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Abstract 

Advances in next-generation sequencing methods and the development of new statistical and 

computational methods have opened up possibilities made for large-scale, high quality 

genotyping in most organisms. Conifer genomes are large and are known to contain a high 

fraction of repetitive elements and this complex genome structure has bearings for approaches 

that aim to use next-generation sequencing methods for genotyping. In this chapter we provide a 

detailed description of a workflow for variant calling using next-generation sequencing in 

Norway spruce ( Picea abies). The workflow that starts with raw sequencing reads and proceeds 

through read mapping to variant calling and variant filtering. We illustrate the pipeline using data 

derived from both whole-genome resequencing data and reduced-representation sequencing. We 

highlight possible problems and pitfalls of using next-generation sequencing data for genotyping 

stemming from the complex genome structure of conifers and how those issues can be mitigated 

or eliminated.  
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1. Introduction 

Conifers were one of the last plant groups lacking genome assemblies, but recently 

several draft genomes have become available for a number of conifers such as Norway spruce 

( Picea abies, Nystedt et al. 2013), Loblolly pine (Pinus taeda, Zimin et al 2014, 2017), Sugar 

pine (Stevens et al 2016) and Douglas Fir (Neale et al 2017). This has opened up new 

possibilities to assess genome-wide levels of genetic diversity in conifers. Earlier studies of 

genetic diversity in Norway spruce has either been limited to coding regions (e.g Huertz et al 

2006, Chen et al. 2012) or have used various complexity reduction methods, such as genotyping 

by sequencing, restriction site associated sequencing, or targeted capture sequencing (Baison et 

al 2018) to estimate levels of genetic diversity within species. While we have learned a lot about 

levels of genetic diversity in Norway spruce from such studies, we still lack detailed information 

on, for instance, levels of nucleotide polymorphism and linkage disequilibrium in non-genic 

regions. However, with the availability of a reference genome sequences (Nystedt et al 2013), 

whole genome re-sequencing is now also possible in conifers such as Norway spruce. 

Conifer genomes are large (20-40Gb) and have high repetitive content and current draft 

genome assemblies in conifers are therefore often fragmented into many, relatively short 

scaffolds. In addition, large fractions of the predicted genome sizes are also missing from 

reference genomes. The fragmented nature of conifer reference genome assemblies, combined 

with the high repetitive content make variant calling in conifers difficult. This is true regardless 

of what techniques have been used to generate sequencing data but perhaps more so for 

whole-genome re-sequencing data that can be expected to provide a relatively unbiased coverage 

of the target genome. In this chapter we review methods available for variant calling using NGS 

data and outline some of the issues one may face when performing analyses of data from 

whole-genome re-sequencing (WGS) in Norway spruce. In particular we discuss the 

performance of variant calling across different genomic contexts, such as coding and non-coding 

regions and regions known to be composed of repetitive elements. We also compare variant 

calling using WGS data with data derived from sequence capture probes, designed to target 

non-repetitive sequences in the P. abies genome and discuss how collapsed genomic regions in 
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the assembly complicates the task of filtering for good reliable variant- and genotype calls. 

Having access to robust variant calls is important for downstream analyses, such as population 

genomic analyses or inferences of the demographic history of individuals, populations or the 

species as a whole. To highlight these issues, we end by assessing how different approaches to 

variant calling alter the site frequency spectrum of variants and hence possible evolutionary 

inferences drawn from the data.  

 

2. Sample collection 

We sampled 35 individuals of Norway spruce (Picea abies) spanning their natural 

distributions, mainly from Russia, Finland, Sweden, Norway, Belarus, Poland and Romania for 

use in whole genome re-sequencing. Individuals Pab001-Pab015 were all derived from unique 

populations and no specific measurements were taken when they were collected. Samples were 

taken from newly emerged needles or dormant buds for each individual and stored in -80 ºC until 

DNA extraction. In contrast, individuals Pab016-Pab035 were sampled from two different areas, 

one in the eastern and one in the western part of Västerbotten province in northern Sweden. Two 

different populations were sampled in each area, one old and untouched forest (>100 years old) 

and one young planted population (<20 years old). For every population a transect was made and 

five trees were sampled from each population along the transect. From each tree, a number of 

fresh shoots was broken off and put into pre-labeled zip lock bags before being taken back to the 

lab for DNA extractions. 

Genomic DNA was extracted using Qiagen plant mini kit following manufacturer's 

instructions. All sequencing was performed at the National Genomics Initiative platform (NGI) 

at the SciLifeLab facilities in Stockholm, Sweden, paired-end libraries with an insert size of 

500bp on different Illumina HiSeq platforms (Pab001-Pab006 on HiSeq 2000, remaining 

individuals on HiSeq X). The original location, estimated coverage from raw sequencing reads 

and coverage of mapped reads for each individual are given in Table 1. 

Samples analysed using sequence capturing methods were obtained from Bernhardsson et 

al. (2018, 1997 haploid samples) and Baison et al. (2018, 526 diploid samples). For further 
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information on sample collection, DNA extraction and sequencing please refer to the original 

publications. 

 

Table 1: Sample name, origin, sequencing platform and set-up, estimated          

sequencing coverage based on raw reads delivered and coverage of reduced and            

merged BAM files before subdivision into genomic subsets (including possible          

PCR duplicates) for each of the 35 whole genome re-sequenced Norway spruce            

samples. 

Sample Origin Platform Sequencing 
set-up 

Sequence 
coverage 

BAM 
coverage 

Pab001 Yakutsk, Russia (P. obovata ) HiSeq 2000 2x100 bp 10.1x 12.6x 

Pab002 Gettinge,  Sweden HiSeq 2000 2x100 bp 36.9x** 12.0x 

Pab003 Vitebsk, Belarus HiSeq 2000 2x100 bp 9.5x 12.2x 

Pab004 Blizyn, Poland HiSeq 2000 2x100 bp 10.5x 11.8x 

Pab005 Toplita, Romania HiSeq 2000 2x100 bp 10.3x 12.2x 

Pab006* Köttsjön, Sweden HiSeq 2000 2x100 bp 50.0x** 11.1x 

Pab007 Hatfjelldal, Norway HiSeq X 2x151 bp 12.6x 14.5x 

Pab008 Rovaniemen, Finland HiSeq X 2x151 bp 11.8x 14.5x 

Pab009 Kittilä, Finland HiSeq X 2x151 bp 13.2x 14.2x 

Pab010 Suomussalmi, Finland HiSeq X 2x151 bp 11.9x 14.5x 

Pab011 Hemnes, Norway HiSeq X 2x151 bp 14.6x 14.2x 

Pab012 Levanger, Norway HiSeq X 2x151 bp 12.4x 14.5x 

Pab013 Grane, Norway HiSeq X 2x151 bp 13.3x 15.1x 

Pab014 Tyda, Norway HiSeq X 2x151 bp 12.4x 15.2x 

Pab015 Loppi, Finland HiSeq X 2x151 bp 13.6x 14.9x 

Pab016 Marsfjället, Sweden HiSeq X 2x151 bp 19.6x 15.5x 

Pab017 Marsfjället, Sweden HiSeq X 2x151 bp 21.0x 15.5x 

Pab018 Marsfjället, Sweden HiSeq X 2x151 bp 20.4x 15.8x 
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Pab019 Marsfjället, Sweden HiSeq X 2x151 bp 20.2x 25.5x 

Pab020 Marsfjället, Sweden HiSeq X 2x151 bp 21.1x 25.2x 

Pab021 Marsfjället, Sweden HiSeq X 2x151 bp 20.9x 25.5x 

Pab022 Marsfjället, Sweden HiSeq X 2x151 bp 19.9x 26.0x 

Pab023 Marsfjället, Sweden HiSeq X 2x151 bp 19.8x 25.2x 

Pab024 Marsfjället, Sweden HiSeq X 2x151 bp 18.9x 24.5x 

Pab025 Marsfjället, Sweden HiSeq X 2x151 bp 18.8x 23.8x 

Pab026 Långrumpskogen, Sweden HiSeq X 2x151 bp 19.2x 23.8x 

Pab027 Långrumpskogen, Sweden HiSeq X 2x151 bp 18.6x 23.5x 

Pab028 Långrumpskogen, Sweden HiSeq X 2x151 bp 19.3x 23.5x 

Pab029 Långrumpskogen, Sweden HiSeq X 2x151 bp 18.5x 23.2x 

Pab030 Långrumpskogen, Sweden HiSeq X 2x151 bp 18.0x 23.2x 

Pab031 Långrumpskogen, Sweden HiSeq X 2x151 bp 17.8x 23.2x 

Pab032 Långrumpskogen, Sweden HiSeq X 2x151 bp 20.1x 23.5x 

Pab033 Långrumpskogen, Sweden HiSeq X 2x151 bp 20.0x 23.6x 

Pab034 Långrumpskogen, Sweden HiSeq X 2x151 bp 20.2x 23.1x 

Pab035 Långrumpskogen, Sweden HiSeq X 2x151 bp 19.3x 23.3x 
*reference individual Z4006 (Nystedt et al. 2013); **Down-sampled to match remaining samples 

3. SNP and genotype calling pipeline 

Over the recent decades, Next-Generation Sequencing (NGS) technologies have 

developed at an extraordinary rapid pace and have led to ever decreasing costs per mega-base 

sequence generated. This has in turn led to rapid increase in the number and diversity of 

sequenced genomes (Goodwin et al. 2016). These new sequencing technologies have already 

facilitated and improved many research avenues in biology, such as transcriptomics, gene 

annotation and RNA splice identification (Bao et al. 2011). Moreover, meta-genomic (Schuster 

2007) and genome methylation analysis (Morozova and Marra 2008) have also benefited from 

NGS technologies. However, NGS platforms provide higher associated error rates and generally 

shorter read lengths compared with traditional Sanger sequencing platforms and therefore require 
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much more careful examinations of the results, particularly for variant discovery and 

downstream applications (Liu et al. 2012; Goodwin et al. 2016). Thus, meaningful analysis of 

NGS data relies crucially on accurate calling of SNPs and genotypes (Nielsen et al. 2011). Here 

we first highlight some of the issues that may contribute to  ambiguities in SNP and genotype 

calling, e.g. repetitive DNA, or misalignment of sequence reads, and then review some recent 

algorithms and tools that are capable of improving the sensitivity and specificity of SNP 

detection and genotype determination from NGS data. The pipeline for SNP and genotype 

calling applied in this chapter includes initial reads mapping, post-alignment processing, 

pre-calling processing, final SNP and genotype calling and subsequent variant filtering (Figure 

1). The steps of this pipeline are exemplified by using whole-genome re-sequencing data from 35 

Norway spruce ( Picea abies) individuals generated by different Illumina HiSeq platforms.  
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Figure 1 : Pipeline of SNP and genotype calling based on Norway spruce. As a              

first step, paired end reads were mapped to the whole genome assembly of             

Norway spruce (~10 million scaffolds covering 12.6 Gb out of the ~20 Gb             

estimated genome size) using BWA-MEM with default settings. Sample BAM          

files were then reduced to only include scaffolds longer than 1 Kb (~2 million              

scaffolds covering 9.5 Gb of the genome), merged into a single BAM file per              

sample and then subdivided into 20 genomic subsets with ~100 K scaffolds in             

each. The genomic subset BAM files were then marked for PCR duplicates using             

Picard, subjected to local realignment around indels using GATK         

RealignerTargetCreator and IndelRealigner and genomic     

intermediate variant calling using GATK Haplotypecaller in gvcf mode. A          

joint genotype call over all 35 samples per genomic subset was then performed             

using GATK GenotypeGVCFs to ashieve the final raw vcf files (one file for             

each of the 20 genomic subset).  

3.1 Initial reads mapping (step 1) 

Mapping is the most fundamental step in variant detection using NGS and involves 

aligning raw or pre-processed sequence reads to a reference genome of either the same or a 

closely related species to reveal the location(s) of reads within the reference genome ( Trapnell 

and  Salzberg 2009; Flicek and Birney 2010; Wang et al. 2015). The accuracy of mapping plays 

a crucial role in variants calling (Nielsen et al. 2011) as incorrectly aligned reads may lead to 

errors in SNP and genotype calling, and therefore will restrict the accuracy of all downstream 

analyses. Although progressively more advanced NGS technologies feature several advantages 

such as high throughput, lower cost per base and higher accuracy when compared with 

traditional Sanger-based sequencers (Bao et al. 2011), several obstacles stemming from the 

inherent characteristics of NGS data need to be considered when performing this step. 

3.1.1 Short-read mapping 

The first challenge is that reads from NGS platforms are usually short (most delivered 

read lengths fall in the range of 35 - 400 bp), when compared with the reads from Sanger 

sequencers (600 - 800 bp) (Bao et al. 2011; Mardis 2017 ). In order to use these short reads 

efficiently, the initial process, before actual alignment, involves the construction of indices for 

the reference sequence and/or for the raw short-read sequence data known as ‘indexing’, is 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/805994doi: bioRxiv preprint 

https://doi.org/10.1101/805994
http://creativecommons.org/licenses/by/4.0/


intended to speed up subsequent mapping steps. The two most commonly used  indexing 

algorithms have been  incorporated in a large number of mapping software tools: (i) indexing 

algorithms based on hash tables, and (ii) indexing algorithms based on Burrows–Wheeler 

transform (BWT). A ‘Hash table’ is a common data structure which makes it possible to search 

rapidly through complex and non-sequential data using an index. One option is to scan the hash 

table of input reads using the reference genome. However, scanning a hash table of input reads 

usually requires smaller and more variable memory, while scanning the entire reference genome 

may use more processing time especially when there are relatively few reads in the input set 

( Flicek and Birney 2010). Another option is to scan the hash table of the reference genome by 

using the set of input reads. Regardless of the size of input reads, the memory of the reference 

hash table remains constant, but may on the other hand be large, depending on the size and 

complexity of the reference genome (Flicek and Birney 2010). Several software tools have been 

developed based on hash table algorithms, such as MAQ  ( Li et al. 2008a), SOAP  ( Li et al. 2008b), 

SHRiMP (Rumble et al. 2009) and Stampy  (Lunter and Goodson 2011). BWT-based 

implementations are much faster compared to hash table based algorithm at the same sensitivity 

level (Flicek and Birney 2010), they are also more memory-efficient and are particularly useful 

for aligning repetitive reads (Nielsen et al. 2011). Another advantage of the BWT approach is the 

ability to store the complete reference genome index on disk and load it completely into memory 

on almost all standard bioinformatics computing clusters (Flicek 2009; Flicek and Birney 2010). 

Currently, the most widely used software tools based on the BWT algorithms include Bowtie 

(http://bowtie.cbcb.umd.edu/; Langmead et al. 2009), the Burrows–Wheeler Aligner 

( BWA ) (http://maq.sourceforge.net/bwa-man.shtml; Li and Durbin 2009), and SOAP2 

(http://soap.genomics.org.cn/; Li et al. 2009a). 

3.1.2 Extremely large amounts of data  

Another challenge for working with NGS data is that the amount produced by most NGS 

methods are orders of magnitude greater than that generated by earlier techniques (Flicek and 

Birney 2010). For example, Illumina (HiSeq 2000) and Applied Biosystems (ABI SOLiD 4) can 

deliver hundreds of millions of sequences per run, while Sanger-style sequencer only produces 

thousands of reads per run (Hung and Weng 2017). Therefore, in order to map a vastly greater 
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numbers of reads (millions or billions) to a reference genome, any algorithm must be optimized 

for speed and memory usage, especially when reference genomes are very huge. Accordingly, 

several very memory efficient short-read alignment programs have been developed. For 

example, Bowtie (http://bowtie-bio.sourceforge.net/index.shtml; Langmead et al. 2009) and 

BWA , as examples of the two most efficient short-read aligners, achieve throughputs of 10–40 

million reads per hour on a single computer processor (Treangen and Salzberg 2012). 

3.1.3 Repetitive DNA mapping 

Repetitive DNA sequences, which are similar or identical to sequences elsewhere in the 

genome, are abundant across a broad range of organisms, from bacteria to mammals (Treangen 

and Salzberg 2012). Mapping repetitive DNA sequences to a reference genome create 

ambiguities of deciding what to do with reads that map to multiple locations, which, in turn, can 

produce errors when interpreting results. Mapping of repetitive sequencing reads is therefore one 

of the most commonly encountered problem in read mapping. One possible solution to this 

problem is to simply remove all multiple mapped reads. However, this discarding strategy may 

complicate the calculation of coverage by reducing coverage in an uneven fashion (Li et al. 

2008a), and may result in many undetected biologically important variants when analyses are 

performed across unique regions involved in the repetitive contents in the genome. Some repeats 

have already proved to play important roles in, for instance, human evolution (Jurka et al. 2007; 

Britten 2010), sometimes creating novel functions while sometimes acting as independent 

‘selfish’ genetic elements (Kim et al. 2008; Hua-Van et al. 2011; Treangen and Salzberg 2012). 

An alternative option is to only report the region with the fewest mismatches (e.g. as done in 

BWA  and Bowtie). Specifically, when there are multiple equally good best alignment matches, 

the aligner can either randomly choose one or choose to report all such alignments (e.g. SOAP2 ). 

Among those aligners reporting all matches, another choice is to report up to a maximum number 

( m ) by ignoring multiple reads that align to >m  locations. To deal with these issues, the concept 

of ‘mapping quality’ was introduced in several software tools to enable evaluation of the 

likelihood of correct mapping of reads by considering a number of factors, such as base qualities, 

the number of base mismatches and/or the existence and size of gaps in the alignment (Li et al. 

2008a; Wang et al. 2015 ). For example, in order to evaluate the reliability of alignments, MAQ 
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assigns a Phred-scaled quality score which measures the probability that the true alignment is not 

the one found by MAQ  for each individual alignment (Li et al. 2008a). However, MAQ ’s formula 

overestimates the probability of missing the true hit, which results in an underestimation of 

mapping quality (Li and Durbin 2009). BWA  was developed with a similar algorithm as MAQ  but 

has been modified by assuming the true hit can always be found. Simulation reveals that BWA 

may therefore overestimate mapping quality, although the deviation is relatively small (Li and 

Durbin 2009 ). 

In general, the choice of alignment tool and the corresponding parameter settings are very 

important because the outcome will significantly influence the accuracy of variant calling and 

further downstream analysis. BWA , which is based on the BWT algorithm, is much faster 

compared to many other programs based on hash table algorithm at the same sensitivity level, 

has more efficiently memory usage, which is particularly useful for aligning repetitive reads, and 

has a smaller deviation of mapping quality. This is therefore often the best choice for mapping 

raw sequence reads to a reference genome. BWA  provides three different mapping methods: 1) 

BWA-MEM that is usually suggested for 70bp or longer Illumina, 454, Ion Torrent and Sanger 

reads, and is also generally recommended for high-quality queries as it is faster and more 

accurate; 2) BWA-backtrack is especially suited for short sequences and 3) BWA-SW which 

may have better sensitivity when alignment gaps are frequent. Consequently, in our whole 

genome re-sequencing project of Norway spruce, we have employed BWA-MEM to align all 

paired-end reads to the reference genome. 

3.2 Post-alignment processing (step 2) 

After mapping reads to the reference, various post-alignment data processing are usually 

suggested to facilitate further analytical steps. The most common tasks include output file 

manipulation (e.g. format converting, indexing) and the creation of summary reports from the 

alignment process. Appropriate formats of output from mapping not only ensure downstream 

compatibility with variant callers, such as ‘Haplotypecaller’ from the Genome Analysis Toolkit 

package (GATK ) (McKenna et al. 2010), but also allow for a reduction of the output data set size, 

for example, transferring from SAM ( a text-based format for storing biological sequences 

aligned to a reference sequence which is developed by Li et al. 2009c)  file to the binary version 
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(BAM) file (Altmann et al. 2012 ; Mielczarek and Szyda 2016 ). The SAMtool s package can be 

used to manipulate a variety of functions on output files, such as, format changing, sorting, 

indexing, or merging (Li et al. 2009c). Moreover, a detailed summary statistics of aligned output 

are necessary for evaluating the overall quality and correctness of alignment, which benefits for 

following steps such as SNP detection. Some aligners usually generate a simple summary 

describing the alignment process (e.g. Bowtie2, SOAP2 ), while some are not available, such as 

BWA . Thus, it is possible to generate a summary report by using other software, e.g. the 

SAMtools flagstat (Li et al 2009c) and CollectAlignmentSummaryMetrics 

module of Picard  ( http://broadinstitute.github.io/picard/). 

After mapping raw sequencing reads to the reference genome using BWA-MEM, we have 

employed S AMtools to manipulate output files, for instance for sorting and indexing. Besides, 

we also used flagstat  in SAMtools  to generate summary statistic reports including e.g. the 

total number of reads that pass or fail QC (quality controls), in order to evaluate the quality of 

the alignments produced during read mapping. In addition, considering the characteristics of 

Norway spruce genome which has an extremely large genome size (~20Gb) and very high 

repetitive content (~70% ) (Nystedt et al. 2013), it is challenging to accurately call variants both 

from a computational perspective and from the large data volumes that need to be handled and 

stored in this project. Before SNP and genotype calling, we therefore performed several steps to 

reduce the computational complexity of the SNP calling process. First we split both the output 

file from the mapping step and the reference into smaller subsets so that multiple data sets can be 

manipulated in parallel. Also, smaller data sets (in this case number of scaffolds) are crucial to 

allow software tools, such as GATK, to function properly.  

We first reduced the reference genome by only keeping genomic scaffolds greater than 

1kb in length using bioawk ( https://github.com/lh3/bioawk). All BAM files were then 

subsetted using the reduced reference genome with the view  module in SAMtools. All 

reduced BAM files for each individual, were then merged into a single BAM file using the 

merge  module in SAMtools (Li et al. 2009c). The final step was to split the merged BAM 

files of each individual into 20 genomic subsets, with each subset containing roughly 100,000 

scaffolds, using SAMtools view .  We simultaneously subdivided the reference genome into 
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the corresponding 20 genomic subsets by keeping exactly same scaffolds by using bedtools 

( Quinlan and Hall 2010). Indexing was performed for both BAM subsets and reference subsets 

to make them available for subsequent analyses. 

3.3 Pre-calling processing (step 3) 

Additional processing steps are usually recommended before proceeding to the actual 

variant calling, so that variant detection results can be more reliable (Li et al. 2009c; McKenna et 

al. 2010; Altmann et al. 2012; Mielczarek and Szyda 2016). 

3.3.1 PCR duplicates 

DNA amplification by polymerase chain reaction (PCR) has been a necessary step in the 

preparation of libraries for most of the NGS platforms, such as Illumina, 454, IonTorrent and 

SOLiD ( Mardis 2008; Morozova and Marra 2008; Escalona et al. 2016). The number of 

duplicate clones in the library will increase if there are too many PCR cycles or when obtaining 

DNA from a gel slice to get uniform fragment lengths (Li et al. 2009c). Consequently, the same 

read pairs may occur many times in the raw data and this will result in unexpectedly high depths 

in some regions, resulting in a skewed coverage distribution  (Mielczarek and Szyda2016). 

Further, excessively high read depth could potentially lead to large frequency differences 

between the two alleles of a heterozygous site (Li et al. 2009c), which may subsequently bias the 

number of variants and may substantially influence the accuracy of the variant detection (Wang 

et al. 2005). Removal of these artifacts is thus an essential pre-calling processing step, in 

particular on applications based on re-sequencing data. Picard MarkDuplicates 

( http://broadinstitute.github.io/picard/) and Samtools Rmdup  (Li et al. 2009c) are two 

commonly used software which allow the user to either mark these duplicate reads or completely 

remove them from the alignment. Both methods rely on similar approaches, however, compared 

with rmdup , MarkDuplicates is likely a better choice as it also handles inter-chromosomal 

read pairs, considers the library for each read pair, keeps a read pair from each library and does 

not actually remove reads but rather flags the duplicates by setting the SAM flag to 1024 for all 

but the best read pair (Ebbert et al. 2016). 
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3.3.2 Local realignment 

Another important preprocessing step involves alignment corrections.  Artefacts in 

alignment, usually occurring in regions with insertions and/or deletions (indels) during the 

mapping step, can result in many mismatching bases relative to the reference in regions of 

misalignment. Such misaligned regions can be easily mistaken as SNPs during variant calling. 

Read mapping proceeds by independently mapping each read, and reads covering an indel at the 

start or end of the read can often be incorrectly mapped even when other reads are correctly 

mapped across the indel. To alleviate these issues, local realignment is usually performed to 

realign reads in the vicinity of an identified misalignment in order to minimise the number of 

mismatching bases (Mielczarek and Szyda 2016). Many software tools have been developed to 

perform local realignment, such as SRMA  (Homer and Nelson 2010), which realign reads only in 

color space originating from the SOLiD  platform. GATK  (McKenna et al. 2010) is probably the 

most commonly used software for performing local realignment and it proceeds in two steps: 1) 

determining (small) suspicious intervals which are likely in need of realignment 

( RealignerTargetCreator), and 2) running the actual realigner over those intervals 

( IndelRealigner). 

In this project, we first marked potentially PCR duplicates by using MarkDuplicates 

in Picard . We then performed local realignment by first detecting suspicious intervals using 

RealignerTargetCreator, followed by realignment of those intervals using 

IndelRealigner, both implemented in GATK  ( DePristo et al. 2011).  Both of these steps of 

pre-call processing were run separately on the 20 genomic subsets of each individual (700 

subsets in total across all 35 individuals). 

3.4 SNP and genotype calling (step 4) 

The development of NGS has made it possible to identify a large number of variants in 

almost any organism. Sequencing entire genomes potentially allows for the discovery of all 

existing polymorphisms, and can thus identify not only common but also rare SNPs which have 

been implicated in controlling many complex phenotypes (Mielczarek and Szyda 2016).  This 

means that it should be possible to, at least in theory, identify the true causal mutations directly 

from resequencing data rather than relying on using linkage disequilibrium between unknown 
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causal mutations and marker SNPs. However, to achieve this, SNP detection and genotype 

calling need to be performed across polymorphic sites in the NGS data. SNP calling, also known 

as variant calling, is aimed at detecting sites which differ from a reference sequence, while 

genotype calling is the process of determining the actual genotype for each individual based on 

positions in which a SNP or a variant has already been called (Nielsen et al. 2011; Li et al. 2013). 

SNP calling and genotype calling are identical when analyzing the genome of a single individual 

as inference of a heterozygous or homozygous non-reference genotype would imply the presence 

of a SNP (Nielsen et al. 2011; Mielczarek and Szyda 2016). However, when it comes to 

simultaneously analysing multiple samples, an SNP is identified if at least one individual is 

heterozygous or homozygous non-reference at a genome position (Nielsen et al. 2011; 

Mielczarek and Szyda 2016). Many empirical and statistical methods have been developed to 

perform SNP and genotype calling to discover genetic variants accurately. Most of them are 

based on either heuristic or probabilistic methods. 

3.4.1 Heuristic methods 

For variant detection, a heuristic algorithm determines genotypes based on a filtering step 

where variants fulfilling pre-set thresholds are kept. Such thresholds include coverage (e.g. 

minimum =33), base quality (e.g. minimum = 20) or variant allele frequency (e.g. minimum = 

0.08). Then, each allele supported by Fisher’s exact test of read counts is applied compared to 

the expected distribution based on sequencing error alone (Mielczarek and Szyda 2016). Several 

software tools are developed based on this methods, such as VarScan2 (Koboldt et al. 2012). 

However, these methods can be improved by using more empirically determined cutoffs ( Nielsen 

et al. 2011). 

3.4.2 Probabilistic methods 

More recent approaches integrate several sources of information within a probabilistic 

framework. One of the advantages of a probabilistic framework is that it facilitates SNP calling 

in regions with medium to low coverage compared with heuristic methods ( Altmann et al. 2012). 

For moderate or low sequencing depths, fixed cutoffs based genotype calling will lead to 

under-calling of heterozygous genotypes and some information will inevitably be lost when 

using static filtering criteria (Nielsen et al. 2011). Another advantage of probabilistic methods is 
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that it can account for uncertainty in genotype call, making it possible to monitor the accuracy of 

genotype calling ( Altmann et al. 2012; Mielczarek and Szyda 2016). Additional information 

concerning allele frequencies and/or patterns of linkage disequilibrium (LD) can thus be 

incorporated in downstream analysis (Nielsen et al. 2011; Mielczarek and Szyda 2016). 

SNP and genotype calling based on probabilistic methods usually involve the calculation 

of genotype likelihood which can be used to evaluate the quality scores for each read. To 

improve the accuracy of calculation of genotype likelihoods, the following parameters can be 

considered: 1) a weighting scheme should be used that takes correlated errors into account (Li et 

al. 2008a), 2) recalibrating the per-base quality scores by using empirical data will also improve 

genotype likelihoods (Nielsen et al. 2011) and 3) information from the SNP-calling step should 

be incorporated into the genotype-calling algorithm, leading to genotype likelihoods that are 

calculated by conditioning on the site containing a polymorphism (Nielsen et al. 2011). By 

adopting a Bayesian approach for variant calling, prior genotype probabilities can be combined 

with the estimated genotype likelihood to calculate the posterior probability of a particular 

genotype. The genotype with the highest posterior probability will then generally be chosen and 

this probability or the ratio between the highest and the second highest genotype probabilities 

will be used as a measure of confidence in the variant call  (Nielsen et al. 2011; Li et al. 2013; 

Mielczarek and Szyda 2016). 

A prior probability of genotype must be assumed because it is a prerequisite to be able to 

calculate the posterior probability for a genotype. When data is analysed from a single 

individual, either a uniform prior probability is chosen that assign equal probability to all 

genotypes or a non-uniform prior can be based on external information, such as dbSNP (SNP 

database) entries, the reference sequence or an available population sample (Nielsen et al. 2011; 

Li et al. 2013) . Jointly analyzing multiple individuals will improve the prior probabilities by 

considering allele or genotype frequencies, using for example maximum likelihood (Li et al. 

2009b; Martin et al. 2010 ) and then by using a Hardy–Weinberg equilibrium (HWE) assumption 

or other assumptions that relate allele frequencies to genotype frequencies to calculate genotype 

probabilities (Nielsen et al. 2011) . Moreover, a significant improvement in genotype-calling 

accuracy can be achieved by considering linkage disequilibrium (LD) information (1000 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/805994doi: bioRxiv preprint 

https://doi.org/10.1101/805994
http://creativecommons.org/licenses/by/4.0/


Genomes Project Consortium 2010). However, this approach is not very efficient for rare 

mutations. 

3.4.3 Commonly used software tools based on probabilistic methods 

Several software tools have been developed that combine probabilistic framework with 

Bayesian analysis for variant calling, such as SAMtools (Li et al. 2009c), GATK  (DePristo et al. 

2011) and FreeBayes  (Garrison and Martin 2012). All these software also support the use of 

multiple sample SNP calling. Samtools perform SNP and genotype calling in two steps:1) 

mpileup in Samtools  computes the possible genotype likelihood and stores those 

information in BCF (Binary call formats), and 2) BCFtools from the SAMtools  packages 

applies the prior and does the actual variant calling based on genotype likelihoods information 

calculated in the previous step (Li et al. 2009c;Wang et al.2015). Compared with Samtools, 

GATK , based on similar algorithms, features an advantage of automatically applying several 

filters before processing variant calling or other pre- and post-processing steps, e.g. filtering out 

reads that fail quality checks and reads with a mapping quality of zero. HaplotypeCaller, 

the most popular SNP and genotype calling module in GATK , can discard the existing mapping 

information and completely reassembles reads in the region whenever a region show signs of 

variation. It thus allows for more accurate calling in regions that are traditionally difficult to call, 

such as regions containing different types of variants close to each other. Four steps will be 

performed by using HaplotypeCaller  in GATK : 1) determining the regions of the genome 

that it needs to operate on by detecting significant evidence for variation; 2) determining 

haplotypes by local assembly of the active region by building a De Bruijn-like graph and by 

identifying potential variant sites by realigning each haplotype against the reference haplotype,  

3)  determining likelihoods of the haplotypes given the read data by a pairwise alignment of each 

read against each haplotype using the PairHMM algorithm and 4) assigning sample genotypes 

based on Bayes' rule. Liu et al. (2013) compared the performance of four common variant 

callers, SAMtools, GATK , glftools and Atlas2 , using single and multi-sample 

variant-calling strategies, and came to the conclusion that GATK  had several advantages over 

other variant callers for general purpose NGS analyses. Pirooznia et al. (2014) conducted a series 

of comparisons between single nucleotide variant calls from NGS data and gold-standard Sanger 
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sequencing in order to evaluate the accuracy of each caller module . They found that GATK 

provided more accurate calls than SAMtools, and the GATK HaplotypeCaller  algorithm 

outperformed the older UnifiedGenotype algorithm (Pirooznia et al. 2014).  

Based on these results, we have performed SNP and genotype calling by using GATK 

HaplotypeCaller by generating intermediate genomic VCFs (gVCFs) on a per-subset and 

per-sample basis (20 gVCFs produced for each individual). These gVCF files were then used for 

joint calling of multiple samples by using the GenotypeGVCFs module in GATK . SNP and 

genotype calling by GATK  produced 20 VCF files with each file including variants from all 35 

individuals (Figure 1). The raw variant calls are likely to contain many false positives arising 

from errors in the genotyping step or form incorrect alignment of the sequencing data and the 

called variants therefore needs to be subjected to a number of subsequent filtering steps (e.g. 

missing data, depth and mapping quality) to produce data that is of sufficient quality for 

answering the biological questions of interest.  

4. Variant filtering 

4.1 Filtering for depth and excessive heterozygosity 

 A first filtering step was conducted on each of the 20 genomic subset VCF files 

separately with vcftools (Danecek et al. 2011) and bcftools (Li et al. 2009) to only 

include biallelic SNPs positioned > 5 bp away from an intron and where the SNP quality 

parameters fulfilled GATK  recommendations for hard filtering 

( https://gatkforums.broadinstitute.org/gatk/discussion/2806/howto-apply-hard-filters-to-a-call-set

).  

 

bcftools filter -g 5 -e ‘QD < 2.0 || FS > 60.0 || MQ < 40.0 || \ 

MQRankSum < -12.5 || ReadPosRankSum < -8.0 || SOR > 3.0’ \  

subset_unfiltered | vcftools --vcf - --min-alleles 2 --max-alleles 2 \ 

--mac 1 --remove-indels --recode --recode-INFO-all --stdout | bcftools \ 

+fill-tags | bgzip -c > subset_GATK_biallelic_SNPs.vcf.gz && tabix -p \ 

vcf subset_GATK_biallelic_SNPs.vcf.gz 

 

In addition to the usual problems of calling variants from data with low coverage, SNP 

calling in conifers face the extra problem of possible collapsed repetitive regions in the 

assembly. The spruce genome, as most conifers, is highly repetitive and the v1.0 P. abies 
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assembly is missing approximately 30% of the predicted genome size (Nystedt et al 2013). These 

genome regions are either completely absent from the reference assembly or present as collapsed 

regions of high sequence similarity. This introduces problems for read mapping and variant 

calling as it increase the probability of calling false SNPs in collapsed regions since reads that in 

reality derive from different genomic regions are mapped at a single region in the assembly. In 

order to reduce the impact of these issues on variant calling, we performed a second filtering step 

so that genotype calls with a depth outside the range 6-30 and a GQ < 15 were re-coded to 

missing data. We then filtered each SNP for being variable with an overall average depth in the 

range of 8-20 and a ‘maximum missing’ value of 0.8 (max 20% missing data). All info tags were 

then recalculated with bcftools fill-tags.  

 

vcftools --gzvcf subset_GATK_biallelic_SNPs.vcf.gz --minDP 6 --maxDP 30 \ 

--minGQ 15 --min-meanDP 8 --max-meanDP 20 --max-missing 0.8 \  

--min-alleles 2 --max-alleles 2 --mac 1 --recode --recode-INFO-all \ 

--stdout | $bcftool +fill-tags | $bgzip -c \ 

subset_GATK_biallelic_SNPs_GT.vcf.gz && tabix -p vcf \ 

subset_GATK_biallelic_SNPs_GT.vcf.gz 

 

Finally, to remove obviously collapsed SNPs we filtered out all SNPs that displayed a 

p-value of excess of heterozygosity less than 0.05. This was done since SNPs called in collapsed 

regions should show excess heterozygosities since they are based on reads that are derived from 

different genomic regions.  

 
bcftools filter -e ‘ExcHet < 0.05’ subset_GATK_biallelic_SNPs_GT.vcf.gz   

 

In order to evaluate the filtering parameters, we extracted summary statistics for each of 

the 20 genomic subsets and filtering steps using bcftools stats (Li et al. 2009). We also 

wrote a custom python script (v2.7) that extracted basic statistics regarding deviations from 

Hardy-Weinberg equilibrium (HWE ), excess of heterozygosity (ExcHet), number of called 

samples, allele frequency, number of heterozygous calls, alternative allele ratio for heterozygous 

calls as well as total depth and total heterozygous depth, from the VCF file of two of the 

genomic subsets (subset 5 and 6) using pysam  ( https://github.com/pysam-developers/pysam,  Li 

et al. 2009c). This data was then analysed in R (R Core Team 2014). 
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import pysam 

import sys 

 

Subset=sys.argv[1] 

vcf=pysam.VariantFile(“Subset.vcf.gz") 

out=open("Subset_Allele_stats.txt","w") 

 

out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format 

("Chrom","Start",”End”,"HWE","ExcHet","Called_samples","Allele_frequency"

,"Heterozygotes","Alt_read_proprotion","Total_Het_DP","Total_DP")) 

 

for record in vcf.fetch(): 

    Chrom=record.contig 

    Start=record.pos -1 

    End=record.pos 

    HWE=record.info["HWE"][0] 

    ExcHet=record.info["ExcHet"][0] 

    AF=record.info["AF"][0] 

    AC_Het=record.info["AC_Het"][0] 

    NS=record.info["NS"] 

    Alt_read=0 

    Tot_Het_read=0 

    Total_DP=0 

    for sample in record.samples.values(): 

        if sample["GT"] == (None,None): 

            continue 

        else: 

            if sample["GT"] == (0,1): 

                if sample["DP"] != None: 

                    Alt_read=Alt_read + int(sample["AD"][1]) 

                    Tot_Het_read=Tot_Het_read + int(sample["DP"]) 

            if sample["DP"] != None: 

                Total_DP=Total_DP + int(sample["DP"]) 

    if Tot_Het_read >0: 

        Alt_read_prop= float(Alt_read)/float(Tot_Het_read) 

    else: 

        Alt_read_prop="NA" 

    out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format (Chrom, 

Start, End, HWE, ExcHet, NS, AF, AC_Het, Alt_read_prop, Tot_Het_read, 

Total_DP)) 

 

For analyses of different genomic regions separately (ie. repeat regions, outside repeat 

regions, genic regions and exonic regions), we subset the allele statistics file (above) to 

corresponding regions in files Pabies1.0-all.phase.changed.gff3 and 

Pabies1.0_Repeats_2.0_repeatmasker.gff3.gz (available from 
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ftp://plantgenie.org/Data/ConGenIE/) using a custom made python script (v2.7) and BEDTools 

( Quinlan AR and Hall IM, 2010; Dale RK, Pedersen BS, and Quinlan AR. 2011). 

 

 

from pybedtools import BedTool 

 

snps=BedTool("Input_file.txt") 

repeats=BedTool("Pabies1.0_Repeats_2.0_repeatmasker.gff3.gz") 

genes=BedTool("gene_regions.gff3") 

exons=BedTool("exon_regions.gff3") 

SNPs_Repeat=snps.intersect(repeats,u=True) 

SNPs_NoRepeat=snps.intersect(repeats,v=True) 

SNPs_Gene=snps.intersect(genes,u=True) 

SNPs_Exon=snps.intersect(exons,u=True) 

 

Repeat_out=open("Repeats.txt","w") 

NoRepeat_out=open("NoRepeats.txt","w") 

Gene_out=open("Genes.txt","w") 

Exon_out=open("Exons.txt","w") 

 

Repeat_out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format("Chrom", 

"Start", "End", "HWE", "ExcHet", "Called_samples", "Allele_frequency", 

"Heterozygotes", "Alt_read_proprotion", "Total_Het_DP", "Total_DP")) 

NoRepeat_out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format("Chrom

", "Start", "End", "HWE", "ExcHet", "Called_samples", "Allele_frequency", 

"Heterozygotes", "Alt_read_proprotion", "Total_Het_DP", "Total_DP")) 

Gene_out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format("Chrom", 

"Start", "End", "HWE", "ExcHet", "Called_samples", "Allele_frequency", 

"Heterozygotes", "Alt_read_proprotion", "Total_Het_DP", "Total_DP")) 

Exon_out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format("Chrom", 

"Start", "End", "HWE", "ExcHet", "Called_samples", "Allele_frequency", 

"Heterozygotes", "Alt_read_proprotion", "Total_Het_DP", "Total_DP")) 

 

Repeat_out.write("{}\n".format(SNPs_Repeat)) 

NoRepeat_out.write("{}\n".format(SNPs_NoRepeat)) 

Gene_out.write("{}\n".format(SNPs_Gene)) 

Exon_out.write("{}\n".format(SNPs_Exon)) 

 
 

4.2 Results 

The raw unfiltered VCF files contain a total of 750 million records of which 710 million 

were single nucleotide polymorphisms (SNPs). After hard-filtering using GATK  best-practice 

recommendations 
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( https://gatkforums.broadinstitute.org/gatk/discussion/2806/howto-apply-hard-filters-to-a-call-set

), 545 million SNPs (76.8%) remained. These variants were distributed over 94.7% of the 

1,970,460 scaffolds in the assembly that are longer than 1 Kb (Table 2). When comparing the 

alternative allele frequency with the proportion of heterozygous calls per SNP, it is obvious that 

we have a high proportion of SNPs that do not follow Hardy-Weinberg expectations (Figure 2A). 

SNPs with either too high or too low fraction of heterozygous calls most often also show a 

greater deviation in allele ratio in their heterozygous calls compared to SNPs following H-W 

expectations (Figure 2B-D). 

In genotyping by sequencing (GBS) data, often applied to species that lack a reference 

genome, duplicated regions have been shown to behave in a very similar manner (McKinney et 

al. 2017) to our whole genome sequencing (WGS) data. To overcome the issues relating to false 

SNPs that stem from collapsed/ duplicated genomic regions, McKinney et al. (2017) suggests 

filtering for sequencing depth, so that all accepted calls have a coverage within the expected span 

(based on the estimated sequencing depth). We therefore re-coded individual genotypes to 

missing data if they had a depth that was too low to reliable call both alleles (< 6 reads covering 

a site), or if their depth was too high compared to the overall coverage (> 30 reads covering a 

site), which makes it likely that reads are derived from multiple genomic positions. Calls with a 

genotype quality (GQ) less than 15, which indicates that the difference in likelihood between the 

best and second best genotype is small, were also re-coded to missing data. We then filtered on 

an overall average depth per SNP of 8-20 to reduce the proportion of possible erroneous calls 

further and also added a threshold of maximum 20% missing data in order to keep a SNP for 

downstream analysis.  

296 million SNPs, corresponding to 41.7% of the raw unfiltered SNPs, remained after 

these filtering steps and were distributed over 63.2% of the >1Kb scaffolds (Table 2).  When 

comparing the proportion of heterozygous calls to the alternative allele frequency, a noticeable 

amount of the SNPs with heterozygous deficiency has been filtered out (Figure 2E). The 

deviation from a balanced allele ratio of heterozygous calls is also visibly lower (Figure 2F-H) 

even though the data still suffers from SNPs showing heterozygous excess at intermediate 

alternative allele frequencies (Figure 2H at ~0.5). Such excess of heterozygous could be 
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explained by real biological phenomena, such as balancing selection (Charlesworth 2006), or 

arise due to artefacts caused by collapsed/duplicated regions in the assembly as discussed above 

(McKinney et al. 2017). Regions under balancing selection should be highly localised in the 

genome while the risk of collapsed regions in the spruce assembly is a priori  expected to be high 

since we know that the genome contains a huge proportion of retrotransposon-derived sequences 

(Nystedt et al. 2013, Cossu et al 2017). To filter out SNPs with a significant excess of 

heterozygotes therefore seems justifiable for the data at hand. Heterozygous deficiency, on the 

other hand, can be both explained by errors in variant calling in low-depth regions or by 

population structure (Hartl and Clark 1989). The latter is a much more likely scenario for our 

data set, since samples are derived from all over the distribution range of P. abies  and we also 

expect this pattern to manifest itself across most of the genome. We therefore chose not to filter 

on this criteria. By removing all SNPs showing a significant excess of heterozygotes (p -value < 

0.05), we ultimately retained 294 million SNPs (corresponding to 41.4% of the unfiltered SNPs) 

from 63.2% of the > 1kb scaffolds (Table 2, Figure 2I-M).  

 

Table 2. Summary statistics for each of the 20 genomic subsets of Norway             
spruce. Subset: name of genomic subset; Genomic length (Mb) : length (in mega            
bases) of the combined scaffolds included in the subset; Average scaffold length            
(kb) : Average length (in kilo bases) of each scaffold included in the subset;             
Average repeat coverage (% ): Average percentage of the scaffolds that are           
covered by known repeats; Scaffolds with genes (%) : Percentage of scaffolds           
included in the subset that has at least 1 annotated gene model; Unfiltered             
records (M): Number of records (in millions) present in the unfiltered raw VCF             
file; Unfiltered SNPs (M) : Number of SNPs (in millions) present in the            
unfiltered raw VCF file; GATK SNPs (M): Number of SNPs (in millions)            
retained after filtering according to GATK best practice recommendations and          
including only biallelic SNPs >5bp away from an indel. GATK Scaffolds (%):            
percentage of the subset scaffolds that contains retained SNPs after GATK filter;            
GATK + GT SNPs (M): Number of SNPs (in millions) retained after extra filter              
for individual depth and genotype quality and overall depth and missing data.            
GATK + GT Scaffolds (%): percentage of the subset scaffolds that contains            
retained SNPs after GATK and GT filter; GATK + GT + ExcHet SNPs (M):              
Number of SNPs (in millions) retained after extra filter for excess of            
heterozygosity. GATK+ GT + ExcHet Scaffolds (%) : percentage of the subset           
scaffolds that contains retained SNPs after GATK + GT + ExcHet filter.  

Subset Genomic 
length 

Average 
scaffold 

Average 
repeat 

Scaffolds 
with 

Unfiltere
d records 

Unfiltere
d SNPs 

GATK 
SNPs 

GATK 
Scaffold

GATK + 
GT SNPs 

GATK + 
GT 

GATK + 
GT + 

GATK + 
GT + 
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(Mb) length 
(Kb) 

coverage 
(%) 

genes 
(%) 

(M) (M) (M) s (%) (M) Scaffolds 
(%) 

ExcHet 
SNPs (M) 

ExcHet 
Scaffolds 

(%) 

1 2,654.8  26.6 53.8 15.7 230.7 217.7 175.7 100.0 114.5  96.1 114.1 96.1 

2 1,657.9 16.6  62.4 9.2 113.2  107.8 81.5 96.1 44.4 80.1 44.1 80.1 

3 451.9 4.5  60.1 2.0 40.6  38.4 29.6 99.8 15.2  77.6 15.1 77.6 

4 394.3  3.9  60.8 1.7 35.4  33.4 25.7 99.8 13.0 76.2 12.9 76.2 

5 481.1 4.8 60.6 2.0 43.9 41.4 32.0 99.8 16.6 79.5 16.4 79.4 

6  243.3 2.4 62.8 1.1 21.7 20.5 15.8 99.6 7.6 70.4 7.6 70.4 

7 245.3 2.5 62.6  1.1  22.0 20.7 16.0 99.6 7.8 70.7 7.7 70.6 

8 257.8 2.6  62.5 1.1 23.2  21.9 16.9 99.6 8.5  71.9 8.4 71.9 

9 329.2 3.3 66.4 1.3 27.5 25.8 20.4 91.4 11.4 64.7 11.3 64.7 

10 256.4 2.8 82.9 0.3 7.8  7.6 4.6 71.9 0.5 16.5 0.5 16.5 

11 241.0 2.4 76.0 0.4 13.0 12.6  7.9 93.9 1.5 33.8 1.5 33.8 

12 159.1 1.6 57.6 0.7 13.3 12.6 9.6 91.3 3.9 55.5 3.9 55.5 

13 179.2 1.8 58.9 0.7 15.0 14.2  10.8 91.7 4.6 56.6 4.5 56.6 

14 196.9 2.0 59.6 0.9 16.5 15.7 11.9 92.0 5.3  58.0 5.3 57.9 

15 213.0 2.1 59.8 1.0 17.9 17.0 13.0 92.1 6.0 58.6 6.0 58.5 

16 229.6  2.3 60.1 1.1 19.2 18.2 14.0 92.3 6.6 59.7 6.6 59.7 

17 237.6 2.4 62.8 1.1 17.6  16.8 12.4 95.0 5.3 59.4 5.2 59.3 

18 262.2   2.6  62.2 1.2 20.1 19.2 14.1 97.9 6.2 66.3 6.1 66.3 

19 331.3 3.3 63.9 1.7 25.7 24.4 17.9 97.4 8.5  66.2 8.4 66.1 

20 433.6  6.2 74.6 14.0 25.3 23.6 15.3 91.7 8.3 39.7 8.2 39.5 

Total 9,455.5 4.8 63.5 2.7 749.6 709.5 545.1 94.7 295.7  63.2 293.9 63.2 

 
  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/805994doi: bioRxiv preprint 

https://doi.org/10.1101/805994
http://creativecommons.org/licenses/by/4.0/


  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/805994doi: bioRxiv preprint 

https://doi.org/10.1101/805994
http://creativecommons.org/licenses/by/4.0/


Figure 2: Sub 6 of the WGS data with GATK filtered SNPs (A-D, 15.8M SNPs),               

GATK + GT filtered SNPs (E-H, 7.63M SNPs), and GATK + GT +             

ExcessHet filtered SNPs (I-L, 7.58M SNPs) The first row shows the           

alternative allele frequency versus proportion of heterozygotes for each SNP.          

The second row shows the proportion of heterozygotes versus alternative allele           

ratio of all heterozygotes for each SNP. The third row shows the proportion of              

heterozygotes versus the standardized deviation of allele ratio (McKinney et al.           

2017) for each SNP. The fourth row shows the alternative allele frequency            

versus the standardized deviation of allele ratio (McKinney et al. 2017) for each             

SNP. Each SNP is colorised according to Hardy-Weinberg deviations, going          

from grey for SNPs matching Hardy-Weinberg expectations to bright red for           

SNPs showing strong deviations. 

4.3 Comparison of WGS and reduced representation sequencing data 

Even with a number of conifer draft genomes available (Nystedt et al. 2013, Stevens et al 

2016, Zimin et al 2017, Neale et al 2017), the method of choice for analysing sequence diversity 

in conifers has been different kinds of reduced representation sequencing methods, such as 

genotyping by sequencing (GBS), restriction site associated DNA sequencing (RadSeq) or 

capture probe sequencing (Syvänen 2005, Andrews et al. 2016). These methods all have in 

common that they target a small fraction of the target genome, the only thing that differ is how 

this fraction is selected. In order to compare the behaviour of our spruce WGS data with data 

derived from a reduced representation sequencing technique, we analysed at set of 526 samples 

that had been genotyped using a set of 40,018 sequence capture probes that had been designed to 

target regions within genic regions of the v1.1 P. abies genome assembly (Baison et al. 2018, 

Vidalis et al. 2018). The same filtering steps as described in the preceding section were used for 

the capture probe data set, although the thresholds for individual depth range (6-40), overall 

average depth range (10-30) and significance level for excess of heterozygotes (p-value <1e-10) 

were altered to fit the size of data set (the number of samples and estimated sequencing depth). 

Even though the probes were designed to target unique regions in the assembly (Vidalis et al. 

2018), the GATK  SNP quality filter show a remarkably high level of SNPs with deviations from 

Hardy-Weinberg equilibrium (Figure 3A) with large deviations from balanced allele ratios in 

heterozygous calls (Figure 3B-D).  
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Figure 3: Sequence capture data of 526 individuals with GATK filtered SNPs            

(A-D, 819.8K SNPs), GATK + GT filtered SNPs (E-H, 378.4K SNPs), and            

GATK + GT + ExcessHet filtered SNPs (I-L, 377.4K SNPs) The first row             

shows the alternative allele frequency versus proportion of heterozygotes for          

each SNP. The second row shows the proportion of heterozygotes versus           

alternative allele ratio of all heterozygotes for each SNP. The third row shows             

the proportion of heterozygotes versus the standardized deviation of allele ratio           

(Mackinnely et al ...) for each SNP. The fourth row shows the alternative allele              

frequency versus the standardized deviation of allele ratio (Mackinnely et al ...)            

for each SNP. Each SNP is colorised according to Hardy-Weinberg deviations,           

going from grey for SNPs matching Hardy-Weinberg expectations to bright red           

for SNPs showing strong deviations.  

 

Adding the depth filters provides a huge improvement in SNP quality by both reducing 

the amount of SNPs showing excess of heterozygosity as well as improving the balance in allele 

ratios for heterozygous calls. The sequence capture data set does not show the same level of 

heterozygote deficiency as wee seen in the WGS data (Figure 2 vs Figure 3). However, the 

capture probe data set only contain plus trees sampled from Southern/Central Sweden (Baison et 

al. 2018) and it is therefore not surprising we observe less effects of population structure in this 

data, since these trees cover a much smaller geographic region than the samples used in the WGS 

data. Nevertheless, even after removing SNPs showing an excess of heterozygotes, we see a bias 

towards the reference allele in the sequence capture data that is not visible in the WGS data (bias 

towards allele frequencies <0.5 in Figure 3J). This is most probably due to an artefact of using 

probes, since the probes were designed against the reference alleles of the genome and likely 

work better in regions with low to moderate amounts of variation (Vidalis et al. 2018). 

To evaluate the proportion of collapsed regions within genic regions even further, we 

analysed 1997 haploid sequence captured samples that had previously been mapped to the whole 

genome, called using a diploid ploidy setting and subset to the probe regions ± 100 bp 

(Bernhardsson et al.  2018, Vidalis et al. 2018). These samples, which should only have 

homozygous calls, showed an average heterozygosity level of approximately 3.7% (obviously 

contaminated samples with heterozygosity levels > 10%  removed). 114K SNPs remained after 
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GATK  hard filtering and with no more than 30% missing data, and these showed a median 

heterozygosity level of 0.01 (1st and 3rd quartile of 0.004 and 0.017, respectively). However, 

10% of the SNPs experienced a heterozygosity level > 0.05 (corresponding to 70-98 

heterozygous calls depending on call rate), with a maximum of 0.95 (data not shown).  

4.4 Comparisons of genic, inter-genic and repetitive regions 

In order to analyse how different regions of the spruce genome behave with regards to 

deviations from Hardy-Weinberg equilibrium, we subdivided the GATK  SNP quality + depth and 

genotype quality filtered WGS data set into four sets: inside repeat regions (regions covered by 

known repetitive elements), outside repeat regions (regions outside known repetitive elements), 

genic regions (all regions falling within an annotated gene model) and exonic regions (all regions 

falling within exons of annotated gene models). We then applied the same analysis as described 

earlier to assess the proportion of heterozygous calls versus alternative allele frequency and 

alternative allele ratios to each of the four sets. Interestingly enough, both the ‘within repeat 

regions’ and ‘outside repeat regions’ data sets behave similarly, showing both an excess and a 

deficiency of heterozygous calls (Figure 4A-H). Genic and exonic regions, on the other hand, 

show much fewer SNPs that deviate from Hardy-Weinberg expectations with an overall pattern 

much more similar to what we observed in the sequence capture data set (Figure 4I-P).  
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Figure 4: Subset 6 of the WGS data with GATK + GT filtered SNPs divided               

into four regions. SNPs within repeat regions (A-D, 4.47M SNPs), SNPs outside            

repeat regions (E-H, 3.18M SNPs), SNPs within genic regions (I-L, 32.6k SNPs)            

and SNPs within exonic regions (M-P, 12.5k SNPs). The first row shows the             

alternative allele frequency versus proportion of heterozygotes for each SNP.          

The second row shows the proportion of heterozygotes versus alternative allele           

ratio of all heterozygotes for each SNP. The third row shows the proportion of              

heterozygotes versus the standardized deviation of allele ratio (Mackinnely et al           

...) for each SNP. The fourth row shows the alternative allele frequency versus             

the standardized deviation of allele ratio (Mackinnely et al ...) for each SNP.             

Each SNP is colorised according to Hardy-Weinberg deviations, going from          

grey for SNPs matching Hardy-Weinberg expectations to bright red for SNPs           

showing strong deviations.  

 

In order to understand how the two filtering steps, GATK  best practice SNP quality filters 

(hereafter called GATK ) and GATK  practice SNP quality filters and depth and genotype quality 

(hereafter called GATK+GT), change the SNPs retained across the different genomic subsets, we 

analysed summary statistics from all subsets. The fraction of SNPs retained in subsest after the 

GATK  filter were strongly negatively correlated with fraction of sites covered by repeats in the 

subsets (Figure 5A, correlation -0.92,p-value=1.4e-8). This correlation was reduced by using the 

GATK+GT filtering criteria to the subsets (Figure 5A, correlation between fraction retained SNPs 

and repeat coverage of -0.77, p-value=8.1e-5), but remained negative resulting in fewer SNPs 

being called in genomic subsets containing higher fraction of repetitive sequences. The median 

physical distance between SNPs increased from 16.5 bp for the GATK  filtered subsets (ranging 

from 15.0 to 55.7 bp per subset, with an overall average of 17.3 bp) to 36.3 bp for the GATK+GT 

filtered subsets (ranging from 23.2 to 512.8 bp per subset with an overall average of 32.0 bp) 

(Figure 5C, outliers not shown). Even though this suggest a high level of nucleotide diversity in 

Norway spruce, most alleles are rare and as many as 26% of the SNPs appear as singletons in the 

GATK+GT filtered data set, compared to 21% in the GATK  filtered data set. The GATK+GT filter 

has a large impact on the fraction of scaffolds that retain any SNPs, decreasing from 94.7% for 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/805994doi: bioRxiv preprint 

https://doi.org/10.1101/805994
http://creativecommons.org/licenses/by/4.0/


the GATK  filtered data set to only 63.2% under GATK+GT (Figure 5B). The 

transition-transversion ratio similarly decreased with the GATK+GT filter (Figure 5D).  
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Figure 5: Summary statistics on a per genomic subset basis, over all samples.             

GATK indicate the GATK SNP quality filtered data set; GATK+GT indicate the            

GATK SNP quality + depth and genotype quality filtered data set. A) Correlation             

between proportion of retained SNPs after filter (in comparison to the amount of             

unfiltered raw SNPs) and the average level of repeat coverage. B) Proportion of             

scaffolds with retained SNPs after filter. C) Average physical distance (in bp)            

between retained SNPs. outliers are not shown. D) Transition-transversion ratio.          

The width of the boxes are proportional to the fraction of retained SNPs after              

filter. 

 

At the individual sample level, the GATK+GT filter resulted in an increased proportion of 

heterozygous calls and a reduced proportion of homozygous alternative calls, while the 

proportion of homozygous reference calls stayed the same in comparison to the GATK  filter 

(Figure 6A-B,D). Sample Pab006 , which is the individual from which the P. abies reference 

assembly was derived (Z4006, Nystedt et al. 2013), have SNPs called as an homozygous 

alternative, a genotype which should be impossible in this individual, in 0.07% of the calls using 

the GATK  filtering criteria. This fraction was reduced to 0.02% when using the GATK+GT 

filtering criteria, suggesting that the depth filter do improve the quality of the genotype calls and 

gives an overall higher average depth in comparison to the GATK filtered data set (Figure 6C). 

Although the average sequencing depth of called genotypes increase following GATK+GT 

filtering, the proportion of missing calls also increase, and reaches 30% for samples with the 

lowest estimated sequencing coverage (Figure 6E). The increase in missingness do not affect the 

proportion of singletons per sample, which stays roughly constant under both the GATK  (average 

of 0.8%) as well as for the GATK+GT (average of 0.9%) filtering criteria (Figure 6F). 
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Figure 6: Summary statistics on a per individual basis, over all genomic subsets.             

GATK indicate the GATK SNP quality filtered data set. GATK+GT indicate the            

GATK SNP quality + depth and genotype quality filtered data set. A) Proportion             

of calls that are homozygous reference. B) Proportion of calls that are            

heterozygous. C) Average depth over all calls. Average depth per genomic subset            

was weighted towards its number of SNPs before an average was calculated            

over all genomic subsets. D) Proportion of calls that are homozygous alternative.            

E) Proportion of SNPs with missing data (No calls). F) Proportion of calls that              

are singletons. The width of the boxes are proportional to the fraction of retained              

SNPs after filter. 

4.5 Effects of filtering on estimates of the site frequency spectrum 

To analyse how different summary statistics regarding the site frequency spectrum (SFS) 

is affected by filtering parameters (GATK  and GATK + GT + ExcHet), we analysed Tajima’s 

D (Tajima 1989) and pairwise nucleotide diversity (π, Hartl and Clark 1989) on a per scaffold 

basis for genomic subset 6, for inside repeat regions, outside repeat regions, genic regions and 

exonic regions separately. The GATK  filtered data showed an overall higher estimate of Tajima’s 

D than the GATK + GT + ExcHet  filtered data for all four genomic regions (average of -0.35 

– -0.13 and -0.57 – -0.53 for GATK  and GATK + GT + ExcHet, respectively). These 

estimates were however highly correlated between the filtering parameters in all four genomic 

regions (correlation of 0.77-0.82 with p-value < 2.2e-16 for all four genomic regions, Figure 

7A-D). The GATK  filtered data also show an overall slightly higher nucleotide diversity level (π) 

compared to the GATK + GT + ExcHet filtered data (average of 3.7e-4 – 1.6e-3 and 2.1e-4 – 

1.0e-3 for GATK  and GATK + GT + ExcHet, respectively), with lower diversity level for the 

same amount of analysed variants in the fully filtered data set (Figure 7E-H). Smaller differences 

regarding the SFS between genomic regions could be found in the fully filtered data in 

comparison to the GATK  filtered data, indicating that we managed to remove false SNPs due to 

collapsed genomic regions in the assembly without altering the SFS by filter for minor allele 

frequencies. 
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Figure 7: Analyses of the site frequency spectrum (SFS) for genomic subset 6,             

divided into within repeat regions (row 1), Outside repeat regions (row 2), genic             

regions (row 3) and exonic regions (row 4). A-D) Correlation between Tajima’s            

D estimated over scaffolds for the GATK and GATK + GT+ExcHet filtered            

data sets. Horizontal dashed line indicate average Tajima’s D för the GATK            

filtered data. Vertical dashed line indicate average Tajima’s D för the GATK +             

GT + ExcHet filtered data. Diagonal dotted line shows the 1:1 correlation            

between the data sets. E-H) Estimates of pairwise nucleotide diversity (π) per            

scaffold versus number of analysed variants for GATK filtered data (light grey            

dots and dotted line) and GATK + GT + ExcHet filtered data (dark grey dots               

and dashed line). Lines shows the linear model (lm) between diversity and            

number of analysed variants for each of the data sets.  
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5. Conclusions and recommendations 

Having high-quality variant calls is essential for downstream analyses such as population 

genomic studies, inferences of demographic history or complex trait dissection using, for 

instance, genome wide association studies (Nielsen et al 2011). Variant calling in conifers pose a 

number of challenges arising from the complex highly repetitive nature of conifer genomes. 

Even in the most complete reference genomes of conifers, large regions of the genome  are still 

lacking and this cause problems for mapping of short (<250bp) sequencing reads, since reads 

from such regions will not match any region in the reference genome. Such reads may fail to 

map altogether and will be eliminated from further steps in the variant calling pipeline. However, 

if they are derived from repetitive regions, highly similar, genomic regions can be represented in 

the assembly allowing read mapping. To a lesser degree these issues are true also for sequencing 

reads from repetitive regions that are represented in the assembly as these reads may match 

equally well to multiple regions in the reference genome. The end result in both cases is thus that 

some regions are being covered by sequencing reads originating from different genomic regions 

which may ultimately result in the calling of false genetic variants as nucleotide substitutions that 

differentiate the paralogous regions are called as true SNPs (Gayral et al., 2013). Such variants 

often can have high quality scores, making it hard to filter them out using even the best practice 

procedures for variant filtering (Nielsen et al 2011).  

These issues are apparent in our data even when using what is considered rather stringent 

criteria for variant filtering (Figure 2). To alleviate these issues we have implemented further 

filtering on sequencing depth and on excessive heterozygosity. Filtering on too high depth is 

expected to target primarily false variants that are derived from possible repetitive regions where 

as filtering on too low depth targets variants where the low sequencing depth make calling of 

both alleles in heterozygous individuals unlikely. Filtering on low depth should thus target called 

variants that may have deflated levels of heterozygosity where as filtering on high depth 

primarily should target variants with excessive heterozygosity. However, even very stringent 

filtering on high depth does not completely eliminate problems the excess heterozygosity and we 

therefore have included a final filtering step aimed specifically at excess heterozygosity (Figure 

2).  
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To a certain extent, having access to better and more contiguous reference genomes will 

alleviate some of these issues but it will likely not eliminate them completely. So even as conifer 

reference genomes improve due to, for instance, the use of long-read sequencing technologies 

re-sequencing and variant calling from short read data will still be difficult and fraught with both 

false positive and false negative SNPs. One possible solution to these issues is to base 

re-sequencing on haploid tissue, e.g from megagametophytes. Using haploid tissue has the 

benefit that heterozygous genotypes should be absent and any heterozygous genotype call 

observed is thus likely to arise to to either sequencing errors or from mapping of paralogous 

reads to a single region in the reference genome.  Utilizing haploid tissues to rule out issues 

arising from paralogy has already been used in conifers to improve, for instance, transcriptome 

assembly (Ojeda et al. 2018). Another possible way forward would be to utilize longer reads for 

re-sequencing, thereby reducing the probability that a single read may map to multiple regions in 

the reference genome. Although the cost and throughput of current long-read technologies make 

genome re-sequencing of conifers using exclusively long reads infeasible, declining costs and 

technology development could open up possibilities for re-sequencing using long reads in the 

future.  
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