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ABSTRACT: The effect of image enhancement methods on

the final result of image analysis workflows is often left out

of discussions in scientific papers. In fact, before reaching

a definitive enhancement workflow and its settings, there

often is a great amount of pre-testing and parameter tweak-

ing. In this work, we take the biofilament tracing problem

and propose a systematic approach to testing and evalu-

ating major image enhancement methods that are applied

prior to execution of six filament tracingmethods (APP, APP2,

FarSIGHTSnake, NeuronStudio, Neutube andRivulet2). We

used a full factorial design of experiments to analyse five

enhancementmethods (deconvolution, background subtrac-

tion, pixel intensity normalization, Frangi vessel enhance-
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ment and smoothing) and the order in which they are ap-

plied, evaluating their effect on the signal-to-noise ratio,

structural similarity index and geometric tracing scores of

3D images of a fungal mycelium and a synthetic neuronal

tree. Our approach proved valuable as a tool to support the

choice of enhancement and filament tracing workflow. For

example, the use of deconvolution followed by median fil-

tering gives the best geometric tracing scores if Neutube is

used in the image of the fungal mycelium. Also, we show

that FarSIGHT Snake and Neutube are the most robust fil-

ament tracing methods to changes in image quality. In ad-

dition, we reinforce the importance of extensive testing of

new filament tracing methods against a broad range of im-

age qualities and filament characteristics.
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benchmarking, image enhancement, filamentous fungi

1 | INTRODUCTION1

Research in image processing and analysis has surged over the last two decades. Likewise, image processing and2

analysis are increasingly being applied in many areas, including material1 and life2;3 sciences, contributing greatly to3

the scientific discoveries in these areas. An increasing number of image analysis workflows is available, but this makes4
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it ever more difficult to choose components of a workflow to solve a specific problem.5

In this work, we focus on the problem of biofilament tracing, which is a common problem in bioimage analysis4;5,6

since filaments are everywhere in biology: from blood vessels and plant roots to neurons and fungal mycelia. For7

neuronal structures, there are many filament tracing methods from which to choose6;7;8. Although most of these8

state-of-the-art filament tracing methods were developed to trace neuronal structures4, this does not prevent their9

use with similar filament structures found in nature.10

Of course, differences in image quality and filament characteristics may affect the performance of a filament trac-11

ing method, if it is used with images that are different from those for which it was initially developed. Thus, it is crucial12

not only to define parameters with which the methods may be evaluated, but also to evaluate the many possible com-13

binations of methods for image enhancement and filament tracing in a systematic manner. We explore this question14

using a 3D image, obtained by confocal laser scanning microscopy (CLSM), of the growth of the filamentous fungus15

Aspergillus niger on agar-based media and a synthetic image that mimicks a neuronal tree.16

It is essential to consider whether the quality of the image needs to be enhanced prior to filament tracing. Five17

of the most common types of image enhancement methods are: filament or vessel enhancement, smoothing (e.g.18

convolutionwith amedian orGaussian filter), background subtraction, image deconvolution (with a knownor synthetic19

Point-Spread Function, PSF) and pixel intensity normalization4. In order to assess improvements in image quality, two20

parameters are commonly used: the Signal-to-noise ratio (SNR) and the Structural SIMilarity index (SSIM)9. The SNR21

carries information regarding the magnitude of the signal compared to the magnitude of the noise present in the22

image. Importantly, the presence and the magnitude of different categories of noise depend on the configuration of23

the microscopy equipment used to acquire the images. In confocal microscopy, the pinhole size, the type of detector24

and the scan rate all affect the SNR10;11.25

The SSIM is one of a group of image quality parameters based on properties of the human visual system and has26

received special attention recently9. The SSIM is based on the assumption that the human visual system is highly27

adapted to extract structural information about objects; it considers that what one judges to be an image with poor28

quality results from perceived changes in structural information of the objects in the image. The SSIM is calculated as29
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SSIM (x,y) = [l (x,y)]α · [c(x,y)]β · [s(x,y)]γ (1)

where l (x,y), c(x,y) and s(x,y) are functions that quantify luminance, contrast and structure, respectively, x and y are30

coordinates in the image, and α > 0, β > 0 and γ > 0 are weighting parameters.31

Besides the image enhancement methods, we have selected six filament tracing methods with available and us-32

able implementations: (1) All-path pruning (APP)12, (2) All-path pruning 2 (APP2)13, (3) FarSIGHT snake14;15, (4)33

NeuronStudio16;17;18, (5) Neutube19;20 and (6) Rivulet221. The theoretical approaches of these methods included34

vary from a blend of intensity based and graph-based tracing to geometric deformable models (e.g. Multi-stencils Fast35

Marching). Differently than enhancement methods, improvements in tracing results may be measured by computing36

binary classification metrics based on geometric position comparisons if a ground truth is available: For instance, it is37

possible to determine the number of true positives and false negative trace points based on the distance between a38

point traced by the tracing method and the real ("ground truth") position of the point22;23. In this context, true posi-39

tives comprise segments of filament correctly traced by a method and false negatives comprise segments of filament40

that should have been traced but were not traced by the methods.41

The aim of the present work is to demonstrate that the full factorial design is a useful tool for exploring the various42

possible combinations of image enhancement and filament tracing methods. We evaluated the effects of five image43

enhancement methods and six filament tracing implementations on two 3D images: a CLSM image of the mycelium of44

a fluorescent strain of a filamentous fungus and a synthetic image that resembles a CLSM image of a single neuronal45

tree. We used the SNR, SSIM and geometric tracing scores (e.g. recall, precision and F1-score) to evaluate the degree46

to which the image enhancement and tracing methods improve image quality and tracing results.47
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2 | MATERIALS AND METHODS48

2.1 | Construction of the fluorescent strains49

Afluorescent strain, Aspergillus niger pgaRed, was constructed fromAspergillus nigerATCC 1015 (CBS 113.46)24. InAs-50

pergillus niger pgaRed, the expression of enhanced green fluorescent protein (eGFP) is controlled by the gpd promoter51

from Aspergillus nidulans, a strong constitutive promoter. The eGFP remains in the cytosol and allows visualisation of52

the specimen under CLSM24.53

2.2 | Image acquisition54

A. nigerwas grownon a synthetic completemedium containing: 6.7 g.L−1 yeast nitrogen base formicrobiology (product55

code 51483; Sigma-Aldrich, Germany), 20 g.L−1 agar, 120mmol.L−1 NaH2PO4 / Na2HPO4 buffer (pH 6) supplemented56

with 20 g.L-1 D-Glucose24. Spores were spread uniformly over the solidified medium, resulting in 40 spores.mm−2.57

A small cube of the inoculated medium was excised and laid on a glass-bottom Petri dish with 4 chambers, with the58

inoculated surface perpendicular to the glass surface, before being transferred to the microscope. A moist cotton59

patch was put into one of the chambers of the glass-bottom dish to ensure that the air in the dish remained saturated60

with water. The inoculated medium was incubated at 30 oC24.61

Aconfocal laser scanningmicroscope (NikonA1MP+, Nikon Instruments Inc., Japan)with a temperature-controlled62

chamber was used to obtain 3D images at different times during growth. A 20x (0.75 NA) lens was used. The eGFP63

present in the fluorescent strain was excited with a 488 nmwavelength laser and detected with a filter interval (“band64

pass”) of 500-550 nm. Images were acquired with 16-bit grayscale bit depth and converted to 8-bit grayscale. Sample65

images were 973x973 px with 76 z-stacks and 1 time frame (x y z t). The x y resolution was 1.2361 µm and the z66

(axial) resolution was 2 µm. The sample was put under the microscope after 6 h of pre-incubation at 30 oC. The image67

stack (3D images) was acquired at 22.5 h incubation time24.68
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2.3 | Generation of the ground truth for the image of the fungal mycelium69

Several factors can make it difficult to construct a ground truth for 3D images of filaments by manual annotation:70

(i) large images or large numbers of images; (ii) a large number of filaments in the image or regions of high filament71

density; (iii) a poor image quality, for example, when photobleaching causes foreground sections of the image to be72

blurred or to become almost invisible. These difficulties led us to use a point annotation approach for benchmark-73

ing of the tracing methods. The approach is the same as the one used to determine the accuracy of single-particle74

tracking methods23, in which the ground truth comprises a dataset of point coordinates in an image. The procedure75

is represented schematically in Figure 3 (a), (c) and (d). First, the 3D image was sectioned into six subvolumes, from76

which three xz -plane images were obtained, resulting in 18 images. The xz -plane was used to ensure that most of77

the filament segments appeared as blobs in the image, given that most of the filaments grew perpendicularly to the78

xz -plane (except for the region near the surface of the agar). The xz -plane images were given to annotators who79

identified the centres of the blobs and marked them as points using the multi-point tool of ImageJ. Each of the 1880

images was counted by at least three different annotators (See Supplementary Material Section 2 for more details81

about the procedure).82

The annotated points were collected and merged into a single dataset for each image. The position of each blob83

identified by the annotators differed slightly, hence it was necessary to use an hierarchical clustering approach in84

order to identify and group data points that corresponded to the same blob in the image. Thus, the maximum number85

of annotated points per annotator was also determined, which is a required parameter for the hierarchical clustering86

algorithm. This value was used as input of the clustering procedure, so that a cluster mean point could be determined.87

In order to obtain the clustermean points, the Euclidean distances between each annotated point and all the remaining88

annotated points were calculated using the Matlab R© pdist function. The points that belong to each cluster were89

obtained by using the linkage and the cluster functions. After finding the points that belong to each cluster, the90

mean points were calculated (mean coordinate values of the points that belong to the cluster), which were used later91

to calculate the scores.92
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2.4 | Factorial design for the evaluation of the enhancement methods93

A full factorial design was performed to evaluate the effect of five image enhancement methods on the SNR and94

SSIM (Eq. 1). The tests were performed using the 3D image of the fungal mycelium (See Supplementary Material for95

the raw image Fungal_mycelium.tif) and the following factors: Deconvolution (Deconv)25;26, Background subtraction96

(BS)27, image intensity normalization (Norm), Frangi vessel enhancement method (Fra)28 and smoothing with median97

filter (Med). The values of the parameters used to perform these enhancement steps are shown in Table 1 and were98

evaluated previously4. Two additional factors were added, in order to evaluate the degree to which the image quality99

results (SNR and SSIM) are affected by the order of application of the methods. Thus, the factors ORDmedi an and100

ORDNorm relate to the order in which median filter and pixel intensity normalization were applied in the tests, re-101

spectively. Table 1 shows the seven factors considered in the factorial design and their levels and Figure 4 shows a102

reduced 25 factorial design test table with coded factor levels. The experiments of the design shown in Figure 4 were103

done for the four possible combinations of ORDmedi an and ORDNorm ((−1,−1); (−1,+1); (+1,−1) and (+1,+1)). An104

ImageJ Fiji29 macro script was written to execute the enhancement operations automatically.105

2.5 | Tracing of the fungal filaments106

The 32 enhanced images resulting from the previous step were used as input images for six filament tracing methods:107

(1) All-path pruning (APP)12, (2) All-path pruning 2 (APP2)13, (3) FarSIGHT snake (FS)14;15, (4) NeuronStudio16;17;18,108

(5) Neutube19;20 and (6) Rivulet221. All methods output trace results in the swc file format; this format comprises109

a graph representation of the filament tree extracted from the image. A swc file can only represent trees, it cannot110

represent filamentous structures with closed loops. Each row in the swc file represents a node and contains seven111

columns of information: the node identifier (an integer), its position in space (in Cartesian coordinates x, y, and z), a112

structure identifier (developed to identify neuronal structures), its radius and its parent node (Figure 1).113

The filament tracing methods were then run at least once on the 32 test images (the parameter settings are114

available in the Supplementary Material spreadsheet tracing_parameters.xls). The tracing results were evaluated both115
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TABLE 1 Factors considered in the factorial design and their levels

Factor Description Low level (−1) 1 High level (+1)

ORDmedi an Position of the median filter in
the order of pre-processing

Median is applied after Deconv Median is applied last

ORDNorm Position of the normalization
operation in the order of pre-
processing

Normalization occurs before
Frangi

Normalization occurs after
Frangi

Deconv Image deconvolution with cal-
culated PSF1

Do not apply image deconvolu-
tion

Apply image deconvolution
with calculated PSF

BS Operation background subtrac-
tion with rolling ball algorithm2

Do not apply BS Apply BS, ball radius 20 pixels

Norm Operation of image intensity
normalization3

Do not apply normalization Apply normalization with 0.4%
saturated pixels

Fra Frangi vessel enhancement:
multiscale Hessian based
filament enhancement4

Do not apply Frangi Apply Frangi with 5 Levels, 2 px
lower and 5px upper diameter

Med Convolve image with median
filter5

Do not apply median filter Apply median filter with kernel
3 pixels

1 The PSF was calculated using PSF Generator plugin25, while deconvolution was done with DeconvolutionLab226.
2 Background subtraction was performed using the rolling ball radius algorithm27 implementation30 in ImageJ.
3 The built-in function Enhance contrast of ImageJ was used to perform this operation.
4 The images enhanced by Frangi were obtained by using the imglib2 plugin implementation in Fiji.
5 The built-in ImageJ function Filters, ’Median’ was used.
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quantitatively through the computation of scores (see section 2.6) and qualitatively through the visualization of the116

tracings. The best tracing method was selected based on two criteria: first, the score value should be one of the117

highest among the tested methods. Second, the connectivity of the tracing should be as accurate as possible when118

compared visually to the raw images of the mycelium.119

F IGURE 1 Schematic representation of the result of a filament tracing method. The nodes and edges of the
tracing result should overlap with the position of the real filament. A small region with nodes (1,2 and 3) and edges
(e1 and e2) is identified and shows an example output of the swc file format as a list of nodes that provide the node
identification (id), its position in the image (x , y and z coordinates), its radius (in pixels) and the parent node, which
defines the edges between the nodes.

2.6 | Computation of the scores120

Based on the ground truth annotations and the results of each tracing method, four different scores were computed121

to help evaluate the quality of the tracings: recall (or True Positive Rate), precision (or Positive Predictive Value), the122

F1-score and the Jaccard similarity coefficient, JSC (Figure 2). Single-particle tracking scores were used due to the123

difficulty in generating complete manual tracings of our images (the hyphae in the image were densely packed in some124

regions and the quality of the images made manual tracing too difficult).125

The effects of the factors and their interactions on the F1-score were also evaluated. The result of the factorial126
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design is an adjusted linear model that describes the value of the outcomes as a function of each factor and their127

interactions (combinations):128

S = β0 + β1 · X1 + β2 · X2 + β3 · X3 + β4 · X4 + β5 · X5 + β6 · X1X2 + . . . + β32 · X1X2X3X4X5 (2)

where S is an outcome (F1-score), X1,X2 . . .X5 are the coded factor levels (-1 and 1) and β0, β1 . . . β32 are the coeffi-129

cients for the factors and their combinations.130

Three parameters are required in order to calculate the scores, the spatial tolerances in the x, y and z planes131

around the annotated or traced points that will be considered in the point matching process, defined as δx , δy and132

δz . All tolerances are given in pixels. Figure 3 provides a detailed graphical representation and description of the133

calculation of the scores.134

F IGURE 2 Venn diagram that shows how the four scores are calculated. A comprises the annotated points in the
images of the xz plane andT is the point dataset of the traced images with their x,y,z coordinates. Recall is
calculated by the number of matched points divided by the number of untraced plus the matched points. Precision is
given by the number of matched points divided by the number of traces of non-existing filaments plus the matched
points. The F1-score is calculated as the harmonic mean of the recall and precision. Finally, the JSC is calculated by
the famous intersection over union calculation, which is the matched points divided by the total number of points of
the tracings and annotated points.
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2.7 | Comparison of the tracing results of the synthetic image with the known ground135

truth136

The same procedures described in 2.4 and 2.5 were performed on a synthetic image generated with the TREES tool-137

box31. The resulting ground truth graph representation was converted into a 3D binary mask with Vaa3D32. Then,138

the image was convolved with a synthetic PSF (Born andWolf) generated with PSF Generator25 and noise was added139

with the help of RandomJ33. Following the enhancement tests and tracing with the same methods listed in 2.5, recall,140

precision, F1-score and JSC were calculated for the tracing results. In this case, since a ground truth was available,141

the scores were computed using the complete list of nodes from the ground truth.142

3 | RESULTS143

3.1 | Enhancing and tracing the image of the fungal mycelium144

We executed a series of image enhancement operations on the 3D image of the fungal mycelium and calculated145

the SNR (Figure 4, columns shaded red) and SSIM (Figure 4, columns shaded yellow) of the enhanced images for146

all 128 tests that comprise the full factorial design, which considers the factors ORDmed and ORDnorm. Figure 4147

shows the results for the order DECONV/BS/NORM/FRA/MED (The results for the other orders are shown in the148

Supplementary Material Figures S1.1 and S1.2). The different orders did not affect the SNR and SSIM significantly:149

An analysis of variance (ANOVA) for the SNR gave a p-value of 0.939 (F value = 0.136 α = 0.05), while a Kruskal-Wallis150

test, gave a p-value of 0.2097 ( χ2 = 4.52295, α = 0.05). Likewise, an ANOVA for the SSIM values gave a p-value of151

0.971 (F value = 0.08 α = 0.05). Thus, we only considered the order of enhancement operations indicated in Figure 4152

(see Supplementary Material Section 1 for more details). The calculation of the SNR and SSIM used the deconvolved153

image (test 2) as the reference image. Thus, the values of test 2 correspond to the maximum possible values for both154

SNR and SSIM.155

The next highest values of SNR were those of tests 4, 18, 3 and 20. These tests correspond to the tests that used156



12 Scholz et al.

deconvolution and background subtraction (test 4), deconvolution and median filtering (test 18), background subtrac-157

tion (test 3), and all three (test 20 included deconvolution, background subtraction and median filtering). Furthermore,158

two groups of tests, 1 to 8 and 17 to 24, resulted, on the whole, in relatively high SNR values; in these groups Frangi159

vessel enhancement was not applied to the images. However, tests 5, 7 and 21 within these groups have relatively160

low values of SNR. These relatively low values correspond to the use of pixel intensity normalization without prior161

deconvolution (5 and 7) and to the use of background subtraction, pixel intensity normalization and median filtering.162

The use of pixel intensity normalization increased the level of noise in the image, resulting in a SNR lower than zero163

dB and the prior subtraction of the background did not reduce the noise levels in tests 7 and 21. Similarly to the SNR164

results, after test 2, tests 4, 18 and 3 gave among the highest values of SSIM: the best SSIM values were for tests 4,165

18, 24 and 3, in this order. Test 24 did not give a particularly high SNR (it was the 7th highest SNR value); it is the166

test in which all enhancement methods were used, except Frangi vessel enhancement. As was the case with the SNR167

values, the test groups 1 to 8 and 17 to 24 gave relatively high SSIM values on the whole, although tests 5 and 21168

gave the lowest SSIM values.169

All enhanced images were traced with six different filament tracing methods and the tracing results were com-170

pared with a ground truth in order to calculate recall and precision (Figure 4, columns shaded blue). The first set of171

columns shaded in blue shows the recall results and the second set shows precision results for eight runs with differ-172

ent sets of parameters of the six filament tracing methods. Generally, there are large differences among the values173

for each method. With respect to recall, the worst performing tracing methods were APP2, APP and Rivulet2. When174

APP2 was applied to images that had been enhanced without using Frangi vessel enhancement, the recall values were175

higher. On the other hand, when APP2 was applied to images that had been enhanced using Frangi vessel enhance-176

ment, the recall values were low and, in some cases, APP2 failed to trace filaments in the regions where ground truth177

points exist (six subvolumes of the whole image were annotated, not the entire image) thus giving recall values of178

zero. Also, APP did not perform well with images in which Frangi vessel enhancement had been used. The lowest179

values of recall were obtained for images that had been enhanced using both Frangi vessel enhancement and median180

filtering (tests 25 to 32). The best performing tracing methods were Neutube and FarSIGHT Snake (when recall was181

used as criterion), with mean recall values of 0.782, 0.729 and 0.738 (for Neutube-1, Neutube-2 and FarSIGHT Snake,182
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respectively). For Neutube, there was a similar pattern of recall values across the tests, but the negative effect of183

Frangi vessel enhancement and median filtering was weaker (compare tests 1-16 with tests 17-32). With FarSIGHT184

Snake, the factors interacted in more complex manners: Pixel intensity normalization affected recall positively (tests185

5-8, 13-16, 21-24, 29-32), whereas the use of Frangi vessel enhancement followed by median filtering had a slight186

positive effect compared to when Frangi vessel enhancement was applied without median filtering (compare tests187

9-16 with tests 25-32).188

APP2 and Neutube were the best performing methods when precision was the criterion: the highest mean pre-189

cision values were obtained with APP2 and both Neutube-1 and Neutube-2 (the APP2-2 value of 0.677 being the190

highest). In contrast, the low precision values of the APP and Rivulet2 methods show that they oversegment the fila-191

ments, thus generating too many false positive nodes. Despite the low precision values for the majority of the tests192

with APP, APP had greater precision values in tests where Frangi vessel enhancement and median filter were applied193

together (tests 25 to 32 compared to tests 9 to 16), with the precision reaching values as high as those obtained with194

APP2 and Neutube. Interestingly, the effect of enhancement methods on the final precision values of all filament195

tracing methods was less pronounced than their effect on recall values: the standard deviation of the precision values196

was much lower than the standard deviation of the recall values.197

Although it is valuable to analyse precision and recall results alone, it is also important that the tracing method198

chosen gives high values for both precision and recall. Therefore, the F1-score and JSC are better measures of overall199

performance of the tracing methods, since they are calculated using both precision and recall values. Figure 5 shows200

the F1-score and JSC for the best performing methods. The F1-score and JSC results are almost equivalent for evalu-201

ating the performance, so we focus on F1-score in the analysis that follows. APP2 was the tracing method that gave202

the broadest range of F1 values and also had the most uniform distribution through its range (note that the violin203

plot for APP2 does not show a clear peak, such as is visible in the violin plot for FarSIGHT Snake). This shows that204

APP2 was the method that was most sensitive to changes in the image enhancement methods used. However, some205

of its scores were higher than those of FarSIGHT snake, especially those scores for tests that did not include Frangi206

vessel enhancement and median filtering (See Supplementary Material, Table S1.2). Conversely, FarSIGHT Snake was207

the tracing method that was least sensitive to changes in the image enhancement methods used. This is indicated208
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by the relatively small range of F1-values (minimum of 0.49 and maximum of 0.575) and the standard deviation of209

0.022%. In the end, Neutube was the best performing tracing method when the F1-score was the criterion: in two210

runs with different parameters, it obtained mean F1-score values of 0.685 and 0.674 and standard deviations of 0.097211

and 0.094%. The highest F1-score (0.765) was achieved with Neutube-1 in test 18, in which enhancement operations212

were deconvolution followed by median filtering. Neutube F1-score values were significantly better than those of213

the other filament tracing methods, since a Kruskal-Wallis test (χ2 = 143.13, df = 7, p-value= 2.2 · 10−16) followed by214

a Dunn test for pairwise comparison of Neutube against the other methods using rank sums provides the following215

adjusted p-values (Bonferroni method): APP = 7.403 · 10−16, APP2 = 5.892 · 10−16, APP22 = 1.230 · 10−4, FarSIGHT216

Snake = 4.970 · 10−4 and NeuronStudio = 3.253 · 10−5, which confirm that the null hypothesis of the Dunn test is217

rejected in all cases34.218

Figure 6 shows the test image with the results of several tracing methods. Tracing methods such as APP and219

Rivulet2 (Figure 6(c-d)) generally gave tracing results with too many nodes, which led to a low precision. However,220

a tracing result with a dense concentration of nodes (in other words, an “oversegmented” trace result) may or may221

not be topologically incorrect. For example, the APP results are topologically incorrect due to the spurious branches,222

whereas the Rivulet2 tracing results appear to be topologically correct, since the additional nodes do not form spurious223

branches. APP2 and Neutube gave high precision, but low recall: despite failing to segment all the filaments, they224

found an accurate position of the detected filaments (Figure 6(e-f)). Neutube with test 18 and NeuronStudio with225

test 23 were the best performing combination of enhanced images and tracing methods: They had a good balance226

between recall and precision (Figure 6(g-h)). This confirms that the F1-score is well suited for evaluating the results.227

The final outcome of the factorial design is the set of coefficients of the effects, on the F1-score, of the factors228

alone and in combinations. Figure 7 shows a chord graph, which represents the coefficients as chords, with the229

chord width corresponding to the value of the coefficient. In other words, the chord graph shows the magnitude of230

the effects of each factor (i.e. of each enhancement method) on the tracing score of any tracing method and also231

shows the overall effect of the individual factors on all tracing methods, with the magnitude of this overall effect232

corresponding to the arc length. For example, the most negative factor was the use of Frangi vessel enhancement233

alone since its arc length is the largest among the factors and most of its chords represent negative coefficient values,234
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with APP2 and NeuronStudio having the most negative values. Deconvolution was the second most negative factor,235

with negative coefficients for all tracing methods except Rivulet2, although there were no significant differences in236

the moduli of the coefficient values of the tracing methods. On the other hand, the most positive factor was the237

combined use of deconvolution and median filtering but its relative importance compared to the other factors was238

not significant. The combined use of deconvolution, Frangi vessel enhancement and median filtering had the second239

most positive effect on the tracing methods.240

Finally, the best method for the image of the fungal mycelium was Neutube. On the whole, the Neutube method241

had relatively high recall values (tests > 0.75) and intermediate precision values (tests that gave precision values242

between 0.5 and 0.75), an example is shown in Figure 6(g) (Neutube-1 test 18). Also, Figure 7(a) shows that there243

was no specific factor impacting F1-score more significantly than the others, as the values of the coefficients are244

not so different from each other (minimum of −0.038 for FRA:MED two-factor interaction, maximum of 0.0198 for245

DECONV:BS:FRA:MED four-factor interaction and mean of −0.004).246

3.2 | Enhancing and tracing the synthetic image247

In order to providemore insights into the analysis of the image enhancement methods and tracing results, we used the248

same study procedure to test a 3D image generated synthetically. However, the synthetic image has several features249

that distinguish it from the image of the fungal mycelium. First, the filaments are not of uniform diameter, rather250

filaments near the central point from which all the filaments spread have a larger diameter, while filaments that are251

more distant from the origin have smaller diameters; in some cases, the diameter is reduced almost to the limit of252

resolution of the image (2 pixels). Second, the intensities of the pixels composing the filaments are higher than those253

of the fungal mycelium image, showing pixel intensities of approximately 186 compared to 106 of the image of the254

fungal mycelium. Finally, in the synthetic image there are no regions in which filaments are densely packed whereas255

most of the image of the fungal mycelium had densely packed filaments (region of the image within y = [0, 350]).256

The synthetic image was convolved using a synthetic PSF and then noise was added, so that its quality would257

resemble that of a real image (see Section 2.7). In spite of the differences in the features of the two tested images, the258
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results for SNR, SSIM, recall and precision for the synthetic image (Figure 8) were similar to those previously obtained259

with the image of the fungal mycelium (Figure 4). Tests 4, 6, 8 and 18 gave the highest SNR values (see the column260

shaded in red/pink), whereas tests 4, 18 3 and 20 had given the highest SNR values with the image of the fungal261

mycelium. These results confirm that the use of deconvolution and combinations of background subtraction, pixel262

intensity normalization and median filtering yield the greatest improvements in SNR compared to the original image263

(test 1). Moreover, SNR is negatively affected if Frangi vessel enhancement and median filtering are applied. As was264

the case for the SNR results, tests 4, 8, 6 and 18 gave the highest SSIM values. Following the same pattern as the265

results of the image of the fungal mycelium, the groups of tests with the highest SSIM values were 1 to 8 and 17 to266

24 and the lowest values of SSIM occurred when images were enhanced with Frangi vessel enhancement followed267

by median filtering (tests 25-32).268

The recall results of the synthetic image have similaritieswith the recall results of the image of the fungalmycelium,269

but with more details (i.e. no zero recall values). For instance, recall results for APP and APP2 showed drastic differ-270

ences between the group of tests that used Frangi vessel enhancement (either alone or with median filtering) and the271

group of tests that did not apply such enhancement methods. Pixel intensity normalization affected tracing by APP272

in a more complex manner, as can be seen by comparing tests 1-4 with tests 5-8 and tests 17-20 with tests 21-24.273

It reduced recall values of APP (for instance, compare tests 1-4, which did not use pixel intensity normalization, with274

tests 5-8, which used it), whereas when median filtering was also applied, the negative effect of pixel intensity nor-275

malization was minimized, which indicates a synergy between these two factors. Another interesting synergic effect276

occurred in APP, APP2 and NeuronStudio: when deconvolution was applied without Frangi vessel enhancement, the277

recall results were usually higher compared to tests that did not apply deconvolution. However, when Frangi vessel278

enhancement was applied after deconvolution, the recall values were lower than those for the tests that did not ap-279

ply deconvolution. In contrast with APP and APP2, FarSIGHT Snake and Neutube had the best overall recall values280

and were more robust, that is, the difference between the minimum and maximum recall values was low when the281

different enhancement methods were used (mean values of 0.73 and 0.582 and standard deviations of 0.093 and 0.154,282

respectively). However, based on the best test values, Neutube had only the 5th highest recall value, with FarSIGHT283

Snake (0.918), NeuronStudio and APP (both 0.872) and APP2 (0.817) having higher recall values. Furthermore, the Far-284
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SIGHT Snake results also showed a positive synergic effect between factors: the use of Frangi vessel enhancement285

and median filtering increased the recall value, which did not happen in the case of the image of the fungal mycelium.286

The results for the precision of the tracing methods show distinct patterns for the synthetic image. Even though287

the results are different in comparison with those obtained for the fungal mycelium, Rivulet2 was still the tracing288

method that gave the lowest precision values, with an average precision of 0.463. However, the difference among289

tests with high and low precision (standard deviation of 0.190) was higher than that obtained with the image of the290

fungal mycelium. In this manner, Rivulet2 gave both high precision (0.867 in test 20, with deconvolution, background291

subtraction and median filtering) and low precision (0.110 in test 5, with pixel intensity normalization). In addition,292

Rivulet2 did not show such a high positive influence of Frangi vessel enhancement on precision as occurred with the293

image of the fungal mycelium, since there was a negative synergy between Frangi vessel enhancement and median294

filtering. The second lowest precision values were, again, those of the APP method; the pattern of values across the295

various tests was similar to that obtained with the image of the fungal mycelium. The best and second best overall296

precision values were obtained with Neutube and NeuronStudio, with overall precision values of 0.864 and 0.775,297

respectively, and a standard deviation of 0.074 in both cases.298

Although NeuronStudio gave the second best mean precision values (0.775), it gave the highest precision among299

all tracing methods with test 19 (0.999). Neutube was more sensitive to the use of Frangi vessel enhancement, with300

precision values that were marginally higher than those obtained in the corresponding tests with the image of the301

fungal mycelium. The same occurred with the use of median filtering, for which Neutube again gave marginally higher302

precision values than those obtained in the corresponding tests with the image of the fungal mycelium. There was303

also a clear positive synergic effect of deconvolution and Frangi vessel enhancement: when deconvolution was used304

without Frangi vessel enhancement, precision values were always lower. Tests 1-8 and 17-24 gave relatively high305

precision values, with test 19 giving the highest value (0.974). NeuronStudio gave clearer patterns for precision values306

amongst the tests than those obtained with the image of the fungal mycelium, since there were greater differences307

between the values (the minimum and maximum values were zero and 0.999, respectively, as opposed to 0.371 and308

0.582 for the image of the fungal mycelium). Thus, despite performing better with the synthetic image, NeuronStudio309

was more sensitive to changes in the quality of the image. Although relatively high precision values were obtained for310
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tests 1-8 and 17-24, these intervals also contained some relatively low values (Test 5 and 7), with these low values311

occurring when pixel intensity normalization was applied alone or with previous background subtraction. The lowest312

precision values occurred in tests 30 and 32, showing that the simultaneous use of deconvolution, pixel intensity313

normalization, Frangi vessel enhancement and median filtering caused NeuronStudio to fail to trace the image.314

Figure 5 (b) shows the F1-score and JSC obtained for the various tracing methods with the synthetic image. With315

this image, the overall best performer was FarSIGHT Snake: it was the most robust method, with a low standard316

deviation of scores, and also gave the highest mean F1-score, 0.737. Neutube was the second best performer, with a317

mean F1-score of 0.682, but a greater spread of scores. Despite being the two best performing tracingmethods overall,318

both FarSIGHT Snake and Neutube were outperformed by NeuronStudio when tests were evaluated individually.319

NeuronStudio had the best F1-scores with tests 1-4, with values up to 0.930 (test 2), whereas FarSIGHT Snake had320

its best F1-score, of 0.887, in test 3 and Neutube, of 0.844, in test 5. However, NeuronStudio, among all the tracing321

methods, gave the greatest spread of F1-scores, with a range of 0.925 (0.327 standard deviation).322

Figure 7(b) shows the coefficients of the effects, both individually and in combination. Frangi vessel enhancement323

and median filtering had the greatest negative effects. Except for Rivulet2, the tracing methods gave lower F1-scores324

when Frangi vessel enhancement was applied. Also, all tracing methods gave lower F1-scores when median filtering325

was applied in comparison to when it was not applied. In the case of NeuronStudio, Frangi vessel enhancement alone326

and deconvolution followed by Frangi vessel enhancement had the greatest negative effects. Frangi vessel enhance-327

ment accounted for almost 30% of the sum of the moduli of the coefficient values, whereas deconvolution followed328

by Frangi vessel enhancement accounted for about 10%. However, it was advantageous to use deconvolution without329

Frangi vessel enhancement, as the signs of the effect coefficients changed, resulting in the highest possible F1-score330

in this case (test 2). The positive effects accounted for a relatively small proportion of the coefficients (24% of the331

sum of the moduli of the coefficients). Conversely, FarSIGHT Snake, the best overall performer and the most robust332

method, had smaller coefficient values and a fairly even distribution of positive and negative coefficients (positive333

effects accounted for about 53% of the total sum of the moduli of coefficients). Even so, only two of the main effects334

were positive: background subtraction and pixel intensity normalization. Additionally, the two-factor interactions of335

the negative effects, for example, “deconvolution and Frangi vessel enhancement” and “Frangi vessel enhancement336



Scholz et al. 19

and median filtering”, accounted for the greater part of the positive effect on the F1-score. Thus, as was the case with337

NeuronStudio, it was most beneficial to use a single enhancement method, background subtraction in this case, to338

yield the best F1-score (test 3).339

4 | DISCUSSION340

The present work makes three main contributions: First, it shows that the factorial design approach is also useful to341

help understand the strengths and limitations of filament tracing methods, since the many enhancement operations342

provided a wide range of images with different qualities and features. Second, it shows that factorial designs can help343

researchers to evaluate the effect of image enhancement methods and choose those that fit best with their dataset.344

Finally, the results of this work reaffirm the importance of benchmarking filament tracing methods. In the following345

sections, each of the contributions will be discussed in depth.346

4.1 | Factorial designs help researchers assess the strengths and limitations of filament347

tracing methods348

An assessment of strengths and limitations of the tracing methods based on their theoretical approach to349

tracing350

Our work gives insights into the strengths of the tracing methods and allows us to assess whether the limitations that351

were mentioned by the authors when the tracing methods were first published are present when they are used in our352

test images. NeuronStudio is the oldest method available amongst the ones we tested. Our tests show that the tracing353

results of NeuronStudio were very poor when the enhanced images contained disconnected filaments, low intensity354

filaments, nonuniform intensities throughout the filaments or heavy background noise. These three features could be355

caused by (i) Frangi vessel enhancement, which does not enhance branch points but rather suppresses them14;41, (ii)356

any method that could reduce the foreground intensities (median filtering, Frangi vessel enhancement, deconvolution357
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and combinations thereof) and (iii) pixel intensity normalization, which may intensify noise if applied before a noise358

reduction method. The fungal mycelium image used in the present work was slightly less noisy than the synthetic359

image (the SNR of the raw image, test 1, was 2.09 compared to the SNR of 1.86 for the synthetic image), though the360

fungal mycelium contained a region that had more densely packed filaments. As a result, the negative effect of pixel361

intensity normalization was minimized for the image of the fungal mycelium; also, the negative effect of suppressing362

branch points in the imagewas greater in the real image, which had themore complex filament tree. The high variations363

in the F1-score of NeuronStudio are associated with its intensity-based approach, namely voxel scooping. In voxel364

scooping, the image is binarized and the filament paths are traced in increments from a seed-point (in a process known365

as “region growing”).366

APP is a graph-based tracing method. The main step in its tracing process involves the generation of a sparse367

graph from an oversegmented mask of the image, with vertices being foreground voxels that are connected to their368

direct neighbours and with edge weights that are proportional to the intensity gradient between the voxels12. The369

subsequent steps remove redundant nodes from the graph. Our tests show that APP was very sensitive to the differ-370

ence between the intensities of the foreground and background: when foreground pixels were dim, APP could not371

detect all filaments in the image (low recall and high precision), but when foreground pixels were bright, APP resulted372

in overdetection of nodes (high recall and low precision). The main problem with APP comes from its oversegmen-373

tation and the existence of spurious branches in the final tracings, as observed in Figure 6(c). It appears that APP’s374

approach to pruning nodes that are already covered by the nodes in the centreline of the filament is not successful375

in situations where the diameter of the filament is greater than a few pixels. APP2 is an upgraded version of APP376

and has greater precision and reduced processing time13. It initially reconstructs the filaments with a graph-based377

Fast Marching algorithm, therefore reducing the size of the initial reconstruction. APP2 adds the option of generating378

the initial reconstruction using a grey-weighted distance transform of the image. Our results for the image of the379

fungal mycelium show that its use (which corresponds to the APP2-2 tests) improves the tracing results in relation to380

APP2 without the grey-weighted distance transform. However, the greatest improvement comes from the use of Fast381

Marching, as it generates a leaner initial reconstruction, which facilitates further pruning steps. Nevertheless, APP2382

shares the same sensitivity to low contrast images as APP and fails to detect the entire filaments when they are dim.383
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FarSIGHT Snake14;15, which was the most robust method tested in this work, has advantages due to two main384

features: First, the use of Gradient Vector Flow (GVF) for both improved seed point detection and tracing (with an385

open active contour algorithm) and second, the implicit branch point detection. In the seed detection step, GVF is386

used to converge the initially detected seed points to points near the centreline of the filaments. Later, GVF is used as387

the snake external force of the open active contour algorithm. Despite its robustness, our results show that FarSIGHT388

Snake tracing was poor when filament intensities were dim. Also, FarSIGHT Snake has low precision values, due to a389

large number of spurious nodes in the final tracing, though this effect is smaller than in APP or Rivulet2. For instance,390

the number of nodes in high recall/low precision tests on the fungal mycelium image were approximately 90 ·103 (test391

16), 56 · 103 (test 22) and 42 · 103 (test 7) for Rivulet2, APP, and FarSIGHT Snake, respectively.392

Neutube19;20 was a top performer for tests with both images. It uses a model-based approach followed by a393

graph-based connectivy to connect segments and resolve crossover regions. The model-based step detects filaments394

by fitting a 3D cylinder filter, modelled as a parameterized Laplacian of Gaussian. Then, a minimum cost spanning395

tree approach is used to connect segments and resolve branch points. The cost of edges between segments is cal-396

culated based on two principles: the distance between the nodes and the intensity of the voxels between the nodes.397

Crossovers are resolved, prior to joining segments, by computing angle changes of the end nodes of different segments398

(small changes in angle between two close segments will indicate that the two segments are connected). Our results399

show that the approach used by Neutube was robust to noise (in Figure 4 and 8, see the SNR and F1-scores in test 5:400

for both test images, SNR values are low but the F1-scores are high), yet sensitive to nonuniform foreground inten-401

sities (although less sensitive than NeuronStudio), dim filaments and short branches20. Such limitations are common402

to model-based (template matching of model fitting) local tracing methods such as that of Al-Kofahi et al.42.403

The most recently published tracing method amongst the ones we tested is Rivulet243;21. Its tracing is based on404

the multi-stencils fast marching method, which uses the binary distance transform of an oversegmented binary mask405

(with low threshold values) and further iterative back-tracing to detect branches. In our case Rivulet2 generated a406

huge number of nodes, therefore lowering precision values. When precision values were higher (for instance, test 18407

of the synthetic image) the final tracing only covered parts of the image (the recall of 0.102 shows that only a small408

fraction of the filaments was traced). A reduction in recall occurred in tests where there were discontinuities in the409
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filaments; these discontinuous filaments could not be connected by the tracing method and were later removed in the410

post-processing step (Rivulet2 only keeps the largest connected filament tree). However, Rivulet2 is a fast method411

and could be improved in case the number of nodes were reduced and the unconnected trees were kept.412

A crucial point to note regarding the geometric scores we used is that the number of false positives used to413

calculate the F1-score and JSC is highly affected by the sampling difference between the number of nodes in the414

tracing result and the ground truth (Rivulet2 and APP show such a situation of a high number of false positives). Thus,415

it is important to visualise results carefully. For instance, upon qualitative visualisation, Rivulet2 traces the image416

of the fungal mycelium well, although its precision values are low due to oversegmentation. Such penalization of417

additional nodes could be minimized by reducing the number of nodes in the tracing graph by resampling in order to418

improve tracing results.419

Connectivity analysis420

The connectivity was evaluated qualitatively for the image of the fungal mycelium through visualisation of the tracing421

results since there was no connectivity information of a ground truth that would enable a quantitative evaluation.422

The visualisations showed that, for such a challenging dataset, even the best Neutube test (18) had connectivity er-423

rors, mainly crossover segments that were falsely connected. This was expected since there are regions with densely424

packed filaments where it is difficult to resolve whether or not they are independent segments. In addition, the fil-425

aments in the image come from more than a single source (i.e. they come from different spores) and, at this stage426

of fungal growth, it is impossible to determine the initial sources of the various filaments. For this reason, we also427

analysed the synthetic image, which is a single neuron tree with simpler connectivity. Figures 9(a-d) show that Neuron-428

Studio (Figure 9(b)) not only had a high F1-score but also correct connectivity. As the F1-score lowered, as seen with429

FarSIGHT Snake (Figure 9(c)) and Neutube (Figure 9(d)) , incorrect topology appeared. With FarSIGHT Snake, isolated430

segments that should be connected were present in the results (yellow arrows), whereas with Neutube the centre of431

the image, from where all filaments originate, showed incorrect connectivity (yellow arrow). Although it appears that432

there is a relationship between F1-scores and the connectivity, a more detailed study would be required to evaluate433

the connectivity of the results. For future related works, we suggest the addition of a connectivity metric such as434
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DIADEM22 or the NetMets44 to enable a more detailed and definitive evaluation of the tracing methods based not435

solely on the geometrical accuracy and precision of the tracing results but also on the connectivity.436

4.2 | The factorial design approach allows for a detailed evaluation of image enhancement437

and filament tracing methods438

A systematic way of visualizing effects of factors and non-additive factor interactions439

Although factorial designs are commonly used to optimize outcomes of processes, our work represents the first time440

that a full factorial design has been used to support the evaluation of image analysis workflows. Factorial design441

approaches provide a more systematic way to analyse image analysis workflows, especially when several methods442

need to be evaluated, compared to the conventional preliminary testing and experimentation that is usually driven443

by the one-factor-at-a-time paradigm. Factorial design provides a mathematical model (Equation 2), the coefficients444

of which represent the individual effects of each factor (in this case, enhancement methods and their order in the445

workflow) on the image analysis outcome, as well as the effect of non-additive interactions between factors37. In our446

study, the use of a factorial design made it easier for us to identify important two-factor and three-factor interactions,447

for both images (Figure 7). For instance, the results of both images we tested show that the sum of the coefficients448

of two or more factor interactions represents more than half of the total sum of the coefficients, which indicates449

that these multi-factor interactions must be accounted for. In addition to indicating the existence of non-additive450

interaction effects, the model coefficients provide numerical values for the degree of influence of every factor and451

interaction on the outcome and show whether the effect is positive or negative, facilitating the interpretation of the452

image analysis results. For instance, a large negative coefficient value of FRA indicates that it should not be used453

before APP2.454

Beyond that, we have proposed the use of chord graphs as an alternative to the classic Pareto plots. Chord graphs455

are more suitable in this situation, namely when four or more factors are investigated and a full factorial design is456

applied several times to test different outcomes, which, in this case, were F1-scores with different filament tracing457

methods. The chord graph has three advantages. First, the arc length of the chord graph allows a clear visualisation458
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of the degree of influence of each factor on all filament tracing methods in the same graph, whereas, in the case459

of Pareto plots, a different plot would be necessary for each method to convey the same information. Second, the460

relative degree of influence of the factors for each method is more clearly shown through the widths of the chords461

connected to the arcs. For instance, the chord widths in the median filtering factor in Figure 7 (a) show that median462

filtering is an important factor affecting the tracing scores of APP and APP2, but that this factor is less important for463

Farsight Snake. Third, in the chord graph, the positive and negative effects are clearly distinguished through the use464

of opaque colour for positive effects and transparent colour for negative effects. This is the first time that a chord465

diagram has been used for such purpose.466

The flexibility of factorial designs and their use for both screening important variables as well as fine opti-467

mization of the image analysis results468

Our work describes the use of a full factorial design to evaluate two-level categorical factors: the use (or not) of the469

selected enhancement methods . However, a full factorial design could also be applied in situations where numerical470

parameters within the enhancement methods could be optimized or with a mixture of categorical and numerical471

variables. For instance, tests could be done by treating the following parameters as factors to be optimized: the472

standard deviation of the median filter kernel, the number of scales in which Gaussian convolution is performed in473

Frangi vessel enhancement or even the number of iterations and tolerance of the deconvolution process. Of course,474

there are other manners to perform such optimization. For example, Xu et al.38 propose the optimization of two475

tracing parameters through the minimization of an F-function by testing 25 different values of one parameter and 20476

values of another parameter, resulting in 500 tracing tests . However, their approach may become infeasible when477

the range of values or the number of parameters to be optimized is higher. A factorial design approach may be more478

appropriate, because it uses fewer tests. For instance, if a two-factor central composite design were used in the same479

case presented by Xu et al.38, it would be possible to reduce the number of tests to multiples of 11, likely two or480

three times, if the starting factor levels were well selected.481

Factorial designs can be used for screening or optimization37. In a screening design, it is common to have many482

factors (e.g. five or more factors in an image analysis study) to be tested and the aim is to detect the most relevant483



Scholz et al. 25

factors so that they can be further studied, but without performing too many experiments, due to time or cost con-484

straints. Thus, screening experimental designs would be fractional factorial designs or, possibly, more specialized485

designs, such as the Plackett-Burman design. For example, 11 factors could be evaluated with 12 tests in a Plackett-486

Burman design, or a 26−2 fractional factorial design could evaluate 6 two-level factors with 16 tests. In our study,487

we did not do a classical screening study since we evaluated the chosen factors beforehand and found them to be488

relevant. In addition, we identified fairly good values for the parameters within the chosen enhancement methods489

prior to applying the factorial design. Also, there were no time or cost constraints: each of our tests was completed490

in less than 10 minutes using a laptop computer (Intel R© quad core processor 1.8 GHz, 16Gb RAM DDR4, GeForce491

MX150 4Gb graphics card) and with free and open source image analysis platforms. With 32 tests, we were able to492

analyse 5 factors, whereas if an approach similar to that of Xu et al. were used, the number of tests could easily reach493

hundreds of thousands of tests, thus potentially making the analysis infeasible.494

In an optimization design, fewer factors are analysed, usually two or three (previously selected through screening),495

but with more than two levels. The additional levels are included to evaluate non-linear behaviour of the system being496

studied and thereby obtain a more accurate model prediction of the outcome. The central composite design is widely497

used for such purposes and it guides researchers towards a minimum or maximum value of the outcome within the498

ranges chosen for the factors considered37;39.499

In summary, our work is a blend of both types of factorial design, for twomain reasons. First, we chose to conduct500

a complete (full) factorial design because the chosen factors were already identified as being relevant to the tracing501

results and there were no time or cost constraints. Second, the tests evaluated categorical variables (the use or not502

of each enhancement method) with the main goal of evaluating the effect of each factor on the F1-score.503

Usefulness of JSC, F1-score, SNR and SSIM504

Researchers are usually interested in evaluating two criteria when tracing filaments: the geometric accuracy of the505

segmentation and the accuracy of the topology of the detected filaments (connectivity). We used the F1-score and506

the JSC for evaluating geometric accuracy of the detected filaments. The JSC has been previously used in a thorough507

comparison of particle tracking methods23, whereas the F1-score is commonly used to compare machine learning508
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methods40, but these metrics were never used in the present context. Given spatial tolerances in the x, y and z509

coordinates, these values can be easily computed. The F1-score and the JSC were chosen because obtaining an510

accurate ground truth of the filamentous network of the fungal mycelium was made impossible by the poor quality511

of the image in some regions: for example, images with blurred filaments in z stacks farther away from the detector512

(that is, deeper within the sample, say, z > 50) and the existence of regions of densely packed filaments. Thus, we513

used the alternative approach of defining a point set ground truth in order to evaluate the accuracy of the geometric514

segmentation. We implemented the score computations both in Matlab R© and Python and they are made available515

through public code repositories.516

SNR is used to measure the degree of noise in an image. In our enhancement tests, we observed that some517

combinations of enhancement methods gave images of poorer quality (lower SNR) compared to the deconvolved518

image (Test 2). However, there were images with low SNRwhich did not show particular changes in noise levels due to519

the enhancement operations in relation to the deconvolved image, but had changes in the structural information in the520

image (for example connected filaments appeared disconnected). Thus, we also included the SSIM in our calculations,521

thereby evaluating changes in quality in more detail, not only with a quality parameter based on noise. In addition, we522

noted a counterintuitive casewhen either the SNR or SSIM are comparedwith the F1-score or other tracing scores (e.g.523

recall and precision): An increase in the SNR or SSIM of an enhanced image does not necessarily result in higher F1-524

scores, that is, we did not see any strong correlation between the SNR and the F1-score (see Supplementary Material525

Figures S1.5-8). This is interesting because, in image analysis, there is a common sense idea that, after an image is526

enhanced, it wouldmore likely facilitate further segmentation steps and improve results. Our tests did not confirm this527

idea. However, we saw weak correlations between SSIM and the F1-score for some of the tracing methods, which528

shows that structural changes (disappearance of filament features, for example) in the image relate more easily to529

lower F1-score values compared to the SNR, even though such correlation is still weak. As a consequence, the use of530

only the SNR and SSIM to select enhancement methods is misleading. For example, for the fungal image, the highest531

F1-score achieved was obtained in test 18, whose SNR or SSIM values are not the highest, even though they are the532

third highest. Therefore, it is advisable to select enhancement methods with a complete image analysis workflow and533

based on geometric accuracy scores (e.g. F1 and JSC) instead of using only image quality parameters (SNR and SSIM).534
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Ultimately, the SNR and SSIM are measurements that help in the evaluation of the result but are not as important as535

the F1-score.536

The choice of the image enhancement workflow and tracing method537

The chord graph in Figure 7 and the F1-scores enabled us to choose the most appropriate combination of image538

enhancement methods to be used prior to tracing the filaments for each of the six filament tracing methods. With the539

image of the fungal mycelium, the two best combinations were those of test 18 (deconvolution followed by median540

filtering) when Neutube was used or of test 23 (Background subtraction, followed by pixel intensity normalization541

and median filtering) when NeuronStudio was used. In contrast, the two best combinations for the synthetic image542

were those of test 2 (deconvolution) when NeuronStudio was used and of test 7 (background subtraction followed543

by pixel intensity normalization) when FarSIGHT Snake was used. Thus, we have not necessarily identified a general544

combination of enhancement methods and a tracing method that will always be optimal. The optimal combination545

will be image-specific, in the sense that it will depend on the quality of the original images. If the image used in the546

factorial design tests has a quality that is representative of the quality of the images to be processed, then one can547

assume that the selected combination of methods (image enhancement and tracing method) is the most appropriate.548

However, even when a new image to be processed does not have the same quality or filament characteristics as the549

tested images, our results can still guide the choice of the tracing method. This is true because we tested the tracing550

methods with 62 preprocessed images of quite different qualities and this allowed us to check for the robustness551

of the tracing methods. For instance, either FarSIGHT Snake or Neutube could be tested first in any cases, due to552

their robustness to changes in image quality. This robustness is attested by two results: First, FarSIGHT Snake and553

Neutube gave the highest mean F1-scores (0.548 and 0.685 for the image of the fungal mycelium, 0.737 and 0.682 for554

the synthetic image, for FarSIGHT Snake andNeutube, respectively) but also quite low standard deviations of F1-score555

values: the arc lengths of FarSIGHT Snake and Neutube in the chord graphs of Figure 7 show that their scores are556

not highly affected by the different enhancement methods used. This also leads to another conclusion: some tracing557

methods may require tracing tests with different image enhancement methods while other tracing methods may not558

require such tests. This is the case of FarSIGHT Snake and Neutube: they may give good tracing results even if the559
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image is not enhanced.560

4.3 | Testing new tracing methods for a broad range of image qualities and filament char-561

acteristics is crucial562

Although the results presented are extensive, this is not a definitive benchmark study of image enhancement meth-563

ods or filament tracing methods. The analysis of the factorial design results for the F1-score show that, although564

similar F1-score patterns were obtained for both the image of the fungal mycelium and the synthetic image, images565

of different qualities and different filament features could give significant differences in tracing results. For example,566

the performance of APP2 was strikingly different from that of NeuronStudio. These large variations in performance567

would not be detected in situations where a small dataset is used. Our dataset, despite originating from only two568

images, was expanded because the image enhancement operations generated 62 output images of varying quality569

(i.e. wide range of SNR). When new tracing methods are reported, this is usually done with a smaller number of test570

images, although an analysis of recent papers shows that the size of test datasets is increasing. For instance, APP was571

tested with six images: two raw images with different filament characteristics and four where one of the raw images572

was processed to have different levels of noise (with the use of random bright voxel deletion)12. The first publication573

about NeuronStudio tested only one image, although it was stated that it was being used in other publications18. In574

the first Neutube paper, the tracing method was used to trace 32 neurons within a single image (filaments with the575

same characteristics)19;45. In contrast, APP2 was initially tested on the DIADEM dataset of fruitfly neurons46, the576

flycircuit.org database, the Janelia fly imagery database and other challenging datasets13. FarSIGHT Snake was tested577

on the whole DIADEM dataset14;15 as it was part of the DIADEM challenge and Rivulet2 was tested on both the OP578

dataset of DIADEM (8 images) and 114 neurons of the BigNeuron dataset21. Over the years, filament tracing meth-579

ods have been tested more extensively, using images with different SNR and artefacts as well as images of different580

modalities (e.g. from confocal and brightfield microscopy)14. Based on our results, we encourage researchers who581

are developing new filament tracing methods to include not only test images of different modalities but also tests582

on images with different filament densities, for example, densely branched or sparse trees, and even different types583
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of filaments, such as was done by Gonzalez et al.47, who included images of blood vessels, neurons and even road584

networks as their test datasets. Other researchers have raised similar concerns in areas where complex networks of585

filaments are studied, such as plant biology and neurobiology2;14. This way, the new methods may prove their broad586

applicability and stimulate discussions on their strengths and weaknesses.587

5 | CONCLUSION588

In the present work, we took the challenging problem of filament tracing and evaluated different image enhancement589

methods and filament tracing methods through factorial designs with two images: a 3D image of a complex fungal590

mycelium and a 3D synthetic image of a neuronal tree. We have shown that factorial designs are powerful tools to591

help researchers evaluate image analysis workflows. Onemay choose to investigate the effects of different workflows,592

evaluating the results using either image quality parameters (SNR, SSIM for instance) or quantitative scores related593

to the image analysis problem at hand (e.g. F1-score and JSC). Regardless of the outcome chosen for the evaluation,594

the model that results from the factorial design gives a comprehensive analysis of the effects of the tested factors595

on the chosen outcome. Without an analysis of all factors simultaneously (image enhancement and tracing methods)596

the analysis could lead to sub-optimal results. Thus, our work gives readers an insight into the potential of the use597

of factorial designs in image analysis. We also identified opportunities for future extension of this work in order598

to explore factorial designs further and to improve the benchmarking of filament tracing methods. With respect to599

factorial designs, we suggest the use of a screening study followed by an optimization with other types of factorial600

designs, for example, the Plackett-Burman and central composite designs for screening and optimization, respectively.601

Our results also show the importance of testing filament tracing workflows not only with images of different602

modalities, different noise and artefact levels but also with a broad range of filament characteristics (e.g. images603

densely populated with filaments or containing different sized filaments). If future filament tracing methods are more604

exhaustively tested from their conception, we believe their applicability, strengths and weaknesses may be discussed605

more openly and this will ensure that they are implemented and used by scientific community. Furthermore, we606
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suggest that new benchmarking studies should include quantitative connectivity metrics to complement the analysis607

and provide more definitive benchmarking results.608
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F IGURE 3 Schematic representation of the construction of the ground truth annotation and the calculation of
the score. (a) representation of the raw image in three dimensions, from which images of the xz plane were
extracted in various values of the y coordinate. (b) representation of the tracing result obtained from a filament
tracing method. (c) sample image and example of point annotations on an image of the xz -plane. Each annotator
determined where filament segments are located and selected a point in that region with the ImageJ multi-point
tool. Then, (d) cluster points, whose coordinates are the average of a number of the closest annotated points (using
euclidean distance) were determined. The maximum number of cluster points used was the maximum number of
annotated points determined by any of the annotators. In order to calculate the scores, (e) subgraphs of the tracing
result are extracted from the swc tracing file, where the minimum and maximum y coordinates of such subgraphs are
determined by the parameters δy and the y coordinate of the xz plane of each annotated image as y ± δy . Finally,
the subgraphs and the cluster points are matched to calculate the scores. (f) shows an example of the data. The
scores were calculated by determining a cubic region as shown in (g), where a cluster point is centered and the cube
has bounds (x ± δxz , y ± δy , z ± δxz ). If there is at least one trace point within the region of the cube, the cluster
point has a true positive tracing point, otherwise it has a false negative. The same procedure is done to the tracing
points to determine the number of false positives.
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F IGURE 5 Violin plot of the F1-score and JSC values for (a) the best performing tracing methods for the fungal
mycelium image: APP22, FarSIGHT Snake, Neutube and Neutube2. (b) F1-score and JSC results of all tracing
methods for the synthetic image. Empty dots are values from the 32 tests. Black dots show mean value and lines
represent the standard deviation.
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F IGURE 6 (a) 3D rendered view of the deconvolved image of the fungal mycelium (test 2), where a subregion of
interest is outlined in yellow and shown in (b-h). (c-d) tracing result overlays of methods APP test 22 and Rivulet2
test 16, which gave high recall and low precision values. (e-f) tracing result overlays of methods APP2 test 30 and
Neutube test 30, which yield low recall and high precision values and (g-h) the two best performing methods with
respect to F1-score, Neutube (test 18) and NeuronStudio (test 23). Recall and precision values are provided for each
tracing results within parentheses as: (recall / precision). Views were acquired with Vaa3D 3D viewer35.
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F IGURE 7 Chord graph representing the coefficients of the effects of the factors, alone and combined, on the F1
score for the tests with (a) the fungal mycelium image and (b) the synthetic image. In each graph, the tracing
methods are represented by the lower arcs, the lengths of which are equivalent to the sum of the moduli of the
coefficients. Thus, the length of the arc gives an idea of the spread of the F1-score values throughout the 32 tests.
The model equation shown above the chord graph shows how the F1-score is modelled as a function of the factors
and its combinations. The factors X1,X2, . . . ,X5 and their combinations are represented as arcs in the upper region
of the chord graph. The lengths of these arcs are equivalent to the sums of the moduli of the coefficients of each
method with respect to the factor. The length of the arc of the factor is proportional to the overall effect of the
factor on all tracing methods. The coefficients that multiply each factor β0, β1 . . . β32 are represented as links
between a method and a certain factor and are depicted in two different colour tones: an opaque colour and a
transparent colour (see legend). The opaque colour represents a positive value of the coefficient (i.e. a positive
effect on the F1-score), whereas the transparent colour represents a negative value of the coefficient (i.e. a negative
effect on the F1-score). Raw data in the form of a table is available in the Supplementary Material Table S1.1 and
S1.2. Chord graphs generated with the circlize R library36.
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F IGURE 9 (a) Maximum intensity projection view of the synthetic image and ball-and-stick models of the best
tracing results (b) NeuronStudio (test 2), (c) FarSIGHT Snake (test 3) and (d) Neutube (test 5). Red nodes correspond
to body nodes, yellow nodes to end-points, green nodes to branch points and blue to seeds. The arrows show
situations in which the tracing method gave incorrect topology. Yellow arrows indicate node segments that should
have been connected but were not detected, whereas the green arrow shows a branch point that does not exist in
the ground truth. Views were obtained with Neutube19


