Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Unconventional kinetochore kinases KKT10/19 promote the metaphase to anaphase transition in Trypanosoma brucei

View ORCID ProfileMidori Ishii, View ORCID ProfileBungo Akiyoshi
doi: https://doi.org/10.1101/806224
Midori Ishii
Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Midori Ishii
Bungo Akiyoshi
Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bungo Akiyoshi
  • For correspondence: bungo.akiyoshi@bioch.ox.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The kinetochore is a macromolecular protein complex that drives chromosome segregation in eukaryotes. Unlike most eukaryotes that have canonical kinetochore proteins, evolutionarily divergent kinetoplastids such as Trypanosoma brucei have unconventional kinetochore proteins. T. brucei also lacks a canonical spindle checkpoint system and it therefore remains unknown how mitotic progression is regulated in this organism. Here we characterized two paralogous kinetochore proteins with a CLK-like kinase domain, KKT10 and KKT19, which localize at kinetochores in metaphase but disappear at the onset of anaphase. We found that these proteins are functionally redundant. Double knockdown of KKT10/19 led to a significant delay in the metaphase to anaphase transition. A kinase-dead mutant of KKT10 failed to rescue the KKT10/19 depletion phenotype, suggesting that its kinase activity is essential. We also found that phosphorylation of two kinetochore proteins KKT4 and KKT7 depends on KKT10/19 in vivo. Finally, we showed that the N-terminal part of KKT7 directly interacts with KKT10 and that kinetochore localization of KKT10 depends not only on KKT7 but also on the KKT8 complex. Our results reveal that kinetochore localization of KKT10/19 is tightly controlled to regulate the metaphase to anaphase transition in T. brucei.

Summary Trypanosoma brucei has unique kinetochore proteins and lacks a canonical spindle checkpoint system. How mitotic progression is regulated in this organism remains unclear. Here we show that two redundant protein kinases KKT10/19 promote the metaphase to anaphase transition.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted October 16, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Unconventional kinetochore kinases KKT10/19 promote the metaphase to anaphase transition in Trypanosoma brucei
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Unconventional kinetochore kinases KKT10/19 promote the metaphase to anaphase transition in Trypanosoma brucei
Midori Ishii, Bungo Akiyoshi
bioRxiv 806224; doi: https://doi.org/10.1101/806224
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Unconventional kinetochore kinases KKT10/19 promote the metaphase to anaphase transition in Trypanosoma brucei
Midori Ishii, Bungo Akiyoshi
bioRxiv 806224; doi: https://doi.org/10.1101/806224

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cell Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2518)
  • Biochemistry (4968)
  • Bioengineering (3473)
  • Bioinformatics (15185)
  • Biophysics (6886)
  • Cancer Biology (5380)
  • Cell Biology (7718)
  • Clinical Trials (138)
  • Developmental Biology (4521)
  • Ecology (7135)
  • Epidemiology (2059)
  • Evolutionary Biology (10211)
  • Genetics (7504)
  • Genomics (9774)
  • Immunology (4826)
  • Microbiology (13186)
  • Molecular Biology (5130)
  • Neuroscience (29370)
  • Paleontology (203)
  • Pathology (836)
  • Pharmacology and Toxicology (1461)
  • Physiology (2131)
  • Plant Biology (4738)
  • Scientific Communication and Education (1008)
  • Synthetic Biology (1337)
  • Systems Biology (4003)
  • Zoology (768)