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Abstract	
Memory schemas are higher-level knowledge structures that store an abstraction of 

multiple previous experiences. They allow us to retain a multitude of information 

without the cost of storing every detail. Schemas are believed to be relatively stable, 

but occasionally have to be updated to remain useful in the face of changing 

environmental conditions. Once a schema is consolidated, schema updating has 

been proposed to be the result of a prediction-error (PE) based learning mechanism, 

similar to the updating of less complex knowledge. However, for schema memory 

this hypothesis has been difficult to test because no sufficiently sensitive tools to 

track modifications to complex memory schemas existed so far. Current research on 

the updating of less complex beliefs and at much shorter time scales has identified 

the P3 as an electrophysiological correlate of PE-induced updating of beliefs. In this 

study, I recorded electroencephalography and continuous memory measures during 

the encoding of schema consistent vs. inconsistent material to test the behavioural 

and neural correlates of schema updating. I observed that PEs predicted the 

updating of a schema after a 24-hour delay, especially when participants were faced 

with inconsistent compared to consistent material. Moreover, the P3 amplitude 

tracked both the PE at the time of learning as well as the updating of the memory 

schema in the inconsistent condition. These results demonstrate that schema 

updating in the face of inconsistent information is driven by PE-based learning, and 

that similar neural mechanisms underlie the updating of consolidated long-term 

memory schemas and short-term belief structures.   
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Introduction		
Memory schemas are complex dynamic knowledge structures that allow us to 

store vast amounts of information in a concise manner. Schemas evolve slowly over 

time, and are generally believed to be stable once consolidated (Ghosh & Gilboa, 

2014). However, in a dynamically changing world, schemas need to be adjusted or 

updated from time to time (Piaget, 1952). Accommodation is a hypothesized 

updating mechanism that has been suggested to lead to small changes to the 

schema’s structure itself, in response to changing environmental conditions (Ghosh 

& Gilboa, 2014).  

One popular idea of how memory schemas can be updated or made to 

accommodate new information is by means of prediction-error (PE) based learning 

(cf. Henson & Gagnepain, 2010; van Kesteren, Ruiter, Fernández, & Henson, 2012): 

When a predicted outcome does not match our experience, the resulting PE provides 

us with a surprise signal that is believed to guide learning. Recent findings suggest 

that PE-based learning underlies memory updating in many contexts: the updating of 

rules (Greve, Cooper, Tibon, & Henson, 2019), of episodic memories (Greve, 

Cooper, Kaula, Anderson, & Henson, 2017; Sinclair & Barense, 2018, 2019), and of 

single semantic facts (Pine, Sadeh, Ben-Yakov, Dudai, & Mendelsohn, 2018). 

However, research on the accommodation of new information into complex 

abstracted knowledge structures such as memory schemas is scarce.  

In the context of short-term decision-making tasks the neural mechanisms of 

PE-based updating have been studied with functional magnetic resonance imaging 

(e.g., Behrens, Woolrich, Walton, & Rushworth, 2007) and electroencephalogram 

(EEG) (Bennett, Murawski, & Bode, 2015; Jepma et al., 2016; Kolossa, Kopp, & 

Fingscheidt, 2015). In these tasks participants adjust their predictions multiple times 

within an experimental session. Such PE based-updating of short-lived beliefs has 

been shown to be indexed by the P3 (or P300) signal (Bennett et al., 2015; Jepma et 

al., 2018, 2016; Kolossa et al., 2015). The P3 is an event-related potential (ERP) that 
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has been linked to updating of the (immediate) context in a number of tasks that 

require the comparison of a current stimulus with a recently preceding stimulus 

(Polich, 2012), for example in oddball and working memory tasks (Donchin, 1981; 

Sutton, Braren, Zubin, & John, 1965). This ERP has been suggested to be divisible 

into two subcomponents, the fronto-centrally distributed P3a and the P3b, which has 

a centro-parietal topography (see Fonken, Kam, & Knight, 2019, for a review). The 

more frontally distributed P3a has been linked to mismatch and novelty processing, 

and shown to be dependent on the hippocampus, while the P3b, a parietally centred 

component, is more strongly linked to target detection, and possibly not as strongly 

linked to hippocampal processing (Fonken et al., 2019). In the current study, I 

investigated both P3a and P3b to assess which of the two ERPs, or both, or any, 

correlated with PE size and schema updating, based on prior findings of both P3a 

(Bennett et al., 2015; Kolossa et al., 2015) and P3b (Jepma et al., 2018, 2016) 

involvement in short-term belief updating tasks. 

Of note, belief updating in the decision-making experiments mentioned above 

takes place on a much smaller time scale than what is thought to be necessary for 

the formation and updating of memory schemas. These much more complex 

knowledge structures are assumed to be extracted over hours, days, or even months 

(Ghosh & Gilboa, 2014; O’Reilly, Bhattacharyya, Howard, & Ketz, 2014). While short-

lived believes about the current situation and schemas that have been built up over 

prolonged periods of time share many conceptual similarities (e.g., extraction of 

generalities, acceptance of variability in the data) it is currently unknown whether the 

same neural mechanisms underlie the updating of short-lived beliefs and memory 

schemas. Furthermore, how long-lasting the effects induced by a putative updating of 

a schema are, is also unclear. 

An argument for similar neural mechanisms in the updating of short-lived 

beliefs and complex memory schemas is in line with behavioural evidence which 

suggests that PE-based learning also works on longer time-scales (e.g., Greve et al., 
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2019; Pine et al., 2018). Furthermore, initial evidence suggest that for some types of 

memory, such as semantic knowledge, updating relies on similar regions of the mid-

brain that are also thought to underlie the updating of more short-lived beliefs 

(Garrison, Erdeniz, & Done, 2013; Pine et al., 2018). In addition to updating, the P3a 

and the P3b have been linked to better encoding in general, such that larger 

amplitudes of either potential are associated with better memory in a subsequent test 

(Azizian & Polich, 2007; Knight & Scabini, 1998; Richter & Yeung, 2016). The link 

between P3 and subsequent memory could indicate that PE-induced updating effects 

will have prolonged consequences rather than only affecting behaviour in the short 

term.  

It is therefore conceivable that the P3 might also index updating of long-term 

memory schemas and that these effects persist over long periods of time. A 

consolidated schema should allow for mismatches (PEs) between schema-based 

predictions and new inconsistent information. These PEs should consequently 

induce small modifications to a schema (Ghosh & Gilboa, 2014; cf. Piaget, 1952). 

With regards to schema memory, however, a major difficulty lies in the tracking of 

such subtle changes to these complex knowledge structures. Small changes in 

memory schemas have only recently been made visible in humans using sensitive 

continuous memory tools (Richter, Bays, Jeyarathnarajah, & Simons, 2019) (see 

Richards et al., 2014 for an example in the animal literature). This research has 

made updating processes visible and now allows studying the neural correlates of 

schema updating. It also suggests that the original schema can have long-lasting 

effects on later behaviour.  

In this study, I set out to test the putative (neural) mechanisms underlying 

schema updating: PE-based learning processes indexed by the P3. To do so, I am 

employing a continuous memory task to study the neural mechanisms of schema 

updating using EEG. By using a prediction-based learning paradigm, I am able to 

track the neural correlates of trial-by-trial prediction violations and relate them to 
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schema updating one day later. Based on the findings reviewed above, I predict that 

the P3 signal should track prediction violations and updating mechanisms in the 

context of memory schemas. 

 

Materials	and	Methods		

Materials	

The stimulus set used in the current study consisted of 400 images of 4 

different categories: animals, clothes, furniture, and food (fruits and vegetables), and 

largely overlapped with those used in a recent study on schema memory (Richter et 

al., 2019). Backgrounds were removed for each object picture and stimuli were 

presented in a size of ~150 × 150 pixels on top of a 400 × 400 pixel background 

image. The background image was used on every trial throughout the experiment to 

facilitate encoding of the locations. On this background image the location of the 

pictures was restricted to locations on an invisible circle, consistent with the 

approach used in other paradigms studying memory precision for location 

information (Cooper et al., 2017; Harlow & Donaldson, 2013; Harlow & Yonelinas, 

2016; Murray, Howie, & Donaldson, 2015; Richter, 2020; Richter et al., 2019; 

Richter, Cooper, Bays, & Simons, 2016). As outlined in more detail below, each 

category was predominantly associated with specific circle locations and participants 

had to learn these ‘schemas’.  

	

	Procedural	overview	

Twenty-five participants took part in the current study. Participants were 

reimbursed for their participation with payment or course credits. After reading an 
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information sheet on the experiment and giving informed consent according to the 

declaration of Helsinki, they were presented with task instructions.  

A firmly established schema is the foundation for schema-based prediction 

violations to occur, which is to say that schema updating requires a schema to be at 

least partially consolidated. To achieve this participants came to the lab on three 

consecutive days, with sessions scheduled 24 hours apart (see Figure 1 for an 

overview). Participants in the current study first acquired location schemas for the 

above mentioned stimulus categories in a prediction task on day 1. On day 2 they 

experienced inconsistencies in a subset of the categories while their EEG was 

recorded. Later, on day 3 they were tested on their memory for all stimuli. 

Continuous memory precision measures were used to track the formation and 

updating of memory schemas, similar to an approach used recently in a behavioural 

paradigm (Richter et al., 2019).  

  I assessed the hypotheses that introducing information that is inconsistent 

with a previously learned memory schema 24 h after the initial schema had been 

acquired, would lead to an increase in PEs, relative to a consistent condition, in 

which newly learned information was congruent with a previously learned schema. 

Furthermore, I predicted that these PEs would be accompanied by increased P3 

amplitudes and that the size of these two measures, PEs and P3 amplitudes, would 

predict the degree to which a schema is updated on day 3.  

On day 1, participants first completed a practice task (34 trials) using pictures 

of musical instruments that did not overlap with the image categories used in the 

main experiment. The 34 practice trials were spread over 4 blocks with a length of 2, 

4, 10, and 18 trials, to give participants a chance to get used to the prediction task 

and ask the experimenter additional questions after the blocks. The participants’ 

task, which is described in more detail below, was to predict where on an invisible 

circle a picture should be placed. They subsequently had to encode the correct 

location that was provided as feedback after their prediction. In the practice phase, 
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most (76.47%) of these correct locations, that is, the items’ feedback locations 

presented to participants, occurred in a 90-degree segment centred on the 65 degree 

point of the circle. Because participants did not know about this pattern, they initially 

guessed where a certain musical instrument picture would be placed until they 

learned that stimuli followed a location schema, and that instruments would ‘cluster’ 

around this specific 65 degree point on the invisible circle. 

 

 

Figure 1. Sessions of the main experiment and expected behavioural effects. On day one 

participants learn stimuli in each category by performing a prediction task, and acquire 

location schemas. On day 2 new stimuli of each of the categories are learned, but two of the 

categories become inconsistent, inducing PEs evident in behaviour as well as increased P3 

amplitudes. On the final day, the participants complete a precision memory test for all items.  

It is hypothesized that behaviour in this day 3 test can be predicted from day 2 behavioural 

and EEG measures. 

 

In the main task participants learned stimuli from all 4 categories on day 1 

and 2. The goal of day 1 was for participants	to learn that most of the stimuli in each 
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of the 4 categories were presented in category-specific areas of the screen. For 

example, animals would be clustered in a 90-degree window centred at 110 degrees 

of the circle (see Figure 2A). The mean locations, in degrees, for the four schemas 

were 20, 110, 200, and 290 degrees. The assignment of categories to these mean 

locations – or schema means – was counterbalanced across participants. Within 

each category most trials (40 out of 50, inside quadrant trials) fell within a category 

specific 90-degree window. To make the location schemas less obvious and ensure 

gradual learning 10 out of 50 trials fell outside of this 90-degree window (outside 

quadrant trials). In an initial study phase on day 1 and during a new learning phase 

on day 2, participants completed 10 blocks of 20 trials of schema learning with 50 

trials each for each of the four categories. Within the 10 blocks, stimuli of all 4 

categories (animals, clothes, food, and furniture) would be presented in equal 

proportions.  

 

 

Figure 2. Location schema for the animal category. (A) Illustration of the size of the circle 

segment occupied by a category, in this case animals. In inside quadrant trials the images of 

the category are shown within the 90-degree circle segment, in outside quadrant trials they 

are presented outside of it. (B) On day 2 the category-specific circle segment changes for two 

of the four categories. In this example the clothing category is moved by 90 degrees 

clockwise.   

 

On day 2 the assignment of categories to circle locations was retained for 2 of 

the 4 categories, but was changed for the other 2. For these ‘inconsistent’ categories 
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the schema mean would shift by 90 degrees clockwise (see Figure 2B). For example, 

if the schema mean for the animal category was 110 degrees on day 1, it would be 

200 degrees on day 2. The 200 stimuli (50 per category) learned on day 2 did not 

overlap with those learned on day 1 as they were new exemplars of the same 

categories studied on day 1. Which category was presented at which location was 

counterbalanced across participants, and the category shift always occurred in such 

a manner that all categories would be centred either around 20 or around 200 

degrees. As a result, the consistent and inconsistent categories were matched for 

their visual location. 

On day 3 participants completed a final precision test on all stimuli learned on 

the previous 2 days. They were presented with a previously studied stimulus at a 

random location and had to recreate the ‘correct’ location from memory. That is, they 

had to recreate the location that was provided to them as feedback for this stimulus 

in each trial on day 1 or day 2.  

 

Task	

Trials on day 1 and 2 consisted of the following steps: First an objet was 

presented to participants at a random location on an invisible circle centred on a 

background image (see Figure 3A) with a white fixation cross presented in the centre 

of the screen. Participants had 5 seconds to move the picture to a position of their 

choice using the “g” (counter-clockwise) and “h” (clockwise) keys on a standard 

computer keyboard. They were instructed to use the space bar to lock their 

response. At first, participants would guess the location, as no prior schema was 

established yet. They subsequently had 3 seconds to rate the confidence in their 

choice on a 100 point scale ranging from certainly incorrect to certainly correct. They 

again used the “g” (left) and “h” (right) keys to move the slider and locked the 

response using the space bar. When 1 second was left for participants to make their 
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decision, the fixation cross in the centre of the screen or the tick mark on the 

confidence scale would turn red to remind participants to lock their answer. If 

participants did not manage to lock their answers in time to confirm their response, 

the last location the participant moved the cursor to in the confidence rating or the 

location of the picture was recorded as the response. After this step, the picture was 

presented in the ‘correct’ location for 1 second (feedback). The picture then 

disappeared from the background leaving only a fixation cross and participants had 

another 4 seconds to memorize the seen location before the next trial started.  

The task on day 3 was slightly different from that on day 1 and 2. Participants 

were presented with all of the stimuli learned on days 1 and 2 in a random order. A 

stimulus was presented at a random location, with the word ‘Location’ presented in 

the centre of the screen in white font. Participants were instructed to move the 

stimulus to the ‘correct’ location, that is the location that they were presented with in 

the feedback period at the end of each trial on day 1 and day 2. When 1 second was 

left for participants to make their decision, the word location would turn red to remind 

participants to lock their answer. If participants did not lock in their answers in time to 

confirm their response, the last location of the picture was recorded. Stimulus 

presentation was implemented using Matlab (Mathworks, Natick, MA) using 

Psychtoolbox (www. psychtoolbox.org) software.  
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Figure 3. Task structure. (A) Prediction task on day 1 and 2. Participants are presented with 

an object at a random location and then have 5 seconds to move this object to a location of 

their choice. They subsequently have 3 seconds to indicate their confidence in their choice. 

The correct location (feedback) is presented to them for 1 seconds and participants then have 

another 4 seconds to memorize this location before the next trial starts. (B) In the memory 

test on day 3 participants are presented with the previously studied objects of all categories in 

a random order. Pictures are presented at a random location initially, and participants have to 

recreate the correct location that they have learned on day 1 or 2. Images can be moved 

around the entire circle in continuous steps. Loc = In the experiment the word ‘Location’ was 

presented instead of the abbreviation ‘Loc’.  
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EEG	data	recording	and	analysis	

The EEG was recorded from 32 scalp electrodes on a Biosemi system using 

AgCl electrodes.  Electrode location corresponded to FP1, FPZ, FP2, F7, F3, FZ, F4, 

F8, FT7, FC3, FCZ, FC4, FT8, T7, C3, CZ, C4, T8, TP7, CP3, CPZ, CP4, TP8, P7, 

P3, PZ, P4, P8, POZ, O1, OZ, and O2. Two electrodes were attached on the outer 

canthi of both eyes, and two further electrodes were attached above and below the 

left eye to record blinks and eye movements. Left and right mastoids were also 

recorded. A sampling rate of 512 Hz was used for recording. Before analysis, the 

EEG data were downsampled to 100 Hz. A common mode sense electrode was 

used for online referencing and electrodes were re-referenced offline to the average 

of the two mastoids to remove any lateral biases.  

Data processing was done separately for each participant. Raw EEG data 

were high-pass filtered at 0.5 Hz to remove drift. A low-pass filter of 40 Hz was used 

for analysis using the “eegfiltnew” method implemented in the EEGLab toolbox. Data 

were epoched into trials of 4500-ms duration to avoid edge artefacts in further 

analyses. This time-window included a 1500-ms pre-event period. Preliminary 

artefact rejection was done prior to independent component analysis (ICA) by 

removing trials with extreme amplitudes (±2000 µV across the entire epoch, as well 

as ±100 µV in a 100 ms baseline period). Any trial beyond 5 standard deviations in a 

single channel or all channels was considered improbable data and was furthermore 

rejected using EEGLab’s algorithm.  

Data were baseline corrected in the time period -100 ms to 0 ms. Ocular 

artefact reduction was performed using ICA in EEGLab to identify blink components, 

which were mathematically subtracted from the data. In a final artifact rejection step 

following the removal of the ICA components, trials were rejected if at least one 

electrode showed a difference of more than ±75 µV in a time window from the 100 
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ms baseline period to 900 ms after the event, and accordingly within a total period of 

1 second.  

All further data analyses were completed in MATLAB using custom-written 

routines. The lowest number of trials included for a participant after artifact correction 

was 111 out of 200 trials. All other participants had more than 122 trials. No 

participant was excluded. Further data analysis steps are described for the relevant 

analyses below. In the analyses below violations of Sphericity were assessed. If the 

Sphericity assumption was violated corrected p-values according to Greenhouse-

Geisser will be reported alongside original degrees of freedom to maintain 

readability. 

Due to a technical error, data from 1 block on day 1 was lost from one 

participant, so this participant’s data was not included in the day 1 analyses. When 

reporting results form day 2 and 3, I averaged across the two consistent categories 

(consistent condition) and the two inconsistent categories (inconsistent condition) in 

all analyses reported below. 

Results	

Behavioural	Results		

Schema	Learning	on	Day	1	and	Day	2	

To investigate whether participants learned the location schemas, I tracked 

their absolute error in the prediction task on day 1. Of note, since the pictures were 

uniformly distributed within a category’s 90-degree segment, participants could not 

reduce their error beyond a certain point, even if they learned the schema perfectly. 

As evident from Figure 4, participants’ performance in the task improved over the 

course of the initial study phase, which occurred on day 1. Performance differed 

significantly across blocks, F(9, 207) = 9.726, p < .001, Sphericity not assumed. 

Follow-up polynomial contrasts indicated a significant linear trend, F(1, 23) = 35.664, 
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p < .001, indicating a decrease in the absolute error across blocks on day 1. Hence, 

participants learned the schema over the course of day 1, evident in a decreasing 

PE. 

On day 2 participants’ responses should be guided by this schema in the 

consistent categories. In the inconsistent categories, in which the mean location for 

the category shifts by 90 degrees, participants should update their schema after an 

initial increase in PEs. To test this prediction, I first calculated an ANOVA with factors 

consistency (consistent and inconsistent) and block (1 to 10). The ANOVA revealed 

a significant main effect of consistency, with lower errors in the consistent conditions, 

F(1, 24) = 14.095, p = .001, Sphericity assumed. In addition, a significant main effect 

of block was observed, F(9, 216) = 2.589, p = .007, Sphericity assumed, as well as a 

marginal interaction between consistency and block, F(9, 216) = 1.737, p = .082, 

Sphericity assumed.   

Due to the a priori hypothesis that PE on day 2 should decrease from block 1 

to block 10 in the inconsistent but not, or not as strongly, in the consistent categories, 

I conducted several follow-up tests. Consistent with expectations, there was no 

significant main effect of block, F(9, 216) = 0.945, p = .487, Sphericity assumed, and 

no significant linear trend of block, F(1, 24) = 1.512, p = .231, in the consistent 

categories on day 2. This result indicates that not much additional learning was 

taking place on day 2 in the consistent categories. In line with this interpretation, in 

the consistent categories the average PE from the first block on day 2 was not 

significantly different from that at the end of day 1, t(24) = 1.01, p = .322, indicating 

that participants utilised the schema learned on day 1 from the beginning of day 2.  
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Figure 4. (A) Mean absolute PE (dotted line) across individual blocks of initial study (yellow) 

and new learning. For the new learning phase performance is plotted separately for the 

consistent categories in blue and the inconsistent categories in red. Solid lines reflect 

standard errors of the mean. (B) Within-subject correlations between PE and schema-

updating score (left), between PE and the probability of responses consistent with the old 

schema mean according to the computational model (centre), and between PE and 

confidence (right). In each plot the consistent condition is displayed in blue on the left and the 

inconsistent condition in red on the right. Each circle represents one subject. The white line 

represents the mean and the blue/red area the 95% confidence interval. The grey areas 

indicate mean ± 1 SD. Illustration of these correlations was created via the notBoxPlot 

function in Matlab https://nl.mathworks.com/matlabcentral/fileexchange/26508-notboxplot. 

 

In contrast, the average PE in the first block of the inconsistent categories 

was significantly higher than the average PE in the last block of day 1, t(24) = 5.305, 

p < .001. Moreover, in the inconsistent categories there was a significant main effect 

of block, F(9, 216) = 3.520, p < .001, Sphericity assumed. PE decreased linearly 
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across blocks, evident in a significant linear trend, F(1, 24) = 8.956, p = .006. 

Notably, however, performance in the inconsistent condition on day 2 never reached 

the same level as performance in the last block on day 1: A comparison of block 10 

of day 1 and block 10 of day 2 in the inconsistent categories yielded a significant 

difference, t(23) = 3.15, p = .0045. This last finding suggests that, at the end of day 2 

participants were potentially still confused by the initially learned schema in the 

inconsistent condition. Further evidence for this interpretation will be provided in the 

following sections.  

 

Category	 consistency	 affects	 old	 and	 new	 schema-based	 responding	 in	 the	 Final	

Test	on	day	3	

Modelling and Permutation Testing. I used computational modelling and 

permutation testing to assess the hypothesis that, in the inconsistent condition on 

day 3, participants would show a bias towards the location of the ‘old’ previously 

relevant schema mean, that is the mean location that a specific category occupied on 

day 1. Since the day 1 schema mean in the inconsistent condition was always -90 

degrees from the ‘new’ day 2 schema mean, such a bias would be evident in an 

increased number of responses 90 degrees counter-clockwise to the current new 

schema mean in the inconsistent condition compared to the consistent condition. In 

contrast, in the consistent condition, since the schema never changed, participants 

had no reason to be biased towards responses 90 degrees counter-clockwise to the 

current schema.  

To test whether there was a bias in responses on day 3, I applied a mixture 

model to the data collected in the final test on day 3. The model comprised (i) a von 

Mises distribution centred around the feedback locations, (ii) a uniform distribution 

component, and (iii) an additional von Mises distribution centred around -90 degree 

from the currently relevant ‘new’ schema mean. The von Mises distribution centred 
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on the feedback locations captured memory for the studied location. The uniform 

distribution captured random guesses (~forgotten trials). The second von Mises 

distribution was included to capture responses that were consistent with the ‘old’ 

schema mean in the inconsistent categories. This approach is similar to that of 

modelling ‘non-target’ responses in previous work (Bays, Catalao, & Husain, 2009). 

The model was run on data pooled across participants to enhance stability of the 

model, and modelling was done separately for consistent and inconsistent 

categories, as done in previous research (cf. Richter et al., 2019). Only trials 

originally learned on day 2 were used for this analysis, as it focuses on the effect that 

the change in a schema on day 2 has on subsequent memory on day 3 (cf. Richter et 

al., 2019). 

As outlined above, I tested whether participants would show a tendency to 

bias their responses towards the ‘old/day 1 schema mean’, in the inconsistent 

categories. For the inconsistent condition, this day 1 schema mean was always 

presented -90 degrees from the current/new schema mean. To test my hypotheses I 

used an approach which is similar to the one use in a previous paper (Richter et al., 

2019), and which is described further in Schneegans and Bays (2016). For each trial, 

I calculated the posterior probability that the response a participant gave stemmed 

from each of the three mixture components mentioned above. To allow for a valid 

comparison with the inconsistent categories, in the consistent categories, where the 

‘old/day 1’ schema mean is identical to the current/new schema mean, I also 

modelled the probability of responding -90 degrees from the current schema mean. 

That is, -90 degree responses were modelled for both the consistent and inconsistent 

conditions, but in the inconsistent conditions these responses corresponded to the 

location of the old/day 1 schema mean. 

To assess the hypothesis that there would be fewer trials assigned to the -90 

degree model component in the consistent categories than the inconsistent 

categories, I used permutation testing. The results of this analysis indicated more 
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responses around -90 degrees, that is in the ‘old schema mean’ location, for the 

inconsistent than the consistent categories, with p < .001 and 1000 iterations, 

consistent with participants still being biased by the day 1 schema in the inconsistent 

condition. 

 

Prediction	error	at	day	2	predicts	schema	updating	on	day	3	more	strongly	in	the	

inconsistent	conditions	

The modelling analysis suggests that, on day 3, participants showed a 

stronger tendency to recreate locations -90 degrees from the current/new schema in 

the inconsistent vs. consistent conditions. In other words, the preceding analysis 

showed that, on day 3, participants are biased towards the ‘old’ schema mean in the 

inconsistent conditions. In a next step I asked whether this day-3 bias is diminished 

for trials in which larger PEs occurred on day 2. Such a finding would provide support 

for the central hypothesis that PEs might trigger schema updating. In other words, if 

PEs are relatively large on day 2, does this induce more learning/updating of the 

schema, evident in a smaller bias on day 3?  

Schema-updating score. To measure “schema updating” I calculated the 

degree to which participants responded consistent with the ‘new’ schema on day 2 

and day 3. To assess schema-based responding, I calculated the absolute difference 

between the responses given by the participants and the new schema mean (i.e., an 

error measure between response and schema mean, rather than the traditional error 

measure between response and the location learned in the feedback phase) on day 

2 and day 3 respectively. Subsequently, I calculated a schema updating score for 

each trial by subtracting these day 3 final test error values from the corresponding 

values during new learning on day 2. To make error values comparable between 

both sessions, errors were z-scored first. As day 3 errors were subtracted from day 2 

errors, positive schema-updating scores indicate that responses are closer to the 
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current/new schema mean in the final test (day 3) than in the new learning phase 

(day 2), indicating a stronger orientation towards the current/new schema, and hence 

more updating.  

To assess whether PEs predict the degree to which updating towards the 

current/new schema occurs, I correlated the PEs at day 2 with the calculated schema 

updating scores. I then compared the resulting mean correlations between the 

consistent and inconsistent categories across participants. I found, as expected, that 

there was a positive mean correlation between the updating measure and the 

absolute PE. This effect was found for both consistent, rconsistent = .27, t(1,24) = 6.445, 

p < .001, and inconsistent categories, rinconsistent = .39, t(1,24) = 24.740, p < .001. This 

outcome indicates that in either condition larger PEs during NL resulted in learning. 

Supporting my hypothesis, this correlation was stronger in the inconsistent than in 

the consistent categories, where more learning was expected to take place, due to 

the change in the schema mean, t(1,24) = 3.260, p = .0033, Figure 4A. It follows that 

larger PEs induced learning in general, but this effect was most pronounced when a 

schema needed to be updated. 

Modelling. A second way to assess the relationship between PEs on day 2 

and memory on day 3 is to examine the relationship between PE and the model 

derived-probability of responding at -90 degrees. To recap, these -90 degree 

responses capture responding with the ‘old/day 1’ schema mean in the inconsistent 

categories. For the consistent categories, -90 degree responses provide a baseline 

of the probability of responding at this location that would be expected if the schema 

is never updated.  

Turning to the consistent categories first, there was a significant relationship 

between the size of PEs and the probability of errors around -90 degrees, rconsistent = 

.145, t(1,24) = 3.58, p < .002. The result of this analysis is presented in Figure 4B. As 

can be seen from the figure, large PEs in the consistent categories were associated 

with an increased probability to respond around -90 degrees. This result may seem 
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surprising at first, as it indicates that large PEs on day 2 lead to relatively large errors 

during responding at the final test. However, as participants generally committed low 

errors in the consistent categories on day 2, large PEs on day 2 were observed 

primarily for trials further away from the schema mean. These trials that occurred on 

the ‘outer boundaries’ of the category’s 90-degree circle segment naturally led to 

larger errors (see Richter et al., 2019 for similar results, evidencing more schematic 

responding in the consistent category). At the same time, these trials would not 

induce ‘updating’ of the schema, as they would be perceived as expected noise, 

based on the same noise level experienced on day 1, thus explaining the observed 

relationship.  

The data from the consistent categories therefore provides an important 

baseline for the relationship between PEs and number of -90 degree responses 

expected if the schema never changes. Consequently, the next goal is to determine 

whether larger PEs in the inconsistent categories, resulted in a relative decrease in 

the probability to respond with the old schema mean compared to the consistent 

categories, or in other words, if the observed relationship between PEs and -90 

degree responses is weakened for the inconsistent categories. 

Consistent with this prediction, larger PEs on day 2 were less strongly 

associated with -90 degree responses on day 3 in the inconsistent than the 

consistent categories, t(1,24) = -2.802, p = .010. Specifically, in the inconsistent 

categories, larger PEs predicted -90 degree (or ‘old’ schema mean) responses only 

numerically, rinconsistent = .05, t(1,24) = 1.684, p = .110, suggesting that larger PEs may 

have led to an updating of the schema, at least in some trials. This finding is 

particularly noteworthy since, in the inconsistent but not the consistent categories, 

participants had been presented with items at the -90 degree position, that is the ‘old’ 

schema mean, on day 1. Still, large PEs on day 2 were not predictive of responses 

guided by the old schema in the inconsistent compared to the consistent condition. 

This finding is therefore again consistent with the aforementioned hypothesis that 
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following larger PEs more updating took place in the inconsistent condition. In sum, 

both the schema-updating analysis and the modelling results suggests that larger 

PEs on day 2 result in more updating of schema inconsistent information on day 3.  

 

Confidence	is	negatively	related	to	PE		

Participants’ confidence ratings were also collected in order to investigate 

how confident participants were in their location responses on day 2. A correlation 

was calculated between the confidence rating a participant gave on each trial and the 

subsequently observed absolute PE. A tendency for a negative relationship (lower 

PE for high confidence responses) indicating that participants had the metacognitive 

ability assess their performance was observed in both the consistent and 

inconsistent condition. However, this effect was only significant for the consistent 

categories, mean rconsistent = -.0619, t(24) =  -2.5564, p = .0173, but not the 

inconsistent categories,  mean rinconsistent = -.0245,  t(24) = -0.9998, p = .3274. 

However, as the difference of correlations between the consistent and inconsistent 

categories was not significant, t(24) = 1.1087, p = .2785, these results  will require a 

cautious interpretation.   

	

Interim	summary	of	behavioural	results	

To summarize the behavioural results before considering the EEG analysis, 

the data indicates that participants successfully learned the schema on day 1. For 

the inconsistent categories they updated their schemas on day 2, but still remained 

below day 1 performance (Figure 4A). On day 3 participants showed a bias towards 

responses corresponding to the old schema mean in the inconsistent categories. 

However, the size of the PE on day 2 predicted a reduction in this bias, evident in 
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schema updating on day 3. This relationship between PE and updating was stronger 

in the inconsistent condition (Figure 4B). Across trials high confidence was generally 

associated with lower PEs, but this effect was reliable only in the consistent condition 

(Figure 4B).  

 

EEG Results  
Data was analysed both using grand-averages as well as single-trial data. For 

grand-average analyses data was not filtered. To assess the effect of condition 

(consistent versus inconsistent categories) on P3 amplitude a 100 ms time window 

350-450 ms after the feedback stimulus was used. For analyses focussing on single-

trial data, data was first filtered using a 6Hz filter. To reduce the effect of outliers for 

the single trial analyses, the 2.5% highest and lowest amplitudes were excluded from 

the analyses retaining only the central 95% of trials. This procedure was done 

separately for the consistent and inconsistent conditions, to ensure that equal trial 

numbers were excluded in both conditions. For the trial-wise analysis the mean 

amplitude in the same P3 window as stated above was used. For any across-subject 

analyses, single-trial P3 amplitudes and mean absolute PEs were furthermore z-

scored, to account for between subject differences. As noted above, for schema-

updating scores z-scoring was already implemented during calculation of these 

values and schema-updating scores were accordingly not z-scored a second time. 

 

Larger	P3s	for	the	inconsistent	categories		

The EEG analysis focused on two clusters of interest: fronto-central and 

centro-parietal electrodes. These locations have shown to display belief-updating 

effects (Bennett et al., 2015; Jepma et al., 2018, 2016; Kolossa et al., 2015) in 

previous studies and have displayed involvement in subsequent memory effects in 

studies of long-term memory (e.g., Richter & Yeung, 2016). I first tested the 
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prediction that the P3 should be more pronounced in the inconsistent condition rather 

than in the consistent condition during day 2 of learning. Supporting this prediction, 

grand-average results showed that in the frontal electrode cluster trials of the 

inconsistent categories evoked a larger P3 response than trials of the consistent 

categories, t(24) = -2.553, p = .018. A similar, marginally significant effect was 

observed in the parietal sites, t(24) = -2.063, p = .050. The difference in the size of 

effects on frontal and parietal sites was not significant, t(24) = 1.197, p = .243.  

 

 

Figure 5. Grand-average feedback-evoked P3 at frontal and parietal sites. The average 

signal was calculated across clusters of 6 electrodes displayed as black circles in the 

topography on the left. EEG amplitude is plotted separately for the consistent (blue) and 

inconsistent (red) categories.  

 

PE	predicts	trial-by-trial	P3	amplitude			

I examined whether P3 amplitude increased reliably with increasing PE at 

frontal and posterior sites. At the frontal cluster increasing PE size was associated 

with increasing P3 amplitude (Figure 6A). This effect was significant when computed 

across all subjects and trials, t = 2.85, p = .0044, and also when computed within 

subjects, t(24) = 2.68, p = .013, in the inconsistent categories. A corresponding effect 

was not observed in the consistent categories, both when computed across all 

subjects and all trials, t = 0.279, p = .783, as well as when assessed within subjects, 

t(24) = 0.187, p = .852. The difference in the within-subject P3-PE correlation 
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between consistent and inconsistent categories was marginally significant, t(24) = 

1.85, p = .075.  

For the posterior cluster, numerical effects in a similar direction were 

observed. However, they were not statistically reliable (inconsistent condition: across 

all subjects and trials, t = 0.707, p = .486; within subjects, t(24) = 0.495, p = .620; 

consistent condition: across all subjects and trials, t = 0.108, p = .915; within 

subjects, t(24) = 0.039, p = .969), and there was no significant difference between 

the inconsistent and consistent categories in the within-subject effects, t(24) = 0.346, 

p = .733. 

To assess location differences, I compared whether the mean within-subject 

P3-PE correlation was stronger at frontal than posterior electrodes. The average 

within-subject correlation was marginally stronger at frontal than posterior electrodes 

in the inconsistent condition, t(24) = 1.790, p = .086. Consistent with an overall lack 

of an effect of PE on P3 amplitude in the consistent condition, there was no 

difference to be observed between frontal and posterior electrode sites, t(24) = 

0.1383, p = .8912.  

Thus, PE predicted P3 size and this effect was marginally stronger in the 

inconsistent than the consistent categories and at frontal rather than posterior 

electrode sites.  

 

Trial-by	trial	P3	amplitude	predicts	schema	updating	

If schema updating is initiated by the P3, P3 should not only correlate with the 

PE, but also with the degree to which participants updated their responses on day 3. 

To test this prediction, I correlated P3 amplitude in the consistent and inconsistent 

condition with the schema-updating score (see calculation above). Analyses revealed 

that in the inconsistent condition there was a positive correlation between P3 

amplitude and later schema updating. This relationship was marginal at frontal 
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electrodes when investigated across all subjects and trials, t = 1.90, p = .057, as well 

as within subjects, t(24) = 1.88, p = .071. For the consistent categories, the 

relationship was insignificant both across all subjects and trials, t = 1.135, p = .256, 

and within subjects, t(24) = 0.982, p = .336. However, there was no significant 

difference between the within-subject effects of the consistent and inconsistent 

categories, t(24) = 0.362, p = .721.  

At posterior electrodes (see Figure 6B), a significant positive relationship 

between P3 amplitude and updating was found for the inconsistent categories, again 

across all trials, t = 2.41, p = .016, as well as within subjects, t(24) = 2.13, p = .044. 

The same analysis for the consistent categories revealed an insignificant effect 

across all trials and subjects, t = 1.44, p = .151, and a marginal effect within subjects, 

t(24) = 1.94, p = .065. Again, there was no significant difference between the within-

subject effects of the consistent and inconsistent categories, t(24) = 0.651, p = .522. 

To assess location differences, I compared the mean within-subject 

correlation for each location by category consistency combination for the relationship 

between P3 and schema-updating score. Again, no difference between frontal and 

posterior sites in the average within-subject correlation was observed neither for the 

inconsistent, t(24) = -0.4943, p = .626, nor the consistent condition, t(24) = -0.316, p 

= .755. 

The data therefore revealed that P3 amplitude predicted schema-updating 

and this effect was significant in the inconsistent condition at posterior electrode 

sites. Effects were observed in a similar direction at frontal electrode sites and for the 

consistent condition, but they did not reach significance.  

I also investigated whether larger P3s were associated with a decreased 

probability of responding with the ‘old’ schema mean (derived from the model, see 

calculation above). While the effect was numerically in the predicted direction – with 

a negative correlation indicating fewer ‘old’ schema mean responses for larger P3s – 

it did not reach significance for either the consistent or inconsistent categories both a 
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frontal or at posterior electrodes in both the within- and across-subject analyses (all 

ps > .4352).  

 

Figure 6. Relationship between PE and P3 amplitude as well as between P3 amplitude and 

updating scores in the inconsistent condition. No significant effects were found for the 

consistent condition. In the left panels data is pooled across participants. PE and updating 

score are averaged across running bins of 300 trials for display purposes, but statistics 

reported in the text are conducted on trial-wise data. In the right panels each circle represents 

one subject. The white line represents the mean, and the red area the 95% confidence 

interval. The grey areas indicate mean ± 1 SD. Illustration of the within-subject correlation 

was done via the notBoxPlot function in Matlab 

https://nl.mathworks.com/matlabcentral/fileexchange/26508-notboxplot. (A) Relationship 

between PE and P3 amplitude at frontal electrodes. (B) Relationship between P3 amplitude 

and updating of the schemas in the final test on day 3 at parietal electrodes. Schema 

updating was calculated as the difference in absolute error from the schema mean between 

new learning on day 2 and final test on day 3 (day 2 - day 3; accordingly positive values mean 

updating has taken place, see details in text).  
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To summarize the results of the EEG data, the inconsistent categories 

resulted in larger P3s, and P3 amplitude correlated with behavioural PEs, especially 

at frontal electrodes. P3 amplitude also correlated with schema-updating scores, but 

this effect seemed to be reliable only at posterior electrode sites. Overall, it follows 

that P3 amplitude tracked both, PEs and schema-updating.  

	Discussion			
The current experiment tested the hypothesis that similar neural mechanisms 

underlie the updating of long-term memory schemas as do the updating of short-lived 

beliefs in decision-making contexts. For this purpose, I used a continuous report 

memory task, in which participants predicted the location of stimuli belonging to 

different categories in a three-day study. By manipulating the consistency of the 

categories on day 2, after a 24-hour consolidation phase, I induced PEs in 

participants. PEs were predictive of behavioural updating performance as well as 

P3a size, while P3b amplitude additionally correlated with schema-updating, 

revealing that similar neural mechanisms may underlie the flexible modification of 

complex knowledge structures and short-lived beliefs.  

 

Relationship	to	neural	processes	underlying	belief	updating		

The neural mechanisms of schema updating have so far remained elusive, 

and to date have only been speculated upon (e.g., Richter et al., 2019; van Kesteren 

et al., 2012). Previous research that has studied the link between trial-by-trial 

variations of prediction violations and updating performance has largely focused on 

much shorter time scales and assessed trial-by-trial predictions typically within only 

one testing session (e.g., Bennett et al., 2015; Jepma et al., 2018, 2016; Kolossa et 

al., 2015). In contrast to these previous studies, the current experiment does not 

focus on neural correlates of the updating of immediate predictions in the task, but 
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rather updating effects evident in the participants’ performance one day later, in a 

final memory test. My data strongly suggests that similar neural mechanisms underlie 

PE-based updating of long-term memory schemas, as they do short-term beliefs 

(Bennett et al., 2015; Jepma et al., 2018, 2016; Kolossa et al., 2015). Specifically, 

the current study tracked changes to these complex mnemonic structures across 

days and linked these changes to the P3 signal. 

Consistent with a role of the P3a in mismatch detection and novelty 

processing, I found that PE correlated with P3a size. As mentioned above, P3a has 

been linked to hippocampal processing. Recent findings suggest that interactions 

between hippocampus and the dopaminergic ventral tegmental area play a crucial 

role in learning based on PE in declarative memory (Calderon et al., 2020). The 

correlation between PE and P3a size in the current data might reflect these 

processes and consequently PE-induced dopaminergic learning mechanisms.  

When investigating the relationship between P3 amplitude and the degree to 

which participants updated their responses in the final test on day 2, I found that P3b 

amplitude significantly predicted updating in the inconsistent categories.  The P3b 

signal has been associated with contextual updating or more broadly with the 

maintenance of relevant representational context (Polich, 2007, 2012). Similarly, in 

the current study, the P3b could index an update to the current context: the new, 

shifted schema. In other words, the correlation between updating and the P3b signal 

could reflect neural processes that allow modification of a now out-dated model of 

the world. 

Looking at the relationship between both components, there were no 

significant differences between P3a and P3b effects. For this reason, the exact 

involvement of P3a and P3b in prediction violations and in the subsequent updating 

of schemas needs to be further investigated. It seems likely that both effects operate 

in conjunction to update memory schemas based on prediction violations, possibly 

reflecting the involvement of distributed brain networks (see below).  
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Updating	of	complex	knowledge	structures		

The current study perhaps differs most notably from previous work with 

regards to the kind of information that needs to be updated. Above, a distinction to 

belief-updating tasks has already been drawn. While PEs are traditionally studied in 

the context of implicit learning, PEs have recently also been related to declarative 

learning (see Ergo, De Loof, & Verguts, 2020, for a review). Previous studies on the 

link of declarative learning and PEs have focused on single associations, episodic 

memories, or semantic facts (De Loof et al., 2018; Pine et al., 2018; Rouhani, 

Norman, & Niv, 2018). The current work brings a qualitatively different kind of 

declarative memory into the focus by studying more complex knowledge structures, 

rather than individual mnemonic entities. Moreover, it does not investigate mnemonic 

performance per se (i.e., general encoding success), but instead differences in the 

updating or modification of higher-level memory constructs. 

Previous research has only speculated that such updating of knowledge 

structures such as schemas might rely on a mismatch between a schema-based 

prediction and new encountered information (Richter et al., 2019; van Kesteren et al., 

2012), since a correlation between PE and learning has been observed for other 

types of memory (Greve et al., 2019; Henson & Gagnepain, 2010; Krawczyk, 

Fernández, Pedreira, & Boccia, 2017; Pine et al., 2018). However, due to the 

absence of sufficiently sensitive methods to measure trial-wise differences in schema 

updating in the laboratory, it has been difficult to identify the source of gradual 

changes to complex memory structures such as schemas.  

The continuous report task used in the current paradigm delivered the 

essential tool to induce trial-by-trial differences in PE size, providing me with a 

powerful method to directly relate trial-wise differences in PE and P3 size to schema 

updating. The observed relationship between PEs and schema-updating extends 

prior findings of a link between prediction violations and learning (Greve et al., 2017, 
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2019; Pine et al., 2018; Sinclair & Barense, 2018, 2019) to the flexible updating of 

complex knowledge constructs. This finding therefore provides unique insights into 

how integrated and abstracted dynamic knowledge constructs are maintaining their 

flexibility. 

 

Non-reward	based	prediction	errors	

The vast majority of studies on learning based on prediction violations has 

used reward-prediction paradigms in which participants encode information while 

varying levels of reward are given. In these studies the PE is therefore based on the 

size and expectancy of externally provided reward rather than the stimuli themselves. 

The current study differs from this previous work as no direct reward is given.  

A small number of recent studies have also investigated non-reward based 

learning. For example, studies have based PEs on participants’ subjective 

confidence ratings (e.g., Butterfield & Metcalfe, 2001). These studies have found that 

high confidence errors lead to more learning than low confidence errors (Metcalfe, 

2017). In contrast to this previous work, in the current study the link between 

confidence and PE was only reliable in the consistent condition, even though a 

stronger link between PEs and updating was observed in the inconsistent condition. 

This finding that the correlation between confidence and PE was only significant for 

the consistent categories suggests that this relationship is evident in situations in 

which the participants can be relatively certain about their answers. In the current 

study participants may have experienced overall reduced certainty in their responses 

in the inconsistent condition. Confidence judgments might not be an ideal measure of 

prediction violations in changing or highly uncertain environments like this, because a 

participant’s model of the world is in the process of changing. In such a situation 

confidence judgements may not adequately track trial-by-trial performance. The role 

of uncertainty and confidence in schema-updating will therefore have to be further 
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assessed in future work. Confidence may be most useful if identical information is 

probed repeatedly, because it closely tracks objective performance in this case. It 

may be less suitable if new predictions are made based on the gradual abstraction of 

information in a noisy environment. In this context the employed memory precision 

measures are of advantage, because they provide us with an objective and 

continuous (rather than categorical) measure of performance that can be related to 

neural effects as well as later updating, and that seems to be potentially less affected 

by uncertainty. 

 

Network	mechanisms	of	schema	updating		

Regarding the neural mechanisms underlying PE-based updating of memory 

schemas, likely a large network of brain areas and neurotransmitter systems is 

involved. The P3 is a signal that has been closely linked to catecholaminergic 

mechanisms in the brain (Polich, 2012). A distinction has been made between the 

neurotransmitter systems involved in the P3a and P3b. The more frontal P3a has 

been linked to dopaminergic activity (Polich, 2007, 2012; Polich & Criado, 2006) and 

recent research has demonstrated that reward-related PEs, previously strongly 

linked to the dopamine system (Schultz, Dayan, & Montague, 1997), are positively 

correlated with successful memory encoding (Greve et al., 2017; Jang, Nassar, 

Dillon, & Frank, 2019; Rouhani et al., 2018). It follows that learning based on 

prediction violations in schema memory might share neural mechanisms with that of 

reward-mediated episodic memory. Consequently, external reward may not be 

necessary in updating long-term beliefs. In fact, it has been argued that good 

performance is in itself rewarding (Satterthwaite et al., 2012). The rewarding effect of 

performing well might therefore be a significant motivator in the current study, and 

could explain the involvement of similar neural mechanisms in the current task and in 

paradigms studying reward-based learning.  
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The neural processes underlying the P3b may rely on somewhat distinct 

neurotransmitter systems than those of the P3a: In addition to being affected by 

dopamine (Polich, 2007; Polich & Criado, 2006), the P3b potential has also been 

linked to the locus coeruleus norepinephrine system (De Taeye et al., 2014; Jepma 

et al., 2018, 2016) and has been suggested to index target-detection, response 

selection, or rate of learning in the context of decision-making, especially when the 

environment becomes uncertain unexpectedly (Yu & Dayan, 2005). The relationship 

between P3b and updating in the current study could therefore index increased 

learning due to unexpected uncertainty in the inconsistent condition. After 

participants discovered regularities amongst the noise in the schemas on day 1, a 

subset of the schemas changed without an obvious reason on day 2, and the 

resulting uncertainty induced learning, or in other words schema updating.  

How do we combine the findings on P3a and P3b? While the P3a is believed 

to be generated by frontal areas (Ebmeier et al., 1995; Kirino, Belger, Goldman-

Rakic, & McCarthy, 2000), the P3b has been suggested to be generated by temporo-

parietal regions (Polich, 2012). The involvement of both frontal and posterior ERP 

components in the current study is therefore consistent with the idea proposed in the 

literature that schema updating might be dependent upon two different networks. The 

initial identification of schema incongruent information may be subserved by fronto-

hippocampal interactions, most likely involving (ventro-) medial prefrontal cortex (van 

Kesteren et al., 2012). Subsequent updating may recruit a more posterior 

hippocampal temporo-parietal network (cf. van Kesteren et al., 2012). Future 

research that can more accurately track the localisation of these effects is needed to 

investigate the regionally specific brain mechanisms underlying schema updating. It 

will be of particular interest to understand how independent the two proposed 

mechanisms – the top-down attention capture by a stimulus in the inconsistent 

condition, and the subsequent updating of the newly encoded information into the 

pre-existing memory schema – operate.   
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Conclusion	 

Together, the current data provide novel insights into how complex memory 

schemas remain flexible in changing environmental conditions. With regards to the 

relevance of such knowledge structures in many areas of cognition such as 

education (Bransford, Brown, & Cocking, 2000; Ruiter, van Kesteren, & Fernandez, 

2012) or decision making (Gilboa & Marlatte, 2017; Hebscher & Gilboa, 2016), 

understanding the mechanisms that govern this kind of learning is of critical 

importance. The current paper provides evidence that memory schemas, similar to 

more short-lived belief structures, are updated via prediction-error based learning, 

and that similar neural mechanisms, indexed by the P3, underlie updating in both 

cases. Moreover, this updating can occur over larger time scales than what has been 

tested before - at least 24 hours - and is not limited to the updating of immediate 

behaviour.  
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