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Abstract 7 

Despite recent advances in treatment, cancer continues to be one of the most lethal human 8 
maladies. One of the challenges of cancer treatment is the extreme diversity among seemingly 9 
identical tumors: while some tumors may have good prognosis and are treatable, others are quite 10 
aggressive, and may lack of effective therapies. Most of this variability comes from wide-spread 11 
mutations and epigenetic alterations. Using a novel omic-integration method, we have exploited 12 
this molecular information to re-classify tumors beyond the constraints of cell type. Eight novel 13 
tumor groups (C1-8) emerged, characterized by unique cancer signatures. C3 had better prognosis, 14 
genome stability, and immune infiltration. C2 and C5 had higher genome instability and poorer 15 
clinical outcomes. Remaining clusters were characterized by worse outcomes, along with higher 16 
genome instability. C1, C7, and C8 were upregulated for cellular and mitochondrial translation, 17 
and relatively low proliferation. C6 and C4 were also downregulated for cellular and mitochondrial 18 
translation, and had high proliferation rates. C4 was represented by copy losses on chromosome 19 
6, and had the highest number of metastatic samples. C8 was characterized by copy losses on 20 
chromosome 11, having also the lowest lymphocytic infiltration rate. C6 had the lowest natural 21 
killer infiltration rate and was represented by copy gains of genes in chromosome 11. C7 was 22 
represented by copy gains on chromosome 6, and had the highest upregulation in mitochondrial 23 
translation. We believe that, since molecularly alike tumors could respond similarly to treatment, 24 
our results could inform therapeutic action. 25 

Significance 26 

Cancer has been traditionally studied as a family of different diseases from different anatomical 27 
sites. Nevertheless, regardless of the tissue of origin, cancer can be characterized by molecular 28 
alterations on mechanisms controlling cell fate and progression. In this study, we integrate 33 29 
cancer types and show the existence of eight clusters with unique genomic signatures and clinical 30 
characteristics, beyond the site of origin of the tumor. The study and treatment of cancer, based on 31 
predominant molecular features, rather than site of origin, can potentially aid in the discovery of 32 
novel therapeutic alternatives.  33 
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Introduction 34 

In spite of recent advances that have improved the treatment of cancer, it continues to reign as one of the 35 
most lethal human diseases. More than 1,700,000 new cancer cases and more than 60,000 deaths are 36 
estimated to occur in the year 2019, in the United States alone1. Cancer can be considered a highly 37 
heterogeneous set of diseases: while some tumors may have a good prognosis and are treatable, others are 38 
quite aggressive, lethal, or may not have a standard of care2–4. Cancer can also defy standard classification: 39 
a well classified tumor may not respond to standard therapy, as expected, and may behave as a different 40 
cancer type5–7.  Fortunately, with the advances of sequencing technologies, data has become available for 41 
research as never before. The Cancer Genome Atlas (TCGA), for instance, offers clinical and omic (e.g. 42 
genomic, transcriptiomic, and epigenenomic data) information from more than 10,000 tumors across 33 43 
different cancer types8. Much of this omic data has the potential to enable us to classify tumors and to 44 
explain the striking variation observed in clinical phenotypes 9–12. 45 

Omic integration has been successfully applied in previous classification efforts13–16. These classifications 46 
have highlighted how molecular groups of tumors highly agree with human cell types. Alternatively, we 47 
hypothesize the existence of internal subtypes hidden by cell type and tissue characteristics influencing cell 48 
behavior. These subtypes could be distinguished by molecular alterations unlocking cancerous cell-49 
transformation events. To test this hypothesis, we have developed a statistical framework that summarizes 50 
omic patterns in main axes of variation describing the molecular variability among tumors. Key features 51 
characterizing each axis (i.e. features contributing the most to inter-tumor variability) are retained, while 52 
irrelevant ones are filtered. Retained features are then used to cluster tumors by molecular similarities and 53 
find specific molecular features representing each group.  54 

Here we show that, after removing all tissue-specific effects, the cancer signal immediately emerges. The 55 
new molecular aggrupation, emphasizing on shared tumor biology, has the potential of providing new 56 
insights of cancer phenotypes. We expect this novel classification to contribute to the treatment of tumors 57 
without a current standard of care, by for example, borrowing therapies from molecularly similar cases.    58 
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Results 59 

Signal coming from tissue and cell type strongly influence a naïve initial classification of tumors across 60 
cancer types. We performed omic integration based on penalized matrix factorization, in order to remove 61 
tissue effects, and seek out a re-classification of tumors based on subtler omic patterns. Our method can be 62 
illustrated in four steps (Figure 1, Materials and Methods). Step 1 consists of applying sparse Singular Value 63 
Decomposition (sSVD) to an extended omic matrix X, obtained from concatenating a series of scaled and 64 
normalized omic blocks for the same subjects. Briefly, the major axes of variation across tumors (i.e. left 65 
principal components, or scores) and the matching features ‘activities’ (i.e. the right principal components, 66 
or loadings) of X are found. Sparsity is then imposed on the activity values, so features with minor influence 67 
over the variability among tumors, are removed. Step 2 consists of identifying what features (expression of 68 
genes, methylation intensities, copy gains/losses) influence these axes the most (i.e. features not removed 69 
by sSVD) and mapping them onto genes and functional classes (e.g. pathways, ontologies, targets of micro 70 
RNA). Step 3 involves the identification of local clusters of tumors, following Taskensen et al. (2016). Step 71 
4 involves the characterization of clusters in terms of molecular (e.g. genes, pathways, complexes, etc.) and 72 
clinical (e.g. survival probability, immune infiltration, etc.) information, distinguishing each cluster from 73 
the rest. 74 

 75 

Figure 1: Omic integration and features selection method. Step 1) Singular value decomposition of a 76 
concatenated list of omic blocks and identification of major axes of variation. Step 2) Identification of omic 77 
features (expression of genes, methylation intensities, copy gains/losses) influencing the axes and mapping 78 
them onto genes and functional classes (e.g. pathways, ontologies, targets of micro RNA). Step 3) Mapping 79 
major axes of variation via tSNE and cluster definition by DBSCAN. Step 4) Phenotypic characterization 80 
of each cluster of subjects. 81 

Using samples from 33 different cancer types provided by The Cancer Genome Atlas (TCGA), and 82 
accompanying information from whole genome profiles of gene expression (GE), DNA methylation 83 
(METH) and copy number variant alterations (CNV), we re-classified tumors based on molecular 84 
similarities between the three omics. This was done by first removing the non-cancer systematic effects of 85 
tissue via multiplication of X by a linear transformation (see Materials and Methods section). 86 

  87 
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Data description. 88 

The data, including information of sample size and type of sample (i.e. from normal, metastatic, or primary 89 
tissue), demographics (age, sex, and ethnicity) and survival information (overall survival status and times), 90 
are summarized in Table 1. Omic data included information for gene expression (GE, as standardized log 91 
of RNAseq data for 20,319 genes), methylation (METH, as standardized M-values summarized at the level 92 
of 28,241 CpG islands), and copy number variants (CNV, as standardized log of copy/gain intensity 93 
summarized at the level of 11,552 genes). 94 

Table 1: Data description by cancer type after quality control. Tumor samples are described by cancer 95 
type (TCGA Codes and cancer name), in terms of relative sample size (n), percent of females (F%), 96 
ethnicities (percent of non-Hispanic Whites, Afro-descendants, and Asians), Age (at the moment of 97 
diagnosis, in years), type of sample (TS%, as percent of normal –N- and metastatic –M- samples), and 98 
survival (Surv, as expected time to 50% survival, in years). Age and Surv are represented by median values, 99 
with first and third quartiles as measurements of dispersion. Data corresponded to the alignment and 100 
intersection of all samples with information of gene expression (GE), methylation (METH), and copy 101 
number variants (CNV). 102 

    Ethnicity %*  TS% 

Code Cancer type n F% AD W A Age N M Surv 

ACC Adrenocortical 
carcinoma  

23 61 0 100 0 48 (35-57) 0 0 6.6 (2.5-6.6) 

BLCA Bladder urothelial 
carcinoma 

271 99 13 80 7 58 (49-66) 1 0 3.0 (1.2-3.0) 

BRCA Breast invasive 
carcinoma 

639 69 18 75 7 58 (46-71) 7 0 10.2 (6.5-10.2) 

CESC Cervical squamous cell 
carcinoma and 
endocervical 
adenocarcinoma 

234 25 8 78 14 60 (53-69) 1 1 11.2 (3.1-11.2) 

CHOL Cholangiocarcinoma 12 36 0 100 0 55 (46-67) 75 0 1.7 (0.7-5.3) 
COAD Colon adenocarcinoma 264 36 12 79 9 58 (41-66) 7 0 8.3 (3.6-8.3) 
DLBC Lymphoid Neoplasm 

Diffuse Large B-cell 
L h  

26 54 19 81 0 60 (54-63) 0 0 17.6 (17.6-17.6) 

ESCA Esophageal carcinoma 134 60 12 88 0 68 (59-73) 2 0 2.3 (1.1-4.4) 
GBM Glioblastoma 

multiforme 
49 23 12 78 10 66 (60-73) 0 0 0.9 (0.4-1.2) 

HNSC Head and Neck 
squamous cell 

 

89 48 8 91 1 61 (59-71) 1 0 5.9 (1.2-5.9) 

KICH Kidney chromophobe 2 0 0 100 0 52 (50-54) 0 0   --** 
KIRC Kidney renal clear cell 

carcinoma 
43 51 2 91 7 67 (62-75) 0 0 7.5 (7.5-7.5) 

KIRP Kidney renal papillary 
cell carcinoma 

37 62 20 80 0 65 (59-72) 0 0 -- 

LAML Acute myeloid leukemia 28 0 0 94 6 60 (57-67) 0 0 -- 
LGG Brain lower grade 

glioma 
93 42 11 88 1 70 (62-75) 0 0 9.5(3.1-12.2) 

LIHC Liver hepatocellular 
carcinoma 

62 25 8 92 0 69 (61-74) 13 0 4.6 (1.6-8.6) 

LUAD Lung adenocarcinoma 381 29 6 90 5 66 (59-72) 4 0 4.2 (2.1-9.2) 
LUSC Lung squamous cell 

carcinoma 
289 28 9 89 2 57 (46-64) 0 0 4.7 (1.8-10.5) 

MESO Mesothelioma 68 0 7 93 0 60 (53-66) 0 0 1.6 (0.9-2.4) 
OV Ovarian serous 

cystadenocarcinoma 
5 0 0 100 0 60 (55-61) 0 0 2.9 (2.9-2.9) 
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PAAD Pancreatic 
adenocarcinoma 

151 24 4 76 20 67 (60-74) 3 0 1.6 (1.0-4.1) 

PCPG Pheochromocytoma and 
paraganglioma 

144 0 0 100 0 61 (56-65) 0 1 -- 

PRAD Prostate 
adenocarcinoma 

490 36 5 94 1 62 (54-70) 6 0 9.6 (9.6-9.6) 

READ Rectum 
adenocarcinoma 

83 42 0 85 15 63 (54-73) 2 0 3.9 (3.9-3.9) 

SARC Sarcoma 181 41 0 100 0 58 (46-69) 0 1 6.7 (3.1-6.7) 

SKCM Skin cutaneous 
melanoma 

378 85 15 83 2 61 (50-70) 0 75 7.4 (2.6-20.1) 

STAD Stomach 
adenocarcinoma 

263 37 4 70 25 67 (58-73) 0 0 4.6 (1.3-4.6) 

TGCT Testicular germ cell 
tumors 

134 0 4 92 4 31 (26-37) 0 0 -- 

THCA Thyroid carcinoma 501 73 6 80 13 46 (35-58) 8 1 -- 

THYM Thymoma 106 45 6 85 9 58 (48-68) 1 0 9.6 (9.6-9.6) 

UCEC Uterine corpus 
endometrial carcinoma 

146 100 43 57 0 65 (57-72) 14 0 9.2 (3.6-9.2) 

UCS Uterine carcinosarcoma 4 100 0 75 25 63 (54-74) 0 0 1.4 (0.3-2.2) 

UVM Uveal melanoma 78 45 0 100 0 62 (51-74) 0 0 3.8 (2.4-3.8) 

 

 

 

*: Only the three most abundant ethnicities in the data set were considered to calculate the percent. 

**: Survival quantiles for cancer types with less than five death events were not calculated.  

 103 

The first 50 main axes of variations of the extended omics matrix (selected by clear bend in the scree plot 104 
of Eigen-values – see Material and Methods).  The projection of the 50 axes onto two dimensions is shown 105 
in Fig. S1. As expected, cell-of-origin effects dominate the clustering of tumors at a pan-cancer level, with 106 
clusters enriched by previously reported pan-cancer clusters (e.g. collection of gastric cancer, gliomas, 107 
kidney and squamous tumors), types, and subtypes (e.g. Luminal and Basal breast tumors), and single 108 
cancer types (e.g. Thyroid carcinoma, Prostate adenocarcinoma, etc.). 109 

Re-classification of pan-cancer tumors based on similarities between omics after removing tissue 110 
specific signals. 111 

Once tissue signal was identified, it was removed from the extended omic matrix. Next, sparsity constraints 112 
were imposed on the omic features in order to zero-out the features with irrelevant contribution to axes of 113 
variation and cluster formation. The selected features (i.e. with non-zero effects) across the three omics 114 
corresponded with the 18th, 25th, 33th, and 38th axes (sorted from more to less variance explained) and 115 
mapped onto a total of 1200 genes. The cluster identification and projection onto two dimensions revealed 116 
eight classes (Figure 2). As a consequence of removing the effects of tissue localization, all clusters were 117 
formed by samples coming from multiple cancer types. Some clusters differed statistically from their cancer 118 
types composition (Table 2). However, all cancer types overlapped with more than one cluster (Fig. 2; 119 
Table 2, bottom). Furthermore, this overlap was not influenced by previously reported subtypes (Fig. S2). 120 
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 121 

Figure 2: Pan-cancer clustering of tumor samples: tissue effects correction a selection of omic 122 
features. Tumor clusters were obtained by sequential application of tSNE and DBSCAN algorithm for 123 
5,408 samples across 33 cancer types. The contours reflect cluster membership, and the points’ colors and 124 
shapes represent similar anatomical site and cancer type, respectively. The two-dimensional tSNE 125 
projection was obtained from the four deep principal axes of the extended omic matrix projected outside 126 
the tissue specific effects, after performing sSVD and removing the first two axes. After re-classifying 127 
tumors, the few samples coming from Kidney chromophobe tumors (KICH) did not map in any of the eight 128 
clusters obtained. 129 

Clinical and demographical characterization of tumor clusters. 130 

Clusters differed statistically in terms of patient age (with Cluster 3 and 8 containing samples from slightly 131 
younger patients) and sex (with Clusters 2 and 7 having significantly more females than Cluster 8, due to 132 
their slightly higher composition of gynecological cancers) (Table 2). None of the clusters were 133 
significantly associated with ethnicity (Table 2). 134 

  135 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/806323doi: bioRxiv preprint 

https://doi.org/10.1101/806323


8 
 

Table 2: Characterization of pan-cancer clusters of tumors after removing tissue effects. The clusters 136 
produced by integration of whole-genome profiles of gene expression (GE), copy number variants (CNV), 137 
and DNA methylation (METH) were characterized in terms of clinical, demographic, immune and 138 
molecular information. The table shows those variables with significant differences in at least one cluster. 139 
For each variable, different letters represent significant differences between clusters. 140 

 Clusters            1        2 3        4             5         6    7   8 

Clinical 
information 

Cancer type# bc       c d ab ab      ab    bc    a 

Metastasis (%)            5c   4de 3e 17ab 5de      7cd    12bc    21a 

Survival time 
(years)*            2.2a       2.1a 2.8b       1.8a 1.5ab     1.8ab    2.2ab    2.0a 

Stage (overall 
staging via TNM 
system17) 

          IVab  IVbc IIIc   IVab       IIIabc     IIIab      IIIabc     IVab 

Tumor-free 
fraction (%)          60a      70a 80b       60a         60a   60a       60a     60a 

Intratumor 
heterogenity (%) 13ab 14ab 4d 10c       15a  12abc   14ab   9bc 

Proliferation 
rate (norm. diff. 
between dividing 
and non-dividing 
cells) 

        0.4a      0.3a -0.4b     0.3a       0.3a 0.4a   0.4a 0.5a 

Demographic 
information 

Age (years)       61a 62a     57b  60ab        60ab   61ab   62a      57b 

Sex (% of 
females)        52ab 54a 50ab 50ab         53ab    46b   58a      41b 

Genome 
instability 
rates (as 
deviations 
from normal 
genome) 

Non-silent 
mutation        1.8bc 2.2bc 0.7d 3.2a      2.0abc    1.7c 2.5ab 1.8bc 

Aneuploidy        12a 12a 3b 10a      14a   11a 12a 10a 

Homologous 
recombination 
defects 

22ab 16c 8d 23ab      22abc   25a 27a   19bc 

Immune 
infiltration 
(as 
deviations 
from 
leukocytes 
fraction) 

Th1 CD4+ cells 
(x102) -5.9b -5.7b -3.1a -6.6b -8.0b   -6.7b -5.6b  -5.8b 

Th2 CD4+ cells 
(x102)           2.6c 2.3c 1.6c 4.2ab 5.1abc     5.4ab   5.2ab 6.1a 

Th17 CD4+ cells 
(x102)       -8.8b -7.5b 5.4a -14.7c -5.4b -4.5b -8.5b -9.0b 

Activated 
natural killer 
cells (x10-2) 

2bc 0.2bc 0.3a 0.3ab 0.2bc 0.1c  0.2bc   0.2bc 

Lymphocytes 
(x10-2) 4.7bc 5.9b 4.1a 4.4bc 4.6bc 3.1bc  4.9bc  3.0c 

Tumor-
infiltrating 
lymphocytes 

           1.7b 1.7b 1.9a 1.7b 1.8ab 1.6b 1.8b   1.6b 
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Functional 
Classes 
(such as 
pathways 
and 
ontologies) ** 

DNA 
replication&¶,(1) -0.6d  0.6a -0.1bc  0.6a  0.4ab  0.7a -0.3c   -0.2bc 

Mythochondrial 
translation&¶,(2) 0.4d  -0.3b 0.0c  -0.9a 0.3cd  -1.1a 1.9e   0.5d 

mir-has-615b 
targetsꝉ ,(3) -1.1c  0.7a -0.1b  0.7a     -0.2b  0.8a -1.1c  -0.1b 

S phase and 
DNA 
synthesis¶,(4) 

     -1.5f  1.0b -0.1d  0.5c       0.3c  1.3a  -0.4e    -0.4e 

 

#Cluster composition in cancer types (%). 

C1 COAD (14.2), LUAD (11.7), BRCA (10.7), SKCM (8.1), SARC (7.1), READ (6.4), PRAD (4.8), ESCA (4.6), CESC (4.1), LUSC 
(4.1), STAD (4.1), BLCA (3.8), PAAD (3.6), TGCT (2.5), ACC (2.3), MESO (2), LIHC (1.5), UCEC (1.5), PCPG (1), HNSC (0.8), 
KIRC (0.3), LGG (0.3), OV (0.3), and UVM (0.3). 

C2 BRCA (11.1), COAD (11.1), STAD (9.6), LUSC (7.4), LUAD (7.1), SKCM (6.1), CESC (5.6), BLCA (5.4), SARC (5.4), READ (4), 
ESCA (3.1), KIRP (2.5), PAAD (2.5), PRAD (2.5), PCPG (2.2), HNSC (1.7), LIHC (1.5), UVM (1.5), MESO (1.4), UCEC (1.4), 
ACC (1.3), KIRC (1.1), GBM (1), THYM (1), LGG (0.8), THCA (0.7), TGCT (0.6), DLBC (0.1), and LAML (0.1). 

C3 THCA (16.1), PRAD (13.2), BRCA (9.3), LUAD (6.3), SKCM (4.4), BLCA (4.3), LUSC (3.9), STAD (3.8), COAD (3.4), TGCT 
(3.4), UCEC (3.4), PAAD (3.3), CESC (3.2), THYM (3.2), PCPG (3.1), LGG (2.5), SARC (1.7), UVM (1.6), HNSC (1.3), LIHC (1.2), 
KIRC (1.1), MESO (1.1), ESCA (1), GBM (1), LAML (0.9), DLBC (0.7), READ (0.5), KIRP (0.4), CHOL (0.4), UCS (0.1), ACC 
(0.1), and OV (0.1). 

C4 SKCM (21.7), BLCA (13), CESC (9.6), LUAD (9.6), LUSC (8.7), BRCA (7.8), ESCA (4.3), UVM (4.3), MESO (3.5), HNSC (2.6), 
SARC (2.6), GBM (1.7), LIHC (1.7), STAD (1.7), UCEC (1.7), COAD (0.9), KIRP (0.9), PRAD (0.9), READ (0.9), TGCT (0.9), and 
THYM (0.9). 

C5 BLCA (18.4), LUAD (15.8), CESC (10.5), SKCM (10.5), PRAD (7.9), BRCA (5.3), ESCA (5.3), STAD (5.3), COAD (2.6), GBM 
(2.6), HNSC (2.6), LIHC (2.6), LUSC (2.6), PAAD (2.6), PCPG (2.6), and TGCT (2.6). 

C6 BRCA (31.5), LUSC (9.7), ESCA (8.6), SKCM (8.6), BLCA (8.2),  STAD (6.5), LUAD (5.7), PRAD (5.7), HNSC (3.9), CESC (2.5), 
SARC (2.2), PAAD (1.8), GBM (0.7), LGG (0.7), UCEC (0.7), UVM (0.7), CHOL (0.4), DLBC (0.4), MESO (0.4), PCPG (0.4), 
READ (0.4), and TGCT (0.4). 

C7 SKCM (14.7), BRCA (11.5), LUSC (11), ESCA (8.4), STAD (7.3), SARC (6.8), CESC (5.8), LUAD (5.8), UVM (4.7), BLCA (4.2), 
PAAD (3.1), HNSC (2.6), COAD (2.1), PRAD (2.1), LIHC (1.6), MESO (1.6), READ (1.6), UCEC (1.6), TGCT (1), DLBC (0.5), 
GBM (0.5), LGG (0.5), OV (0.5), and THCA (0.5). 

C8 SKCM (24.8), BRCA (23.9), CESC (12.8), PCPG (6.8), BLCA (5.1), SARC (5.1), LUSC (4.3), HNSC (3.4), UCEC (2.6), COAD 
(1.7), ESCA (1.7), MESO (1.7), READ (1.7), TGCT (1.7), LUAD (0.9), OV (0.9), and UVM (0.9). 

*Values represent median survival times by cluster. Letters represent significant differences under the log-rank test to compare the 
entire survival curves of each cluster. 

**Databases: GO Biological process (&), miRTabrBase (ꝉ), Reactome (¶). Functional classes significant at FDR adj. p-value < 0.05. 

Overlap between our selected group of genes and databases: 
(1): GINS1, POLD3, PRIM2, POLD4, PCNA, MCM8 and MCM3. 
(2): MRPS26, MRPL2, MRPL51, MRPS35, MRPL16, MRPS18A, MRPS10, MRPL14, MRPL48, MRPL21 and MRPL11. 
(3): PANK2, SF3B2, PCNA, HSP90AB1, NOP2, ATN1, CHD4, HOXC13, PRICKLE4, DPP3, C12ORF57, LDHB, CCND3, CCND2, 
STK35, RAB23, PPP6R3, IDH3B, RPS3, SIRPA, PSMF1, DNM1L, NKX2-5, PRNP, UVRAG, PPIL1, TPI1, DST, CSNK2A1, SMOX, 
YIPF3, DDX11, ENTPD6, MAD2L1BP, PPP2R5D, MUT, FBXL14, MRPL21, KLHL42, WNK1, RPL7L1, NCAPD2, FKBP4 and 
GAPDH. 
(4): GINS1, POLD3, PRIM2, POLD4, PCNA, CDKN1B, CCND1, MCM8, MCM3, PSMF1 and CDC25B. 

 141 

The most notorious distinctions between clusters were their differences in prognosis and severity traits (Fig. 142 
S3). Cluster 3 (the largest cluster in Fig. 2) was distinguished by better prognosis/less severity cancer than 143 
the remaining clusters, followed by Clusters 2, 5, 6 and 7. Clusters 4 and 8 were in general the ones with 144 
worst prognosis and more aggressive tumors (Table 2). Cluster 3 was also the one with fewest metastatic 145 
samples (Fig. S4), higher survival rates, highest tumor-free fraction, lowest stage, lowest intra-tumor 146 
heterogeneity (ITH, that estimates the fraction of subclonal and clonal genomes in each sample18), and 147 
lowest proliferation (Table 2, Fig S3). By comparison, Clusters 4 and 8 had significantly more metastatic 148 
samples than Cluster 3. Cluster 8 had also higher ITH rates than Cluster 3. The highest ITH rates were 149 
found in Cluster 5. 150 
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Cluster 3 had also the lowest rates of non-silent mutations, aneuploidies, and homologous recombination 151 
dysfunction (HRD). The remaining clusters were very similar in terms of genome instability indicators, 152 
except for Cluster 2. This cluster had significantly higher rates of HRD than Cluster 3, but significantly 153 
lower rates than every other cluster (Table 2). In terms of immune infiltration, Cluster 3 was characterized 154 
by the highest rates of tumor suppressive immune cells and tumor infiltrating lymphocytes (Table 2). In 155 
addition, Cluster 6 had the lowest infiltration of activated natural killer (ANK) cells. Cluster 8 had also the 156 
lowest lymphocytic and highest Th2 CD4+ infiltrations, respectively (Table 2). 157 

Gene signatures characterizing tumor clusters. 158 

The clusters were also characterized by distinct sets of omic features, significantly enriched for functions 159 
involved in cell cycle (DNA replication, DNA synthesis, and targets of hsa-mir-615-b, a micro RNA 160 
involved in cell proliferation) and mitochondrial translation (initiation, elongation, and termination) (Table 161 
2). To study the pairwise differences across clusters, these gene sets were projected onto scores for each 162 
gene, as linear combinations between the features’ values mapping onto the gene (i.e. its expression, 163 
methylation, and copy number values) and their corresponding activities (i.e. the features effects arising 164 
from the sparsity constraints) (see Materials and Methods section). In general, Cluster 3 was characterized 165 
by intermediate values of these scores, while the remaining clusters were characterized by higher (i.e. gene 166 
set with higher expression than Cluster 3) or lower (gene sets with lower expression than in Cluster 3) gene 167 
set scores. Clusters 2, 4, and 6 had significantly higher scores for cell proliferation, and significantly lower 168 
for mitochondrial translation. Clusters 1, 7 and 8, on the other hand, had significantly lower scores of 169 
proliferation and higher for mitochondrial translation. 170 

Sparse factorization of the extended omic matrix resulted in the selection of features mapping onto 1200 171 
genes. From this list, 441 genes were significantly different in at least one cluster. These results were 172 
obtained by a series of analyses of variance (ANOVAs), using the scores of each gene as response variables 173 
and clusters as explanatory variables. This list included 34 validated cancer genes, including oncogenes 174 
(ERC1, HSP90AB1, NUMA1, PPFIBP1, ZNF384, CHD4, KRAS, HIST1H3B, CCND1, CCND2, PIM1, 175 
CCND3, HMGA1, HOXC11, HOXC13, KDM5A, SRSF3, TFEB), tumor suppressors (FANCE, CDKN1B, 176 
ASXL1, ETNK1) and fusion-proteins (ERC1, HSP90AB1, NUMA1, PPFIBP1, ZNF384). Many of the genes 177 
additionally mapped onto known transcription factors (including: KDM5A, RELA, SRF, CTBP2, FOXA2, 178 
NONOG, FOLSL1, TEAD4, and FOXM1) and some of their targets (Fig. S5). However, the expressions of 179 
TFs and their targets were not significantly correlated within or between clusters (Fig. S5), suggesting 180 
mechanisms of control of the gene expression other than TFs regulation. 181 

We then interrogated all pair-wise comparisons between the scores of each one of the 441 significant genes 182 
using Tukey tests (Supplementary Table S2). We identified a subgroup of 123 significant genes that 183 
distinguished each cluster from the rest (for example, POLH had significantly higher scores in Cluster 4 184 
than in every other cluster). The genes characterizing each individual cluster were then used to define 185 
signatures. With this criterion, only Clusters 1, 4, 6, 7, and 8 were characterized by distinct signatures of 186 
57, 4, 23, 24, and 15 genes each, respectively. Since the gene scores are combinations of omic features, we 187 
looked at the gene expression in each signature and the potential role of copy numbers and methylation in 188 
regulating it (Figures 3-4). 189 

Cluster 1's signature was composed by genes mapped on chromosome 20. A group of 56 of the 57 genes 190 
exhibited significant copy loses in Cluster 1. Of this group, 50 genes (ATRN, AP5S1, TMEM230, MGME1, 191 
NDUFAF5, CENPB, CRLS1, CRNKL1, CSNK2A1, DDRGK1, DSTN, DTD1, ESF1, FAM110A, FASTKD5, 192 
FKBP1A, IDH3B, ITPA, SMIM26, MAVS, MCM8, MKKS, MRPS26, NAA20, NOP56, NRSN2, NSFL1C, 193 
PANK2, PCNA, POLR3F, PSMF1, PTPRA, RBBP9, RBCK1, RRBP1, SIRPA, SMOX, SNPH, SNRPB2, 194 
SNRPB, SNX5, SOX12, STK35, TBC1D20, TRMT6, UBOX5, VPS16, ZCCHC3, ZNF133 and ZNF343) were 195 
also downregulated. From the group of genes with significant copy-losses and basal expression values 196 
(TGM6, SOX13, PROKR2, PRND, OXT, LRRN4 and FERMT1), LRRN4 and FERMT1 were also 197 
significantly hyper- and hypo-methylated, respectively (Figure 3).  198 
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Cluster 4's signature was composed by four genes mapping onto chromosome 6: TDRD6, POLH, PAQR8 199 
and GUCA1A. All these genes exhibited significant copy losses in Cluster 4, and all of them except 200 
GUCA1A, were also downregulated. Additionally, POLH was hypo-methylated, while PAQR8 was hyper-201 
methylated (Figure 3). 202 

 203 

Figure 3: Gene signatures for Clusters 1 and 4 in terms of gene expression, copy number variation, 204 
and methylation. The genes significantly de-regulated exclusive of Clusters 1 and 4 were used to define 205 
signatures (y-axis). The features values (x-axis) of each gene are separated in gene expression (GE, first 206 
column of panels), copy number variants (CNV, second column of panels), and DNA methylation (METH, 207 
third column of panels), and summarized by Bonferroni confidence intervals (adjusting for all the 441 208 
significant genes in at least one cluster). Dots represent the average of features values across samples. 209 

 210 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/806323doi: bioRxiv preprint 

https://doi.org/10.1101/806323


12 
 

Cluster 6's signature was composed by 23 genes mapping onto chromosome 11: ALDH3B1, ANKRD13D, 211 
ANO1, AQP11, ARRB1, EMSY, CCND1, CTTN, KRTAP5-10, LRP5, LRRC32, TESMIN, MYO7A, NUMA1, 212 
PAK1, PPFIA1, RBM4, RPS6KB2, RSF1, SHANK2, TMEM134, TPCN2 and USP35. Every one of these 213 
genes exhibited significant copy gains, and all of them were also significantly upregulated, except for three 214 
genes with basal expression in Cluster 6: MYO7A, LRRC32, and ALDH3B1. Genes USP35, SHANK2, 215 
MYO7A, LRRC32, CTTN, CCND1, ARRB1, and ALDH3B1 were additionally hypo-methylated, while genes 216 
RSF1 and PPFIA1 were hyper-methylated (Figure 4).  217 

Cluster 7's signature was composed by 24 genes mapping onto chromosome 6. All of these genes (BTBD9, 218 
RRP36, CCND3, CNPY3, CUL7, FRS3, GUCA1A, BICRAL, KLC4, KLHDC3, LRFN2, MEA1, MED20, 219 
MRPL2, MRPS10, PEX6, PPP2R5D, RPL7L1, SRF, TAF8, TBCC, TOMM6, TRERF1, and UBR2) 220 
exhibited significant copy gains. All of them were significantly up-regulated, except by LRFN2, GUCA1A, 221 
BTBD9, that had basal levels in Cluster 7. Genes TRERF1, LRFN2, and FRS3 were additionally hypo-222 
methylated, while GUCA1A was hyper-methylated (Figure 4). 223 

 224 
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Figure 4: Gene signatures for Clusters 6, 7 and 8 in terms of gene expression, copy number variation, 225 
and methylation. The genes significantly de-regulated exclusively in Clusters 6, 7 and 8 were used to 226 
define signatures (y-axis). The features values (x-axis) of each gene are separated in gene expression (GE, 227 
first column of panels), copy number variants (CNV, second column of panels), and DNA methylation 228 
(METH, third column of panels), and summarized by Bonferroni confidence intervals (adjusting for all the 229 
441 significant genes in at least one cluster). Dots represent the average of features values across samples. 230 

Cluster 8's signature was composed by 15 genes mapping onto chromosome 11. All of these genes 231 
(ALDH3B1, ANO1, CCND1, CPT1A, CTTN, LRP5, MRPL21, NADSYN1, PPFIA1, RNF121, RSF1, 232 
SHANK2, TPCN2, UNC93B1, and USP35) exhibited significant copy losses. All of them except ANO1 233 
(with basal levels in cluster 7) were significantly downregulated. Additionally, Genes USP35 and 234 
NADSYN1 were significantly hyper-methylated, while UNC93B1, RSF1, MRPL21 and ANO1 were hypo-235 
methylated (Figure 4).  236 
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Discussion 237 

Most pan-cancer classifications rely on molecular alterations that clearly discriminate between tissue of 238 
origin13,15,16,19,20. However, as soon as tissue effects were removed, we have found that the cancer signal 239 
immediately emerged. Distinct cancer classes were formed, containing tumors from different cancer types. 240 
These classes were also characterized by very specific functional groups of omic features. We also noticed 241 
that the main source of synergy across omics arose from strong positive correlations between gene 242 
expression and copy number events. The expression of regulatory elements within the group of selected 243 
features (including transcription factors and the micro RNA hsa-mir-615b) was, on the other hand, not 244 
associated with the expression of their predicted targets. These observations support the role of copy 245 
numbers as a major force affecting tumor progression21–23. Contrarily, methylation had a minor impact in 246 
the definition of clusters. This result could be due to the role of methylation in the determination and 247 
differentiation of cell types24–26. As a consequence, methylation effects were perhaps removed together with 248 
cell-type effects. Nevertheless, abnormal methylation patterns might still have had a role in the expression 249 
of some genes characterizing tumor classes (e.g. expression of LRN4 and GUCA1A negatively correlated 250 
with promoter CpG islands average methylation).  251 

The tumor clusters C1, C4, C6, C7, and C8 had exclusive signatures (i.e. different of every other cluster). 252 
Interestingly, the clusters without distinct individual signatures were the ones with more favorable 253 
outcomes (C3, C2, and C5). One possible explanation for this is the frequent correspondence between more 254 
dramatic molecular alterations and worse clinical outcomes27,28. To gain insights about possible biological 255 
interactions within each signature, we used the accompanying bibliographic results provided by the 256 
STRING database29 (see Material and Methods section). The literature suggests a wide overlap between 257 
signatures in terms of gene functions (cell growth, division, small RNA metabolism, protein synthesis, 258 
maturation and transport, and mitochondrial dysfunction). In the case of signature C1 (most genes down-259 
regulated), the literature suggested NOP56 (a core component of the small nucleolar ribonucleic protein) 260 
as a central element in the signature; interacting with MKKS, NAA20 and PTPRA (genes with roles on 261 
mitotic division); ESF1, SNRPB, SNRPB2, POLR3F and CRNKL1 (involved in small RNA processing), 262 
PCNA and ITPA (involved correct DNA replication and repair), UBOX5, RRBP1, RBCK1 and NRSN2 263 
(protein synthesis, maturation and antigen presentation), RBBPP9 (resistance to growth inhibition of TGF); 264 
SIRPA and DSTN (cell adhesion)30–33. In the signature C1, NOP56 could be a candidate for future 265 
therapeutic intervention. Tumor suppressors NRSN2 and RBCK1 could also be considered. 266 

The three downregulated genes from signature C4 were involved in small RNA maturation (TDRD6, micro 267 
RNA expression and maturation), cell proliferation (PAQR8, plasma membrane progesterone receptor), and 268 
DNA repair (POLH, DNA polymerase involved in DNA repair). From these groups, PAQR8 and TDRD6 269 
could represent potential targets of therapy. Although neither of them has been directly related to cancer, 270 
other members of the PAQR family of progesterone receptors are known tumor suppressors, while   TDRD6 271 
has been reported as frequently down-regulated in breast cancer, suggesting its potential use as biomarker34. 272 
In the case of signature C6 (most genes upregulated), the literature suggests CTTN as interacting with two 273 
groups of genes within the signature, either by co-expression or co-localization in amplicons. One group 274 
consisted of invasion and anti-apoptotic related genes (e.g. SHANK, PAK1, PPFIA1) and ion transport 275 
(ANO1 and TPCN2)35,36. The other group consisted of CCND1 (cell cycle check points), LRPS (protein 276 
synthesis), RSF1 (chromatin remodeling), and USP35 (protein turnover; through amplicon-mediated 277 
overexpression in breast and gynecological cancers)37,38. Patients with signature C6 could perhaps benefit 278 
by  ANO1 inhibitory therapy36.  279 

Signature C7 was characterized by multiple genes co-expressing with KLHDC3 (involved in homologous 280 
recombination): MEA1 (spermatogenesis), CNPY3 (protein folding, antigen presentation), PPP2R5D 281 
(direct catalytic activity), RRP36 (small RNA synthesis), CCND3 (cyclin, cell cycle checks points), and 282 
MED20 (transcription).  KLHDC3 also belongs to the protein turnover and antigen presentation pathway, 283 
together with CUL7 and UBR2. The literature also suggests another group of co-expressing genes within 284 
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signature C7, consisting of RPL7L (ribosome), MRPL2 and MRPS10 (mitochondrial ribosome). These 285 
genes have also been found to physically interact in cell culture39,40. Signature C8 genes remarkably 286 
overlapped with signature C6 genes, but exhibited opposite regulation (i.e. up- instead of down-regulated). 287 
Additionally, the literature suggests interaction between CCND1, NADSYN1 and MRPL20 in signature 288 
C841,42. NADSYN1 has been proposed as target of inhibitory therapy in cancer43, while MRPL20  has been 289 
suggested as biomarker for gastric cancers44,45. From symmetry with signature C6, patients with signature 290 
C8 might possibly benefit from ANO1 inhibitory therapy36. 291 

The molecular classification of tumors generated clusters with clear differences in prognosis and severity, 292 
with C3 exhibiting better outcomes than the remaining clusters. C3 also resembled a previously reported 293 
“inflammatory” type, in terms of immune infiltration and cancer type composition (enriched for prostate 294 
adenocarcinoma, thyroid, and pancreatic carcinomas and having elevated values of markers for CD4+ Th17 295 
and Th1 cells and low genomic instability)18. Although the remaining clusters were clearly distinguished in 296 
terms of altered molecular processes, they were highly similar in terms of clinical and demographic 297 
characteristics. Further exploration of the link between clusters’ signatures and cancer phenotypes could 298 
aid in the development of novel biomarkers and therapies. For instance, signatures in clusters enriched for 299 
metastatic samples (C4 and C8) that remain one of the most severe cancer phenotypes could aid in the 300 
development of more efficient therapies46,47. Similarly, signatures could also rapidly address differences in 301 
tumor heterogeneity (e.g. C8 and C5 were notoriously more heterogeneous than the rest). Differences in 302 
immune infiltration (C6 with the lowest activated natural killers’ infiltration and C8 with the lowest 303 
lymphocytic one) could also imply the potential use of signatures to aid in immunotherapeutic decisions.  304 

Given the possibility of unveiling different biological channels altered in tumors of similar clinical and 305 
molecular characteristics, we believe this novel pan-cancer classification could aid in the identification of 306 
therapies for cancers without standard of care.  307 
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Material and Methods 311 

Pan-cancer data. The TCGA offers a demographically diverse sample with comprehensive and modern 312 
multi-omic data. We retrieved data from 5,408 from 33 cancer types made available by the Genome Data 313 
Commons (GDC) repository48, via the TCG-Assembler R package49. Omic data consisted of curated level-314 
three data of genome-wide gene expression (GE), DNA methylation (METH), and copy number variants 315 
(CNV) profiles by tumor sample. GE profiles by sample corresponded with the logarithm of RNA-Seq 316 
counts by gene (Illumina HiSeq RNA V2 platform). METH profiles corresponded with CpG sites B-values 317 
from the Illumina HM450 platform, summarized at the CpG island level, using the maximum connectivity 318 
approach from the WGCNA R package50, and further transformed into M-values (M=β/(1-β); Du et al. 319 
2010). CNV profiles corresponded to gene-level copy number intensity derived from Affymetrix SNP 320 
Array 6.0 platform, using human genome V19 as reference. The quality-control filtering process included 321 
the exclusion of features with all zeros, or coefficient of variation less than 1%. Samples or features with a 322 
disproportion of missing data (>20%) and/or single-sample batches were also excluded. Within the 323 
remaining samples, missing values were imputed by k-near neighbors, with k = 3. Each omic block was 324 
adjusted by batch effects using ComBat52. Final sample size after retaining subjects with information for 325 
all three omics was n=5,408. 326 

Demographic information included gender, self-reported race and ethnicity, and patient's age at the moment 327 
diagnosis (Table 1). Clinical information consisted of overall survival time and vital status at the final 328 
follow up, type of sample (from primary tumor, metastases, or normal tissue), tumor free fraction. We also 329 
used previously information from “The Immune Landscape of Cancer”18 with significant differences 330 
between clusters according to Kruskal-Wallis tests53. These covariates included: intra-tumor heterogeneity 331 
fraction (as subclonal genome fraction), and rates of non-silent mutations, aneuploidy, homologous 332 
recombination defects (all three derived as deviations from the normal genome), proliferation (normalized 333 
difference between number of dividing and non-dividing cells), and information from immune infiltrations 334 
(including scores for CD4+ cells, macrophages, lymphocytes, and natural killers) (See supplementary 335 
material in 18 for a detailed description of the scores calculation). Briefly, immune infiltration fractions were 336 
derived by CIBERSORT54, assigned to different cell classes, and multiplied by the leukocyte fraction 337 
derived from methylation data18.  338 

Omic integration, clustering and features selection. Our method can be conceptually described by the 339 
following four steps.  340 

Step 1) Identification of major axes of variation and features selection. Integrative methods should be 341 
able to capture combined effects across omic sites that could either span across omic layers (e.g. epigenetics, 342 
gene expression, etc.) or extend genome wide (e.g. considering concomitantly contiguous CpG sites or even 343 
separated away sites). Let,  344 

𝐗𝐗 = [𝐗𝐗𝟏𝟏, … , 𝐗𝐗𝐋𝐋]  345 

where 𝐗𝐗𝑙𝑙 𝑙𝑙:{1,…,L} is a matrix representing the 𝑙𝑙-th omic, which row ith contains information representing 346 
a sample on one subject, and column jth represents an omic feature (e.g., a feature could be the expression 347 
of a specific gene, or the methylation level for a given CpG site). Each group of features coming from a 348 
different omic block is centered, standardized, and divided by �𝑝𝑝𝑙𝑙, where 𝑝𝑝𝑙𝑙 is the number of features from 349 
the 𝑙𝑙-th omic block. This is done so larger groups of features do not dominate the data integration step. 350 
Next, we conduct a sparse Singular Value Decomposition (sSVD) of 𝐗𝐗 to generate one factor that collapses 351 
the redundancies in the omics (by creating independent columns representing the independent signals across 352 
omic features) and one that collapses redundancies across samples, grouping subjects with similar signaling. 353 
This linear factorization can be represented as 𝐗𝐗 = 𝐙𝐙𝐙𝐙, where 𝐙𝐙 represents (linearly) independent axes of 354 
variability across subjects (i.e. a lower rank approximation), while 𝐙𝐙 represents loadings representing the 355 
contribution of each omic feature to this variability. This representation is common to many unsupervised 356 
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omic integration methods, but is independent of distributional assumptions on each element. In this 357 
formulation, 𝐙𝐙 and 𝐙𝐙 can obtained by minimizing: 358 

                                                                            ‖𝐗𝐗 − 𝐙𝐙𝐙𝐙‖22 + 𝑃𝑃𝜆𝜆,𝛼𝛼(𝐙𝐙)                           (Eq. 1) 359 

To the left of the plus sign is the Frobenius norm (a matrix analogous of Euclidean distance) of the 360 
difference between 𝐗𝐗 and the product of 𝐙𝐙 and 𝐙𝐙. To the right of the plus sign is a penalty on the elements 361 
of W to impose sparsity. The purpose of this penalty is to zero-out those features with minor contributions 362 
to the columns of Z. To remove the effect of tissues, or other covariates that can influence the selection of 363 
features, we pre-multiplied X by I – Q(Q’Q)-1Q’, where I is a diagonal matrix of ones, and Q is an indicator 364 
matrix to represent the membership to a given organ or tissue. 365 

Step 2) Identification of omic features (expression of genes, methylation intensities, copy gains/losses) 366 
influencing the axes. The linear decomposition achieved by SVD is an intuitive and straightforward way 367 
of integrating omics. However, the variability across omics can be governed by just a few features (i.e. 368 
highly sparse data) or by groups of interdependent features (i.e. very redundant data). To handle these 369 
limitations, we chose 𝑃𝑃𝜆𝜆,𝛼𝛼(𝐙𝐙) to be the Elastic Net penalty 55, 𝜆𝜆(𝛼𝛼‖𝐙𝐙‖1 + (1 − 𝛼𝛼)‖𝐙𝐙‖22), where 𝛼𝛼 370 
balances the regularization between LASSO and ridge regression types of regularization, and 𝜆𝜆 is associated 371 
with the degree of sparsity (i.e. how many features enter in the model?). Unlike LASSO, EN can select 372 
groups of correlated features, while zeroing out the irrelevant ones56. Equation 1 is solved by obtaining z1w1 373 
(where z1 is the first column of Z and w1  is the first row of W) with coordinate descent for given values of 374 
𝜆𝜆 and 𝛼𝛼, following the algorithm of 57, as implemented in58, but with the following thresholding operator: 375 
sign(w1)| |w1| - 𝜆𝜆𝛼𝛼 |+ / 𝜆𝜆 (1 − 𝛼𝛼) (where |x|+ represents the positive part x). Consecutive layers are then 376 
obtained by subtracting the previous ones from X and repeating the same procedure, as many times as the 377 
number of desired axes of variation. The optimal value for 𝜆𝜆 was empirically determined, as suggested by57. 378 
We start by 1) calculating W over a dense grid of values for 𝜆𝜆 (lower 𝜆𝜆 yields less sparsity), 2) calculating 379 
the proportion of variance of X explained by ZW (PVX) for each 𝜆𝜆, and 3) choosing the 𝜆𝜆 at which PVX 380 
has its minimum second derivative. Since PVX decreases monotonically with 𝜆𝜆, this point represents a 381 
drastic drop on PVX, suggesting that the most relevant features accounting for the data variability are 382 
already incorporated57. The value 𝛼𝛼 was fixed to 0.5 to have an equal contribution of LASSO and Ridge 383 
penalties.  Once a subset of features was selected, we mapped them onto genes using annotation data of 384 
genomic position downloaded from the USCE web browser tool (GRCh3859). The enrichment of functional 385 
classes (ontologies, pathways, complexes, etc.) among these genes was tested using the Enrichr package60. 386 

Step 3) Mapping major axes of variation via tSNE and cluster definition by DBSCAN. Additionally, SVD 387 
can be coupled with non-linear embedding methods to deal with highly heterogeneous data. Here, we 388 
applied t - Stochastic Neighbor Embedding (tSNE) on 𝐙𝐙14. tSNE is a technique that efficiently takes on 389 
local neighborhoods present in high dimension (eventually representing clusters of data), and conserves 390 
them while projecting onto a lower dimensional display61. This makes tSNE a very powerful technique to 391 
reveal clusters, even in very heterogeneous and convoluted data settings62. The algorithm has two 392 
fundamental parameters: perplexity (which accounts for the effective number of local neighbors), and cost 393 
(related to the difference between the neighborhood’s distribution in the higher and lower dimensional 394 
spaces). Since low cost is an indication of displays more likely to reveal clusters, we selected the maps 395 
corresponding with the lowest costs among perplexities of 50 and 100, using 100 thousand iterations to 396 
ensure convergence. We applied Density-Based Spatial Clustering of Applications with Noise 397 
(DBSCAN63) to identify clusters. DBSCAN is one of the most powerful clustering techniques to delimit 398 
clusters of irregular shape, such as the ones tSNE produces64. Essentially, DBSCAN identifies groups of 399 
densely packed points, without the need of specifying the number of clusters a priori63. Neighborhoods of 400 
nearby points can then be tuned by evaluating different cluster partitions over a grid of possible 401 
neighborhood sizes. We tuned this parameter by maximizing the Silhouette score, as in Taskensen et al. 402 
2016. 403 
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Step 4) Molecular and clinical characterization of clusters. The association between clusters and scores 404 
representing genes and functional classes selected, was studied to define the signatures representing each 405 
cluster. Scores were calculated by tacking the columns of X mapping onto a gene, or functional class, and 406 
post-multiplying it by the corresponding elements of W’. Due to the transformations of features values 407 
within each omic block (e.g. logarithm of standardized RPKM counts, Beta to M-values for CpG islands), 408 
scores can be considered to be approximately normal. Using the scores of each gene and functional class 409 
as response, and the clusters as explanatory variables, we then conducted a series of ANOVA tests to 410 
determine what genes or functional classes were significant in at least one cluster. All pairwise comparisons 411 
between significant genes and functional classes were studied via Tukey tests. Gene signatures were defined 412 
based on those genes significantly deregulated in a single cluster. For both types of tests, we used a 413 
Bonferroni multiple-test correction with P(type I –error) = 0.05 / {#selected genes and functional classes}.  414 

To discuss the possibility of physical or functional relationships between the genes in each signature, we 415 
used the STRING data base of protein-protein interactions29. We considered an interaction as biologically 416 
meaningful whenever it was backed up by empirical data, such as immune precipitation, microarrays, 417 
curated databases, etc. Interactions suggested by text-mining (two genes reported in the same scientific 418 
publication) were not considered, except in the cases when a publication’s results gave evidence of 419 
interaction (e.g. genes co-expressing, co-locating, etc.). 420 

The association between clusters and phenotypes (e.g. clinical, demographic, and immunologic covariates) 421 
was evaluated via Kruskal-Wallis test53 (non-parametric analogous of ANOVA). All significant results 422 
were further evaluated by Dunn test65 for pairwise differences (non-parametric analogous of Tukey tests). 423 
All steps of our method were implemented in the R programming language66, using irlba67, dbscan63, and  424 
Rtsne68 packages. 425 
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