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Abstract 

In large population-based cohort studies, magnetic resonance imaging (MRI) is often used 

to study the structure and function of the brain. Advanced MRI techniques such as diffusion-

tensor (dMRI) or resting-state functional MRI (rs-fMRI) can be used to study connections 

between distinct brain regions. However, brain connectivity measures are likely affected by 

biases introduced during MRI data acquisition and/or processing.  

We identified three sources that may lead to bias, i.e. signal-to-noise ratio (SNR), head 

motion, and spatial mismatch between MRI-based anatomy and a brain atlas. After 

quantifying these sources, we determined the associations between the image quality metrics 

and brain connectivity measures derived from dMRI and rs-fMRI in 5,110 participants of the 

population-based Maastricht Study.  

More head motion and low SNR were negatively associated with structural and functional 

brain connectivity, respectively, and these metrics substantially affected (>10%) associations 

of brain connectivity with age, sex and body mass index (BMI), whereas associations with 

diabetes status, educational level, history of cardiovascular disease, and white matter 

hyperintensities were less or not affected. In addition, age, sex, and BMI were associated with 

head motion, SNR, and atlas mismatch (all p < 0.001). Based on our results, we strongly 

advise that, in large population-based cohort neuroimaging studies, statistical analyses on 

structural and functional brain connectivity should adjust for potentially confounding effects 

of image quality. 
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Highlights 

 Low MR image quality compromises brain connectivity measures 

 MR image quality is negatively associated with age, body mass index, and male sex 

 Statistical analyses in large neuroimaging studies should account for image quality 
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Introduction 

Neuroimaging in population studies 

Population-based cohort studies are extremely relevant sources of fundamental research 

data, contribute to a better understanding of health effects of life styles and pathophysiology 

of diseases, and reveal key information on risk factors (Szklo, 1998). If structure and function 

of the brain are of interest, neuroimaging using magnetic resonance imaging (MRI) is often 

the preferred tool to incorporate into the study design. Neuroimaging can provide valuable 

structural and functional information on the brain, but the large amount of individuals in 

combination with the typical size of MRI data poses certain challenges in terms of data 

acquisition, storage, processing, and analysis (Smith and Nichols, 2018). Although there are 

several on-going large-scale neuroimaging population-based cohort studies, e.g. the 

Generation R Study (White et al., 2013), Rotterdam Scan Study (Ikram et al., 2015), UK 

Biobank (Miller et al., 2016), Human Connectome Project (Van Essen et al., 2013; Van Essen 

et al., 2012), The Rhineland Study (Breteler et al., 2014), and The Maastricht Study (Schram 

et al., 2014), each using different scanner hardware, study-specific scan protocols, and 

processing tools, there is no consensus on data acquisition and processing. In order to 

recognize potential biases introduced during the data acquisition and processing, it is 

important to be transparent about the quality of the MRI data itself and the way these data are 

processed.  

 

Brain connectivity 

In the last two decades, advanced MRI techniques have been developed that allow 

mapping of the connectivity of the brain’s network. Two main techniques to do so are 

typically diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-fMRI). dMRI 

estimates the axonal orientations which are consecutively used to calculate white matter fiber 

tracts between brain regions, i.e. structural connectivity, using tractography algorithms 

(Basser et al., 1994; Jones et al., 1999). Rs-fMRI data are used to calculate functional 

connectivity as the correlation between temporal changes in blood-oxygen-level-dependent 

(BOLD) signal of spatially distinct brain regions (Biswal et al., 1995; Friston et al., 1993).  

Recent research has indicated that not only in neurological and psychiatric disorders (van 

den Heuvel and Hulshoff Pol, 2010), but also in systemic conditions such as type-2 diabetes 

mellitus (T2DM), structural (Hoogenboom et al., 2014; Reijmer et al., 2013; van Bussel et al., 

2016a) as well as functional brain connectivity (Supekar et al., 2008; van Bussel et al., 2016b; 

Wang et al., 2006; Zhang et al., 2010) are altered compared to healthy controls.  

 

Objectives 

Both dMRI and rs-fMRI rely on echo planar imaging (EPI) pulse sequences, which are 

known to exhibit various forms of image degradation or artefacts to a greater extent than 

structural MR imaging (Jezzard and Balaban, 1995). Therefore, the determination of brain 

connectivity outcome measures from these images might be affected, for instance due to 

signal-to-noise ratio (SNR) limitations (DeDora et al., 2016; Dikaios et al., 2014), head 

motion (Baum et al., 2018; Satterthwaite et al., 2012; Van Dijk et al., 2012), and magnetic 

field inhomogeneities leading to geometric distortions, which in turn can result in 
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misalignment (spatial mismatch) between dMRI and rs-fMRI data and brain atlases 

(Despotovic et al., 2015; Wang and Yushkevich, 2012).  

To quantify these potential sources of bias in dMRI and rs-fMRI data of The Maastricht 

Study (Schram et al., 2014), we implemented a quality assessment procedure within the 

structural and functional brain connectivity processing pipeline. The aim of the current study 

was to investigate whether structural and functional connectivity outcome measures are 

affected by these image quality metrics and, if they are, analyse how to account for this bias. 

We therefore posed the following research questions: 1) Are the image quality metrics noise, 

head motion and atlas mismatch related to measures of structural and functional brain 

connectivity?; 2) Does image quality affect associations between brain connectivity and 

typical demographic variables of interest, i.e. age, sex, body mass index, diabetes status, 

educational level, history of cardiovascular disease, and white matter hyperintensities?; and 3) 

Which of these demographic variables are associated with low image quality?  
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Methods 

Study population 

We used data from the Maastricht Study, an observational population-based cohort study. 

The rationale and methodology have previously been described (28). In brief, the study 

focuses on the etiology, pathophysiology, complications, and comorbidities of type 2 diabetes 

and is characterized by an extensive phenotyping approach. Eligible for participation were all 

individuals aged between 40 and 75 years and living in the southern part of the Netherlands. 

Participants were recruited through mass media campaigns, the municipal registries, and the 

regional Diabetes Patient Registry via mailings. Recruitment was stratified according to 

known type 2 diabetes status, with an oversampling of individuals with type 2 diabetes for 

reasons of efficiency. Structural, diffusion and resting-state functional MRI measurements 

were implemented from December 2013 onward until February 2017 and were completely 

available in 5,261 of 5,547 participants. Processing of the dMRI or rsfMRI failed in 71 

participants and in the remaining 5,190 participants, complete data on covariates were 

available in 5,110 participants (a flow-chart is given in Supplemental Figure S1 in the 

appendix). The study has been approved by the institutional medical ethics committee 

(NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (permit 

131088-105234-PG). All participants gave written informed consent. 

 

MRI data acquisition and retrieval 

For each participant, MRI data were acquired on a 3T clinical magnetic resonance scanner 

(MAGNETOM Prisma
fit

, Siemens Healthineers GmbH, Munich, Germany) located at a 

dedicated scanning facility (Scannexus, Maastricht, The Netherlands) using a head/neck coil 

with 64 elements for parallel imaging. The MRI protocol included a three-dimensional (3D) 

T1-weighted (T1w) magnetization prepared rapid acquisition gradient echo (MPRAGE) 

sequence (repetition time/inversion time/echo time (TR/TI/TE) 2,300/900/2.98ms, 176 slices, 

256 × 240 matrix size, 1.0 mm cubic reconstructed voxel size); a fluid-attenuated inversion 

recovery (FLAIR) sequence (TR/TI/TE 5,000/1,800/394 ms, 176 slices, 512 × 512 matrix 

size, 0.49 × 0.49 × 1.0 mm reconstructed voxel size); a resting-state functional MRI (rs-fMRI) 

using a task-free T2*-weighted blood oxygen level-dependent (BOLD) sequence (TR/TE 

2,000/29 ms, flip angle 90°, 32 slices (interleaved acquisition order), 104 × 104 matrix size,  

2.0 × 2.0 × 4.0 mm reconstructed voxel size, 195 dynamic volumes); and a diffusion-tensor 

MRI (dMRI) using a diffusion sensitized echo-planar imaging (EPI) sequence (TR/TE 

6,100/57 ms, 65 slices, 100 × 100 matrix size, 64 diffusion sensitizing gradient directions 

(b=1,200 s/mm2), 2.0 mm cubic reconstructed voxel size) with additionally three minimally-

diffusion-weighted images (b=0 s/mm2).  

Contraindications for MRI assessments were the presence of a cardiac pacemaker or 

implantable cardioverter defibrillator, neurostimulator, nondetachable insulin pump, metallic 

vascular clips or stents in the head, cochlear implant, metal-containing intrauterine device, 

metal splinters or shrapnel, dentures with magnetic clip, an inside bracket, pregnancy, 

epilepsy, and claustrophobia. 

 

Segmentation of brain tissue 
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T1w and FLAIR data were analysed by use of an ISO13485:2012–certified, automated 

method (which included visual inspection)(de Boer et al., 2009; Vrooman et al., 2007). T1w 

data were segmented into gray matter, white matter, white matter hyperintesities (WMH), and 

CSF volumes (1 voxel = 1.00 mm3 = 0.001 mL) (de Boer et al., 2009). Intracranial volume 

was calculated as the sum of gray matter, white matter (including WMH volume), and CSF 

volumes. 

 

dMRI and rs-fMRI data pre-processing 

dMRI as well as rs-fMRI data were first anonymized and converted from DICOM to NIfTI 

format using Chris Rorden’s dcm2nii tool (version 2MAY2016 64bit BSD License) for 

further processing. 

Pre-processing of the dMRI data was mainly performed with ExploreDTI v4.8.6 

(PROVIDI lab, Image Sciences Institute, Utrecht, The Netherlands) (Leemans et al., 2009), 

and included eddy current and head motion correction (Farrell et al., 2007; Leemans and 

Jones, 2009), followed by constrained spherical deconvolution (CSD)-based deterministic 

whole-brain tractography (Tax et al., 2014) to obtain white matter fiber tracts. Next, the 

automated anatomical labelling (AAL) atlas (Rolls et al., 2015), consisting of 94 (sub)cortical 

brain regions in the cerebrum, was linearly coregistered to the dMRI data using FLIRT 

(Jenkinson and Smith, 2001) in FMRIB Software Library (FSL) 5.0.10 (FMRIB Analysis 

Group, University of Oxford, Oxford, U.K.). Lastly, for each pair of brain regions with two or 

more tracts running between them, the connection strength was determined as tract volume 

(number of voxels visited by a tract multiplied by the voxel size) relative to ICV, resulting in 

a symmetric 94×94 connectivity matrix, i.e. the participant’s structural connectome (SC), 

where each row and column represent a brain region and each element represents the relative 

tract volume between two regions. 

Pre-processing of the rs-fMRI data was performed using a combination of tools in FSL 

5.0.10 and Statistical Parametric Mapping (SPM) 12 (The Wellcome Trust College London, 

London, U.K.), and included magnetization stabilization followed by correction for field 

inhomogeneities (Zhang et al., 2001), slice-timing, and head motion (Soares et al., 2016).  

Next, rs-fMRI data were spatially and temporally filtered to increase signal-to-noise ratio 

(SNR) and remove possible respiratory and signal drift effects to focus on the spontaneous 

low-frequency fluctuations (Biswal et al., 1995). Lastly, the AAL atlas and individual-specific 

T1w including WM and CSF masks were linearly coregistered to the rs-fMRI data using 

FSL’s FLIRT (Jenkinson and Smith, 2001), and average time-series for each brain region as 

well as for the CSF and WM were calculated from the per-voxel time-series in each region. 

For each pair of brain regions, the connection strength was defined as the Pearson’s 

correlation coefficient calculated using linear regression of the averaged time-series of each 

region, corrected for motion (three translational and three rotational parameters) as well as the 

CSF and WM signal, resulting in the participant’s functional connectome. Negative 

correlations, which are considered not representing any meaningful connections, were set to 

zero (Smith et al., 2011). 

In both the structural as well as the functional connectome, self-self connections, i.e. the 

diagonal elements, were set to zero. A complete overview of the structural and functional 
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connectivity processing pipeline, including a description of the hardware and software, is 

given in the appendix (S2), and a schematic overview is shown in Figure 1. 

 

 

 
Figure 1 Schematic overview of the complete processing pipelines of the dMRI (top) and 

rs-fMRI (bottom) data to analyse structural and functional network connectivity, respectively. 

 

 

Brain network connectivity analysis using graph theory 

From here on, the approach to calculate the structural and functional connectivity using 

graph theory was similar.  First, one structural and one functional group-averaged connectome 

were calculated from all individual structural (n = 5,226) and functional (n = 5,231) 

connectomes, respectively. For the structural group-averaged connectome, the individual 

connectomes were used in binarized form (relative tract volume > 0), whereas for the 

functional group-averaged connectome the individual connectomes were used as such. To 

minimize the effect of spurious connections, both group-averaged connectomes were 

proportionally thresholded to a default sparsity of 0.80, meaning that only the connections that 

were present in at least 80% of the participants were taken into account in the individual 

structural and functional connectivity analyses. A schematic representation of the structural 

and functional group-averaged connectomes at sparsity 0.80 is shown in Figure 2.  
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Figure 2 Structural (left) and functional (right) group-averaged connectomes at a sparsity 

of 0.80 showing the connections (# = 874) between brain regions that were subsequently used 

in the structural and functional network connectivity analyses, respectively. (Red: 

interhemispheric connections, green: intrahemispheric connections). Brain region labels and 

colours are according to the automated anatomical labeling (AAL2) atlas which is shown 

underneath. 

 

 

Before thresholding the individual connectomes with the group-averaged connectome 

(Vasa et al., 2017), the participant’s structural and functional overall connectivity were 

calculated as the mean from all weights in the SC and FC, respectively (van den Heuvel et al., 

2017). Subsequently, each participant’s connectome was masked by the group-averaged 

connectome, resulting in a weighted, undirected network with a sparsity close to the sparsity 

of the group-averaged connectome.  

From each masked individual connectome, the following theoretical network connectivity 

measures were calculated using graph theory: average node degree (ν), a basic global network 

measure that can be interpreted as the “wiring cost” of the network (Rubinov and Sporns, 

2010); normalized clustering coefficient (γ), a global measure of network segregation (Onnela 

et al., 2005; Rubinov and Sporns, 2010); and normalized global efficiency (εglobal), a global 

measure of network integration (Latora and Marchiori, 2001; Maslov and Sneppen, 2002). 

The clustering coefficient and global efficiency were normalized to values calculated from 

100 randomly generated networks of the same size, sparsity and binary degree as the 

individual network (Maslov and Sneppen, 2002; Rubinov and Sporns, 2010). All connectivity 
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analyses were performed using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) 

in MATLAB Release 2016a (The Mathworks Inc., Natick, Massachusetts, U.S.).   

To assess robustness of the connectivity measures over sparsity, the structural and 

functional group-averaged connectomes were additionally thresholded to sparsities ranging 

from 0.60 to 0.90 (step size 0.05) and from 0.10 to 0.90 (step size 0.10), respectively, and the 

connectivity measures were calculated at each of these sparsity values. 

 

Quality assessment 

Uncertainty in brain connectivity measures was assessed using the following image quality 

metrics, each on a ‘lower is better’ scale: 1) inverse signal-to-noise ratio (iSNR) of the 

unprocessed images, 2) amount of head motion, and 3) spatial mismatch between the pre-

processed dMRI or rs-fMRI data and the AAL brain atlas: 

    

1) Inverse signal-to-noise ratio 

The iSNR [-] was calculated according to equation 4.1 (Association, 2008): 

 

 iSNR = −
mean(𝐼1,𝐼2)

std(𝐼1−𝐼2)/sqrt(2)
     (Eq. 4.1) 

 

where I1 and I2 were two volumes that were acquired immediately after each other at b=0 

s/mm
2
 at the end of the dMRI scan. For the rs-fMRI scan, I1 and I2 were the first two volumes 

that were acquired after removal of the first 10 seconds to account for magnetic stabilization, 

i.e. the 5
th
 and 6

th
 volume.  

 

2) Head motion 

The amount of head motion was expressed as mean volume-to-volume translation, which was 

calculated from the translational parameters from the rigid body correction for head motion 

according to equation 4.2 (Van Dijk et al., 2012). In short, the translational head motion [mm] 

of a volume was computed as the root-mean-square of displacements in the sagittal, coronal, 

and transverse planes: 

 

 Translation = ∑
√(𝑋𝑖−𝑋𝑖−1)

2
+(𝑌𝑖−𝑌𝑖−1)

2
+(𝑍𝑖−𝑍𝑖−1)

2

𝑁−1

𝑁
𝑖=2    (Eq. 4.2a) 

  

where N is the number of volumes in the dMRI or rs-fMRI data; and X, Y, and Z are the 

displacements of the i
th

 volume along the left-right, anterior-posterior, and longitudinal axis, 

respectively. 

 

3) Mismatch between brain atlas and pre-processed data 

The spatial mismatch between the pre-processed dMRI or rs-fMRI data and the AAL brain 

atlas was quantified using 1- Dice’s similarity coefficient (Dice, 1945) according to equation 

4.3: 

 

 Mismatchatlas = 1 −
2|𝐴∩𝐵|

|𝐴|+|𝐵|
       (Eq. 4.3) 
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where A is the number of voxels in the brain mask of the dMRI or rs-fMRI data and B is the 

number of voxels in the brain mask of the AAL template. Mismatch varies between 0 and 1 

representing no and complete mismatch, respectively. 

 

Demographic and clinical variables 

Demographic and clinical data were collected as previously described (Schram et al., 

2014). Variables of interest included age, sex, body mass index (BMI), educational level 

(‘Low’, ‘Middle’, or ‘High’) and history of cardiovascular disease (‘No’, or ‘Yes’). Based on 

their glucose metabolism status as determined according to the World Health Organization’s 

criteria by a 75-grams two-hour glucose tolerance test (OGTT) after an overnight fast (World 

Health Organization & International Diabetes Federation, 2006), participants were 

categorized into either ‘No diabetes’ (normal glucose metabolism), ‘Prediabetes’, ‘Type 2 

diabetes’, or ‘Other type of diabetes’ (Schram et al., 2014).  

 

Statistics 

Structural and functional brain connectivity measures were reported using the appropriate 

descriptive statistics, e.g. means and standard deviation in case of normally distributed data, 

median and 25
th
–75

th
 percentiles for non-normally distributed data, or percentages for 

categorical data.  

Multiple linear regression was used to assess the relationship between quality metrics and 

structural and functional connectivity measures.  

To study the effect of image quality on the association between brain connectivity and 

demographic and clinical variables, two linear regression models were used. In model 1, the 

connectivity measure was the independent variable and age, sex, BMI, diabetes status, 

educational level, history of CVD, and WMH volume were the dependent variables. In model 

2, we additionally adjusted for the image quality metrics. Skewed variables (WMH volume) 

were log10-transformed. Significant regression coefficients that changed more than 10%  

were considered as relevant changes. 

To ascertain which demographic and clinical variables age, sex, BMI, diabetes status, 

educational level, history of CVD, and WMH volume were associated with the quality 

metrics, linear regression was used. Skewed variables (WMH volume) were log10-

transformed. 

All statistical analyses used a level of significance of 0.05, and were performed in IBM 

SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA).  
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Results 

Demographic and clinical characteristics, brain connectivity estimates at a sparsity of 0.80, 

and dMRI and rs-fMRI image quality metrics in the participants that were included in this 

study (n = 5,110) are listed in Table 1. 

 

Table 1 Characteristics of participants with successfully processed dMRI and rs-fMRI data 

(n=5,110).  

Characteristic  

Demographic  

Age [mean (SD), years] 59.4 (8.7) 
Sex [%] 

Male 

Female 

 

50.6 

49.4 
Educational level [%]

*
 

Low 

Medium 

High 

 

32.0 

28.4 

39.7 

Clinical  

BMI [mean (SD), kg/m
2
] 26.6 (4.2) 

Diabetes status [%] 
No diabetes 

Prediabetes 

Type 2 diabetes 
Other type of diabetes 

 
64.1 

14.7 

20.6 
0.6 

History of CVD [%]
**

 

No 

Yes 

 

87.4 

12.6 
Relative WMH volume  

[median (25
th

-75
th
 percentile), % of ICV] 

0.016 (0.005-0.050) 

Brain connectivity  
Structural connectivity [mean (SD), -] 

Overall  

Average node degree, ν 
Clustering coefficient, γ 

Global efficiency, εglobal 

 

5.3*10
-3

 (0.6*10
-3

) 

17.8 (0.4) 
2.31 (0.08) 

0.84 (0.03) 

Functional connectivity [mean (SD), -] 

Overall 
Average node degree, ν 

Clustering coefficient, γ 

Global efficiency, εglobal 

 

0.32 (0.03) 
16.7 (0.7) 

3.25 (0.23) 

0.75 (0.02) 

Image quality  

dMRI 

Signal-to-noise ratio [mean (SD), -] 

Head motion [mean (SD), mm] 
Atlas mismatch [mean (SD), -] 

 

22 (6.5) 

0.64 (0.16) 
0.087 (0.0092) 

Rs-fMRI 

Signal-to-noise ratio [mean (SD), -] 
Head motion [mean (SD), mm] 

Atlas mismatch [mean (SD), -] 

 

39 (11) 
0.13 (0.088) 

0.089 (0.0086) 

Abbreviations: SD: standard deviation; BMI: body mass index; CVD: cardiovascular disease; 

WMH: white matter hyperintensities; ICV: intracranial volume; dMRI: diffusion-tensor 

magnetic resonance imaging; Rs-fMRI: resting-state functional magnetic resonance imaging. 
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Missing data:
 *
 Educational level (N=62); 

** 
History of CVD (N=57). 

 

Figure 3 shows histograms of dMRI and rs-fMRI image quality metrics SNR, head motion 

and atlas mismatch.  

 

 

 
Figure 3 Histograms of dMRI (top) and rs-fMRI (bottom) image quality metrics signal-to-

noise ratio (SNR) (left), amount of head motion (middle), and atlas mismatch (right). 

 

 

In Figure 4, mean and 5
th

–95
th

 percentiles of structural and functional connectivity 

measures ν, γ and εglobal are plotted over the range of sparsities. Mean (standard deviation 

(SD)) of overall structural and functional connectivity (note that these are sparsity-

independent)  were 5.3*10
-3

 (0.6*10
-3

)  and 0.32 (0.03), respectively. 

 

dMRI

rs-fMRI

A

D

B

E

C

F
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Figure 4 Mean and 5

th
–95

th
 percentiles of structural (top) and functional (bottom) 

connectivity measures ν (left), γ (middle), and εglobal (right) over the range of sparsities. 

 

 

Associations of connectivity measures with dMRI and rs-fMRI quality metrics 

The diffusion MR image quality metrics iSNR, head motion and atlas mismatch were all 

related to structural connectivity measures overall SC, ν, and γ, with the strongest associations 

for head motion with standardized regression coefficients (β) ranging from –0.36 to 0.40 (all 

p<0.001), while atlas mismatch was most strongly related to εglobal (β = –0.15, p<0.001), as 

shown in Figure 5. A full overview of the associations between the diffusion and functional 

MR image quality metrics and the structural and functional connectivity measures, 

respectively, as well as the R
2 

for each model, is reported in the appendix (Supplemental 

Table 3). 

 

5th–95th percentilesmean

Structural Connectivity

Functional Connectivity
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Figure 5 Density scatterplots of structural connectivity measures at sparsity 0.80 versus 

the quality metrics with the strongest association. 

 

 

From the functional MR image quality metrics, iSNR was most strongly related to each of 

the functional connectivity measures overall FC, ν, and γ, with standardized regression 

coefficients (β) ranging from –0.22 to 0.15 (all p<0.001), except to εglobal, for which head 

motion had the strongest association (β=0.16, p<0.001), as shown in Figure 6.  

 

β = -0.343

β = 0.403 β = -0.149

β = -0.356
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Figure 6 Density scatterplots of functional connectivity measures at sparsity 0.80 versus 

the quality metrics with the strongest association. Note: for intuitiveness, SNR (expressed as –

iSNR) is plotted instead of  iSNR. 

 

 

The variability in the SC measures was consistently better explained by the quality metrics 

than variability in the FC measures, with R
2
-values ranging from 0.030 to 0.173 (3.0% to 

17.3%) for the SC measures (see Supplemental Table 4A) and 0.006 to 0.032 (0.6% to 

3.2%) for the FC measures (see Supplemental Table 4B).  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2019. ; https://doi.org/10.1101/806075doi: bioRxiv preprint 

https://doi.org/10.1101/806075
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Effect of dMRI and rs-fMRI quality on connectivity associations  

Standardized regression coefficients of the regression model between the structural or 

functional connectivity measures and the demographic/clinical variables, and the same model 

with additional adjustment for the image quality metrics are shown in Table 2A and 2B.  

Without adjustment for image quality, in particular higher age and male sex were 

associated with lower overall structural connectivity (β=–0.180, p<0.001; and β=0.284, 

p<0.001, respectively), lower average node degree (β=–0.222, p<0.001; and β=0.058, 

p<0.001, respectively), and higher clustering coefficient (β=0.179, p<0.001; and β=–0.207, 

p<0.001, respectively). With adjustment for diffusion MR image quality, the aforementioned 

associations with age and sex decreased by more than 26%. Without adjustment for image 

quality, higher age, but not sex, was associated with higher global efficiency (β=0.171, 

p<0.001; and β=0.018, p=0.204, respectively), while male sex was found to be associated 

with lower global efficiency (β=–0.076, p<0.001) after adjustment for image quality. Of note, 

significant associations were also observed for different combinations of demographic/clinical 

variables and the structural connectivity measures, with standardized regression coefficients 

generally <0.1 with relevant changes (>10%) after adjustment for image quality (See Table 

2A). 

Without adjustment for image quality, higher age and male sex were associated with lower 

functional average node degree (β=–0.129, p<0.001) and higher functional global efficiency 

(β=–0.113, p<0.001), respectively, and these associations did not change after adjustment for 

functional MR image quality. No other associations with |β|>0.1 were observed between the 

demographic/clinical variables and the functional connectivity measures (see Table 2B). 
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Table 2A Standardized regression coefficients of the crude regression model between the structural connectivity measures at sparsity 0.80 and 

the demographic/clinical variables (Model 1), and the same model with additional adjustment for the diffusion MR image quality metrics (Model 

2). For significant regression coefficients, also the percentage change is calculated.  

Independent 

variables 

Overall SC ν γ εglobal 

Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] 

Age –0.179
***

 –0.074
***

 –59 –0.222
***

 –0.110
***

 –50 0.179
***

 0.059
***

 –67 0.171
***

 0.180
***

 +5 

Sex 0.284
***

 0.213
***

 –25 0.058
***

 –0.081
***

 –240 –0.207
***

 –0.096
***

 –54 –0.018 –0.076
***

 +322 

Educational level –0.044
**

 –0.045
***

 +2 0.025 0.024 - –0.007 –0.007 - –0.010 –0.011 - 

BMI 0.096
***

 0.109
***

 +14 0.009 0.035
*
 +289 –0.037

*
 –0.054

***
 +46 –0.013 0.002 - 

Diabetes status –0.025 0.003 - –0.103
***

 –0.082
***

 –20 0.074
***

 0.046
**

 –38 0.015 0.010 - 

History of CVD –0.015 –0.010 - –0.034
*
 –0.027

*
 –21 0.021 0.014 - –0.010 –0.008 - 

WMH volume
§
 0.041

**
 0.048

***
 +17 –0.053

***
 –0.036

**
 –32 0.093

***
 0.077

***
 –17 –0.013 –0.008 - 

iSNR - –0.120
***

 - - 0.008 - - 0.006 - - 0.047
**

 - 

Head motion - –0.249
***

 - - –0.276
***

 - - 0.310
***

 - - –0.008 - 

Atlas mismatch - 0.021 - - –0.206
***

 - - 0.081
***

 - - –0.194
***

 - 

R
2 0.131 0.204 +56 0.097 0.197 +103 0.121 0.199 +64 0.031 0.065 +110 

Models: 

1) Connectivity measure  = β0 + β1*Age + β2*Sex + β3*Educational level + β4*BMI + β5*Diabetes status + β6*History of CVD + β7*WMH 

volume 

2) Connectivity measure  = Model 1 + β8*iSNR + β9*Head motion + β10*Atlas mismatch 

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity volume; iSNR: inverse signal-to-noise 

ratio. 
§

 Log
10

-transformed.
 
Significant at 

*
p < 0.05; 

**
p < 0.01; 

***
p < 0.001. Significant regression coefficients that changed more than 10% are 

expressed in bold. 
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Table 2B Standardized regression coefficients of the crude regression model between the functional connectivity measures at sparsity 0.80 and 

the demographic/clinical variables (Model 1), and the same model with additional adjustment for the functional MR image quality metrics 

(Model 2). For significant regression coefficients, also the percentage change is calculated. 

Independent 

variables 

Overall FC ν γ εglobal 

Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] 

Age –0.003 0.015 - –0.129
***

 –0.119
***

 –8 0.050
**

 0.042
**

 –16 0.063
***

 0.050
**

 –21 

Sex –0.054
**

 –0.062
***

 +15 0.006 0.003 - –0.006 –0.012 - –0.113
***

 –0.095
***

 –16 

Educational level 0.017 0.014 - 0.039
**

 0.036
*
 –8 –0.045

**
 –0.042

**
 –7 0.013 0.015 - 

BMI –0.029 –0.008 - –0.030
*
 –0.005 –83 0.001 –0.017 - 0.094

***
 0.049

**
 –48 

Diabetes status –0.037
*
 –0.030 - –0.065

***
 –0.060

***
 –8 0.060

***
 0.054

***
 –10 0.013 0.008 - 

History of CVD –0.016 –0.017 - –0.040
**

 –0.041
**

 +3 0.009 0.010 - 0.010 0.011 - 

WMH volume
§
 –0.030

*
 –0.027 - –0.058

***
 –0.057

***
 –2 0.021 0.018 - 0.000 0.002 - 

iSNR - –0.082
***

 - - –0.052
**

 - - 0.075
***

 - - 0.004 - 

Head motion - 0.048
**

 - - –0.010 - - –0.035
*
 - - 0.127

***
 - 

Atlas mismatch - 0.027 - - 0.004 - - 0.016 - - –0.029 - 

R
2 0.007 0.012 +71 0.046 0.049 +7 0.013 0.017 +31 0.033 0.048 +45 

Models: 

1) Connectivity measure  = β0 + β1*Age + β2*Sex + β3*Educational level + β4*BMI + β5*Diabetes status + β6*History of CVD + β7*WMH 

volume 

2) Connectivity measure  = Model 1 + β8*iSNR + β9*Head motion + β10*Atlas mismatch 

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity volume; iSNR: inverse signal-to-noise 

ratio. 
§

 Log
10

-transformed.
 
Significant at 

*
p < 0.05; 

**
p < 0.01; 

***
p < 0.001. Significant regression coefficients that changed more than 10% are 

expressed in bold. 
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Associations between quality and demographic variables 

Standardized regression coefficients (β) between the demographic/clinical variables and 

each of the diffusion and functional MR image quality metrics, including the R
2
-value for the 

complete model, are listed in Table 3A and 3B. From the three diffusion MR image quality 

metrics (Table 3A), variance in head motion could be best explained by the 

demographic/clinical variables (R
2
=0.297) with age (β=0.368,p<0.001) and sex (β=–0.279, 

p<0.001), indicating more head motion at higher age and in men compared to women, as 

strongest covariates. Mismatch between diffusion MRI and brain atlas had the strongest 

association with sex (β=–0.303, p<0.001), indicating less mismatch in women compared to 

men. Conversely, the amount of variance in iSNR of the diffusion MRI that could be 

explained by the demographic/clinical variables was negligible (R
2
=0.033). From the three 

functional MR image quality metrics (Table 3B), variance in iSNR could be best explained 

by the demographic/clinical variables (R
2
=0.270) with BMI (β=0.408, p<0.001) as strongest 

covariate. Variance in head motion and atlas mismatch of the functional MRI were best 

explained by BMI (β=0.321, p<0.001) and sex (β=0.317, p<0.001), respectively. Scatterplots 

and histograms visualizing the strongest associations between quality metric and demographic 

variables are shown in Figure 7. 

 

Table 3A Standardized regression coefficients obtained from a linear regression model 

with forward selection between demographic/clinical variables and each of the quality metrics 

for the diffusion MRI. 

Independent 

variables 

iSNR Head motion Atlas mismatch 

β p-value β p-value β p-value 

Age 0.117 <0.001 0.368 <0.001 0.056 <0.001 

Sex –0.071 <0.001 –0.279 <0.001 –0.303 <0.001 

Educational level –0.017 0.242 0.001 0.916 –0.009 0.519 

BMI 0.067 <0.001 0.028 0.031 0.093 <0.001 

Diabetes status 0.032 0.042 0.095 <0.001 –0.023 0.129 

History of CVD 0.004 0.774 0.020 0.093 0.009 0.514 

WMH volume
§
 –0.038 0.009 0.048 <0.001 0.017 0.224 

R2 0.033 0.297 0.113 

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter 

hyperintensity volume; iSNR: inverse signal–to–noise ratio.
 §

 Log
10

–transformed. Significant 

regression coefficients (p < 0.05) are expressed in bold. 

 

Table 3B Standardized regression coefficients obtained from a linear regression model 

with forward selection between demographic/clinical variables and each of the quality metrics 

for the functional MRI. 

Independent 

variables 

iSNR Head motion Atlas mismatch 

β p–value β p–value β p–value 

Age 0.170 <0.001 0.079 <0.001 –0.088 <0.001 

Sex –0.027 0.034 –0.071 <0.001 0.317 <0.001 

Educational level –0.044 <0.001 –0.010 0.457 –0.003 0.847 

BMI 0.408 <0.001 0.321 <0.001 –0.113 <0.001 

Diabetes status 0.096 <0.001 0.024 0.100 –0.020 0.172 
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History of CVD –0.012 0.315 –0.004 0.784 0.004 0.772 

WMH volume
§
 0.030 0.015 –0.016 0.249 0.013 0.337 

R2 0.270 0.132 0.142 

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter 

hyperintensity volume; iSNR: inverse signal–to–noise ratio.
 §

 Log
10

–transformed. Significant 

regression coefficients (p < 0.05) are expressed in bold. 

 

 

 
Figure 7 Examples of strongest determinants of quality metrics in the structural (top) and 

functional (bottom) connectivity pipeline. For structural quality, motion was best determined 

by age and sex, and atlas mismatch by sex. For functional quality, motion and iSNR were best 

determined by BMI, and atlas mismatch by sex. Note: for intuitiveness, SNR (expressed as –

iSNR) is plotted instead of  iSNR. 
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Discussion 

Main findings  

We extensively studied the association of dMRI and rs-fMRI quality with structural and 

functional connectivity measures, respectively, in 5,110 participants of The Maastricht Study. 

To summarize, we found a significant association between the dMRI and rs-fMRI quality 

metrics, i.e. in particular head motion and signal-to-noise ratio, respectively, and measures of 

structural and functional connectivity. Moreover, the image quality metrics affected the 

association between brain connectivity measures and demographic variables. Furthermore, 

our results showed that the image quality metrics were equally or even stronger determinants 

of brain structural and functional connectivity than demographic and/or clinical variables.  

 

Head motion 

Head motion during the dMRI scan was most strongly associated with three of the four 

structural connectivity measures studied here, indicating it is an important potential 

confounder. To put the effect of head motion into perspective: every 0.1 millimetre of head 

motion during dMRI can be misinterpreted as a decrease in overall structural brain 

connectivity similar to 18.3 years of aging (see appendix for derivation).  

For dMRI as well as rs-fMRI, the amount of head motion increased with age and was 

larger in men compared to women. These results are in line with current literature, as similar 

findings have been reported earlier (Geerligs et al., 2017; Huijbers et al., 2017; Savalia et al., 

2017; Van Dijk et al., 2012). In addition, the amount of head motion during the rs-fMRI scan 

increased with BMI, which might be caused by the larger respiratory movements in persons 

with high BMI.  

We also found that the amount of head motion was larger in the dMRI compared to the rs-

fMRI scan (mean head motion 0.64 mm and 0.13 mm, respectively. An explanation for this 

finding might lie in the nature of the pulse sequences, for instance the longer echo and 

repetition times and the much stronger gradients of the dMRI scan, leading to notable table 

vibrations and head coil vibrations, which may amplify any distorting effects due to head 

motion, compared to the used rs-fMRI scan. Furthermore, the dMRI sequence was applied 

after the rs-fMRI sequence, at the end of the scan protocol. Hence, assuming that participants 

are more likely to move at longer scan times, this might explain the higher amount of head 

motion during dMRI compared to rs-fMRI.  

Of note, the amount of head motion might not only be a confounder for the connectivity 

measures derived from the dMRI or rs-fMRI scans, but also for measures derived from 

structural MRI scans, i.e. T1w, FLAIR, SWI (Savalia et al., 2017). Thus, one might advise to 

adjust for image quality not only in statistical analyses on connectivity measures, but also in 

statistical analyses involving volumetric MRI measures.  

 

Brain atlas mismatch 

Although the distribution of atlas mismatches in the studied population is highly 

comparable for dMRI and rs-fMRI (Figures 4C and 4F), atlas mismatch was associated with 

three out of four structural connectivity measures, but not with any of the functional 

connectivity measures. However, the dMRI-based structural connectivity measures rely on the 

geometric start and end (voxel) points as well as trajectories of streamlines connecting these 
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points, which are likely more susceptible to geometric distortions than the rs-fMRI-based 

functional connectivity measures, which are based on spatially region-averaged signal time-

series.  

Since atlas mismatch and head motion are both associated with three out of four structural 

connectivity measures, they might have a common source, i.e. typical susceptibility artefacts 

due to the EPI sequences used during dMRI that are known to be highly prone to resonance 

offsets, e.g. magnetic susceptibility gradients, or B0 inhomogeneities (Bammer et al., 2001), 

for which ExploreDTI did not correct. The linear registration that we used to co-register the 

atlas to dMRI space, is only able to account for deformations caused by these susceptibility 

artefacts to a limited extent. Whether the use of a non-linear registration procedure, an 

individual-based atlas, or implementation of a more rigorous susceptibility correction method 

will lead to less mismatch, was beyond the scope of the current study. 

 

Signal-to-noise ratio (SNR) 

SNR was weakly associated with one structural connectivity measure, i.e. overall SC, but 

with three out of four functional connectivity measures, indicating that, in addition to head 

motion, SNR could be a quality metric of interest in brain connectivity analyses. Interestingly, 

SNR in rs-fMRI, and to a lesser extent also in dMRI, decreased with BMI, which might have 

a physiological explanation as respiratory function is altered in obesity (Parameswaran et al., 

2006), especially when scanned in the supine position, which may increase physiological-

related noise (Kruger and Glover, 2001).  

 

Effect of image quality on associations between brain connectivity and demographic variables 

Since the image quality metrics were significantly related to measures of structural and 

functional connectivity, it is apparent that they affect the associations between structural or 

functional connectivity and demographic/clinical variables. Indeed, without adjustment for 

image quality, the strength of the associations between structural connectivity and 

demographic variables, particularly age and sex and to a lesser extent BMI and WMH 

volume, differed by more than 25% compared to the model that adjusted for image quality. 

Interestingly, whereas the age- and sex-related associations with brain connectivity were 

weakened due to confounding effects of image quality, BMI-brain connectivity associations 

were actually strengthened when image quality was taken into account. A plausible 

explanation for this observation is currently still lacking. Although the ground truth structural 

connectivity in our study sample is unknown, the fact that age-, sex-, and BMI-related 

associations are affected by image quality underlines the importance of adjusting for it. 

For functional connectivity associations with demographic/clinical variables, however, the 

changes obtained through adjustment for image quality were much smaller. An explanation 

for this discrepancy is that the gradients in dMRI are stronger than in rs-fMRI, hence any 

artefact is more pronounced in the dMRI and thus the effect of low image quality is stronger. 

Moreover, during the pre-processing of the rs-fMRI data, head motion is already taken into 

account by adding the motion parameters as nuisance regressors to the regression model when 

calculating temporal correlation between two brain regions.  

 

Validity structural and functional connectivity results 
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Analyses of the connectivity associations with demographic/clinical variables 

demonstrated that overall structural and functional connectivity, and hence node degree, 

decrease with age, whereas normalized clustering coefficient and global efficiency increase 

with age. This finding suggests that despite decreasing connectivity, whole brain network 

segregation as well as integration increases during aging. Decreased structural and functional 

connectivity during aging is consistent with the current consensus as summarized in a recent 

review (Damoiseaux, 2017). Less consensus, however, exists in the literature on the 

association of global efficiency with age. For example, structural and functional global 

efficiency were lower in older compared to young people (Achard and Bullmore, 2007; Zhao 

et al., 2015), or showed no difference between old and young people (Cao et al., 2014; 

Geerligs et al., 2015; Gong et al., 2009), whereas we found a slight positive association. The 

positive association between structural clustering coefficient and age that we found confirms 

the findings reported by Zhao et al. (Zhao et al., 2015). Yet, it has to be noted that the 

aforementioned findings have been reported in studies with relatively small sample sizes (n ≤ 

126) compared to our study.  

The validity of our structural and functional connectivity results is further supported by 

their dependency on sparsity. Both the structural and functional average node degree 

decreased with sparsity. This was as expected, since with increasing sparsity fewer 

connections are evaluated, and thus the number of possible connections to each node 

decreases as well. Structural and functional normalized clustering coefficient increased with 

sparsity. This effect, too, can be explained by the methodology used, because the proportion 

of connections between the nodes within its neighbourhood divided by the number of 

connections that theoretically could exist between them, will decrease with increasing 

sparsity. Conversely, the normalized clustering coefficient increases at increasing sparsity, 

because the clustering coefficient is normalized to a random network, for which the 

proportional decrease is larger.  

In contrast, the normalized global efficiency over sparsity showed an opposite trend in the 

structural compared to the functional connectomes. This difference can be explained by 

varying number of intra- and interhemispheric connections taken into account in the structural 

and functional group-averaged connectomes over the sparsity range. While the percentage of 

interhemispheric connections in the functional group-averaged connectomes remains fairly 

constant (at 41-44%), this percentage decreases in the structural group-averaged connectomes 

from 25% at sparsity of 0.60 to 12% at sparsity of 0.90 (see Supplemental Figure S5 in the 

appendix). As the connection-weights in the structural connectomes represent tract volumes, 

and since the structural connections taken into account are mostly short (intra-hemispheric) 

tracts with a small volume , the structural global efficiency is calculated using fairly low 

connection strengths that increases with sparsity, whereas the functional global efficiency is 

based on connections of high strength that increase with sparsity. 

The result that fewer interhemispheric connections were taken into account in the structural 

compared to the functional connectomes, can be explained by the effect of length and shape 

of the tracts in whole-brain tractography (Jones, 2010). Since interhemispheric tracts are 

generally longer than intrahemispheric tracts, they are more difficult to track and are thus less 

likely to end up in the group-averaged connectome in favour of intrahemispheric connections. 
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Strengths and limitations 

Strengths of this study include the large number of participants and the acquisition of 

dMRI as well as rs-fMRI in these participants. However, there are also several limitations that 

are noteworthy to address. First of all, we could not implement any advanced correction for 

B0-field inhomogeneities or geometric distortions, e.g. FSL’s “topup” (Andersson et al., 

2003), in the dMRI processing pipeline due to missing reversed phase-encode blips in the 

dMRI sequence. Hence, we were restricted to less advanced methods, such as (linear) 

registration to standard space. Consequently, the results relating to regions in the anterior 

frontal cortex and temporal lobe might therefore be less reliable as geometric distortions often 

occur in this location (Jezzard and Balaban, 1995). However, to our knowledge there is no 

reason to assume that these artefacts differ between subgroups, e.g. participants with and 

without T2DM, and therefore no bias has been introduced. 

Second, we used an atlas template that is not participant-specific and as such may 

contribute to mismatch between the brain atlas and the participant’s dMRI or rs-fMRI. An 

individual-based brain parcellation, such as implemented in the FreeSurfer software 

(Destrieux et al., 2010), might result in better overlap with the participant’s dMRI or rs-fMRI. 

However, this requires substantially longer processing times, e.g. up to 20 hours per 

participant, as well as visual checks and manual intervention, whereas linear registration of 

the AAL2 atlas is robust and is typically completed within a minute. 
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Conclusion 

To conclude, we here describe the complete pipeline analyses for the assessment of the 

structural and functional brain connectivity in The Maastricht Study, including extensive 

quality assessment focused on the confounding effects of compromised image quality in 

population neuroimaging studies. Structural connectivity estimates were most strongly 

associated with head motion, while functional connectivity estimates were mainly influenced 

by signal-to-noise ratio. Moreover, image quality metrics had larger effects on brain 

connectivity estimates than demographic variables such as age or sex. Based on these 

findings, we recommend that statistical analyses of structural and functional brain 

connectivity and its associations with demographic or clinical variables should consider  

potential confounding effects of image quality. 
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Appendix 1 Figure S1 Flow-chart of participants that were included in this study 

 
Supplemental Figure S1 Flowchart showing the number of participants for whom both 

structural and functional brain connectivity measures could be calculated successfully, and 

demographic data were available.  

  

Brain MRI scheduled

(n=5547)

Brain MRI data complete

(n=5261)

dMRI and rs-fMRI data 

succesfully processed

(n=5190)

Connectivity and

demographic data available

(n=5110)

Brain MRI not performed (n=224):

• No show (n=5)

• Bore or head coil too small (n=24)

• Claustrophobia (n=162)

• Metal/implant (n=20)

• Epilepsy (n=4)

• Other contra-indications (n=9)

dMRI/rs-fMRI processing failed (n=71):

• DICOM conversionerror (n=20)

• Brain tissue segmentation failed (n=50)

• Empty connectivity matrix (n=1)

Excluded from analysis:

• Demographic data unavailable (n= 80)

Brain MRI performed

(n=5323)

Brain MRI data missing (n=62):

• Not retrievable (n=17)

• dMRI/rs-fMRI missing/incomplete (n=45)
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Appendix 2 Complete description of structural and functional connectivity processing 

pipeline 

Diffusion data pre-processing 

dMRI data were anonymized and converted from DICOM to NIfTI format first using Chris 

Rorden’s dcm2nii tool (version 2MAY2016 64bit BSD License). After importing the NIfTI 

files into ExploreDTI v4.8.6 (PROVIDI lab, Image Sciences Institute, Utrecht, The 

Netherlands) (Leemans et al., 2009), eddy current and head motion correction was applied, 

while making sure the b-matrix was rotated accordingly (Farrell et al., 2007; Leemans and 

Jones, 2009). Next, white matter tracts were calculated using a constrained spherical 

deconvolution (CSD)-based deterministic tractography algorithm (Tax et al., 2014) at the 

following settings: 2 mm seed point resolution with seed points placed randomly throughout 

the whole brain; step size 1 mm; and maximum harmonic degree of 8 (Tournier et al., 2013). 

Stopping criteria were: fibre orientation distribution < 0.1; angle deviation > 30°; fibres 

leaving the brain mask; or fibre length < 50 mm or > 500 mm.  

The automated anatomical labelling (AAL) atlas (Rolls et al., 2015), consisting of 94 

(sub)cortical brain regions in the cerebrum, was linearly coregistered to the dMRI data using 

FLIRT (Jenkinson and Smith, 2001) in FMRIB Software Library (FSL) 5.0.10 (FMRIB 

Analysis Group, University of Oxford, Oxford, U.K.) and imported into ExploreDTI.  

Subsequently, for each pair of brain regions, the connection strength was defined as the 

tract volume (number of voxels visited by a tract multiplied by the voxel size) divided by the 

ICV if two or more tracts were found between the two brain regions, otherwise the connection 

was considered as absent and the connection strength set to zero (Vaessen et al., 2010). Also 

the diagonal elements (i.e. self/self-connections) were set to zero. Finally, this resulted in a 

symmetric 94×94 connectivity matrix, i.e. the participant’s structural connectome (SC), were 

each row and column represents a brain region and each element represents the relative tract 

volume between two regions.  

 

Functional data pre-processing 

Rs-fMRI data were anonymized and converted from DICOM to NIfTI format using Chris 

Rorden’s dcm2nii tool (version 2MAY2016 64bit BSD License). To account for 

magnetization stabilization, the first ten seconds of data (equivalent to the first five volumes) 

were removed, and the remaining rs-fMRI volumes were corrected for field inhomogeneities 

using FSL 5.0.10 (FMRIB Analysis Group, University of Oxford, Oxford, U.K.) (Zhang et 

al., 2001). The rs-fMRI data were then imported into Statistical Parametric Mapping (SPM) 

12 (The Wellcome Trust College London, London, U.K.). Because the rs-fMRI data were 

acquired in an interleaved spatial order, slice-timing correction (with the second slice as 

reference since this slice was acquired first) was applied before head motion correction 

(Soares et al., 2016). To improve the signal-to-noise ratio, the rs-fMRI images were spatially 

smoothed using a Gaussian kernel (full width at half maximum = 8 mm). Last, the rs-fMRI 

data were temporally filtered using a FSL’s band-pass filter (0.01 to 0.1 Hz) (Biswal et al., 

1995) to remove possible respiratory and signal drift effects and to focus on the spontaneous 

low-frequency fluctuations. 

The participant’s structural T1w images, including the masks of the CSF and WM, as well 

as the AAL atlas (Rolls et al., 2015) were linearly coregistered to the rs-fMRI data using 

FSL’s FLIRT (Jenkinson and Smith, 2001), and an averaged time-series in each brain region 

as well as in the CSF and WM was calculated from the per-voxel time-series in each region.  

Subsequently, for each pair of brain regions, a Pearson’s correlation coefficient was 

calculated using linear regression of the averaged time-series of each region, with the 

averaged time-series in the CSF and WM and the motion correction parameters as nuisance 

regressors in MATLAB Release 2016a (The Mathworks Inc., Natick, Massachusetts, U.S.). 
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This resulted in a symmetric 94×94 correlation matrix, i.e. the participant’s functional 

connectome (FC). In the FC, each row and column represent a brain region and each element 

represents the temporal correlation between two regions. Last, the diagonal elements 

(self/self-connections) and negative correlations, which are considered not representing any 

meaningful connections, were set to zero (Smith et al., 2011), resulting in a correlation 

weighted, undirected network.  

 

Hardware and software 

All structural and functional connectivity analyses were performed on a dedicated 

computer cluster containing four nodes with each a Intel Xeon E3-1245v3 3.40 GHz 8-core 

processor, 32 GB of DDR4 RAM and a 250 GB SSD. 

Processed data were stored on dedicated storage servers equipped with in total eight 10 TB 

SATA 6.0 Gb/s hard disks. To obtain a high level of data safety, the disks were configured in 

two RAID 6 arrays, thus giving protection against simultaneous failure of two disks and 

resulting in 20 TB of usable disk space. 

Each node was loaded with an image that contained the operating system, drivers and 

dedicated software. The operating system was 64-bit Scientific Linux release 6.8 (Carbon) 

based on Linux kernel 2.6.32-642.11.1.el6.x86_64 and GNOME 2.28.2. The software 

included in the image is listed in Table S1.  

 

Table S1 Overview of neuro-imaging software used in the structural and functional 

connectivity processing pipelines. 

Software package Version Release date RRID 

dcm2nii 2MAY2016 02/05/2016 SCR_014099 

Matlab including the Image 

Processing Toolbox 

2016a 01/01/2016 SCR_001622 

Brain Connectivity Toolbox 2017_01_15 15/01/2017 SCR_004841 

ExploreDTI 4.8.6 23/02/2017 SCR_001643 

FMRIB Software Library 5.0.10 25/04/2017 SCR_002823 

Statistical Parametric Mapping 12 rev 6906 20/10/2016 SCR_007037 

RRID: research resource identifier as reported by https://scicrunch.org 

 

 

Processing times and size of generated data 

Average processing times per participant in the structural and functional network 

connectivity pipeline were 1h33m and 0h50m, respectively. With the hard- and software used 

in this study, it took approximately 9 days to process the dMRI and rs-fMRI DICOM data of 

all participants. The amount of data generated per participant in the structural and functional 

network connectivity analysis were 847 MB and 744 MB, respectively, yielding a total of 

approximately 3.6 TB of generated data for the complete structural and functional 

connectivity analyses. 
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Appendix 3 Table S3A and S3B Standardized regression coefficients and goodness of fit 

parameters between the connectivity measures and the image quality metrics  

 

Supplemental Table S3A Standardized regression coefficients and goodness of fit 

parameters between the structural connectivity measures and the image quality metrics of the 

diffusion MRI.  

Independent 

variables 

Overall SC ν γ εglobal 

β p-value β p-value β p-value β p-value 

iSNR –0.127 <0.001 –0.030 0.027 0.027 0.039 0.015 0.286 

Head motion –0.302 <0.001 –0.303 <0.001 0.372 <0.001 0.087 <0.001 

Atlas mismatch –0.015 0.253 –0.204 <0.001 0.105 <0.001 –0.169 <0.001 

R
2 0.132 0.167 0.173 0.30 

Model: Connectivity measure  = β0 + β1*iSNR + β2*Head motion + β3*Atlas mismatch 

Abbreviations: iSNR: inverse signal-to-noise ratio 

Supplemental Table S3B Standardized regression coefficients and goodness of fit 

parameters between the functional connectivity measures and the image quality metrics of the 

functional MRI.  

Independent 

variables 

Overall FC ν γ εglobal 

β p-value β p-value β p-value β p-value 

iSNR –0.093 <0.001 –0.114 <0.001 0.105 <0.001 0.043 0.008 

Head motion 0.053 0.001 –0.022 0.176 –0.028 0.087 0.127 <0.001 

Atlas mismatch 0.011 0.445 0.020 0.163 0.011 0.451 –0.075 <0.001 

R
2 0.006 0.017 0.008 0.032 

Model: Connectivity measure  = β0 + β1*iSNR + β2*Head motion + β3*Atlas mismatch 

Abbreviations: iSNR: inverse signal-to-noise ratio 
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Appendix 4 Explanation 0.1 mm of head motion equivalent to 18.3 years of aging 

From the standard deviations for age and head motion in dMRI as reported in Table 1 and the 

standardized regression coefficients as reported in Table 2A, we can calculate how many 

years of aging has the equivalent effect on overall structural connectivity as a given amount of 

millimetres head motion. 

 

From Table 2A we get the standardized regression coefficients for the complete model: 

Overall structural connectivity  = β0 – 0.074*Age + 0.213*Sex – 0.045*Educational level 

+ 0.109*BMI + 0.003*Diabetes status – 0.010*History of CVD + 0.048*WMH volume – 

0.120*iSNR – 0.249*Head motion + 0.021*Atlas mismatch  

 

This can be interpreted as “for one SD years increase in age, the overall structural 

connectivity will decrease by 0.074 SD, and for one SD mm increase of head motion, the 

overall structural connectivity will decrease by 0.249 SD”.  

From Table 1 we get the standard deviations for age and head motion, which are 8.7 years and 

0.16 mm, respectively. Thus, for each 8.7 years of aging, overall structural connectivity 

decreases by 0.074 SD, and for each additional 0.16 mm of head motion, overall structural 

connectivity decreases by 0.249 SD.    

To have a decrease of one SD in overall structural connectivity, we would need 117.6 (= 8.7 

years*1SD/0.074SD) years of aging, or 0.643 (= 0.16 mm*1SD/0.249SD) millimetres of head 

motion.  

And thus 117.6 years of aging has the equivalent effect on overall structural connectivity 

0.643 mm of head motion, which is the same as: 18.3 (117.6/6.43) years of aging has the 

equivalent effect on overall structural connectivity 0.1 (= 0.643/6.43) mm of head motion.   
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Appendix 5 Figure S5 Structural and functional group-averaged connectivity matrices at 

different sparsities 

 
Supplemental Figure S5 Structural (top) and functional (bottom) group-averaged 

connectomes at sparsity 0.60 to 0.90. Whereas the ratio of intra- and interhemispheric 

connections remains fairly stable for the functional connectomes, this ratio increases rapidly 

for the structural connectomes.  
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