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Abstract 1	

Aquatic ecologists routinely count animals to provide critical information for conservation 2	

and management. Increased accessibility to underwater recording equipment such as cameras 3	

and unmanned underwater devices have allowed footage to be captured efficiently and safely. 4	

It has, however, led to immense volumes of data being collected that require manual 5	

processing, and thus significant time, labour and money. The use of deep learning to 6	

automate image processing has substantial benefits, but has rarely been adopted within the 7	

field of aquatic ecology. To test its efficacy and utility, we compared the accuracy and speed 8	

of deep learning techniques against human counterparts for quantifying fish abundance in 9	

underwater images and video footage. We collected footage of fish assemblages in seagrass 10	

meadows in Queensland, Australia. We produced three models using a MaskR-CNN object 11	

detection framework to detect the target species, an ecologically important fish, luderick 12	

(Girella tricuspidata). Our models were trained on three randomised 80:20 ratios of 13	

training:validation data-sets from a total of 6,080 annotations. The computer accurately 14	

determined abundance from videos with high performance using unseen footage from the 15	

same estuary as the training data (F1 = 92.4%, mAP50 = 92.5%), and from novel footage 16	

collected from a different estuary (F1 = 92.3%, mAP50 = 93.4%). The computer’s 17	

performance in determining MaxN was 7.1% better than human marine experts, and 13.4% 18	

better than citizen scientists in single image test data-sets, and 1.5% and 7.8% higher in video 19	

data-sets, respectively. We show that deep learning is a more accurate tool than humans at 20	

determining abundance, and that results are consistent and transferable across survey 21	

locations. Deep learning methods provide a faster, cheaper and more accurate alternative to 22	

manual data analysis methods currently used to monitor and assess animal abundance. Deep 23	

learning techniques have much to offer the field of aquatic ecology. 24	

 25	

Keywords: automation, deep learning, object detection, computer vision, fish abundance, 26	

monitoring tools 27	

 28	

 29	

 30	
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1. Introduction 32	

The foundation for all key questions in animal ecology revolves around the abundance, 33	

distribution and behaviour of animals. Collecting robust, accurate and unbiased information 34	

is therefore vital to understanding ecological theories and applications. Many of the invasive 35	

data collection methods traditionally used to collect this information in animal ecology, such 36	

as tagging, netting and trawling, are now largely unnecessary due to remote data collection 37	

using cameras. The development and availability of these devices have facilitated more 38	

accurate and cheaper methods of data collection, with reduced risk to the operator (Hodgson 39	

et al. 2013). Most importantly from a scientific perspective, they have increased sampling 40	

accuracy as well as replicability and reproducibility (Weinstein 2017),  which form the basis 41	

of a sound scientific study (Leek & Peng 2015). However, the amount of data now being 42	

generated can be overwhelming. The solution has become the new problem.  43	

 44	

Much like the physical collection of data, manual processing of data is often labour-intensive, 45	

time-consuming and extremely costly (Weinstein 2017). This has led to invaluable data 46	

collected over large temporal and spatial scales laying unused in storage libraries. In 47	

Australia, for example, the Integrated Marine Observing System (IMOS) collects millions of 48	

images of coral reefs every year, yet despite affiliations and partnerships with a range of 49	

universities and management agencies, less than 5% of these are analysed by experts 50	

(Moniruzzaman et al. 2017). This apparently never-ending stream of data brings a new 51	

challenge for ecologists; to find or develop the analytical tools needed to extract information 52	

from the immense volumes of incoming images and video content (Valletta et al. 2017).  53	

 54	

Fortunately, recent advances in machine learning technologies have provided one such tool to 55	

help combat this problem; deep learning. Deep learning is a subset of machine learning 56	

consisting of a number of computational layers within an architectural framework designed to 57	

process data that is difficult to model analytically, such as raw images and video footage 58	

(LeCun et al. 2015). Although neural networks are not a new technology (Rawat & Wang 59	

2017), the relatively recent advances in graphics processing units (GPUs) have spurred an 60	

increase in their application for computer vision data. In the CNN, data are fed into an input 61	

layer, while an output layer is sorted into categories pre-determined by manual training, in a 62	

process known as supervised learning (Rawat & Wang 2017).  63	

 64	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 16, 2019. ; https://doi.org/10.1101/805796doi: bioRxiv preprint 

https://doi.org/10.1101/805796


	 4	

Although deep learning techniques are being implemented enthusiastically in terrestrial 65	

ecology, it is currently an under-exploited tool in aquatic environments (Moniruzzaman et al. 66	

2017, Xu et al. 2019). As the global challenges in marine science and management increase 67	

(Halpern et al. 2015), it is critical for marine science to realise the potential automated 68	

analysis offers (Malde et al. 2019). Relative to terrestrial environments, however, obtaining 69	

useable footage in marine environments to achieve acceptable computational performance 70	

presents a unique set of challenges. For example, there are often high levels of environmental 71	

complexities in marine environments which can interfere with clear footage, including 72	

variable water clarity, complex background structures, decreased light at depth, and 73	

obstruction due to schooling fish (Mandal et al. 2018, Salman et al. 2019). Although these 74	

factors may affect the quality of images and videos, deep learning methods have proven 75	

successful in a range of marine applications (Galloway et al. 2017, Arellano-Verdejo et al. 76	

2019). 77	

 78	

Efforts to use deep learning methods in marine environments currently revolve around the 79	

automated classification of specific species. Attempts to classify tropical reef fish have 80	

achieved high levels of performance and have also outperformed humans in species 81	

recognition (Villon et al. 2018). There have also been suggestions from classification studies 82	

on freshwater fish to incorporate other strategies for increasing performance, such as 83	

including taxonomic family and order (dos Santos & Gonçalves 2019). Although all marine 84	

environments have challenging conditions, the tropical reef studies by Villon et al. (2018) 85	

and Salman et al. (2019) typically operate with high visibility, high fish abundance, and 86	

highly variable inter-specific morphology, which makes distinguishing different species 87	

easier (Xu & Matzner 2018). Conversely, coastal and estuarine systems often suffer poor 88	

visibility due to complex topography, anthropogenic eutrophication, and sediment induced 89	

turbidity (Lehtiniemi et al. 2005, Baker & Sheaves 2006, Lowe et al. 2015). 90	

 91	

Although classification enables the determination of species, its usefulness for answering 92	

broad ecological questions is rather limited. Object detection allows us to classify both what 93	

is in a frame and where it is and therefore enables us to determine both the species in an area 94	

and their abundance (eg. Maire et al. 2015, Salberg 2015, Gray et al. 2019b).  95	

 96	
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Here, we use fish inhabiting subtropical seagrass meadows as a case study to explore the 97	

viability of computer vision and deep learning as a suitable, non-invasive technique using 98	

remotely collected data in a variable marine environment. Seagrass meadows provide critical 99	

ecosystem services such as carbon sequestration, nutrient cycling, shoreline stabilisation and 100	

enhanced biodiversity (Waycott et al. 2009, Sievers et al. 2019). However, many seagrass 101	

meadows are being lost and degraded due to a range of anthropogenic stressors, such as 102	

overfishing, eutrophication and physical disturbances (Orth et al. 2006). Due to their 103	

background complexity, constant movement, and ability to obscure fish, seagrass may prove 104	

to be a difficult habitat to implement a deep learning solution. Luderick (Girella tricuspidata) 105	

is a common herbivorous fish found along the east coast of Australia and is abundant in 106	

coastal and estuarine systems, including seagrass meadows (Ferguson et al. 2013). Unlike 107	

most herbivorous fish in seagrass meadows, this species grazes on both the epiphytic algae 108	

that grows on seagrass and the seagrass itself, making it of interest ecologically (Gollan & 109	

Wright 2006). Using this ecologically important ecosystem, we specifically aim to deduce 110	

whether deep learning techniques can be used to determine: (1) the accurate object detection 111	

of a target species, (2) the flexibility of algorithms in analysing data across locations, and (3) 112	

the comparative performance between computers and humans in determining abundance 113	

from images and video footage. As far as we are aware, this is the first time that humans and 114	

deep learning algorithms have been compared in their ability to quantify abundance from 115	

underwater video footage, or that object detection and computer vision methods have been 116	

used in estuarine systems. 117	

 118	

2.  Methods  119	

2.1 Training data-set  120	

We used submerged action cameras (Haldex Sports Action Cam HD 1080p) to collect video 121	

footage of luderick in the Tweed River estuary in southeast Queensland (-28.169438, 122	

153.547594), between February and July 2019. Each sampling day, six cameras were 123	

deployed for 1 h over a variety of seagrass patches; the angle and placement of cameras was 124	

varied among deployment to ensure a variety of backgrounds and fish angles. Videos were 125	

trimmed for training to contain only footage of luderick and split into 5 frames per second.  126	

	 	127	
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2.2 Convolutional Neural Network 128	

The object detection framework we used is an implementation of Mask R-CNN developed by 129	

Massa & Girshick (2018). Mask R-CNN works by classifying and localising the region of 130	

interest (RoI). It extends previous frameworks in that it can predict a segmentation mask on 131	

the RoI, and currently has the highest performance output for deep learning models (He et al. 132	

2017, Dai et al. 2019). To develop our model, we used a ResNet50 configuration, pre-trained 133	

on the ImageNet-1k data-set. This configuration provides an acceptable balance between 134	

training time and performance (Massa & Girshick 2018). We conducted the model training, 135	

testing and prediction tasks on a Microsoft Azure Data Science Virtual Machine powered by 136	

an NVIDIA V100 GPU. Data preparation and annotation tasks were carried out using 137	

software developed at Griffith University. While deep learning has begun to be adopted for 138	

ecological data analysis in the last two years, its use in the environmental sciences requires 139	

substantial software engineering knowledge, as unfortunately there is not yet an accessible 140	

software package for ecologists (Piechaud et al. 2019). The development of this interface for 141	

manual annotation, that can be retrained for different species, takes strides towards an end-to-142	

end, user-friendly application tailored for ecologists. A trained team in fish identification 143	

manually drew segmentation masks around luderick (i.e. our RoI, Fig. 2.1) and annotated 144	

6,080 fish for the training data-set. Luderick were annotated if they could be positively 145	

identified at any time within the video the image came from.  146	

 147	

 148	
Fig. 1. Training data-set image demonstrating manual segmentation mask (white dashed line 149	

around fish) denoting the region of interest (RoI).  150	

 151	
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The utility of the model depends on how accurately the computer identifies the presence of 152	

luderick, which we quantified in two ways based on the interactions between precision (P) 153	

and recall (R). Precision is how rigorous the model is at identifying the presence of luderick, 154	

and recall is the number of the total positives the model captured (Everingham et al. 2010). 155	

Generally, an increase in recall results in decreased precision and vice versa and were 156	

calculated as follows: 157	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 158	

 159	

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 160	

 161	

Firstly, the computer’s ability to fit a segmentation mask around the RoI was determined by 162	

the mean average precision value (mAP) (Everingham et al. 2010). 163	

𝑚𝐴𝑃 = 	 𝑃 𝑅 𝑑𝑅
9

:
 164	

We used the mAP50 value in this study, which equates to how well the model overlapped a 165	

segmentation mask around at least 50% of the ground truth outline of the fish. The higher this 166	

value, the more accurate the model was at overlapping the segmentation mask. Secondly, the 167	

success of our model in answering ecological questions on abundance was determined by an 168	

F1 score: 169	

𝐹1 = 2×
𝑃	×	𝑅
𝑃 + 𝑅

 170	

We used the F1 score and mAP50 values to assess the performance of the computer model. 171	

All predictions were made with a confidence threshold of 90%, that is, the algorithm was at 172	

least 90% sure that it was identifying a luderick to minimise the occurrence of false 173	

negatives. This threshold was chosen as it typically maximised F1 performance by filtering 174	

out false positives.  175	

 176	

2.3 Model Validation and Performance Curve 177	

Models were trained using a random 80% sample of the annotated dataset, with the remaining 178	

20% used to form a validation dataset (Alexandropoulos et al. 2019). Training performance 179	

was then measured against the validation set to monitor for overfitting. Overfitting is a 180	

phenomenon when the computer becomes dependent on, and memorises the training data, 181	
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failing to perform well when tested on data it has not encountered previously (Chicco 2017). 182	

We minimised overfitting by using the early-stopping technique (Prechelt 1998). In our case, 183	

this was achieved by assessing the mAP50 on the validation set at intervals of 2,500 184	

iterations and determined where the performance began to drop (Chicco 2017).  185	

The same computer algorithm was used to train three different models on three different 186	

randomised 80/20 subsets of the whole training data set to account for variation in the 187	

training and validation split. These models were subsequently used to compare the unseen 188	

and novel test data-set, and in the human vs computer test.  189	

 190	

We generated a performance curve to confirm that variation among models was sufficiently 191	

low to ensure consistency in in performance across the three models. Random subsets of still 192	

images were selected from the training data-set. These subsets of data increased in volume to 193	

determine the performance of the model as training data increase. As the volume of training 194	

data increased, the risk of overfitting decreased so the number of training iterations were 195	

adjusted to maintain optimum performance.  196	

 197	

Manual annotation cost can be a significant factor to consider when training CNN networks 198	

and can also be monitored by using the performance curve. Time stamps were added to the 199	

training software to record the speed at which training data was annotated to infer total 200	

annotation time of the training data by humans. We used this data to determined how much 201	

training is required by this model to produce high accuracy, and thus also the effort needed to 202	

produce a consistent and reliable ecological tool. 203	

 204	

2.4 Model performance 205	

The 80/20 validation test is an established method in machine learning to assess the expected 206	

performance of the final model (Alexandropoulos et al. 2019). However, using deep learning 207	

to answer ecological questions requires another testing procedure to accurately reflect the 208	

usability of the model when analysing new data. We therefore also tested the model against 209	

annotations from two types of new footage not used for the training data-set. We used unseen 210	

footage from the same location in the Tweed River estuary (‘Unseen’), as well as from a 211	

novel location (‘Novel’), being seagrass meadows in a separate estuary system in 212	

Tallebudgera Creek (-28.109721, 153.448975). A t-test was used to compare the performance 213	
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of the three models between the unseen test-set from Tweed estuary, and the novel test-set 214	

from Tallebudgera.  215	

 216	

2.5 Human vs Computer 217	

Creating an automated data analysis system aims to lessen the manual workload of humans 218	

by creating a faster, yet accurate, alternative. Therefore, it is crucial to not only know how 219	

well the model performs, but also to assess its capabilities in speed and accuracy, compared 220	

to current human methods. This “human vs computer” method analysis compared Citizen 221	

Scientists and Experts against the computer: 1) Citizen Scientists were undergraduate marine 222	

science students and interested members of the public (n = 20) 2) Experts were fish scientists 223	

with a PhD or currently studying for one (n = 7),, and 3) the computer models (n = 3). We 224	

compared these groups using both video footage (n=31) and images (n=50), and analysed 225	

differences in test speed and performance. Both the image set and videos were run through 226	

the three deep learning models to account for variation in performance in the 80% of training 227	

data used to train the models. The number of false negatives, false positives, proportion of 228	

accurate answers (observed answers divided by ground truth) as well as the overall F1 score 229	

were recorded. Citizen Scientist and Experts were provided with a package that contained a 230	

link to the video test uploaded to YouTube, the image set sent as a zip file, instruction sheet, 231	

example images of the target species and datasheets. This process was set up to minimise bias 232	

in training the human subjects that may have occurred if the test was explained verbally. 233	

Humans were instructed to only record the target species if they could visually identify the 234	

luderick with confidence. Participants were required to estimate the maximum number of 235	

luderick in any single frame per video and per still image (MaxN), simulating the most 236	

popular manual method currently used in analysing videos (e.g. Gilby et al. 2017). Start and 237	

end time of each test was also recorded to compare how quickly the participants completed 238	

the task, compared to the deep learning algorithm. The still image data-set was randomly 239	

selected from the “unseen” test video footage and used as the ground truth for images. The 240	

video footage was expertly annotated at five frames per second and used as the ground truth 241	

for videos. Luderick were only annotated if they could be positively identified at least at one 242	

instance in the video. This enabled us to quantitatively compare the human and computer 243	

accuracy in determining MaxN, assessed using the overall F1 score for each test.  244	

  245	
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3. Results  246	

3.1 Performance curve 247	

Based on the computer algorithm curve, F1 performance began to plateau earlier than mAP50 248	

(Fig. 2.). F1 varied only 0.9% from 2,000 annotations to 6,000 annotations compared to an 249	

increase of 3.1% by mAP50 at the same annotations. At lower volumes of training 250	

annotations (between 0 and 1,000), the performance of both mAP50 and F1 fluctuated. Even 251	

with our streamlined process for annotation, the average time for an operator to annotate one 252	

fish was 36 seconds, and the total time to annotate all 6,080 images was in the order of 60 253	

hours.  254	

 255	

 256	
Fig. 2. Performance curve showing the computer’s ability to fit a segmentation mask around 257	

the luderick (performance scored by mAP50) and in identifying abundance (performance 258	

scored by F1). 259	

 260	

  261	
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Model performance  262	

Performance was high for both the Unseen and Novel test sets (mAP and F1 both >92%). 263	

Based on F1 scores, the computer performed equally well (t-test; t = -0.01, p = 0.99) on the 264	

Unseen (92.4%) and novel (92.3%; Fig 3). Similarly, the difference in performance for 265	

mAP50 was non-significant (t = 1.4, p = 0.29) on the Unseen (92.5%) and Novel (93.4%) 266	

test-sets.  267	

 268	

 269	
 270	

Fig. 3. The performance of the three model’s F1 and mAP50 scores (mean, SE) for the 271	

unseen test footage from the same location and novel footage (Unseen; 32 videos, Novel; 32 272	

videos).  273	

  274	
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Human vs Machine 275	

The computer algorithm achieved the highest mean F1 score in both the image (95.4%) and 276	

the video-based tests (86.8%), when compared with the experts and citizen scientists. The 277	

computer also had fewer false positives (incorrectly identifying another species as luderick) 278	

and false negatives (incorrectly ignoring a luderick) in the image test. The computer models 279	

also had the lowest rate of false positives in the video-based test when compared to both 280	

human groups, but had the highest rate of false negatives. The computer performed the task 281	

far faster than both human groups. Experts on average performed better (F1) than the citizen 282	

scientists in both tests, and had higher accuracy scores (Table 1).  283	

 284	

Table 1. Summary of performance measures comparing averaged scores from computer vs 285	

humans (citizen scientists and experts). Accuracy is displayed as the observer answer divided 286	

by the ground truth. Speed is measured as seconds per image, and minutes per minute of 287	

video. Images N = 50, Videos N = 31. 288	

 289	
Analysis  
Method 

False 
Negatives 

False 
Positives 

Accuracy 
(prop. +/-) 

F1 (%)  
(SE) 

Speed 
 (mins) (SE) 

Images       

Citizen Scientist 28.6 7.2 -0.14 82.0 (2.8) 12.6 (1.4) 

Expert 18.1 5.6 -0.08 88.3 (8.4) 14.3 (4.0) 

Computer 11.7 4.7 -0.12 95.4 (0.9) 0.4 (0.0) 

Videos       

Citizen Scientist 20.9 12.6 -0.10 79.0 (2.4) 2.4 (2.4) 

Expert 12.1 11.9 +0.06 85.3 (6.9) 2.8 (4.4) 

Computer 24.3 2.7 -0.10 86.8 (1.6) 1.2 (0.3) 

  290	
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F1 scores were most variable for the citizen scientist group, with the difference between the 291	

lowest and the highest score for the image and video tests being 40.1% and 35.1%, 292	

respectively. The computer achieved the lowest variance, with these values only 3.1% for the 293	

video test and 1.7% for the image test (Fig. 4). 294	

 295	

 296	
 297	

Fig. 4. Overall test performance in determining abundance (F1) by Computer vs Humans 298	

(Citizen Scientists and Experts) based on identical tests using 50 images and 31 videos. 299	

Variance was highest and performance lowest in the citizen scientist group while the 300	

computer had the lowest variance and highest performance.  Solid line denotes median, 301	

dashed line the mean.  302	

  303	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 16, 2019. ; https://doi.org/10.1101/805796doi: bioRxiv preprint 

https://doi.org/10.1101/805796


	 14	

5. Discussion 304	

Our object detection models achieved high performance on a previously unseen data set, and 305	

maintained this performance on footage collected in a novel location. It outperformed both 306	

classes of humans (citizen scientists and experts) in speed and performance, with high 307	

consistency (i.e. low variability).  308	

 309	

We clearly show that our model is fully capable of accurately performing the same on novel 310	

footage from locations beyond the data used for training. Few previous demonstrations of the 311	

utility of deep learning have tested algorithms under these novel conditions, but is one which 312	

consider important for determining how transferable the model is to practising environmental 313	

scientists. For our example, our intention was to test how robust and flexible the algorithm 314	

was in identifying luderick under different environmental conditions which can vary with 315	

tides, water clarity, ambient light, differences in non-target fish species and backgrounds. In a 316	

study conducted by Xia et al. (2018) on sea cucumbers, a novel test data set comprised of 317	

internet images demonstrated an accuracy of 76.3%. This performance was significantly 318	

lower than the test data set the model was trained on which achieved an accuracy of 97.6%. 319	

Similarly, Xu and Matzner (2018) attempted to monitor the effects of water turbines on local 320	

fish species at three different sites, but their model only generated a 53.9% accuracy. All 321	

three sites exhibited their own unique challenges to underwater data collection, including 322	

occlusion due to bubbles from fast-flowing water and debris, that made fish detection 323	

difficult even for a human observer. Their study demonstrates the aforementioned 324	

environmental challenges marine scientist face in using computer vision. Despite the 325	

performance limitations of deep learning when provided with limited training data, one 326	

reason that our models produced high-performance results from the novel location is the 327	

broad variation in environmental conditions and camera angles in the training data. Future 328	

work on this topic could extend the novel test to include an even wider array of novel 329	

locations to further assess the robustness of the model.  330	

 331	

The computer’s high performance, speed and low variance compared to humans suggests that 332	

it is a suitable model to replace manual efforts to determine MaxN in marine environments. 333	

Deep learning may be the solution for researchers to avoid analytical bottlenecks (Gray et al. 334	

2019a) as the computer performed the image-based test considerably faster on average than 335	

humans. The image test results are consistent with other deep learning related models 336	
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comparing human and computer performance. Villon et al. (2018) trained a classification 337	

model which outperformed humans by approximately 5% in classifying still images of nine 338	

coral reef fish species.  Similar results were found by Torney et al. (2019) using object 339	

detection to accurately survey wildebeest abundance in Tanzania at a rate of approximately 340	

500 images per hour. Torney et al. (2019) calculated that computer analysis could reduce 341	

analysis of surveys from around three to six weeks done manually by up to four wildlife 342	

experts, down to just 24 hours using a deep learning algorithm. Additionally, they found 343	

accuracy was not compromised, with the abundance estimate from deep learning within 1% 344	

of that from expert manual analysis. Like humans, the computer is reliant on the quality of 345	

the image it receives. Deep learning methods tend to decrease in performance when the 346	

picture quality is blurred or subject to excessive noise (Salman et al. 2016). In low light or 347	

high turbidity situations, image processing to improve the quality of the picture (such as 348	

cancelling noise and improving contrast) can improve the performance of the model (Salman 349	

et al. 2016).   350	

 351	

Previous studies comparing humans versus computers have predominantly used images 352	

rather than videos. When analysing video footage, there is an assumption that humans have 353	

the comparative advantage when addressing uncertainty and ambiguity (Jarrahi 2018). Fish 354	

that could not be positively identified early in the video may be identifiable later and vice 355	

versa. Humans can move back and forward within the video to correctly identify each fish 356	

when calculating MaxN, an ability our deep learning model lacks. The results show that even 357	

when humans seem to have the spatio-temporal advantage, the computer model still 358	

outperforms both the experts and citizen scientists. In our set-up, inference time for video 359	

footage by the computer was about half that of humans. Analytical time could be further 360	

reduced by using multiple GPUs or by implementing parallel processing using multiple 361	

virtual machines. Consistency in estimating populations is important in ecology, as 362	

quantifying population trends is critical to understanding ecosystem health. The computers 363	

low variation indicates that it may prove an advantage for monitoring, when data relies on 364	

consistency to determine fluctuations in species abundance. Errors that can occur when using 365	

humans in data analysis can include individual observer bias and even bias estimation of 366	

trends (Yoccoz et al. 2001). This variance is inter-personal and could be standardised by 367	

having a single observer across all data sets. This is unrealistic, however, given the large 368	

volumes of data often generated by video monitoring (Weinstein 2017). Deep learning 369	
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methods standardise observer affects not only within data-sets, but also between data-sets 370	

from different periods, without personal bias. 371	

 372	

The performance curves for our models suggest that they may be just as useful in determining 373	

fish abundance with fewer annotations than our full training set of 6,080 annotations. 374	

Therefore, less time was needed for training the algorithm as the accuracy of the model’s 375	

ability to predict the whole fish (mAP50) is not needed to determine abundance. As our 376	

model took approximately 60 hours to train, running a performance curve while training we 377	

can see that the time to reach optimum performance could be two-thirds quicker at 20 hours. 378	

Creating a performance curve is a useful step when calculating the cost-benefits of 379	

implementing a high performing model as well as monitoring algorithm issues such as 380	

overfitting. However, this does not take into account the time for human to be trained on 381	

which species to annotate. Fish identification experts may not need additional training while 382	

citizen scientists may. However studies have shown that citizen scientist annotated data for  383	

deep learning can be as reliable as expertly annotated data (Snow et al. 2008) providing an 384	

additional low-cost solution for model training. 385	

 386	

Although recent advances in deep learning can make image analysis for animal ecology more 387	

efficient, there are still some ecological and environmental limitations. Ecological limitations 388	

include the difficulty in detection of small, rare or elusive species and therefore abundance 389	

may not be able to be estimated in-situ. Nevertheless, even plankton classification using deep 390	

learning has been attempted (Li & Cui 2016, Py et al. 2016). This approach may be used to 391	

calculate the relative abundance of these microscopic organisms and therefore estimate a wild 392	

population density. This may be particularly useful in predicting and monitoring outbreaks of 393	

nuisance species such as crown-of-thorns sea stars (Hock et al. 2014) or stinging sea jellies 394	

(Llewellyn et al. 2016). Another key ecological issue when using computer vision is low 395	

sampling resolution due to the limited field of view from cameras, limiting the accuracy of 396	

determining abundance. Campbell et al. (2018) discovered that using cameras with a 360-397	

degree field-of-view improved the accuracy of fish counts compared with single-camera 398	

MaxN counts. Improvements for future studies could include combining deep learning with a 399	

360-degree camera aspect when assessing abundance. The current limitations in computer 400	

vision imply that this technology is not suitable for all facets of animal ecology. 401	

Environmental conditions such as water clarity and light availability currently dictate the 402	
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useability of footage in marine environments which subsequently affects the performance of 403	

the model (Salman et al. 2019). However, these limitations are also experienced by human 404	

observers in manual data analysis. 405	

 406	

Deep learning methodologies provide a useful tool for consistent monitoring and estimations 407	

of abundance in marine environments, surpassing the overall performance of manual, human 408	

efforts in a fraction of the time. As this field advances, future ecological applications can 409	

include automation in estimating fish size (Costa et al. 2006), estimating abundance for 410	

multiple species simultaneously (Mandal et al. 2018), studying animal behaviour (Valletta et 411	

al. 2017, Norouzzadeh et al. 2018), and monitoring pest species populations (Clement et al. 412	

2005). Future technological advances in the application of the “internet of things” may also 413	

provide ecologists with fully automated management systems via remote sensors connected 414	

to machine learning algorithms to achieve continuous environmental information at high 415	

temporal resolution (Allan et al. 2018). Given the significant advantages that these algorithms 416	

can provide, deep learning can indeed be a highly successful and complementary tool for 417	

marine animal ecology. 418	

  419	
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