1 SapTrap assembly of *C. elegans* MosSCI transgene vectors

- 2
- 3 Xintao Fan^{*}, Sasha De Henau[†], Julia Feinstein^{*}, Stephanie I. Miller^{*}, Bingjie Han^{*}, Christian
- 4 Frøkjær-Jensen[‡] and Erik E. Griffin^{*}
- 5
- ⁶ ^{*} Department of Biological Sciences, Dartmouth College, Hanover NH 03755
- 7 [†] Center for Molecular Medicine, Molecular Cancer Research, University Medical Center
- 8 Utrecht, 3584 CG Utrecht, The Netherlands
- 9 [‡] King Abdullah University of Science and Technology (KAUST), Biological and Environmental
- 10 Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program
- 11 (KEEP), Thuwal 23955-6900, Saudi Arabia

12 Running Title: SapTrap assembly of MosSCI vectors

- 14 Key words: MosSCI, C. elegans, mitochondria, endoplasmic reticulum, SapTrap
- 15
- 16 Corresponding Author:
- 17 Erik E. Griffin
- 18 78 College Street, LSC 348
- 19 Department of Biological Sciences
- 20 Dartmouth College
- 21 Hanover NH, 03755
- 22 603-646-8269
- 23 erik.e.griffin@dartmouth.edu

24 Abstract

25 The Mos1-mediated Single-Copy Insertion (MosSCI) method is widely used to establish stable 26 *Caenorhabditis elegans* transgenic strains. Cloning MosSCI targeting plasmids can be 27 cumbersome because it requires assembling multiple genetic elements including a promoter, a 28 3'UTR and gene fragments. Recently, Schwartz and Jorgensen developed the SapTrap method 29 for the one-step assembly of plasmids containing components of the CRISPR/Cas9 system for C. 30 elegans (Schwartz and Jorgensen 2016 Genetics, 202:1277-1288). Here, we report on the 31 adaptation of the SapTrap method for the efficient and modular assembly of a promoter, 3'UTR 32 and either 2 or 3 gene fragments in a MosSCI targeting vector in a single reaction. We generated 33 a toolkit that includes several fluorescent tags, components of the ePDZ/LOV optogenetic 34 system and regulatory elements that control gene expression in the C. elegans germline. As a 35 proof of principle, we generated a collection of strains that fluorescently label the endoplasmic 36 reticulum and mitochondria in the hermaphrodite germline and that enable the light-stimulated 37 recruitment of mitochondria to centrosomes in the one-cell worm embryo. The method described 38 here offers a flexible and efficient method for assembly of custom MosSCI targeting vectors.

39 Introduction

40 The rich toolbox of techniques available to manipulate gene expression in *C. elegans* is a 41 major attraction of this model organism. Several approaches have been developed to introduce 42 transgenes and to induce efficient CRISPR/Cas9 mediated gene editing (Nance and Frøkjær-43 Jensen, 2019). The Mos1-mediated Single-Copy Insertion (MosSCI) method has been widely 44 adopted to introduce transgenes in C. elegans because single-copy transgenes are integrated at 45 defined chromosomal positions, thereby mitigating potential concerns of transgene integration at 46 random positions (Frøkjær-Jensen et al., 2012; Frøkjær-Jensen et al., 2008; Frøkjær-Jensen et al., 47 2014). MosSCI transgene integration results from homologous recombination between a MosSCI 48 targeting vector containing the transgene construct and one of the safe-harbor integration sites 49 that have been engineered at defined positions in the genome. 50 Transgenes typically include multiple genetic elements including a promoter, one or more 51 gene fragments and a 3'UTR. A number of strategies can be used to assemble these elements 52 together including traditional restriction enzyme cloning, Gateway cloning (Hartley et al., 2000), 53 in vivo recombineering (Philip et al., 2019) or Gibson cloning (Gibson et al., 2009). Each of 54 these strategies has both advantages and disadvantages. For example, Gateway cloning allows 55 the efficient modular "mix and match" cloning of large collections of promoter, ORF and 3'UTR 56 cassettes (Brasch et al., 2004; Dupuy et al., 2004; Mangone et al., 2010; Zeiser et al., 2011). 57 However, Gateway cloning can be expensive due to the required use of proprietary enzyme 58 mixes and leaves ~25 base pair att recombination site "scars" at each cassette junction. In 59 contrast, Gibson cloning allows the efficient, "scar-free" assembly of multiple gene fragments 60 but does not allow the "mix and match" cloning of existing cassettes, making this approach 61 laborious if many constructs are needed.

63 and single step assembly of CRISPR/Cas9 vectors for <i>C. elego</i>	ans (Schwartz and Jorgensen,
64 2016). The SapTrap method is based on the Golden Gate clon	ing technique (Engler et al., 2008)
and takes advantage of the SapI type II restriction enzyme, wh	hich cuts DNA at defined positions
66 adjacent to its recognition sequence to generate three-base 5' of	overhangs. By designing SapI
67 restriction fragments with complementary overhangs, multiple	e fragments can be assembled
68 together in a defined order in a single digestion and ligation re	eaction. In this study, we report on
69 the adaptation of the SapTrap system for the efficient, inexper	nsive, modular, and "scar-free"
assembly of transgenes in a MosSCI targeting vector. We hav	e developed a toolkit for
71 expression of transgenes in the <i>C. elegans</i> germline, including	g a collection of cassettes
containing tags for fluorescence imaging and for the ePDZ/LC	OV optogenetic system (Fielmich et
al., 2018; Strickland et al., 2012). As a proof of principle, we	have used this system to generate a
collection of mitochondrial and endoplasmic reticulum reporte	er strains and a strain in which light
75 induces the transport of mitochondria to centrosomes in the or	ne-cell worm embryo.
76	
77 Results and Discussion	
78 Adaptation of the SapTrap system for cloning MosSCI targeting	ng vectors
79 To adapt the SapTrap approach (Schwartz and Jorgens	sen, 2016) for the assembly of
80 MosSCI targeting vectors, we started by making two changes	to the universal MosSCI targeting
81 vector pCFJ350 (Frøkjær-Jensen et al., 2012), which targets tr	ransgenes for insertion at the
82 commonly used <i>ttTi5605</i> site (Frøkjær-Jensen et al., 2008). Fi	irst, we introduced single base pair
83 changes to disrupt the two SapI restriction sites located in the	"Left" and "Right" homology arms

84 of pCFJ350. Second, we inserted two SapI sites into the multiple cloning site that were oriented

such that they are removed from the vector backbone by digestion with SapI. The resulting
MosSCI targeting vector was named pXF87 (Figure 1A).

87

88 We next cloned a series of plasmids that contain donor cassettes flanked by SapI 89 restrictions sites (Figure 1B). Following digestion with SapI, the cassettes are liberated from the 90 vector backbone and are flanked by 5' overhangs that direct their order of assembly in pXF87 91 (Figure 1C). A four-insert cassette system was designed with a promoter in cassette 1, gene 92 fragments in cassettes 2 and 3 (typically a gene and a tag) and a 3'UTR in cassette 4. To 93 minimize the inclusion of extraneous sequences, the junctions between the first and second 94 cassette is the translation start (ATG), between second and third cassettes is glycine (GGT) and 95 between the third and fourth cassettes is the ochre translation stop codon (TAA) (Figure 1C). 96 Donor cassettes encoding tags (such as fluorescent proteins) include short flexible linkers at the 97 protein fusion site (the carboxy terminus of cassette 2 and the amino terminus of cassette 3) 98 (Supplemental Figure S1-S7). The currently available promoter, tag and 3'UTR donor cassette 99 plasmids are listed in Figure 1E and Table 1. 100

The *C. elegans* germline is a notoriously difficult tissue in which to achieve stable transgene expression due to silencing of multi-copy extra-chromosomal arrays (Kelly et al., 1997), single-copy insertions generated by MosSCI (*e.g.*, (Frøkjær-Jensen et al., 2016; Shirayama et al., 2012)) or endogenous genes tagged using CRISPR/Cas9 gene editing (*e.g.*, (Fielmich et al., 2018)). Each of our tag donor cassettes encoding gene tags incorporates at least one modification that buffers against silencing, including the inclusion of PATC introns in HaloTag and ceGFP (Frøkjær-Jensen et al., 2016), the elimination of piRNA binding sites in mScarlet, mKate2 and Dendra2 (Seth et al., 2018; Zhang et al., 2018) and the use of sequence
motifs found in native germline genes in ePDZ and the LOV domain (Fielmich et al., 2018).

111 Similar to the SapTrap method developed by Schwartz and Jorgensen (Schwartz and 112 Jorgensen, 2016), MosSCI targeting vectors were assembled in a single tube by incubating 113 pXF87, four donor cassette plasmids, SapI enzyme, ATP and T4 DNA ligase at 25°C for 22 - 24 114 hours (Figure 1D and Materials and Methods). This reaction was then transformed into E. coli 115 and plasmid clones were screened by restriction enzyme digestion followed by sequencing. We 116 assembled nine vectors using the 4-cassette system and 32 of 46 (69.6%) of the plasmids 117 screened had the correct restriction digest pattern (Table 2). Of the vectors with the correct 118 restriction digest pattern, 22 of 23 were correct based on Sanger sequencing analysis. Therefore, 119 the SapTrap method provides an efficient method for the assembly of MosSCI targeting vectors. 120

121 A collection of fluorescent ER and mitochondria strains

122 We used SapTrap-assembled MosSCI targeting vectors to generate a collection of 123 transgenic strains for analysis of endoplasmic reticulum and mitochondrial dynamics. We first 124 targeted GFP, mKate2, mScarlet, Dendra2 and HaloTag to the cytoplasmic face of the 125 mitochondrial outer membrane by fusing them to the carboxy terminus of TOMM-20. The 126 expression of these transgenes was controlled by the mex-5 promoter and by the pie-1 3'UTR, 127 which results in germline expression that increases around the bend of the adult hermaphrodite 128 gonad (Merritt et al., 2008) (Figure 2A). Strains expressing TOMM-20 fused to HaloTag were 129 labeled with the fluorescent JF₆₄₆ HaloTag ligand (Grimm et al., 2015) by feeding 130 hermaphrodites bacteria mixed with the ligand. Each TOMM-20 fusion protein exhibited the

131	expected tubular localization pattern in the early embryo (Figure 2B-I). We confirmed that
132	TOMM-20::HaloTag colocalized to the same organelle as the mitochondrial matrix protein
133	COX-4::GFP (Raiders et al., 2018) (Figure 2C). We additionally generated strains in which the
134	HaloTag was targeted to the mitochondrial matrix (COX-4::HaloTag) (Figure 2J) and the lumen
135	of the endoplasmic reticulum (HSP-70(aa1-19)::HaloTag::HDEL) (Figure 2K). We fused both
136	GFP and HaloTag to NPP-20, the worm homologue of SEC13, which is both a component of the
137	COPII coat that concentrates to ER exit sites (ERES) (D'Arcangelo et al., 2013) and a component
100	
138	of nuclear pore complexes (Siniossoglou et al., 1996) (Figure 2L, M).
138 139	of nuclear pore complexes (Siniossoglou et al., 1996) (Figure 2L, M).
	of nuclear pore complexes (Siniossoglou et al., 1996) (Figure 2L, M). Five-cassette system
139	
139 140	Five-cassette system
139 140 141	Five-cassette system One of the advantages of the SapTrap approach is that it can be easily expanded to

145 optogenetic system to control the localization of mitochondria in the early embryo based on the

146 light induced interaction between the ePDZ and LOV domains (Fielmich et al., 2018; Strickland

147 et al., 2012). We assembled a MosSCI targeting vector that directed expression of TOMM-

148 20::HaloTag::LOV, which targets the LOV domain to the mitochondrial outer membrane. 11 of

149 15 assembled plasmids had the corrected restriction digest pattern and 2 of 2 of these plasmids

150 were correct by sequence analysis. A TOMM-20::HaloTag::LOV strain was crossed with a strain

151 in which the dynein heavy chain DHC-1 was fused to ePDZ (Fielmich et al., 2018). Whereas

152 mitochondria in wild-type embryos are dispersed through the cytoplasm (Figure 4A), upon the

153 recruitment of ePDZ::mCherry::DHC-1 to mitochondria by stimulation with 488 nm light,

mitochondria were transported on to centrosomes, leaving the peripheral cytoplasm largelydevoid of mitochondria (Figure 4B).

156

157 The SapTrap system described here provides an efficient and simple method for the 158 assembly of MosSCI targeting vectors. This approach is similar to the Gateway assembly system 159 (ThermoFisher Scientific) in that once donor cassette plasmids are cloned, they can be assembled 160 in any modular combination. The Gateway system has been widely used to generate MosSCI 161 transgenes and is attractive because there are large collections of promoter, ORF, and 3'UTR 162 donor plasmids available (Brasch et al., 2004; Dupuy et al., 2004; Mangone et al., 2010; Zeiser et 163 al., 2011). However, the Gateway system has disadvantages, including i) ~ 25 bp att 164 recombination sites present between each cassette after assembly, ii) the cost of proprietary 165 enzyme mixes, and iii) the difficulty in assembling more than four cassettes together. In contrast, 166 the SapTrap system i) uses three-base pair junctions, two of which are designed to encode the 167 translation start and STOP codons, ii) is relatively inexpensive, and iii) can efficiently assemble 168 at least 5 cassettes. In principle, the number of cassettes could be increased if desired. The most 169 significant consideration in generating new donor cassette plasmids for SapTrap assembly is that 170 internal SapI sites cannot be present within the donor cassette sequence. Gibson cloning also 171 allows the "scar-free" cloning of transgene vectors, but the specific cloning strategies must be 172 designed for each unique vector. While we have focused on generating transgenes expressed in 173 the hermaphrodite germline, the MosSCI targeting vector pXF87, the gene tag donor cassettes and cloning approach described here should be readily adaptable to expressing transgenes in 174 175 other tissues.

177	The advantages of tagging and fluorescently labeling proteins with the HaloTag include
178	increased brightness and photostability (especially compared to red fluorescent proteins) and
179	excellent optical pairing with green fluorescent proteins for 2-color imaging. Additionally,
180	HaloTag labeling offers the flexibility to label a single strain with either JF549 HaloTag ligand or
181	JF ₆₄₆ HaloTag ligand (Grimm et al., 2015). The disadvantages of HaloTag labeling include the
182	need to introduce the fluorescent ligand (for example, using small scale liquid culture) and the
183	cost of the ligand. Additionally, care should be taken to optimize labeling procedures for each
184	protein to maximize labeling efficiency and minimize background from free ligand. In practice,
185	we find that HaloTag labeling is particularly useful when photobleaching of conventional
186	fluorescent proteins is limiting and/or when imaging in far red is advantageous.
187	
188	
189	Materials and Methods
190	C. elegans
191	C. elegans hermaphrodite strains were maintained at either 20°C or 25°C on Nematode Growth
192	Medium (NGM) plates containing 3 g/L NaCl, 2.5 g/L peptone and 17 g/L agar supplemented
193	with 1 mM CaCl ₂ , 1 mM MgSO ₄ , 1 mM KPO ₄ and 5 mg/L Cholesterol with <i>E. coli</i> OP50 as a
194	source of food. All strains used in this study are listed in Table 4.
195	
196	Cloning
197	To generate the expression vector pXF87, the two SapI restriction sites in pCFJ350

198 (Frøkjær-Jensen et al., 2012) were mutated using Q5 Site-Directed Mutagenesis (New England

199	Biolabs) with the oligo pairs XF30F/XF30R and XF31F/XF31R. In addition, the annealed oligos
200	Eg717 and Eg718 were cloned between the XhoI and SpeI sites of pCFJ350.

201	HaloTag and ceGFP containing PATC-rich endogenous introns were generated in several
202	steps. First, genes were designed in silico to minimize germline silencing and increase
203	expression by codon adaptation (Redemann et al., 2011), removal of homology to piRNAs
204	(Batista et al., 2008), and inclusion of a short endogenous intron from <i>rpl-18</i> and four synthetic
205	introns (Okkema et al., 1993) using the freely available gene editor ApE (M. Wayne Davis,
206	unpublished). Second, the synthetic genes were synthesized as gBlocks (IDT), cloned into a
207	plasmid, and sequence verified. Third, PATC-rich introns from a gene that is resistant to
208	germline silencing, smu-1 (Spike et al., 2001), were introduced into the synthetic genes by
209	Golden Gate cloning as described previously (Frøkjær-Jensen et al., 2016). Finally, correct
210	splicing and expression was verified by expression of the synthetic genes with and without
211	PATC-rich introns using an <i>eft-3</i> promoter and <i>tbb-2</i> 3'UTR.
212	Donor cassette plasmids numbered pXF, pJF and pSM were generated by cloning PCR
213	products into the pCR BluntII vector backbone using the Zero Blunt TM Topo TM system (Thermo
214	Fisher Scientific). pSDH donor cassette plasmids were cloned by ligating PCR products into
215	pSDH76, a derivative of pCR BluntII containing two XcmI sites that generate T-overhangs
216	following digestion with XcmI. PCR primers for each plasmid are listed in Table 3. pXF87 and
217	all donor plasmids were sequence verified.
218	To assemble HSP-70 (aa1-19) into the first cassette position of the expression vector

- 219 pXF108, 10mM of oligos XF17F and XF17R were gradually cooled from 95°C to 25°C in a
- 220 BioRad T1000 thermocycler. Annealed oligos were phosphorylated by T4 polynucleotide kinase

(NEB) for two hours at 37°C followed by 65°C for 20 minutes. The donor and primers plasmids
are listed in Tables 1 and 3, respectively.

223

224 Assembly reaction

225 Assembly reactions 50 µL included 1 nM of pXF87 and each donor cassette plasmid, 400 226 units of T4 DNA ligase (NEB), 10 units of SapI enzyme (NEB), 1X NEB CutSmart buffer and 1 227 mM ATP. For assemblies including annealed oligos, phosphorylated annealed oligos were used 228 at a final concentration of 3 nM in the assembly reaction. Reactions were incubated for 22-24 229 hours at 25°C, transformed into Stellar Competent cells (Clontech). Four to six plasmid clones 230 were first screened by restriction digest with XhoI and SpeI. Plasmids with the correct restriction 231 digest pattern were sequenced across each cassette boundary. MosSCI targeting vector assembly 232 reactions are listed in Table 2. Note that because the background of unassembled vectors in our 233 assembly reactions was typically low, our protocol omits the counterselection restriction enzyme 234 step described in the original SapTrap protocol (Schwartz and Jorgensen, 2016). 235 236 Transgenesis 237 Double strand breaks at Mos1 landing sites were generated using CRISPR/Cas9. With 238 the exception of strains EGD615, EGD629, EGD631 and EGD633, injection mixes contained 50 239 ng/µL assembled MosSCI targeting vectors and pXW7.01 and pXW7.02 sgRNA/Cas9 240 vectors (gifts from Katya Voronina, University of Montana), which generate double strand 241 breaks at the *ttTi5605* universal MosSCI insertion site. For strains EGD615, EGD629, EGD631 242 and EGD633, injection mixes contained 0.25 μ g/ μ L Cas9 protein, 0.1 μ g/ μ L tracrRNA, 0.028

 $243 \mu g/\mu L cr RNAs BH0278$

244	(GCGUCUUCGTACCUUUUUGGGUUUUUAGAGCUAUGCUGUUUUG) and BH0279
245	(GUCCCAUCGAAGCGAAUAGGGUUUUAGAGCUAUGCUGUUUUG) (Dharmacon) and
246	0.1 μ g/ μ L assembled MosSCI plasmids. The universal MosSCI strains EG8078 or
247	EG8079 (Frøkjær-Jensen et al., 2014) were injected, singled and incubated for 10 days at
248	20°C. ~10 worms from plates containing non-Unc animals were transferred to new plates. Plates
249	that stably gave rise to non-unc progeny were visually screened for fluorescent transgene
250	expression.
251	
252	HaloTag staining
253	20 to 30 L4 worms were stained in 25 μL S media containing concentrated OP50 bacteria
254	and 2.5 μ M of either JF ₅₄₉ HaloTag ligand or JF ₆₄₆ HaloTag ligand (Grimm et al., 2015) in a
255	darkened 96 well plate shaking at 150 rpm for 19 hours at 23°C. Water was placed in the
256	neighboring wells to help prevent evaporation. Animals were recovered on NGM plates for up to
257	two hours before imaging.
258	
259	MitoTracker Deep Red staining
260	L4 worms were fed overnight on an NGM plate that had been seeded with 100 μ L concentrated
261	OP50 bacteria mixed with 1 μ L of 1 mM MitoTracker Deep Red FM dye (Cell Signaling
262	Technology, Cat #8778S).
263	
264	Imaging
265	With the exceptions of the TOMM-20::Dendra2 strain and optogenetic strains (Figure 4),
266	all images were collected on a spinning-disk microscope built on a Nikon Eclipse Ti base and

267 equipped with an Andor CSU-W1 two camera spinning disk module, Zyla sCMOS cameras, an 268 Andor ILE laser module and a Nikon 100X Plan Apo 1.45 NA oil immersion objective (Micro 269 Video Instruments, Avon, MA). 270 TOMM-20:: Dendra2 was imaged on a Marianas spinning disk microscope (Intelligent 271 Imaging Innovations) built around a Zeiss Axio Observer Z.1 equipped with a Photometrics 272 Evolve EMCCD camera, 50 mW 488 and 561 nm solid state lasers, a CSU-X1 spinning disk 273 (Yokogawa, Tokyo Japan) and a Zeiss 100X Plan-Apochromat objective. Photoconversion was 274 performed by 5 second illumination with a 405 epifluorescent light. 275 To stimulate the relocalization of mitochondria (Figure 4), embryos were illuminated 276 with a 50 mW 640 nm solid-state laser used to excite MitoTracker DeepRed (20% laser power, 277 100 msec exposure, camera gain of 1) and a 50 mW 488 nm solid-state laser used to stimulate 278 the interaction between ePDZ and LOV domains (80% laser power and 100 msec exposure). A 279 Plan-Apochromat 100x/1.4 NA oil immersion DIC objective (Zeiss) was used and Z-stacks (one 280 micron step size, 11 steps) were collected at 60-second intervals. The images displayed in Figure 281 4 are maximum intensity projections of three Z planes from the cell midplane. 282 283 Data and reagent availability 284 Strains and reagents are available upon request. Supplemental materials describing the sequence 285 of tag donor cassettes are available through the GSA FigShare portal.

286

287

288

290 Acknowledgements

- 291 We thank Bing He and members of the Griffin lab for comments on the manuscript. We thank
- 292 Katya Voronina (U. of Montana) for the plasmids pXW7.01 and pXW7.02. We thank Ann
- 293 Lavanway and Zdenich Zvindrych of the Dartmouth Life Sciences Imaging Facility for
- assistance with imaging. The Molecular Biosciences core facility is supported by the Norris
- 295 Cotton Cancer Center and by NCI grant 5P30CA023108-40. This work was supported by grants
- from the NIH (R01GM110194 to EEG), baseline funding from KAUST (to CFJ) and the NWO
- 297 (016.Veni.181.051 to SDH). Erik Jorgensen (U. of Utah, HHMI) contributed resources to
- 298 generate some of the transgenes from NIH grant R01GM095817.

299

300

302 Figure Legends

303 Figure 1. SapTrap assembly of MosSCI targeting vectors using the four-cassette system. A. The 304 MosSCI targeting vector pXF87 was derived from pCFJ350 by mutating two SapI restriction 305 sites (indicated by arrowheads in the "Left" (L) and "Right" (R) homology arms) and introducing 306 two SapI sites (blue text) between the XhoI and SpeI sites (green text). SapI cleavage sites are in 307 red text. The SapI recognition sites are oriented such that upon digestion they are removed from 308 the vector backbone. The cbr-unc-119 gene is used as a positive selection marker to facilitate the 309 identification of transgenic animals. **B.** Design of the donor cassette vectors used for the 4-310 cassette cloning strategy. C. The curved dotted lines indicate the overhangs that anneal during 311 the ligation reaction. **D.** Overview of the assembly protocol. For a detailed protocol, see the 312 Materials and Methods section. E. Summary of available promoter, gene tag and 3'UTR donor 313 cassette plasmids.

314

315 **Figure 2.** Images of transgenic strains. **A.** Images of TOMM-20::HaloTag labeled with JF_{646} 316 HaloTag ligand in the adult gonad (outlined with curved dotted line), including an inset of the 317 region in the stippled box. **B.** Images of embryos expressing TOMM-20::HaloTag labeled with 318 JF₆₄₆ HaloTag ligand at the 1-cell, 4 cell and \sim 100 cell stages. C. Images of a 4 cell embryo 319 expressing TOMM-20::HaloTag labeled with JF₆₄₆ HaloTag ligand (magenta) and COX-4::GFP 320 (green) (Raiders et al., 2018). $\mathbf{D} - \mathbf{F}$. Images of embryos expressing the indicated transgenes at 321 the 4-cell stage. G – I. Images of a 4 cell embryo expressing TOMM-20::Dendra2 before and 322 after photoconversion (PC). Dendra2 switches from green to red fluorescence upon 323 photoconversion. J - M. Images of embryos expressing the indicated transgenes at the 1-cell, 4 324 cell and ~ 100 cell stages.

325

326	Figure 3. SapTrap assembly of MosSCI targeting vectors using the five-cassette system. A.
327	Schematic of pXF87 and the donor cassettes following SapI digestion. The dotted lines indicate
328	the overhangs that anneal during ligation. B. Summary of available promoter, gene tag and
329	3'UTR donor cassette plasmids for the five-cassette system.
330	
331	Figure 4. Optogenetic control of mitochondrial distribution in the 1-cell embryo. A. Control
332	embryo stained with Mitotracker DeepRed and imaged with 488 nm and 640 nm illumination
333	(640 nm channel shown). B. 1-cell <i>epdz::mcherry::dhc-1</i> ; <i>tomm-20::halotag::lov</i> embryo
334	stained with Mitotracker DeepRed and imaged with 488 nm and 640 nm illumination (640 nm
335	channel shown). The 488 nm illumination was used to stimulate the interaction between the
336	ePDZ and LOV domains.
~~-	

337

339 Literature Cited

- Batista, P. J., J. G. Ruby, J. M. Claycomb, R. Chiang, N. Fahlgren, et al., 2008 PRG-1 and 21U-
- 341 RNAs interact to form the piRNA complex required for fertility in *C. elegans*. Mol. Cell 31: 67-78.
- 342
- 343 Brasch, M. A., J. L. Hartley, and M. Vidal, 2004 ORFeome cloning and systems biology:
- 344 standardized mass production of the parts from the parts-list. Genome Res. 14:2001-2009.
- 345
- 346 D'Arcangelo, J. G., K. R. Stahmer, and E. A. Miller, 2013 Vesicle-mediated export from the ER:
- 347 COPII coat function and regulation. Biochim. Biophys. Acta 1833:2464-2472.
- 348
- 349 Dupuy, D., Q. R. Li, B. Deplancke, M. Boxem, T. Hao, et al., 2004 A first version of the
- 350 *Caenorhabditis elegans* Promoterome. Genome Res. 14: 2169-2175.
- 351
- 352 Engler, C., R. Kandzia, and S. Marillonnet, 2008 A one pot, one step, precision cloning method
- 353 with high throughput capability. PLoS One 3: e3647.

- 355 Fielmich, L. E., R. Schmidt, D. J. Dickinson, B. Goldstein, A. Akhmanova, et al., 2018 Optogenetic
- dissection of mitotic spindle positioning in vivo. Elife 7: e38198.
- 357
- 358 Frøkjaer-Jensen, C., M. W. Davis, M. Ailion, and E. M. Jorgensen, 2012 Improved Mos1-
- 359 mediated transgenesis in *C. elegans*. Nat. Methods 9: 117-118.
- 360

361	Frøkjaer-Jensen, C., M. W. Davis, C. E. Hopkins, B. J. Newman, J. M. Thummel, et al., 2008
362	Single-copy insertion of transgenes in <i>Caenorhabditis elegans</i> . Nat. Genet. 40: 1375-1383.
363	
364	Frøkjaer-Jensen, C., M. W. Davis, M. Sarov, J. Taylor, S. Flibotte, et al., 2014 Random and
365	targeted transgene insertion in <i>Caenorhabditis elegans</i> using a modified Mos1 transposon. Nat.
366	Methods 11: 529-534.
367	
368	Frøkjaer-Jensen, C., N. Jain, L. Hansen, M. W. Davis, Y. Li, et al., 2016 An Abundant Class of Non-
369	coding DNA Can Prevent Stochastic Gene Silencing in the C. elegans Germline. Cell 166: 343-
370	357.
371	
372	Gibson, D. G., L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison 3rd, et al., 2009 Enzymatic
373	assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345.
374	
375	Grimm, J. B., B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, et al., 2015 A general method to
376	improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12: 244-250.
377	
378	Hartley, J. L., G. F. Temple, and M. A. Brasch, 2000 DNA cloning using in vitro site-specific
379	recombination. Genome Res. 10: 1788-1795.
380	Kelly, W. G., S. Xu, M. K. Montgomery, and A. Fire, 1997 Distinct requirements for somatic and
381	germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146: 227-
382	238.

383

- 384 Mangone, M., A. P. Manoharan, D. Thierry-Mieg, J. Thierry-Mieg, T. Han, et al., 2010 The
- 385 landscape of *C. elegans* 3'UTRs. Science 329: 432-435.

386

387 Merritt, C., D. Rasoloson, D. Ko, and G. Seydoux, 2008 3' UTRs are the primary regulators of

388 gene expression in the *C. elegans* germline. Curr. Biol. 18: 1476-1482.

389

- 390 Nance, J., and C. Frøkjær-Jensen. (2019). The *Caenorhabditis elegans* Transgenic Toolbox.
- 391 Genetics 212, 959-990.

392

- 393 Okkema, P. G., S. W. Harrison, V. Plunger, A. Aryana, and A. Fire, 1993 Sequence requirements
- 394 for myosin gene expression and regulation in *Caenorhabditis elegans*. Genetics 135: 385-404.

395

- 396 Philip, N. S., F. Escobedo, L. L. Bahr, B. J. Berry, and A. P. Wojtovich, 2019 Mos1 Element-
- 397 Mediated CRISPR Integration of Transgenes in *Caenorhabditis elegans*. G3 9: 2629-2635.

398

- 399 Raiders, S.A., M. D. Eastwood, M. Bacher, and J. R. Priess, 2018 Binucleate germ cells in
- 400 *Caenorhabditis elegans* are removed by physiological apoptosis. PLoS Genet. 14: e1007417.

- 402 Redemann, S., S. Schloissnig, S. Ernst, A. Pozniakowsky, S. Ayloo, et al., 2011 Codon adaptation-
- 403 based control of protein expression in *C. elegans*. Nat. Methods 8: 250-252.
- 404

- 405 Schwartz, M. L., and E. M. Jorgensen 2016 SapTrap, a Toolkit for High-Throughput CRISPR/Cas9
- 406 Gene Modification in *Caenorhabditis elegans*. Genetics 202: 1277-1288.
- 407
- 408 Seth, M., M. Shirayama, W. Tang, E. Z. Shen, S. Tu, et al., 2018 The Coding Regions of Germline
- 409 mRNAs Confer Sensitivity to Argonaute Regulation in C. elegans. Cell Rep. 22: 2254-2264.
- 410
- 411 Shirayama, M., M. Seth, H. C. Lee, W. Gu, T. Ishidate, et al., 2012 piRNAs initiate an epigenetic
- 412 memory of nonself RNA in the *C. elegans* germline. Cell 150: 65-77.
- 413
- 414 Siniossoglou, S., C. Wimmer, M. Rieger, V. Doye, H. Tekotte, et al., 1996 A novel complex of
- 415 nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear
- 416 pores. Cell 84: 265-275.
- 417
- 418 Spike, C. A., J. E. Shaw, and R. K. Herman, 2001 Analysis of *smu-1*, a gene that regulates the
- 419 alternative splicing of unc-52 pre-mRNA in *Caenorhabditis elegans*. Mol. Cell Biol. 21: 4985-
- 420 4995.
- 421
- 422 Strickland, D., Y. Lin, E. Wagner, C. M. Hope, J. Zayner, et al., 2012 TULIPs: tunable, light-
- 423 controlled interacting protein tags for cell biology. Nat Methods 9: 379-384.
- 424

- 425 Zeiser, E., C. Frøkjaer-Jensen, E. Jorgensen, and J. Ahringer, 2011 MosSCI and gateway
- 426 compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C.
- 427 elegans germline. PLoS One 6: e20082.
- 428
- 429 Zhang, D., S. Tu, M. Stubna, W. S. Wu, W. C. Huang *et al.*, 2018 The piRNA targeting rules and
- 430 the resistance to piRNA silencing in endogenous genes. Science 359: 587-592.

Name	Description
pXF121	4-cassette or 5 cassette system (5'-TGG 3'-TAC)
	mex-5 promoter
pSDH60	<i>spe-11</i> promoter
Cassatta 2 for	4-cassette or 5-cassette system (5'-ATG-3' 3'-CCA-5')
Tags	4-casselle of 5-casselle system (5-A10-5 5 -CCA-5)
pXF89	halotag (no STOP codon, PATC introns)
pJF5	gfp (no STOP codon, PATC introns)
pXF222	mkate2 (no STOP codon)
pSDH61	epdz (no STOP codon)
pSM10	mscarlet (no STOP codon)
pSM10	dendra2 (no STOP codon)
p514112	
Genes	
pJF7	<i>tomm-20</i> (no STOP codon)
pSDH50	<i>tomm-20</i> (aa1-55) (no STOP codon)
pXF262	cox-4 (no STOP codon)
pXF250	npp-20 (no STOP codon)
p111 200	
Cassette 3 for	4-cassette system (5'-GGT-3' 3'-ATT-5')
Tags	
pXF88	halotag (includes STOP codon, PATC introns)
pJF6	<i>gfp</i> (includes STOP codon, PATC introns)
pXF130	mkate2 (includes STOP codon)
pSM08	mscarlet (includes STOP codon)
pSM03	dendra2 (includes STOP codon)
•	
ORFs	
pXF90	halotag::HDEL (includes STOP codon, PATC introns)
Cassette 3A fo	or 5-cassette system (5'-GGT-3' 3'-TGC-5')
Tags	
pSDH51	halotag (no STOP codon, PATC introns)
pSM04	<i>mkate2</i> (no STOP codon)
pSDH57	mscarlet (no STOP codon)
	r 5-cassette system (5'-ACG-3' 3'-ATT-5')
Tags	
pXF276	lov domain (includes STOP codon)
pSDH52	epdz (includes STOP codon)
pSM05	mkate2 (includes STOP codon)
	4-cassette or 5-cassette system (5'-TAA-3' 3'-CAT-5')
pXF85	<i>pie-1</i> 3'UTR
pSDH54	tbb-2 3'UTR
pSDH66	<i>unc-54</i> 3'UTR

Table 1. Donor cassette plasmids used in this study.

Note: For the expression plasmid pXF108, the annealed oligos were used to generate HSP-70 in cassette 2.

Table 2. MosSCI targeting vectors used in this study.

Name	Comments	Assembly						
pXF87	MosSCI backbone	Derived from pCFJ350						
			Donor vectors used for assembly				Assembly efficiency	
				Cassettes			Digestion	Sequencing
		1	2		3	4		
pJF13	ER lumen, Halotag	pXF121	XF17F	/R* p	XF90	pXF85	4/5	2/2
pJF17	Mitochondrial OM, Halotag	pXF121	pJF7	7 р	XF88	pXF85	4/5	1/2
pXF253	ERES + nuclear pores (NPP-20), GFP	pXF121	pXF 2	50	pJF6	pXF85	4/6	2/2
pXF255	ERES + nuclear pores (NPP-20), Halotag	pXF121	pXF 2	50 p	XF88	pXF85	5/6	2/2
pXF266	Mitochondrial matrix, Halotag	pXF121	pXF 2	62 p	XF88	pXF85	1/4	1/1
pSM20	Mitochondrial OM, mKate2	pXF121	pJF7	7 p2	XF130	pXF85	4/5	2/2
pSM22	Mitochondrial OM, mScarlet	pXF121	pJF7	7 р	SM08	pXF85	4/5	2/2
pSM17	Mitochondrial OM, Dendra2	pXF121	pJF7	7 р	SM03	pXF85	4/5	2/2
pSM16	Mitochondrial OM, GFP	pXF121	pJF7	7	pJF6	pXF85	2/5	2/2
		1	2	3A	3B	4		
pSDH68	Mitochondrial OM, Halotag, LOV	pXF121	pSDH50	pSDH51	PCR	pSDH54	11/15	2/2
					fragment			

* Annealed oligos.

Table 3. Primers used in this study.

Name	Description	Sequence (SAP1 site and Overhang)	Corresponding plasmid
XF32F	mex-5 promoter (F)	GCAGCTCTTCGTGGATATCAGTTTTTAAAAAATTA	
XF32R	mex-5 promoter (R)	GCAGCTCTTCGCATTCTCTGTCTGAAACA	pXF121
JF5F	tomm-20 (F)	GCA <u>GCTCTTC</u> GATGTCGGACACAATTCTTGG	102
JF5R	tomm-20 (R)	GCA <u>GCTCTTC</u> GACCCTCCAAGTCGTCGGTGTC	pJF7
JF1F	gfp (F)	GCA <u>GCTCTTC</u> GATGTCCAAGGTAACACTTAGTTT	pJF5
JF1R			p51-5
JF2F	gfp (F)	GCA <u>GCTCTTC</u> GGGTGGAAGCGGCTCCAAGAACACTTAGTTT	pJF6
JF2R	$gfp(\mathbf{R})$	GCA <u>GCTCTTC</u> GTTACTTGTAGAGCTCGTCCAT	p310
XF17F	hsp-70 (1-19aa) (F)	ATGAAGACCTTATTCTTGTTGGGCTTGATCGCCCTATCCGCCGTCAGTGTCTACTGC	
XF17R	hsp-70 (1-19aa) (R)	ACCGCAGTAGACACTGACGGCGGATAGGGCGATCAAGCCCAACAAGAATAAGGTCTT	
spe-11(SAP C1) F	spe-11 promoter (F)	GCA <u>GCTCTTC</u> G TGG GTCGACAGAACATTTTTCCGT	pSDH60
spe-11(SAP C1) R	spe-11 promoter (R)	GCA <u>GCTCTTC</u> GCATTTTATCTAGTCGGTTTGCGA	poblico
XF24F	halotag (F)	GCA <u>GCTCTTC</u> GATGGCCGAGGTAACACTTAGTTTTTGT	pXF89
XF24R	halotag (R)	GCA <u>GCTCTTC</u> GACCGCCGCTTCCTCCGGAGATCTCGAGGGT	p/xi 0)
XF63F	mkate2 (F)	GCA <u>GCTCTTC</u> GATGGTCTCCGAGCTCATTAAAGAAAACA	pXF222
XF63R	mkate2 (R)	GCA <u>GCTCTTC</u> GACCACCTCCACCGGTGTCCGAGCTTGG	p/(1 222
ePDZ (SAP C2) F	epdz (F)	GCA <u>GCTCTTC</u> GATGCCAGAGCTCGGATTCTCGAT	pSDH61
ePDZ (SAP C2) R	epdz (R)	GCA <u>GCTCTTC</u> GACCAGCTCCCGTCGCGACGGGTGGATCAC	populoi
XF79F	<i>cox-4</i> (F)	GCA <u>GCTCTTC</u> GATGATGCTGCCACGTTTG	pXF262
XF79R	<i>cox-4</i> (R)	GCA <u>GCTCTTC</u> GACCCTTCCACTTCTTGTTCTCGTAATC	p/11/202
XF76F	npp-20 (F)	GCA <u>GCTCTTC</u> GATGACCACGGTCCGCCAG	pXF250
XF76R	npp-20 (R)	GCA <u>GCTCTTC</u> GACCTCTCTGAGCTCCCGGAGCT	p/1/250
XF23F	halotag (F)	GCA <u>GCTCTTC</u> GGGTGGAAGCGGCGCCGAGGTAACACTTAGTTTTTGT	pXF88
XF23R	halotag (R)	GCA <u>GCTCTTC</u> GTTATCCGGAGATCTCGAGGGT	рлгов
XF53F	mkate2 (F)	GCA <u>GCTCTTC</u> G GGT GGAGGTGGAGGTGTCTCCGAGCTCATTAAAGAAAAC	pXF130
XF53R	mkate2 (R)	GCA <u>GCTCTTC</u> GTTAACGGTGTCCGAGCTTGGA	pAP150
XF22F	halotag::hdel (F)	GCA <u>GCTCTTC</u> G GGT GGAAGCGGCGCCGAGGTAACACTTAGTTTTTGT	pXF90
XF22R	halotag::hdel (R)	GCA <u>GCTCTTC</u> GTTAGAGTTCGTCATGTCCGGAGATCTCGAGGGT	pA190
SIM8F	mscarlet (F)	GCA <u>GCTCTTC</u> GATGGTCTCCAAGGGCGAGGCA	»SM10
SIM8R	mscarlet (R)	GCA <u>GCTCTTC</u> GACCACCTCCACCTCCCTTGTACAGCTCGTCCATTCCT	pSM10
SIM10F	dendra2 (F)	GCA <u>GCTCTTC</u> GATGAACCTTATTAAGGAAGATATG	pSM12
SIM10R	dendra2 (R)	GCA <u>GCTCTTC</u> GACCGCCGCTTCCCCATACTTGACTTGGTAG	pSW12
SIM1F	dendra2 (F)	GCA <u>GCTCTTC</u> GGGTGGAAGCGGCAACCTTATTAAGGAAGATATG	pSM03
SIM1R	dendra2 (R)	GCA <u>GCTCTTC</u> GTTACCATACTTGACTTGGTAG	psivios
SIM2F	mkate2 (F)	GCA <u>GCTCTTC</u> G GGT GGAGGTGGAGGTGTCTCCGAGCTCATTAAAGAAAACA	pSM04
SIM2R	mkate2 (R)	GCA <u>GCTCTTC</u> GCGTACCTCCACCGCTGTCCCGAGCTTGGA	p31404
SIM3F	mkate2 (F)	GCA <u>GCTCTTC</u> GACGGGAGGTGGAGGTGTCTCCGAGCTCATTAAAGAAAACA	pSM05
SIM3R	mkate2 (R)	GCA <u>GCTCTTC</u> GTTAACGGTGTCCGAGCTTGGA	psivios
SIM6F	mscarlet (F)	GCA <u>GCTCTTC</u> G GGT GGAGGTGGAGGTGTCTCCAAGGGCGAGGCA	*SM08
SIM6R	mscarlet (R)	GCA <u>GCTCTTC</u> GTTACTTGTACAGCTCGTCCATTCCT	pSM08
mScarlet (SAPC3)F	mscarlet (F)	GCA <u>GCTCTTC</u> G GGT GTCTCCAAGGGCGAGGCAGTCAT	pSDH57
mScarlet (SAPC3)R	mscarlet (R)	GCA <u>GCTCTTC</u> GCGTGGCCGCGGCTTTTGCAGCGG	p3D1157
XF84F	lov(F)	GCA <u>GCTCTTC</u> GACGCCTCGTCTTGCTGCT	pXF276
XF84R	lov (R)	GCA <u>GCTCTTC</u> GTTAGACCCAAGTGTCGACGGC	pAF270
XF12F	pie-1 3'UTR (F)	GCA <u>GCTCTTC</u> GTAATTTTGCCGTATTTTCCAT	pXF85
XF12R	pie-1 3'UTR (R)	GCA <u>GCTCTTC</u> GTACATCATCGTTCACTTTTCAC	pAP85
tbb2 3'UTR	tbb-2 3'UTR (F)	GCA <u>GCTCTTC</u> GTAAATGCAAGATCCTTTCAAGCATTC	
(SAPC5)F			pSDH54
tbb2 3'UTR	tbb-2 3'UTR (R)	GCA <u>GCTCTTC</u> GTACGACTTTTTTCTTGGCGGCAC	p5D1154
(SAPC5)R			
Halo (SAP C3)F	halotag (F)	GCA <u>GCTCTTC</u> G GGT GGAAGC	pSDH51
Halo (SAP C3)R	halotag (R)	GCA <u>GCTCTTC</u> GCGTTCCGGAGATCTCGAGGGTGG	popula
ePDZ (SAP C4)F	epdz (F)	GCA <u>GCTCTTC</u> GACGGGAGGTTCCGGAGGATCTGGC	
ePDZ (SAP C4)R	epdz (R)	GCA <u>GCTCTTC</u> G TTA CGTCGCGACGGGTGGAT	
unc-54 (SAPC5)F	unc-54 3'UTR (F)		
unc-54 (SAPC5)R	unc-54 3'UTR (R)	GCA <u>GCTCTTC</u> GTACAAACAGTTATGTTTGGTATATTGGGA	P010100
Eg717	Replace pCFJ350 MCS (F)	TCGAGTGGCGAAGAGCCCATGGATCCCATATGGAATTCTGCAGGCCTGCTCTTCGGTAA	pXF87
Eg718	Replace pCFJ350 MCS (R) CTAGTTACCGAAGAGCAGGCCTGCAGAATTCCATATGGGATCCATGGGCTCTTCGCCAC		
XF30F	Mutate SapI site in pCFJ350 GATTATGGGCACTTCTTTATCC pXF87		nYF87
XF30R	Mutate SapI site in pCFJ350	CGACAAGCAACTTTTCTATAC	p.1.07
XF31F Mutate SapI site in pCFJ350 AATGGCGAAGtGCAAAGCAGAG pyt		pXF87	
XF31R	Mutate SapI site in pCFJ350	GTTTCCTGAAAATAATGTAACTTGAATTG	pzro/

Note: For the expression plasmid pJF13 annealed oligos were used to generate HSP-70(aa1-19) in cassette 2.

Additional oligo sequences used to generate pSDH50: TOMM-20 short forward.

gc

TOMM-20 short reverse

 $GCA\underline{GCTCTTC} GACC ggctccggctccagcgcctgcaccagctccTGCTCCAGCCTGGGCACGtctctctgaaagaaaataagttgttttagataaaaatccgaaggaaatatgttgtttaaaacactgactttgctatactttgccttaatctttgctcttgtagtctggagcgttgattctcttatgatcgaagtaaatgcagtagacgggcaaagcggctccagcaattccagcagccaaaacgacgtttgatttgTTGAAACCAAGAATTGTGTCCGACATCGAAGAGCtgc$

Strain	Genotype	Construction	Reference:
EG8078	oxTi185 I; unc-119(ed3) III		Frokjaer-Jensen et al (2014)
EG8079	oxTi179 II; unc-119(ed3) III		Frokjaer-Jensen et al (2014)
EGD329	egxSi126 [unc-119(+), pmex-5::hsp-70(aa1-19)::halotag::HDEL::pie-1 3 'UTR] 1; unc-119(ed3) III	Injected pJF13 into EG8078	This study
EGD412	egxSi136 [unc-119(+); pmex-5::tomm-20::halotag::pie-1 3'UTR] II; unc-119(ed3) III	Injected pJF17 into EG8079	This study
EGD496	egxSi117 [unc-119 (+); pmex-5::npp-20::gfp;;pie-1 3 'UTR] 1; unc-119(ed3) III	Injected pXF253 into EG8078	This study
EGD497	egxSi118 [unc-119 (+); pmex-5::npp-20::halotag::pie-1 3 'UTR] II; unc-119 (ed3) III	Injected pXF255 into EG8079	This study
EGD549	egxSi144 [unc-119 (+); pmex-5::cox-4::halotag::pie-1 3'UTR] II; unc-119 (ed3) III	Injected pXF266 into EG8079	This study
EGD565	egxSi145 [unc-119 (+); pmex-5::hsp-70(aa1-19)::halotag::HDEL::pie-1 3'UTR] II; unc-119 (ed3) III	Injected pJF13 into EG8079	This study
EGD623	egxSi152 [unc-119(+); pmex-5: tomm -20::gfp::pie-1 3'UTR] II; unc-119(ed3) III	Injected pSM16 into EG8079	This study
EGD629	egxSi155 [unc-119(+); pmex-5::tomm -20::mKate2::pie-1 3'UTR] II; unc-119(ed3) III	Injected pSM20 into EG8079	This study
EGD631	egxSi155 [unc-119(+); pmex-5::tomm -20::Dendra2::pie-1 3'UTR] II; unc-119(ed3) III	Injected pSM17 into EG8079	This study
EGD633	egxSi159 [unc-119(+); pmex-5::tomm -20::mScarlet::pie-1 3'UTR] II; unc-119(ed3) III	Injected pSM22 into EG8079	This study
EGD615	cox-4(zu476[cox-4::eGFP::3XFLAG]) 1; egxSi136 [unc-119(+); pmex-5::tomm - 20::halotag::pie-1 3'UTR] 11; unc-119(ed3?) III	Crossed EGD412 and JJ2586	This study
JJ2586	cox-4(zu476[cox-4::eGFP::3XFLAG]) I		Raiders et al, 2018
TBD307	dhc-1(he255[epdz::mcherry::dhc-1]) I; utdSi51(Pmex-5::tomm -20(aa1- 55)::halotag::lov::tbb-2 3'UTR) II	Injected pSDH68 into EG8079. Crossed to SV2095.	This study
SV2095	dhc-1(he255[epdz::mcherry::dhc-1]) I; ruls57[Ppie-1::gfp::tbb-2 + unc119(+)] V		Fielmich et al, 2018

Table 4. Strains used in this study

Figure 1

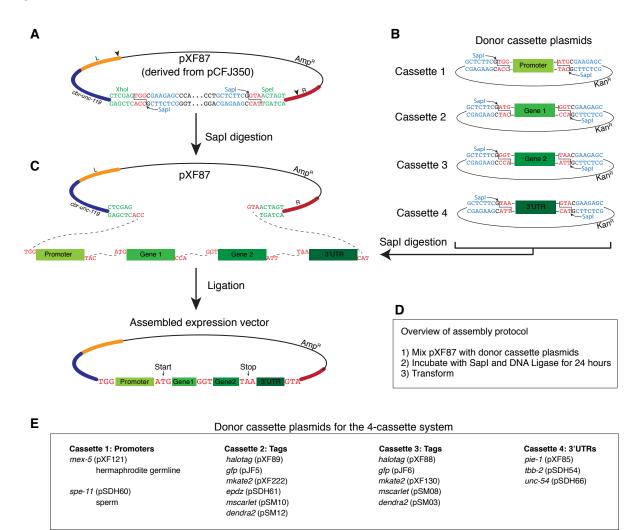
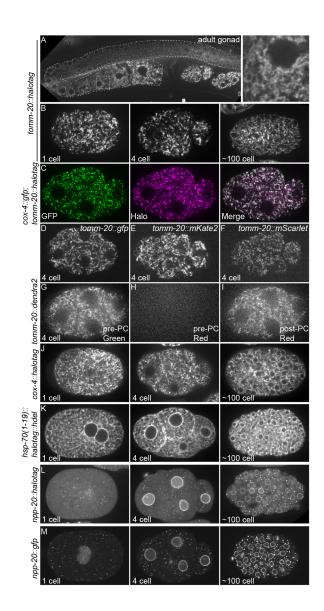
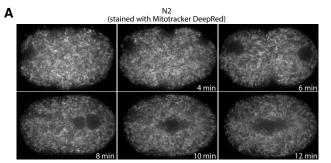




Figure 2

Figure 3



В

Donor cassette plasmids for the 5-cassette system

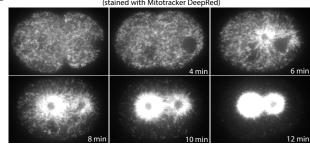

Cassette 1: Promoters mex-5 (pXF121) spe-11 (pSDH60)	Cassette 2: Tags halotag (pXF89) gfp (pJF5) mkate2 (pXF22) epdz (pSDH61) mscarlet (pSM10) dendra2 (pSM12)	Cassette 3A: Tags halotag (pSDH51) mkate2 (pSM04) mscarlet (pSDH57)	Cassette 3B: Tags lov (pXF276) epdz (pSDH52) mkate2 (pSM05)	Cassette 4: 3'UTRs pie-1 (pXF85) tbb-2 (pSDH54) unc-54 (pSDH66)
--	---	--	--	--

Figure 4

в

epdz::mcherry::dhc-1; tomm-20::halotag::lov (stained with Mitotracker DeepRed)


```
Halotag
pXF89:
      (Cassette 2) GCTCTTCGATG_Halotag_GGAAGCGGCGGTCGAAGAGC
                                  G S G G
                                            SapI
                   SapI M
      (cassette 3) GCTCTTCGGGTGGAAGCGGC_Halotag_TAACGAAGAGC
pXF88:
                   SapI
                        G G S G
                                             SapI
pSDH51: (cassette 3a) GCTCTTCGGGTGGAAGCGGC_Halotag_ACGCGAAGAGC
                   SapI
                        GGSG
                                          т
                                             SapI
                GCCGAGgtaacacttagtttttgttgctctgtttaaaaattaat
                 A E
tttaaqATCGGAACCGGATTCCCATTCGACCCACACTACGTCGAGGTCCTCGGAGAGCGTATGC
     I G T G F P F D P H Y V E V L G E R M
ACTACGTCGACGTCGGACCACGTGACGGAACCCCAGTCCTCTTCCTCCACGGAAACCCAACCTC
H Y V D V G P R D G T P V L F L H G N P T S
{\tt ctcctacgtctggcgtaacatcatccccacgtcgccccaacccaccgttgcatcgccccaggt}
 S Y V W R N I I P H V A P T H R C I A P
aagttttcttatgggaaagaaggaaaaaaccgagattttacttgaaaaattgaatttttcgcgg
aaaaactacgttgaaatcgcgtttttaagcgaattttcttcagaattgccagattttaacccca
aattttgcagtttttaaataaaatttcaccttttcggctcaaattgtagattttcctgaaaatt
tagtacaaaaaacaatttcctcgtaaatttttcaaatagattttccagACCTCATCGGAATGGGA
                                      DLIGMG
AAGTCCGACAAGCCAGACCTCGGATACTTCTTCGACGACCACGTCCGTTTCATGGACGCCTTCA
K S D K P D L G Y F F D D H V R F M D A F
TCGAGGCCCTCGGACTCGAGGAGGTCGTCCTCGTCATCCACGACTGGGGATCGGCTCTCGGATT
 EALGLEEVVLVIHDWGSALGF
{\tt CCACTGGGCCAAGCGTAACCCAGAGCGTGTCAAGGGAATCGCCTTCATGGAGTTCATCCGTCCA}
 H W A K R N P E R V K G I A F M E F I R P
ATCCCAACCTGGGACGAGTGGCCAGgtaagttatgtctacctgcctaccgcctaaatttt
IPTWDEWP
ttgtgaattttcatgctttttagccccaaaagtcattatttgagaaaaaatttcatacaaaaaa
gttttgagaaatacacaattttttaaatgtaattttcaaattttcaattttcaactagaaaatt
cacaaaacttgtaaattttggaccaaaacatttatacaattactttttttgaatctaataacta
caataactacaaatttaacattttcag {\tt AGTTCGCCCGTGAGACATTCCAAGCCTTCCGTACCAC}
                      EFARETFOAFRTT
{\tt CGacgtcggacgtaagctcatcatcgaccaaaacgtcttcatcgagggaaccctcccaatggga}
 D V G R K L I I D Q N V F I E G T L P M G
GTCGTCCGTCCACTCACCGAGGTCGAGATGGACCACTACCGTGAGCCATTCCTCAACCCAGTCG
V V R P L T E V E M D H Y R E P F L N P V
D R E P L W R F P N E L P I A G E P A N I
CGCCCTCGTCGAGGAGTACATGGACTGGCTCCACCAATCCCCAGTCCCAAAGCTCCTCTTCTGG
 A L V E E Y M D W L H O S P V P K L L F W
G T P
Ttttaaaaaaacqcatcaatttttaaatattttqqqacaaaatccqaaaactqtactaatttqta
gtttgtaaaattaaaaaaaaacgcaaaaaatgttttcaaaaatgcttagaataaaaataaaa
tttctaaaaaattgaacaaaataaacatttaaaaaattcaaaaagtttgaaaaaaatgcaaagttt
tttaatgcaaaaaatatttaatgtttaaacaaatttaaaaaatgttgtaagaatatgtttagag
aaattttaaataaaaagtcgtgtttttttcaaacctgcaattctttgtaattttattataaa
gagaaacaaatcaaattgtatattacgaaaaacgatactaaaattcgaaaatttgcggtttttt
\verb|gcgtaaaaaatacggttccgtaattttcagGAGTCCTCATCCCACCAGCCGAGGCCGCCCGTCT||
                        GVLIPPAEAARL
CGCCAAGTCCCTCCCAAACTGCAAGGCCGTCGACATCGGACCAGGACTCAACCTCCTCCAAGAG
 A K S L P N C K A V D I G P G L N L L Q E
GACAACCCAGgtaagttcatagattttgaaaaaagtttaagaactgaaaaatggaataaaaat
DNP
Atttaagagcatttttaaatgtaaaattaacaaaaaagcgcctaagaatgtttccaaaacagt
aaaaaaaaggtttaaaaaaaatgcaaaaaaaatttaagatgcttttaattacacaaaaaatgaa
agtaaaaaaattaaaatattgaaaaatgtatatttgtttgaaaaggtacatttttcaatgcaa
ttatgaaaaagtattgtttcatactttttctaaattttggttgaaaaatttaaaattccagctt
\tt tttattcacattatgtgttctaaaaatctttccccaattttcgggaccgttttccagtatattt
ccatttttcaaaaagatttttaactgaaattcatgttttcaatgctaaaaaatcaataaaaaag
aatttttcagACCTCATCGGTTCCGAGATCGCCCGTTGGCTCTCCACCCTCGAGATCTCCGGA
        D L I G S E I A R W L S T L E I S G
```

Figure S1. Sequence of HaloTag donor cassettes. Cassette-specific flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.

```
ceGFP with PATC introns
```

pJF5: (cassette 2) GCTCTTCGATG_ceGFP_GGAAGCGGCGGTCGAAGAGC SapI M G S G G SapI

pJF6: (cassette 3) GCTCTTCGGGTGGAAGCGGC_ceGFP_TAACGAAGAGC SapI G G S G * SapI

TCCAAGgtaacacttagtttttgttgctctgtttaaaaattaat

SK tttaagGGAGAGGAGCTGTTCACCGGAGTCGTCCCAATCCTCGTCGAGCTCGACGGGGACGTCA G E E L F T G V V P I L V E L D G D ACGGACACAAGTTCTCCGTGTCCGGAGAGGGGAGAGGGGAGATGCCACCTACGGAAAGCTCACCCT N G H K F S V S G E G E G D A T Y G K L CAAGTTCATCTGCACCACCGGAAAGCTCCCAGTCCCATGGCCAACCCTCGTCACCACCTTCTGC K F I C T T G K L P V P W P T L V T T F C ${\tt TACGGAGTCCAATGCTTCTCCCGTTACCCAGgtaagttttctgttttatttacttgtttctgag}$ YGVQCFSRYP ${\tt ttcaatttttagctgaaaagttaaatttttagctaaagagtgggatttttagttgaaaaatcga$ gatttctagctaaaaagtatgatttttagctgaaagattggaattttaagcagaaaaaattgtatttttagctgataaatcaaattttaagcggaaaaatttgaatttttagctaaaaaattccattt tcaactaaaaatcgtgatttttagctttaaaaattggatttttagctgaaaaatcggattttta gctgaaaattgaaattttttagttaaaaagtgagattttttaacagaaaagtgagatttttagt taaaaaataatatttttagctaaaaaatacaattttcaactaaagatcgtgatttttagcttta aaaattggatttttagctaaaaaatcggatttttagctgaaaattgaaattttttagttaaaaagtgggattttaagatgaaaagtgagattttttagctgaaaagtgagattttcagctaaaaaata caattttcaactgaaaaattgggatttttagctttaaaaattggattttcagctttaaaaattg gatttttagctgaaaagtgagatttttagttgaaaaattgaaatgtttagctgaaaaattggaa $\tt tttttaagtaaaaaagtgggattttaagatgaaaagtgagatgtttttagctgaaaagtgagat$ ${\tt ttttagctaa} aa aa aa aa ttttcaa ctgaa aa aa ttgggatttttagctcaa aa gtgggacgaa$ agacgaaaaaaaaatcgattttttaccaaaaattagattttcagACCACATGAAGCGTCACGA DHMKRHD ${\tt CTTCTTCAAGTCCGCCATGCCAGAGGGGATACGTCCAAGAGCGTACCATCTTCTTCAAGGACGAC}$ F F K S A M P E G Y V Q E R T I F F K D D GGAAACTACAAGgtaagttatgtacgcgatttctcggcgaaaaaatggacttttttgctcaaaa G N Y K Actgaatttttcagctttttttgcactgaaaatgctgaaaattggtttttttgctgaaaattca ccgaaaaaagctgaaaatattgcagaaatcgacgaaaaatgccttttttgctgaaatttcagccagaaaattgttcagaatcgcaatttcctgccaaaatcgacgtttttcggcgaaaattggtagat ${\tt tttgaaccgaaaattgtgaaaaatggactttttgctcaaaaacagactttttgagctttttc$ $a \verb+cactgaaaatggtggaaaattggattttccagcagaaaattcggaaattttcaatttttggcg$ gaa atttgac gaa aa atatatgaa aa acaccgatttttgtctgaa aa agttcaa aa gccgaa aaattggccaaaaaatctccaaaatcggacttttctggcgtttttcgtggaaaaattgaaatttttttgaaaaattgagcaaaaatcgccgaaaaaccgctaaaaaaactgccgaaattggcaattttgag cttaaaaaaacttgaaaaatgctcaaaattaccccaattttcaccggaaattgagctaaaatcgt cqaaaaaqactqaattttcaatttttaqctqaaaatctqcctattttcqqctaaaattqcttta aaattctccctaatttttgctgctgaaaattgtgcaaaaatcaccgaaaaatgacgattttagg ctgaaaatcttcaaaaaaagctcaaaattccccacttttcaccggaaaaaagacgaaaaaagctc ${\tt caaatttatcgattaacattttcag} {\tt ACCCGTGCCGAGGTCAAGTTCGAGGGAGACACCCTCGTC}$ TRAEVKFEGDTL AACCGTATCGAGCTCAAGGGAATCGACTTCAAGGAGGACGGTAACATCCTGGGACACAAGCTGG N R I E L K G I D F K E D G N I L G H K L AGTACAACTACCAACCCCACAACGTCTACATCATGGCCGACAAGCAAAAGAACGGAATCAAGGT E Y N Y N S H N V Y I M A D K Q K N G I K V CAACTTCAAGgtaagttetttttttgetegtttttggtgaaaaattgatggaateacaaaa NFK aatggccaaagaatcctcaaaattggccgaaaattctgaaaaatgacctaaaaatcaccgaaaa acggccaaaaattatctgaaaatcgccgaaaatctcaaattttgaggaaattcccgctaaaaattaataaaaatcaccgaaaaaaggccaaaaattacctaataaaggccgaaaatcgcctaaaaagg $\tt tttttactcgaaaaactgtggatttacgggggtaaaaattcagtttttagtgctatttcacaag$ aaaaaacacagcattttcgacaaaaactccgatttttaagccaaaaatttgaggtttttagtttttggattttcactagaaaatcaagttgtttttagaccaaaaattttatttttccgctgaaaatta tcgttttttcagtcaatttttcagctaaaaatccctgaaattctggatttttcagccaaaaaactcg aaattttccaaaaaaaccccgtttaaaaatgagtttagactgaaaattccgatttttgagccaa aaatttgatttttaatcgaaaaaattggattttcaaccaaaaaatcagtttttcagtgatttttagagtaaaaatcactgattttaacacaaaattccagtttttcgtgatttttcactagaaaatc ccgatttttcccccaaaaatccatttttccgactaaaaatcccccaaagtaattttcagATCCGT ${\tt Cacaacatcgaggacggatcggtccaactcgccgaccactaccaacaaaacaccccaatcggtg}$ D G P V L L P D N H Y L S T O S A L S K D P AAACGAGAAGCGTGACCACATGGTCCTCCTCGAGTTCGTCACCGCCGCCGGAATCACCCACGGA N E K R D H M V L L E F V T A A G I T H G ATGGACGAGCTCTACAAG MDELY

Figure S2. Sequence of ceGFP donor cassettes. Cassette-specific flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.

mKate2	
pXF222 (Cassette 2)	GCTCTTCGATG_mKate2_GGAGGTGGAGGTGGTCGAAGAGC SapI M G G G G G SapI
pXF130 (Cassette 3)	GCTCTTCGGGTGGAGGTGGAGGT_mKate2_TAACGAAGAGC SapI G G G G G * SapI
pSM04 (Cassette 3a)	GCTCTTCGGGTGGAGGTGGAGGT_mKate2_AGCCGAAGAGC SapI G G G G G S SapI
pSM05 (Cassette 3b)	GCTCTTCGAGCGGAGGTGGAGGT_mKate2_TAACGAAGAGC SapI S G G * SapI
V S E	CTCATTAAAGAAAACATGCATATGAAGCTCTACATGGAGGGAAC L I K E N M H M K L Y M E G T AGTGCACCTCCGAGGGAGGGGAAGCCATACGAGGGAACCCAA

V N N H H F K C T S E G E G K P Y E G T Q ACCATGCGTATCAAGGCCGTCGAGGGAGGACCACTCCCATTCGCCTTCGACATCCTCGCCACCT T M R I K A V E G G P L P F A F D I L A T ${\tt CCTTCATGTACGGATCCAAG} {\tt gtaagtttaaacatatatatactaactaaccctgattatttaaa$ SFMYGSK ttttcagACCTTCATCAACCACACCCAAGGAATCCCAGACTTCTTCAAGCAATCCTTCCCAGAG T F I N H T Q G I P D F F K Q S F P E GGATTCACCTGGGAGCGTGTCACCACCTACGAGGACGGAGGAGTCCTCACCGCCACCCAAGACA G F T W E R V T T Y E D G G V L T A T Q D ${\tt CCTCCCTCCAAGACGGATGCCTCATCTACAACGTCAAGgtaagtttaaacagttcggtactaac}$ T S L Q D G C L I Y N V K taaccatacatatttaaattttcaqATCCGTGGAGTCAACTTCCCATCCAACGGACCAGTCATG IRGVNFPSNGPVM CAAAAGAAGACCCTCGGATGGGAGGCCTCCACCGAGACCCTCTACCCAGCCGACGGAGGACTTG Q K K T L G W E A S T E T L Y P A D G G L ${\tt AGGGACGTGCCGACATGGCCCTCAAGCTCGTCGGAGGAGGACACCTCATCTGCAACCTCAAGqt}$ E G R A D M A L K L V G G G H L I C N L K aagtttaaacatgattttactaactaatctgatttaaattttcagACCACCTACCGTTCC TTYRS AAGAAGCCAGCCAAGAACCTCAAGATGCCAGGAGTCTACTACGTCGACCGTCGTCTTGAGCGTA K K P A K N L K M P G V Y Y V D R R L E R TCAAGGAGGCCGACAAGGAGACCTACGTCGAGCAACACGAGGTCGCCGTCGCCCGTTACTGCGA I K E A D K E T Y V E Q H E V A V A R Y C D CCTCCCATCCAAGCTCGGACACCGT LPSKLGHR

Figure S3. Sequence of mKate2 donor cassettes. Cassette-specific flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.

```
mScarlet
pSM10 (Cassette 2) GCTCTTCGATG_mKate2_GGAGGTGGAGGTGGAGGTGGAAGAGC
                                G G G G G
                  SapI M
                                              SapI
pSM08 (Cassette 3) GCTCTTCGGGTGGAGGTGGAGGT_mScarlet_TAACGAAGAGC
                  SapI G G G G
                                               SapI
pSDH57 (Cassette3a)
LAEAAAKEAAAKEA
 SapI G
CAGCCAAGGAGGCCGCAGCGAAGGAAGCCGCTGCAAAAGCCGCGGCCACGCGAAGAGC
A A K E A A A K E A A A K A A A S
                                          SapI
                   GTCTCCAAGGGCGAGGCAGTCATCAAGGAGTTCATGCGTTT
                   V S K G E A V I K E F M R F
CAAGGTGCACATGGAGGGATCCATGAACGGACACGAGTTCGAGATCGAGGGCGAGGGGAGAGGGA
 K V H M E G S M N G H E F E I E G E G E G
CGCCCATACGAGGGAACCCAGACCGCCAAGCTCAAGGTGACCAAGgtaagtttaaacatatata
R P Y E G T Q T A K L K V T K
tactaacctaaccctgattatttaaattttcagGGTGGACCACTGCCATTCTCCTGGGACATCCT
                           GGPLPFSWDIL
{\tt CTCCCCACAATTCATGTACGGCTCCCGTGCCTTCACCAAGCACCCAGCCGACATCCCCGACTAC}
 S P Q F M Y G S R A F T K H P A D I P D Y
TACAAGCAATCCTTCCCCGAGGGATTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGAGGAG
Y K O S F P E G F K W E R V M N F E D G G
CCGTGACCGTCACCCAAGACACCTCCCTGGAGGACGGAACCCTCATCTACAAGGTGAAGCTCCG
A V T V T Q D T S L E D G T L I Y K V K L R
TGGAACCAACTTCCCACCTGACGGCCCAGTCATGCAGAAGAACAATGGGAATGGGAAGCCTCC
 G T N F P P D G P V M Q K K T M G W E A S
{\tt ACCGAGCGTTTGTACCCAGAGGACGGAGTGCTCAAGgtaagtttaaacagttcggtactaacta
TERLYPEDGVLK
accatacatatttaaattttcagGGAGACATTAAGATGGCCCTCCGTCTGAAGGACGGAGGACG
                   G D I K M A L R L K D G G R
TTACCTGGCGGACTTCAAGACCACCTACAAGGCCAAGAAGCCAGTCCAGATGCCAGGAGCCTAC
 Y L A D F K T T Y K A K K P V Q M P G A
                                                   Y
AACGTCGACCGCAAGCTCGACATCACCTCCCCACAACGAGGACTACACCGTCGTGGAGCAATACG
N V D R K L D I T S H N E D Y T V
                                          VEQY
AACGTTCCGAGGGACGCCACTCCACCGGAGGAATGGACGAGCTGTACAAG
E R S E G R H S T G G M D E L Y K
```

Figure S4. Sequence of mScarlet donor cassettes. Cassette-specific flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.

Dendra2

pSM12 (Cassette 2) GCTCTTCGATG_Dendra2_GGAAGCGGCGGTCGAAGAGC SapI M G S G G SapI

pSM03 (Cassette 3) GCTCTTCGGGTGGAAGCGGC_Dendra2_TAACGAAGAGC SapI G G S G * SapI

AACCTTATTAAGGAAGATATGAGAGTCAAAGTGCATATGGAAGG N L I K E D M R V K V H M E G AAACGTCAACGGTCATGCATTTGTTATTGAAGGTGAAGGTAAAGGAAAGCCATACGAAGGAACT N V N G H A F V I E G E G K G K P Y E G T ${\tt CAAACTGCTAACTTGACTGTCAAAGAAGGAGCACCACTACCATTTAGTTACgtaagtttaaaca}$ Q T A N L T V K E G A P L P F S Y tatatatactaaccatgattatttaaattttcagGATATTCTCACTACTGCCGTCCATTA DILTTAVHY CGGAAACAGAGTTTTTTACTAAATACCCAGAAGATATTCCTGATTACTTCAAGCAATCGTTTCCA G N R V F T K Y P E D I P D Y F K Q S F P ${\tt GAAGGATACTCGTGGGAAAGAACTATGACTTTCGAAGATAAAGGTATTTGCACTATTgtaagtt$ EGYSWERTMTFEDKGICTI taaacaqttcqqtactaactaaccatacatatttaaattttcaq**AGAAGTGATATTAGTCTCGA** RSDISLE AGGTGATTGCTTCCTAAAATGTCAGATTTAAAGGTACTAACTTTCCTCCTAACGGACCAGTT G D C F F Q N V R F K G T N F P P N G P ATGCAAAAGAAGACTCTTAAGTGGGAACCATCGACTGAAAAACTACATGTTAGAGATGGACTAC M Q K K T L K W E P S T E K L H V R D G L ${\tt TTGTTGGA} {\tt gtaagtttaaacttggacttactaactgacttatatttaaattttcag{\tt AACAT}$ LVG Ι TAACATGGCACTACTACTAGAAGGTGGAGGTCACTACCTTTGCGATTTTAAAAACCACTTACAAA N M A L L E G G G H Y L C D F K T T Y K GCAAAGAAGGTCGTCCAACTTCCAGATGCACACTTTGTTGATCACAGAATTGAAAATACTAGGAA A K K V V Q L P D A H F V D H R I E I L G ACGATTCGGATTACAACAAAGTTAAGCTATACGAACACGCAGTTGCAAGATACAGTCCTCTACC N D S D Y N K V K L Y E H A V A R Y S P L P AAGTCAAGTATGG SQVW

Figure S5. Sequence of Dendra2 donor cassettes. Cassette-specific flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.

epdz
PSDH61 (Cassette 2) GCTCTTCGATG_ePDZ_GGAGCTGGTCGAAGAGC SapI M G A G SapI
pSDH52 (Cassette 3b)
GCTCTTCGAGCGGAGGTTCCGGAGGATCTGGCGGATCT_ePDZ_TAACGAAGAGC SapI S G G S G G S G G S * SapI
$\begin{array}{cccc} CCAGAGCTCGGATTCTCGATCTCCGGAGGTGTCGGAGGCCGTGGAAATCCATTCCGTCCTGACG\\ P & E & L & G & F & S & I & S & G & G & V & G & G & R & G & N & P & F & R & P & D\\ ATGGATGGAATTTTGTTACTCGGGTCCAACCAGAAGGACCAGCTAGCAAACTTCTTCAACCTGG\\ D & D & G & I & F & V & T & R & V & Q & P & E & G & P & A & S & K & L & L & Q & P & G\\ AGACAAGgtaagttaattaatttcatcgagagatcgtgcaatttctcattcat$
agATCATCCAAGCCAACGGTTACTCTTTCATTAATATTGAGCACGGTCAGGCTGTCAGCCTTCT I I Q A N G Y S F I N I E H G Q A V S L L CAAGACCTTCCAGAACACAGTCGAGCTCATCATCGTCCGGAGGGTAGGAAACGGAGCTAAGCAG K T F Q N T V E L I I V R E V G N G A K Q GAGATCCGTGTCCGCGTCGAAAAGGACGGAGGATCCGGAGGtaagttataatttctccctacaaa
E I R V R V E K D G G S G tttaaaactgacttactttttctaattttcagGAGTTTCCAGTGTTCCAACCAACCTTGAGGT G V S S V P T N L E V
$\begin{array}{c} CGCGTGCCGCACACCACAAGCCTTCCCGGGGAGCTTCCCGGGAACTCCCGGGGGCCCCGGGGGGGGGG$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure S6. Sequence of ePDZ donor cassettes. Cassette-specific flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.

LOV pXF276 (Cassette 3b) GCTCTTCGAGC_LOV_TAACGAAGAGC SapI S * SapI CCTCGTCTTGCTGCTGCACTTGAGCGCATTGAGAAGAATTTTGTAATCACCGATCCCCGACTTC P R L A A A L E R I E K N F V I T D P R L CGGATAACCCAATCATTTTCGCTTCTGATTCGTTCCTTCAGCTCACCGAGTATTCACGTGAAGA P D N P I I F A S D S F L Q L T E Y S R E E **G**gtaagtttaattaattaagttccaaatcaagatacgttcttttcgccatacattttcagATCC Ι TTGGAAGAAATTGCCGATTCCTCCAGGGACCAGAAACTGACAGAGCTACCGTCAGAAAGATCCG L G R N C R F L Q G P E T D R A T V R K I R TGACGCCATCGACAATCAGACTGAGGTTACCGTCCAGCTCATCAACTACACCAAGTCCGGAAAG D A I D N Q T E V T V Q L I N Y T K S G K $\texttt{gtaagttataattttcgcatttgttgtatcgtatcaatgtttaactgaatttttcag\texttt{AAGTTCT}$ KF GGAATCTTTTCCATCTTCAACCAATGCGTGATCAGAAGGGAGATGTTCAATACTTCATTGGAGT W N L F H L Q P M R D Q K G D V Q Y F I G V TCAACTCGATGGAACCGAACATGTTCGTGACGCTGCCGAGCGTGAAGCTGTTATGCTCGCCAAG Q L D G T E H V R D A A E R E A V M L A K AAGACTGCTGAAGAAATTGATAAAGCCGTCGACACTTGGGTC K T A E E I D K A V D T W V

Figure S7. Sequence of LOVdonor cassette. Flanking sequences are shown at the top. The SapI recognition sites are in blue and the cleavages sites are in red.