep*, *41*(12), 1–11.
- 585 https://doi.org/10.1093/sleep/zsy182
- 586 Woods, A. J., Porges, E. C., Bryant, V. E., Seider, T., Gongvatana, A., Kahler, C. W., de la Monte,
- 587 S., Monti, P. M., & Cohen, R. A. (2016). Current Heavy Alcohol Consumption is Associated
- 588 with Greater Cognitive Impairment in Older Adults. *Alcoholism: Clinical and Experimental*
- 589 *Research, 40*(11), 2435–2444. https://doi.org/10.1111/acer.13211
- 590 Wu, Y., Zhang, D., Pang, Z., Oksuzyan, A., Jiang, W., Wang, S., Li, S., Kruse, T., Christensen, K., &

591	Tan, Q. (2012).	Gender-specific	patterns in	age-related	decline in general	health among
-----	-----------------	-----------------	-------------	-------------	--------------------	--------------

- 592 Danish and Chinese: A cross-national comparative study. *Geriatrics and Gerontology*
- 593 International, 12(3), 431–439. https://doi.org/10.1111/j.1447-0594.2011.00784.x
- Zaremba, D., Schulze Kalthoff, I., Förster, K., Redlich, R., Grotegerd, D., Leehr, E. J., Meinert, S.,
- 595 Dohm, K., Bürger, C., Enneking, V., Böhnlein, J., Repple, J., Opel, N., Jörgens, S., Yüksel, D.,
- 596 Schmitt, S., Stein, F., Kircher, T., Krug, A., ... Dannlowski, U. (2019). The effects of
- 597 processing speed on memory impairment in patients with major depressive disorder.
- 598 Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92(November 2018),
- 599 494–500. https://doi.org/10.1016/j.pnpbp.2019.02.015

601 Tables

Table 1. Comparison of demographic variables across women and men

Measure	Mean (SD) or	Percentage	$\chi^2(df, N)$ or $t(df)$		Cohen's d	BF ₁₀
Wieasui e	Women	Men	χ (α, Ν) οι ε(α)	p	conen s <i>u</i>	DF <u>1</u>
N	9,451	9,451				
Age (years)	28.14 (10.95)	28.28 (10.65)	-1.31(23696)	.902	0.01	0.02
Highest education				204	0.05	0.00
completed			10.18(4, <i>N</i> = 18,902)	.281	0.05	9.06e ⁻
Some high school	9.70%	11.00%				
High School	8.30%	8.50%				
Some post-secondary	28.00%	27.50%				
Post-secondary degree	27.80%	27.10%				
Professional degree	26.10%	25.80%				
Level of employment			6.57(5, <i>N</i> = 18,902)	.902	0.04	4.76e
No answer	3.70%	4.10%				
Unemployed	10.50%	11.40%				
Full time student	27.90%	27.60%				
Employed and student	14.90%	14.60%				
Employed part time	9.00%	9.20%				
Employed full time	34.00%	33.10%				
Exercise			4.07(4, <i>N</i> = 18,902)	.902	0.03	3.77e ⁻
Never	10.40%	11.00%				
Infrequently	36.40%	36.90%				

Weekly	19.80%	19.80%				
Several times a week	26.60%	25.80%				
Every day	6.90%	6.50%				
Sleep (hours last night)	7.02 (1.62)	7.01 (1.63)	0.40(18,899)	.914	-0.01	0.02
Alcohol (units per week)	1.72 (1.76)	1.71 (1.76)	0.25 (18,900)	.914	<-0.01	4.14e ⁻²³
Caffeine (units per day)	3.47 (4.80)	3.52 (4.82)	-0.61 (18,900)	.902	0.01	0.02
Cigarettes (per day)	1.53 (4.63)	1.68 (5.06)	-2.24 (18,749)	.281	0.03	0.20
Depressive feelings			2.19 (5, <i>N</i> = 18,902)	.914	0.02	1.35e ⁻⁸
No answer	1.10%	1.30%				
Never	10.90%	11.10%				
Occasionally	57.00%	56.60%				
Quite often	20.80%	20.60%				
Nearly every day	7.30%	7.40%				
All the time	3.00%	3.00%				
Anxiety			1.52 (5, <i>N</i> = 18,902)	.914	0.02	1.50e ⁻⁸
No answer	1.20%	1.40%				
Never	14.00%	13.60%				
Occasionally	50.20%	50.30%				
Quite often	20.00%	20.20%				
Nearly every day	10.00%	9.90%				
All the time	4.50%	4.50%				
Tech savvy			0.02(1, <i>N</i> = 18,902)	.914	<0.01	0.02
Yes	76.80%	76.70%				
Νο	23.20%	23.30%				
Video games			4.67(3, <i>N</i> = 18,902)	.902	0.03	1.77e ⁻⁴
Never	33.80%	32.50%				

32

	Monthly	26.50%	26.40%					
	Weekly	23.50%	24.30%					
	Daily	16.20%	16.80%					
Ρ	olitical leaning			1.29(2,	<i>N</i> = 18,902)	.902	0.02	6.63e ⁻⁴
	Liberal	47.40%	47.00%					
	Middle	44.60%	44.60%					
	Conservative	7.90%	8.40%					
R	eligiosity			0.97(4,	<i>N</i> = 18,902)	.914	0.01	6.71e ⁻⁷
	Atheist	33.50%	33.10%					
	Agnostic	32.10%	32.10%					
	Religious lapsed	18.70%	18.70%					
	Religious practicing	11.90%	12.00%					
	Very religious	3.90%	4.10%					
S	iblings			2.30(3,	<i>N</i> = 18,902)	.902	0.02	4.64e ⁻⁵
	Only child	12.40%	12.40%					
	Youngest	30.30%	30.50%					
	Middle	16.50%	17.20%					
	Oldest	40.80%	39.90%					

Note. Welch's *t*-test used to compare numeric variables; all other tests used χ^2 .

602

603

604

605

33

607

Table 2: Segmented regression parameter estimates for age, from

Gender Term Coef SE Score t р STM Women Age 0.04 0.01 4.10 < .001 -0.06 ∆Age Men 0.05 0.01 3.61 < .001 Age ∆Age -0.07 Verbal Women Age 0.15 0.01 7.58 < .001 $\triangle Age 1$ -0.13 $\triangle Age 2$ -0.03 Men 0.15 0.03 5.36 < .001 Age -0.13 $\triangle Age 1$ $\triangle Age 2$ -0.02 Reasoning Women 0.001 -0.01 -8.83 <.001 Age -0.02 ∆Age Men 0.01 0.01 .272 Age 1.10 ∆Age -0.04

regression models estimated for each composite score

Note: *p*-values for change in slope measured by Davies' test; △Age refers to

change in age parameter after a breakpoint

34

609

Table 3: Comparisons between genders matched on socio-demographic variables

Score	Measure	Wo	omen [95% Cl]	N	Men [95% Cl]		rence [95% CI]
STM	Peak age	20.42	[19.36, 21.48]	19.65	[18.61, 20.69]	0.76	[-2.09, 4.32]
	Peak score	0.046	[-0.009, 0.101]	0.259	[0.187, 0.330]	-0.213	[-2.63, -0.159]
	Increase	0.036	[0.019, 0.053]	0.049	[0.022, 0.075]	-0.013	[-0.132, 0.028]
	Decrease	-0.023	[-0.025, -0.022]	-0.025	[-0.027, -0.023]	0.002	[-0.001, 0.005]
Verbal	Peak age	24.89	[22.26, 27.52]	28.42	[25.33, 31.52]	-3.53	[-20.49, 6.10]
	Peak score	0.071	[0.033, 0.108]	0.104	[0.050, 0.158]	-0.033	[-0.091, 0.019]
	Increase	0.035	[0.016 <i>,</i> 0.048]ª	0.022	[0.006, 0.045] ^ª	0.013	[-0.012, 0.036]
	Decrease	-0.006	[-0.008, -0.003]	-0.008	[-0.011, -0.005]	0.002	[-0.003, 0.014]
Reasoning	Peak age	12		19.62	[17.70, 21.54]	-7.62	[-12.82, -2.23]
	Peak score	0.223	[0.187, 0.271]	0.131	[0.060, 0.201]	0.092	[-0.047, 0.151]
	Increase	-		0.015	[-0.012, 0.041]	-	
	Decrease	-0.020	[-0.021, -0.018] ^a	-0.025	[-0.027, -0.023]	0.005	[0.003, 0.008]

^a Combined slope across two segments is reported.

611

Table 4: Segmented regression parameter estimates for age, from

regression models estimated for each composite score, for models

estimated with N = 45,779

Score	Gender	Term	Coef	SE	t	р
STM	Women	Age	0.03	0.01	3.83	< .001
		∆Age	-0.05			
	Men	Age	0.04	0.01	6.48	< .001
		∆Age	-0.07			
Verbal	Women	Age	0.04	0.01	8.16	< .001
		∆Age	-0.05			
	Men	Age	0.10	0.01	8.44	< .001
		∆Age1	-0.09			
		$\triangle Age 2$	-0.02			
Reasoning	Women	Age	-0.01	0.001	-9.62	< .001
		∆Age	-0.01			
	Men	Age	0.003	0.004	0.73	.468
		∆Age	-0.03			

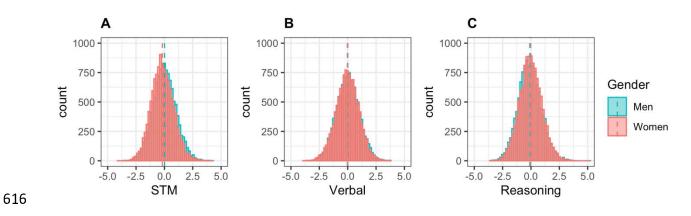
Note: *p*-values for change in slope measured by Davies' test; \triangle Age refers to change

in age parameter after the breakpoint

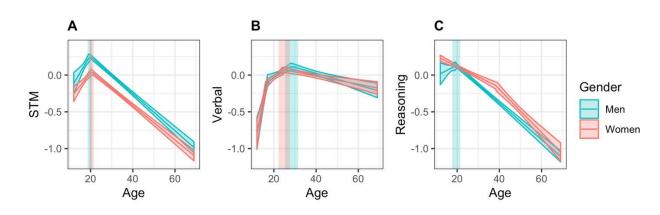
36

613

Table 5: Comparisons between genders on key measures of cognitive performance over the lifetime, for models

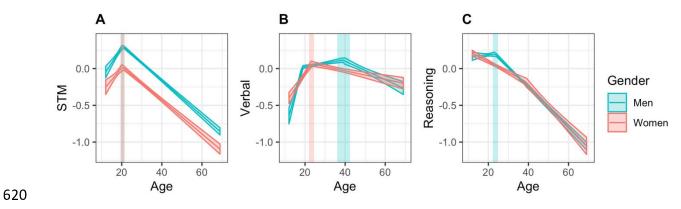

estimated with N = 45,779

Score	Measure	Wo	omen [95% CI]	N	len [95% CI]	Difference [95% CI]	
STM	Peak age	20.47	[19.39, 21.55]	20.48	[19.85, 21.12]	-0.01	[-4.70, 3.44]
	Peak score	0.021	[-0.007, 0.049]	0.304	[0.286, 0.323]	-0.283	[-0.331, -0.219]
	Increasing slope	0.032	[0.015, 0.048]	0.042	[0.029, 0.054]	0.010	[-0.071, 0.036]
	Decreasing slope	-0.023	[-0.025, -0.021]	-0.024	[-0.025, -0.023]	0.001	[-0.002, 0.005]
Verbal	Peak age	23.21	[22.00, 24.42]	39.20	[35.99, 42.42]	-15.99	[-26.36, -3.86]
	Peak score	0.067	[0.033, 0.101]	0.116	[0.074, 0.157]	-0.049	[-0.145, -0.002]
	Increasing slope	0.042	[0.032, 0.052]	0.014	[0.007, 0.027] ^a	0.028	[0.012, 0.176]
	Decreasing slope	-0.006	[-0.008, -0.004]	-0.013	[-0.017, -0.009]	0.007	[-0.001, 0.019]
Reasoning	Peak age	12		23.51	[22.25, 24.78]	-11.51	[-16.96, -4.22]
	Peak score	0.208	[0.168, 0.249]	0.196	[0.163, 0.228]	0.012	[-0.136, 0.046]
	Increasing slope	_		0.003	[-0.004, 0.010]	_	
	Decreasing slope	-0.019	[-0.021, -0.018] ^a	-0.027	[-0.029, -0.026]	0.008	[0.004, 0.012]


Note: Values are missing for women's reasoning increasing slope as both segments were negative

^a Combined slope across two segments is reported. Slopes of the individual segments are reported in-text.

615 Figures



617

619

621

38

623 Figure captions

- 624 **Figure 1**. **Histograms of domain scores by gender.** Dashed lines indicate mean.
- 625 Figure 2. Regression lines for STM, Verbal, and Reasoning scores across the lifespan, ranging
- 626 from 12 to 69 years of age. 95% simultaneous confidence bands are shown in translucent
- 627 colour around the line, and 95% confidence intervals for peak age are shown in translucent
- 628 rectangles.
- 629 Figure 3. Regression lines for STM, Verbal, and Reasoning scores across the lifespan, ranging
- 630 from 12 to 69 years of age, in the socio-demographically unmatched sample. 95%
- 631 simultaneous confidence bands are shown in translucent colour around the line, and 95%
- 632 confidence intervals for peak age are shown in translucent rectangles.