1 Reactive astrocyte-driven epileptogenesis is induced by microglia initially

2 activated following status epilepticus

- 3
- 4 Short title: Inter-glial communication underlies epileptogenesis after
- 5 status epilepticus
- 6
- 7 Fumikazu Sano^{1,2}, Eiji Shigetomi¹, Youichi Shinozaki¹, Haruka Tsuzukiyama¹,
- 8 Kozo Saito^{1,3}, Katsuhiko Mikoshiba⁴, Kanji Sugita², Masao Aihara², Schuichi
- 9 Koizumi^{1*}
- 10
- 11 1 Department of Neuropharmacology, Interdisciplinary Graduate School of
- 12 Medicine, University of Yamanashi, Yamanashi, Japan,
- 13 2 Department of Pediatrics, Faculty of Medicine, University of Yamanashi,
- 14 Yamanashi, Japan,
- 15 3 Department of Neurology, Graduate School of Medical Science, Kyoto
- 16 Prefectural University of Medicine, Kyoto, Japan,
- 17 4 Laboratory for Developmental Neurobiology, RIKEN Center for Brain Science,
- 18 Saitama, Japan

19

20 <u>*skoizumi@yamanashi.ac.jp</u> (SK)

22 **Abbreviations**:

- 23 2-APB, 2-aminoethoxydiphenyl borate; CPA, cyclopiazonic acid; PBS,
- 24 phosphate buffered saline; RT-PCR, reverse transcription-polymerase chain
- reaction; SE, status epilepticus; TTX, tetrodotoxin; WT, wild-type

27 Abstract

28	Extensive activation of glial cells during a latent period has been well
29	documented in various animal models of epilepsy; however, it remains unknown
30	whether such glial activation is capable of promoting epileptogenesis. Here, we
31	show that temporally distinct activation profiles of microglia and astrocytes
32	collaboratively contribute to epileptogenesis in a drug-induced status epilepticus
33	model. We found that reactive microglia appear first, followed by reactive
34	astrocytes and increased susceptibility to seizures. Pharmacological intervention
35	against microglial activation reduces astrogliosis, aberrant astrocyte Ca ²⁺
36	signaling, and seizure susceptibility. Reactive astrocytes exhibit larger Ca ²⁺
37	signals mediated by IP ₃ R2, whereas deletion of this type of Ca ²⁺ signaling
38	reduces seizure susceptibility after status epilepticus. Together, our findings
39	indicate that the sequential activation of glial cells constitutes a cause of
40	epileptogenesis after status epilepticus.

- 41
- 42

43 Introduction

44	Epileptogenesis; i.e., the process leading to epilepsy, is a common sequel of
45	brain insults such as brain injury, cerebrovascular disease, or status epilepticus
46	(SE) [1,2] Such brain insults are typically followed by a latent period, during
47	which the brain undergoes a cascade of morphological and functional changes
48	over month to years prior to the onset of chronic epilepsy [3,4]. Extensive
49	activation of glial cells, including microglia and astrocytes, has been well
50	documented during this latent period in various animal models of epilepsy [5–7].
51	Although the association of pathology with reactive glial cells is widely
52	recognized, it is unclear whether such microglial and astrocytic activation
53	constitutes primary causes of epilepsy or rather represents the results of
54	repeated seizures. Moreover, the potential for these reactive glial cells to
55	comprise candidates for epileptogenesis raises the further mechanistic question
56	regarding whether activated glial cells might contribute to epileptogenesis
57	independently or collaboratively.
58	In chemoconvulsant-induced epilepsy models, microglia are activated and
59	produce pro-inflammatory mediators immediately following seizure onset [8].
60	Activated microglia can decrease the seizure threshold in animal models by

 $\mathbf{5}$

61	releasing pro-inflammatory molecules with neuromodulatory properties [9].
62	Notably, the extent of microglial activation correlates with the seizure frequency
63	in human drug-resistant epilepsy [10]. Alternatively, such microglial activation
64	may not persist chronically. For example, pro-inflammatory molecules are
65	detectable in microglia following a seizure but the expression diminishes after
66	several hours [11]. Furthermore, although the activation of microglia is well
67	characterized, it is unclear whether these activated microglia affect developing
68	epileptogenic processes directly or through the modulation of other cells, such
69	as subsequent astrocytic activation.
70	Reactive astrogliosis is also one of the most common pathological features in
70 71	Reactive astrogliosis is also one of the most common pathological features in epilepsy and other brain insults [12,13]. Although reactive astrogliosis is
71	epilepsy and other brain insults [12,13]. Although reactive astrogliosis is
71 72	epilepsy and other brain insults [12,13]. Although reactive astrogliosis is considered the consequence of repetitive seizures, some evidence that reactive
71 72 73	epilepsy and other brain insults [12,13]. Although reactive astrogliosis is considered the consequence of repetitive seizures, some evidence that reactive astrocytes may be responsible for repetitive seizures is available. In the epileptic
71 72 73 74	epilepsy and other brain insults [12,13]. Although reactive astrogliosis is considered the consequence of repetitive seizures, some evidence that reactive astrocytes may be responsible for repetitive seizures is available. In the epileptic brain, reactive astrocytes exhibit physiological and molecular changes, such as
 71 72 73 74 75 	epilepsy and other brain insults [12,13]. Although reactive astrogliosis is considered the consequence of repetitive seizures, some evidence that reactive astrocytes may be responsible for repetitive seizures is available. In the epileptic brain, reactive astrocytes exhibit physiological and molecular changes, such as reduced inward rectifying K ⁺ current [14], changes in transporters [15], or

79	[18,19]. Calcium transients in astrocytes are thought to modulate the release of a
80	number of gliotransmitters that could influence synaptic function, synapse
81	formation [20–22], and neural circuit excitability [23]. In particular, several
82	previous studies showed that astrocyte calcium activity could contribute to
83	excitotoxic neuronal death through glutamate release following SE [24,25].
84	However, the functional changes including Ca ²⁺ signaling of reactive astrocytes
85	after SE and their causal roles in epileptogenesis remain largely uncertain.
86	To evaluate the role of inter-glial communication between different types of
87	glial cells in the process of epileptogenesis, we assessed the spatiotemporal
88	dynamics of glial activation following SE. Using cell-type specific manipulation,
89	we show that relative alterations of both microglia and astrocytes play causal
90	roles in epileptogenesis. Moreover, reactive glia are temporally distinct and
91	collaboratively contribute to epileptogenesis. Reactive microglia appear first and
92	induce reactive astrocytes in the hippocampus after SE. These reactive
93	astrocytes present larger IP $_3$ R2-mediated Ca ²⁺ signals, which are essential for
94	induction of the increased seizure susceptibility after SE. We clearly
95	demonstrate that inhibition of microglial activation reduces astrogliosis, aberrant
96	astrocytic Ca ²⁺ signaling, and seizure susceptibility. We therefore conclude that

 $\mathbf{7}$

97	the sequential activation of glial cells; i.e., the initial activation of microglia
98	followed by astrocytic activation, is a cause of epileptogenesis after SE.
99	
100	
101	Results
102	Astrocytic activation follows microglial activation after SE
103	To determine the contributions of glial cells to epileptogenesis, we used the
104	pilocarpine model of epilepsy in mice, a model known to be highly isomorphic
105	with human temporal lobe epilepsy [26,27]. Repeated low doses of pilocarpine
106	(100 mg kg ⁻¹) were injected intraperitoneally (i.p.) until the onset of SE (Fig 1A).
107	This ramping protocol has been shown to reduce mortality after SE [28,29]. To
108	investigate how glial cell activation affects the epileptogenic process, we first
109	examined the spatiotemporal pattern of microglial and astrocytic activation in the
110	hippocampus following SE. We initially assessed microglial and astrocytic
111	activation with immunohistochemistry using cell-type-specific activation markers
112	at 1, 3, 7, and 28 days after SE (Fig 1B and 1D). The area of Iba1-positive
113	microglia was significantly increased in CA1 from 1 to 7 days after SE, which
114	was followed by an increase in the area of GFAP-positive astrocytes in CA1 from

115 7 to 28 days after SE (Fig 1C and 1E).

116

117	Fig 1. Astrogliosis is observed following microglial activation after SE.
118	(A) As shown in the experimental protocols, mice were administered pilocarpine
119	to achieve stage 5 seizures. The second SE was induced using the same
120	protocol 4 weeks after the first SE. SP (PP) indicates that mice were injected
121	with saline (pilocarpine) at 8 weeks of age followed by an injection of pilocarpine
122	at 12 weeks of age. (B and C) Representative microphotographs showing the
123	spatiotemporal characteristics of Iba-1 (B) or GFAP (C) expression in CA1 after
124	SE. Fifteen images were captured per z-stack image (0.5 μ m step). Cont,
125	control; D, day. (D and E) Quantification of the temporal profile of Iba-1 positive
126	microglia (D) or GFAP positive astrocytes (E) after SE (n = 5 mice (D); n = 5, 5,
127	5, 5, 7 mice, (E), * <i>P</i> < 0.05, ** <i>P</i> < 0.01 vs. control, one-way ANOVA (<i>P</i> < 0.001)
128	with Dunnett's test). (F) Dot plots showing dose of pilocarpine required for the
129	induction of the second SE (n = 14, 13 mice, $*P < 0.05$, Mann–Whitney U-test).
130	(G) Scatter plot showing dose of pilocarpine required for the induction of the first
131	(at 8 weeks of age) and second (at 12 weeks of age) SE in the PP group (n = 13
132	mice, ** $P < 0.01$, Wilcoxon signed-rank test). Values represent the means ±

133 SEM.

134

135	To examine whether the first SE increased seizure susceptibility, the second
136	SE was induced 4 weeks after the first SE. A lower dose of pilocarpine was
137	required for the induction of the second SE in mice with prior exposure to
138	pilocarpine-induced SE at 8 weeks of age (PP) compared to those without such
139	exposure (SP) (Fig 1F). In addition, a lower dose of pilocarpine was required for
140	the induction of the second SE compared to the first SE (Fig 1G). These data
141	indicated that the first SE increased seizure susceptibility at 4 weeks after the
142	first SE. A comparison with the results in Fig 1 suggested that the temporal
143	pattern of astrocyte activation, rather than that of microglia, correlates well with
144	the increase of seizure susceptibility.
145	
146	Ca ²⁺ hyperactivity via IP ₃ R2 in reactive astrocytes after SE
147	To examine the SE-induced functional changes in astrocytes, Ca ²⁺ imaging was
148	performed from hippocampal slices prepared from wild-type (WT) and
149	Glast-CreERT2::flx-GCaMP3 mice [30,31]. Astrocytes displayed significantly

151	Movie). To test whether hyperactivity of astrocytes is influenced by neuronal
152	hyperactivity, we blocked neuronal transmission by topically applying the
153	voltage-gated sodium channel blocker tetrodotoxin (TTX; 1 μ M). TTX did not
154	affect the amplitude of astrocytic Ca ²⁺ signals (Fig 2A, 2D and 2E) (S2 Movie).
155	
156	Fig 2. Reactive astrocytes exhibit IP ₃ R2-mediated Ca ²⁺ hyperactivity, which
157	is essential for epileptogenesis.
158	(A-C) Ca ²⁺ dynamics of astrocytes approximately 4 weeks after SE in the CA1
159	stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and after
160	TTX (1 μM) (A), CPA (20 μM) (B), and 2-APB (100 μM) (C) application. (D-I) Box
161	plots showing amplitudes of Ca^{2+} signals before and after TTX (1 μM) (D), CPA
162	(20 μM) (F), and 2-APB (100 μM) (H) application. (n = 10, 13, 14 cells/2 mice,
163	*** <i>P</i> < 0.001, unpaired t-test). Cont, control. Cumulative probability plots
164	showing amplitudes (dF/F) of Ca ²⁺ signals before and after TTX (not significant
165	($P > 0.05$), Kolmogorov–Smirnov test) (E), CPA ($P < 0.001$, Kolmogorov–
166	Smirnov test) (G), and 2-APB (<i>P</i> < 0.001, Kolmogorov–Smirnov test) (I)
167	application. (J) Astrocytic Ca ²⁺ dynamics by Fluo4 in the CA1 stratum radiatum
168	region in WT control, WT after SE, and IP $_3$ R2KO mice after SE. (K-N) Box plots

169	showing Ca^{2+} signal amplitudes (dF/F) (K) and frequency (M) (n = 57, 32, 85
170	cells/2, 2, 3 mice, *** P < 0.001, unpaired t-test). Cumulative probability plots
171	showing Ca ²⁺ signal amplitudes (dF/F) (L) and frequency (N) ($P < 0.001$,
172	Kolmogorov–Smirnov test). (O) Dot plots showing dose of pilocarpine required
173	for the induction of the second SE in IP $_3$ R2KO mice. SP (PP) indicates mice
174	were injected with saline (pilocarpine) at 8 weeks of age followed by an injection
175	of pilocarpine at 12 weeks of age. (n = 10 mice, N.S., not significant ($P > 0.05$),
176	Mann–Whitney U-test). (P) Scatter plot showing dose of pilocarpine required for
177	the induction of the first (at 8 weeks of age) and second (at 12 weeks of age) SE
178	in the PP group regarding IP3R2KO mice (n = 10 mice, N.S., not significant (P >
179	0.05), Wilcoxon signed-rank test). Note: The first pilocarpine did not affect the
180	dose required for the second SE in IP $_3$ R2KO, see Fig 1G.
181	
182	To elucidate the molecular mechanisms involved in astrocytic Ca ²⁺
183	hyperactivity, we applied cyclopiazonic acid (CPA; 20 μM) to deplete intracellular
184	calcium stores. CPA significantly reduced the amplitude of astrocytic Ca ²⁺
185	signals after SE (Fig 2B, 2F and G) (S2 Movie). Then, we applied the
186	membrane-permeable IP_3 receptor antagonist 2-aminoethoxydiphenyl borate

187	(2-APB; 100 μ M). 2-APB also significantly reduced the amplitude of astrocytic
188	Ca ²⁺ signals after SE (Fig 2C, 2H and 2I) (S4 Movie). To confirm that astrocytic
189	Ca ²⁺ hyperactivity is completely dependent on the IP_3 receptor, we performed
190	Ca ²⁺ imaging in IP ₃ R2 knockout (KO) mice [32]. The amplitude of astrocytic Ca ²⁺
191	signals after SE was significantly decreased in IP $_3$ R2KO mice compared with
192	that in WT (Fig 2J, 2K, 2L, 2M and 2N). The frequency of astrocytic Ca ²⁺ signals
193	after SE was also significantly decreased in IP $_3$ R2KO mice (Fig 2M and 2N) (S5
194	Movie). These results suggested that astrocytic Ca ²⁺ hyperactivity after SE
195	should be dependent on IP $_3$ R2-mediated Ca ²⁺ release from internal stores.
196	
197	IP₂R2KO mice exhibit rescue of the increased seizure susceptibility

¹⁹⁷ IP₃R2KO mice exhibit rescue of the increased seizure susceptibility

198	To clarify the role of astrocytic Ca ²⁺ hyperactivity after SE in epileptogenesis, we
199	investigated seizure susceptibility after SE in IP $_3$ R2KO mice [32]. No differences
200	in the dose of pilocarpine required for the induction of the first SE were observed
201	between IP $_3$ R2KO and WT mice (Fig 1F and 2O). These data indicated that
202	IP ₃ R2-mediated Ca ²⁺ signaling in astrocytes does not alter the acute responses
203	to pilocarpine.

In IP₃R2KO mice, the area of Iba1-positive microglia was significantly

205	increased in CA1 at 1 day after SE, suggesting that microglial activation after SE
206	was comparable in IP $_3$ R2KO and WT mice (S1 Fig). However, there was no
207	significant change in the dose of pilocarpine required for the induction of the
208	second SE in SP compared with PP mice (Fig 2O). There was no significant
209	change in the dose of pilocarpine required for the induction of the first and
210	second SE in IP ₃ R2KO mice (Fig 2P). These results suggested that
211	IP_3R2 -mediated astrocytic Ca^{2+} hyperactivity is essential for the induction of the
212	increased seizure susceptibility after SE.
213	
214	Microglia inhibition reduces activated astrocyte morphology
214 215	Microglia inhibition reduces activated astrocyte morphology Our data indicated temporal differences between activation of microglia and
215	Our data indicated temporal differences between activation of microglia and
215 216	Our data indicated temporal differences between activation of microglia and astrocytes; i.e., earlier and later onset after SE, respectively. To reveal features
215 216 217	Our data indicated temporal differences between activation of microglia and astrocytes; i.e., earlier and later onset after SE, respectively. To reveal features of the activated microglia after SE, we investigated the changes in mRNA levels
215 216 217 218	Our data indicated temporal differences between activation of microglia and astrocytes; i.e., earlier and later onset after SE, respectively. To reveal features of the activated microglia after SE, we investigated the changes in mRNA levels of pro-inflammatory cytokines that are relevant to microglial activation by
 215 216 217 218 219 	Our data indicated temporal differences between activation of microglia and astrocytes; i.e., earlier and later onset after SE, respectively. To reveal features of the activated microglia after SE, we investigated the changes in mRNA levels of pro-inflammatory cytokines that are relevant to microglial activation by quantitative reverse transcription-polymerase chain reaction (RT-PCR) (Fig 3A,

tested, we found that *Tnf* and *ll1b* mRNAs were also significantly upregulated in

- the isolated hippocampal microglia at 1 day after SE (Fig 3A).
- 225

Fig 3. Microglia inhibition with minocycline and depletion with CSF1R

- antagonist (PLX5622) reduces astrogliosis.
- (A) Microfluidic quantitative RT-PCR analysis of mRNA in total RNA extracted
- from hippocampal microglia after SE. Relative ratios of *Gapdh*-normalized

mRNA to the corresponding control (Cont) are shown (n = 3 samples/9 mice,

231 ***P < 0.001 vs. control, one-way ANOVA (P < 0.01, P < 0.001) with Dunnett's

- test). (B and C) Quantitative RT-PCR analysis of *Tnf* and *ll1b* mRNA in total
- hippocampal RNA after SE. Relative ratios of *Gapdh*-normalized mRNA to the
- corresponding control are shown (n = 5 mice, **P* < 0.05, ****P* < 0.001 vs. control,

one-way ANOVA (*P* < 0.001, *P* < 0.05) with Dunnett's test). (D) Experimental

- scheme for minocycline post-treatment-mediated microglia inhibition. (E-H)
- 237 Representative microphotographs showing the spatiotemporal characteristics of
- ²³⁸ Iba-1 (E) and GFAP (F) expression and quantification of Iba-1 positive microglia
- (G) and GFAP positive astrocytes (H) in CA1 with or without minocycline
- post-treatment after SE. Fifteen images were collected per z-stack image (0.5

241	µm step). (n = 5 mice, N.S., not significant (<i>P</i> > 0.05), * <i>P</i> < 0.05, *** <i>P</i> < 0.001,
242	one-way ANOVA ($P < 0.01$) with Bonferroni test). (I and J) Quantitative RT-PCR
243	analysis as in (B and C) with or without minocycline post-treatment. (n = 5 mice,
244	N.S., not significant ($P > 0.05$), * $P < 0.05$, unpaired t-test). (K) Experimental
245	scheme for PLX5622-mediated microglia depletion. (L-O) Representative
246	microphotographs showing the spatiotemporal characteristics of Iba-1 (L) and
247	GFAP (M) expression and quantification of Iba-1 positive microglia (N) and
248	GFAP positive astrocytes (O) in CA1 with or without PLX5622 after SE. Fifteen
249	images were captured per z-stack image (0.5 μ m step). (n = 5 mice, *P < 0.05,
250	** P < 0.01 vs. control of AIN-76A (control diet), ^{##} P < 0.01 vs. control of
251	PLX5622, $^{\$}P < 0.05$, $^{\$}P < 0.01$, $^{\$\$}P < 0.001$ vs. AIN-76A (corresponding day),
252	one-way ANOVA ($P < 0.01$) with Dunnett's test and unpaired t-test). (P)
253	Quantitative RT-PCR analysis as in (B and C) with or without PLX5622. (n = 5
254	mice, * <i>P</i> < 0.05, ** <i>P</i> < 0.01, unpaired t-test).
255	
256	To clarify whether microglial activation is required for astrogliosis, we
257	investigated the effect of post-treatment with the inhibitor, minocycline (Fig 3D)

[33–35]. To confirm the efficacy of minocycline in this protocol, microglial 258

259	activation was assessed by immunohistochemistry and quantitative RT-PCR.
260	Minocycline post-treatment prevented the increase in the area of Iba1-positive
261	cells in CA1 at 3 days after the first SE (Fig 3E and 3G) along with an increase in
262	Tnf but not II1b mRNA in the hippocampus at 1 day after the first SE (Fig 3I and
263	3J). Notably, microglia inhibition with minocycline post-treatment prevented the
264	increase in the area of GFAP-positive cells in CA1 at 28 days after the first SE
265	(Fig 3F and 3H).
266	To further confirm that acute microglial activation plays an important role in
267	the morphological activation of astrocytes after SE, we applied PLX5622, a
268	CSF1R antagonist, to deplete microglia (Fig 3K) [36–38]. PLX5622 treatment
269	prevented the increase in the area of Iba1-positive cells in CA1 from 1 to 7 days
270	after the first SE (Fig 3L and 3N). In addition, <i>Aif1</i> and <i>Tnf</i> mRNA levels were
271	significantly decreased at 1 day after SE with PLX5622 treatment compared with
272	those in the control diet group (Fig 3P). Similarly, the increased area of
273	GFAP-positive astrocytes in CA1 from 7 to 28 days after SE in control diet
274	(AIN-76A) mice was prevented in PLX5622 treated mice (Fig 3M and 3O). To
275	identify the optimal timing of microglial inhibition to prevent astrogliosis, we
276	applied PLX5622 from 3 weeks after SE (Fig 4A). This later PLX5622 treatment

277	decreased the area of Iba1-positive cells in CA1 at 28 days after the first SE (Fig
278	4B and 4D) but did not prevent the increased area of GFAP-positive astrocytes
279	(Fig 4C and 4E). These findings showed that the initial reactive microglia are
280	required to induce morphological activation of astrocytes after SE.
281	
282	Fig 4. Microglia depletion with CSF1R antagonist (PLX5622) at late phase
283	after SE does not reduce astrogliosis and increased seizure susceptibility.
284	(A) Experimental scheme for microglia depletion with PLX5622 at the late phase
285	after SE. (B and C) Representative microphotographs showing the
286	spatiotemporal feature of Iba-1 (B) and GFAP (C) expression in CA1 with or
287	without PLX5622 after SE. Fifteen images were collected per z-stack image (0.5
288	μm step). Cont, control; D, day. (D and E) Quantification of the temporal profile
289	of Iba-1 positive microglia (D) and GFAP positive astrocytes (E) after SE (n = 5
290	mice, *** P < 0.01 vs. control, unpaired t-test, ### P < 0.01 vs. AIN-76A
291	(corresponding day), one-way ANOVA ($P < 0.001$) with Dunnett's test). Values
292	represent the means ± SEM.
293	

294 Microglia inhibition reduces astrocytic Ca²⁺ hyperactivity

295	We then investigated whether microglial activation is required for astrocytic Ca ²⁺
296	hyperactivity after SE. We also used a pharmacological approach to inhibit the
297	early microglial activation after SE. Microglia inhibition with minocycline reduced
298	the larger and frequent Ca ²⁺ signals of astrocytes (S1 Movie) (Fig 5A, 5B, 5C,
299	5D and 5E). Similarly, the amplitude and frequency of fluo-4AM-labeled
300	astrocytic Ca ²⁺ signaling after SE were significantly increased in control diet
301	(AIN-76A) mice (Fig 5F, 5H, 5I, 5J and 5K) (S6 Movie). Conversely, the larger
302	and frequent Ca ²⁺ signals after SE were significantly reduced by the PLX5622
303	treatment (Fig 5G, 5L, 5M, 5N and 5O) (S7 Movie). These results indicated that
304	acute microglial activation is essential for the changes of astrocytic Ca ²⁺ activity
305	after SE.
306	
307	Fig 5. Microglia inhibition with minocycline or CSF1R antagonist (PLX5622)
308	reduces the increased astrocytic Ca ²⁺ hyperactivity following SE.
309	(A) Ca ²⁺ dynamics of astrocytes approximately 4 weeks after SE in the CA1
310	stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice with or without
311	minocycline treatment. (B-E) Box plots showing Ca ²⁺ signal amplitude (dF/F) (B)

313	*** $P < 0.001$, unpaired t-test). Cumulative probability plots showing Ca ²⁺ signal
314	amplitude (dF/F) ($P < 0.001$, Kolmogorov–Smirnov test) (C) and frequency (not
315	significant ($P > 0.05$), Kolmogorov–Smirnov test) (E). (F and G) Ca ²⁺ dynamics
316	of astrocytes approximately 4 weeks after SE in the CA1 stratum radiatum
317	region in Glast-CreERT2::flx-GCaMP3 mice with (G) or without (F) PLX5622
318	treatment. (H-K) Box plots showing Ca^{2+} signal amplitude (dF/F) (H) and
319	frequency (J) in the AIN-76A (control diet) group. (n = 70, 58 cells/2 mice, $***P <$
320	0.001, unpaired t-test). Cumulative probability plots showing Ca ²⁺ signal
321	amplitude (dF/F) ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–Smirnov test) (I) and frequency (I) and frequency (I) and frequen
322	0.001, Kolmogorov–Smirnov test) (K) in the AIN-76A (control diet) group. (L-O)
323	Box plots showing Ca^{2+} signal amplitude (dF/F) (L) and frequency (M) in the
324	PLX5622 group. (n = 61, 71 cells/2 mice, N.S., not significant ($P > 0.05$),
325 326	unpaired t-test). Cumulative probability plots showing Ca^{2+} signal amplitude (dF/F) (not significant ($P > 0.05$), Kolmogorov–Smirnov test) (M) and frequency
327	(not significant ($P > 0.05$), Kolmogorov–Smirnov test) (O) in the PLX5622 group.
328	
020	

329 Microglia inhibition rescues enhanced seizure susceptibility

330 Finally, we tested whether microglia inhibition rescued the increased seizure

331	susceptibility following SE. Post-treatment with minocycline following the first SE
332	prevented the increased seizure susceptibility (Fig 6A and 6B). No difference
333	was observed between control diet and PLX5622-treated mice in the dose of
334	pilocarpine required for the induction of the first SE (Fig 6C), indicating that
335	microglia inhibition does not alter the acute responses to pilocarpine. In contrast,
336	a lower dose of pilocarpine was required for the induction of the second SE in
337	control mice compared with that in PLX5622-treated mice (Fig 6D). Consistent
338	with this, unlike the enhanced seizure susceptibility observed in control mice
339	following the first SE (as indicated by the reduced dose of pilocarpine required to
340	induce the second vs. the first SE), there was no significant change in the dose
341	of pilocarpine required for the induction of the first or second SE in
342	PLX5622-treated mice (Fig 6E and 6F). In contrast, a lower dose of pilocarpine
343	was required for the induction of the second SE in later PLX5622 treatment
344	mice, similar to that in control diet mice (Fig 6G, 6H, 6I and 6J). These data
345	suggested that the inhibition of initial microglial activation rescues the increased
346	seizure susceptibility.
347	

348 Fig 6. Microglia inhibition with minocycline or CSF1R antagonist (PLX5622)

349 reduces the increased seizure susceptibility following SE.

350	(A) Dot plots showing dose of pilocarpine required for the induction of the
351	second SE (n = 10 mice, N.S., not significant (P > 0.05), *P < 0.05, Mann-
352	Whitney U-test). SMP (PMP) indicates that mice were injected with saline
353	(pilocarpine) at 8 weeks of age with minocycline post-treatment followed by an
354	injection of pilocarpine at 12 weeks of age. (B) Scatter plot showing dose of
355	pilocarpine required for the induction of the first (at 8 weeks of age) and second
356	(at 12 weeks of age) SE. (n = 10 mice, ** <i>P</i> < 0.01, Wilcoxon signed-rank test). (C
357	and D) Dot plots showing dose of pilocarpine required for the induction of the
358	first (C) and second (D) SE with or without PLX5622. (n = 10, 8 mice, N.S., not
359	significant ($P > 0.05$), ** $P < 0.01$, Mann–Whitney U-test). AIN, control diet
360	(AIN-76A). (E and F) Scatter plot showing dose of pilocarpine required for the
361	induction of the first (at 8 weeks of age) and second (at 12 weeks of age) SE for
362	AIN-76A (control diet) (E) or PLX5622 (F). (n = 10, 8 mice, N.S., not significant
363	(P > 0.05), ** $P < 0.01$, Wilcoxon signed-rank test). (G and H) Dot plots showing
364	dose of pilocarpine required for the induction of the first (G) and second (H) SE
365	with or without late PLX5622 treatment. (n = 10 mice, N.S., not significant (P >
366	0.05), Mann–Whitney U-test). (I and J) Scatter plot showing dose of pilocarpine

required for the induction of the first (at 8 weeks of age) and second (at 12 weeks of age) SE AIN-76A (control diet) (I) or PLX5622 (J). (n = 10 mice, **P <

369 0.01, Wilcoxon signed-rank test).

370

371 Discussion

Here, we demonstrate that SE induces sequential activation of glial cells; i.e., the 372initial activation of microglia, followed by astrocytic activation, which is essential 373 for seizure susceptibility or epileptogenesis. The main findings in the present 374study are as follows. (1) Microglia are activated and pro-inflammatory cytokines 375of microglia are increased immediately after SE. (2) Reactive astrocytes, which 376 exhibit larger IP₃R2-mediated Ca²⁺ signals, appear following microglial activation 377 after SE. (3) Genetic deletion of IP₃R2 rescues both the aberrant Ca²⁺ signals in 378 astrocytes and the increased seizure susceptibility. (4) Pharmacological 379inhibition of microglial activation or deletion of microglia reduces astrogliosis 380 along with aberrant Ca²⁺ signals of astrocytes, and rescues the increased 381 seizure susceptibility. These findings indicate that initially activated microglia are 382383 responsible for the subsequent induction of epileptogenic reactive astrocytes in 384 vivo.

385	Microglial and astrocytic activation is a common feature of various central
386	nervous system (CNS) disorders including epilepsy [39–42]. However, the
387	pathological significance and spatiotemporal pattern of microglial and astrocytic
388	activation in the epileptogenic process have not been carefully addressed.
389	Microglial response to SE occurs immediately, with reactive microglia playing
390	both detrimental and beneficial roles during acute seizures [43]. Although
391	activated microglia exhibit a neuroprotective role via the P2Y12 receptor in the
392	acute phase, they exert proconvulsive effects through the production of
393	pro-inflammatory cytokines such as IL-1 β [11], TNF [44], and IL-6 [45,46].
394	However, such increase of purinergic receptors and pro-inflammatory cytokines
395	after SE may be transient [11], and it is unknown how this transient microglial
396	activation including pro-inflammatory cytokines causes long-term epileptic
397	potential. Here, we found that inhibiting microglia at the acute phase (0 to 7 days
398	after SE) but not the late phase (21 to 28 days after SE) reduced susceptibility to
399	the second SE, suggesting that activated microglia trigger the epileptogenic
400	process including astrocytic activation, but do not exert a direct proconvulsive
401	effect on the later phase after SE.
402	In the present study, we demonstrate that astrocytic activation develops

403	slowly starting 7 days after SE, is long lasting, and still observed when mice
404	show increased seizure susceptibility. Astrogliosis is thought to contribute to the
405	pathophysiology of epilepsy [47–49]. However, the role of astrogliosis in
406	epileptogenesis is largely unknown. In particular, it is important to determine
407	whether activated astrocytes play a proconvulsive or anticonvulsive role in the
408	epileptic brain. It has been proposed that astrocytic Ca ²⁺ signaling contributes to
409	the induction of epileptic seizures and neuronal cell loss by seizures
410	[27,28,50,51]. In this study, we observed larger Ca ²⁺ signals in the somatic
411	regions of astrocytes in the latent phase of epileptogenesis. Analysis of the Ca ²⁺
412	signals in astrocytes suggests that these Ca ²⁺ signals are mediated by IP $_3$ R2.
413	Notably, we found that genetic deletion of IP $_3$ R2 is sufficient to rescue the
414	increased seizure susceptibility and reduce astrogliosis. Our study thus
415	suggests that IP $_3$ R2-mediated Ca ²⁺ signaling in reactive astrocytes plays a
416	proconvulsive role in the epileptic brain and can contribute to epileptogenesis.
417	Astrocytic Ca ²⁺ signals may contribute to epileptogenesis through several
418	mechanisms. Astrocytes impact neural circuit excitability directly by releasing
419	"gliotransmitters", such as glutamate [23,52,53]. Astrocytes also increase
420	neuronal excitability by forming new circuits through the release of synaptogenic

421	molecules [22,54]. However, the functional consequences of these changes in
422	the context of epileptogenesis remain to be determined. As Ca ²⁺ serves as a
423	ubiquitous intracellular signal in the regulation of numerous cellular processes
424	including exocytosis, proliferation, and gene expression, it is also likely to
425	regulate many processes in the induction/maintenance of reactive astrocytes
426	[55,56]. Although it is difficult to exclude the inherent influence on the neural
427	circuit resulting from the deletion of IP $_3$ R2, we demonstrate that SE induces
428	neither an increase in Ca ²⁺ excitation in astrocytes nor proconvulsive effects in
429	$\ensuremath{IP_3R2KO}$ mice, suggesting that enhanced $\ensuremath{Ca^{2+}}$ signals in astrocytes are likely
430	responsible for epileptogenesis.
430 431	responsible for epileptogenesis. In animal models of epilepsy, reactive astrocytes undergo extensive
431	In animal models of epilepsy, reactive astrocytes undergo extensive
431 432	In animal models of epilepsy, reactive astrocytes undergo extensive physiological changes involving not only Ca ²⁺ signaling but also ion and
431 432 433	In animal models of epilepsy, reactive astrocytes undergo extensive physiological changes involving not only Ca ²⁺ signaling but also ion and neurotransmitter homeostasis along with intracellular and extracellular water
431 432 433 434	In animal models of epilepsy, reactive astrocytes undergo extensive physiological changes involving not only Ca ²⁺ signaling but also ion and neurotransmitter homeostasis along with intracellular and extracellular water content, which can cause neuronal hyperexcitability [57–60]. The relative
 431 432 433 434 435 	In animal models of epilepsy, reactive astrocytes undergo extensive physiological changes involving not only Ca ²⁺ signaling but also ion and neurotransmitter homeostasis along with intracellular and extracellular water content, which can cause neuronal hyperexcitability [57–60]. The relative importance of such functional changes of astrocytes to epileptogenesis will be

439	SE results in a similar phenotype to A1 astrocytes and whether IP_3 -mediated
440	Ca ²⁺ signals contribute to the induction of neurotoxic phenotype [56] represent
441	relevant issues to be addressed in future investigations. Although whether the
442	astrocytes induced by activated microglia are in a primarily neurotoxic or
443	neuroprotective state remains largely unknown, our data suggest that the
444	reactive astrocytes induced by activated microglia after SE exert proconvulsive
445	effects in the epileptic brain.
446	In this study, we also demonstrate that pro-inflammatory cytokines of
447	microglia are increased prior to astrocytic activation, suggesting the importance
448	of microglial activation as an initial process of epileptogenesis. Pharmacological
449	inhibition and depletion of microglia significantly blocked the activation of
450	astrocytes and decreased the seizure threshold after SE. Our findings identify
451	that activated microglia likely promote epileptogenesis by inducing the
452	proconvulsive phenotype of astrocytes. Although it has been recognized that
453	microglial activation occurs before reactive astrogliosis in various CNS diseases
454	[62—64], little was known prior to the present study regarding how
455	microglial-astrocytic interactions contribute to the pathophysiology of epilepsy.
456	For example, several previous studies using chemoconvulsant-induced epilepsy

457	models have shown that activated microglia were present immediately after SE
458	and that functional changes occurred, such as upregulation of pro-inflammatory
459	cytokines [8,65,66], purinergic receptors [39], and phagocytosis [40].
460	Previous reports also revealed that microglia modulate astrocyte activation
461	via various molecules, especially pro-inflammatory cytokines [67,68]. Consistent
462	with this, we found that TNF and IL-1 β are significantly upregulated in
463	hippocampal microglia at 1 day after SE. Conversely, microglia inhibition by
464	minocycline prevents the increased mRNA of TNF in the hippocampus at 1 day
465	after the first SE along with subsequent reactive astrogliosis, suggesting a
466	potential role of pro-inflammatory cytokines from microglia in reactive
467	astrogliosis after SE. As the effect of minocycline may not be restricted to
468	microglia, we depleted microglia using a CSF-1 receptor antagonist and found
469	similar results, suggesting that microglial activation occurs through cytokine
470	release. Thus, despite the potential problem of specificity owing to the use of
471	pharmacological inhibition of microglia, we clearly show that initial activation of
472	microglia and microglia-derived proinflammatory cytokines likely underlie the
473	subsequent astrogliosis-mediated epileptogenesis. Nevertheless, because the
474	molecular mechanisms underlying the activation of astrocytes triggered by

475	activated microglia have not been fully clarified, other chemical mediators such
476	as ATP may also contribute to activate microglia-mediated astrogliosis [69].
477	Further investigations using more specific interventions are required to elucidate
478	the precise molecular mechanisms underlying the interaction between microglia
479	and astrocytes.
480	In summary, our findings identify a sequence of glial activation in the
481	hippocampus that contributes to the epileptogenic process. In this process,
482	microglial activation is identified as a crucial event to induce reactive astrocytes.
483	In turn, astrocytic Ca^{2+} activation mediated by IP ₃ R2 was essential for the
484	induction of epileptogenesis. Our findings add to the emerging view that reactive
485	astrocytes triggered by microglia have a central role in the pathogenesis of
486	epilepsy and, given the limited progress of neuron-centered epilepsy research
487	over the past several years, suggest reactive astrocytes as promising new
488	targets for the development of alternative and more specific antiepileptic drugs.
489	

491 Materials and Methods

492 Animals

All studies used male C57BL/6J mice (SLC Japan, Shizuoka, Japan). IP₃R2KO 493494 mice on a C57BL/6 background were available from a previous study [32]; their 495generation and maintenance have been previously described in detail. Glast-CreERT2::flx-GCaMP3 mice on a C57BL/6 background were also 496 available from a previous study [30,31]; their generation and maintenance have 497 been previously described in detail. In the present study, we performed 498 immunohistochemistry and confirmed that GCaMP3 was co-localized with 499GFAP, an astrocyte marker, but not with Iba1 or NeuN (S2 Fig and S1 Table). 500Overall, Ca²⁺ signals detected by GCaMP3 were mainly detected from 501502astrocytes.

503 Mice were housed on a 12 h light (6 am)/dark (6 pm) cycle with ad libitum 504 access to water and rodent chow. The animals were allowed to adapt to 505 laboratory conditions for at least 1 week before starting the experiments. All 506 experimental procedures were performed in accordance with the "Guiding 507 Principles in the Care and Use of Animals in the Field of Physiologic Sciences" 508 published by the Physiologic Society of Japan and with the previous approval of

the Animal Care Committee of Yamanashi University (Chuo, Yamanashi,Japan).

511

512 Animal treatments

The first SE was induced in 8-week-old male mice by the administration of 513pilocarpine and the second SE was induced 4 weeks after the first SE. A low 514dose of 100 mg kg⁻¹ pilocarpine (Wako, 161-07201) per injection was 515administered i.p. every 20 min until the onset of Racine scale stage 5 seizures. 516Scoporamin methyl bromide (1 mg kg⁻¹, i.p., Wako, 198-07971) was 517administered 30 min prior to pilocarpine injection to reduce its peripheral effects 518[28,29]. Seizures were terminated with pentobarbital (20 mg kg⁻¹, i.p., Kyoritu 519Seiyaku) when mice experienced stage 5 seizures for 30 min. Behavior of 520pilocarpine-treated mice was observed for 1 h after SE. 521

To establish whether minocycline inhibits acute seizure-induced microglial activation, mice were administered i.p. with saline or minocycline (25 mg kg⁻¹) 1 h after pilocarpine-SE induction and for the following two consecutive days [33– 35]. Microglia were also depleted from mice by treatment with the CSF1R antagonist, PLX5622 (Plexxikon), formulated in AIN-76A rodent chow (Research

Diets). Mice were treated with PLX5622 (1200 mg kg⁻¹ Chow) or a matched control diet (AIN-76A) for seven days before SE and for the following seven consecutive days [36–38].

530

531 Immunohistochemistry

The mice were deeply anesthetized with pentobarbital and perfused 532transcardially with phosphate buffered saline (PBS), followed by 4% (w/v) 533paraformaldehyde in PBS. The brains were removed, postfixed overnight, then 534cryoprotected with 30% (w/v) sucrose in PBS for two days. The brains were 535frozen and coronal sections (20 µm) were cut using a cryostat (Leica CM1100). 536Slices were washed with PBS three times and treated with 0.1% 537 538Triton-X100/10% NGS for 1 h to block nonspecific binding. The sections were incubated for two days at 4 °C with the following primary antibodies: monoclonal 539rat anti-GFAP (1:2000; Thermo Fisher Scientific, 13-0300), monoclonal mouse 540anti-NeuN (1:500; Millipore, MAB377), polyclonal rabbit anti-Iba1 (1:1000; Wako, 541019-19741), chicken anti-GFP antibody (1:1000, Thermo Fisher Scientific, 542543A10262), and rabbit anti-NeuN (1:1,000; Millipore, MABN140). The sections were washed three times with PBS and then incubated for 2 h at room 544

545	temperature with secondary antibodies: Alexa 488- or Alexa 546-conjugated
546	goat anti-mouse/rat/rabbit or chicken IgGs (1:500; Invitrogen, A11029/Thermo
547	Fisher Scientific, A-11081/Invitrogen, A11035/Thermo Fisher Scientific,
548	A11039). After washing slices with PBS three times, they were mounted with
549	Vectashield Mounting Medium (Vector Laboratories). Fluorescence images were
550	obtained using a confocal laser microscope system (FV-1000; Olympus) or
551	Keyence fluorescence microscope (BZX-700).
552	
552 553	Standard quantitative RT-PCR
	Standard quantitative RT-PCR Total RNA was isolated and purified from tissues using the RNeasy Lipid Tissue
553	
553 554	Total RNA was isolated and purified from tissues using the RNeasy Lipid Tissue
553 554 555	Total RNA was isolated and purified from tissues using the RNeasy Lipid Tissue Mini Kit (Qiagen) according to the manufacturer's instructions. RT-PCR

559 parameters were as follows: 5 min at 42 °C for reverse transcription, 10 s at

560

95 °C for inactivation of the RT enzyme, and 40 cycles of denaturation (5 s at 95

- ⁵⁶¹ °C) and annealing/extension (34 s at 60 °C). All primer probe sets and reagents
- were purchased from Applied Biosystems: rodent Gapdh (4308313), mouse Tnf

563 (Mm00443260_g1), mouse *ll1b* (Mm00434228_m1).

564

565 **Dissociated cell suspensions from adult mouse brain**

Three 8-week old male mice were perfused with PBS after anesthesia to 566 eliminate serum vesicles and hippocampi were dissected to comprise one 567sample. Tissue dissociation was performed using the gentleMACS dissociator 568and the Adult Brain Dissociation Kit (Miltenyi Biotec) according to the 569manufacturer's protocol. Briefly, brain tissue was minced and digested with a 570proprietary enzyme solution on the gentleMACS dissociator adult brain program. 571The cells were then incubated with anti-mouse CD11b-coated microbeads 572(Miltenyi Biotec) for 10 min at 4 °C. The cell-bead mix was then washed to 573574remove unbound beads. Prior to antibody labeling, nonspecific binding to the Fc receptor was blocked using the FcR Blocking Reagent (Miltenyi Biotec). Cells 575were suspended in PBS with 0.5% bovine serum albumin and the cell 576suspension was loaded onto an LS Column (Miltenyi Biotec), which was placed 577in the magnetic field of a QuadroMACS[™] Separator (Miltenyi Biotec). The 578579magnetically labeled CD11b positive cells were retained within the column and eluted as the positively selected cell fraction after removing the column from the 580

581 magnet.

582

583 Microfluidic quantitative RT-PCR

Total RNA was extracted from dissociated cells using the RNeasy Lipid Tissue 584Mini Kit (Qiagen) and cDNA synthesis performed using the PrimeScript RT-PCR 585Kit (Perfect Real Time) (TaKaRa Bio). For pre-amplification, up to 100 gPCR 586assays (primer/probe sets in 20x stock concentration) were pooled and diluted to 587a 0.2x concentration. For microfluidic qPCR, 1.25 µl of each cDNA sample was 588pre-amplified using 1 µl of TaqMan pre-amplification master mix (PN 100-5580, 589Fluidigm), 1.25 µl of the primer pool, and 1.5 µl of water. Pre-amplification was 590performed using a 2 min 95 °C denaturation step and 14 cycles of 15 s at 95 °C 591and 4 min at 60 °C. Microfluidic quantitative RT-PCR reactions were performed 592using the 96x96 chips and included 2-3 technical replicates for each 593combination of sample and assay. For sample mixtures, 2.7 µl pre-amplification 594product was combined with 0.3 µl of 20x GE Sample Loading Reagent 595(85000746, Fluidigm) and 3 µl of 2x PCR master mix (4324020, Thermo Fisher 596597Scientific), of which 5 µl of was loaded into sample wells. For assay mixtures, equal volumes of TaqMan assay and 2x Assay Loading Reagent (PN85000736. 598

599	Fluidigm) were combined, and 5 μI of the resulting mixture was loaded into
600	multiple assay wells. RT-PCR amplifications and real-time detection were
601	performed using the BioMarkHD Real-Time PCR System (Fluidigm). Data from
602	Fluidigm runs were manually checked for reaction quality prior to analysis, and
603	Ct values for each gene target were normalized to Ct values for housekeeping
604	genes. All primer probe sets and reagents were purchased from Integrated DNA
605	Technologies: rodent Gapdh (Mm.PT.39a.1), mouse Tnf (Mm.PT.58.12575861),
606	mouse II1b (Mm.PT.58.41616450), mouse Cx3cr1 (Mm.PT.58.17555544),
607	mouse CD45 (Mm.PT.58.7583849), mouse CD11b (Mm.PT.58.14195622),
608	mouse CD68 (Mm.PT.58.32698807), mouse CD206 (Mm.PT.58.42560062),
609	mouse <i>II6</i> (Mm.PT.58.10005566), mouse <i>Ifng</i> (Mm.PT.58.41769240), mouse <i>II4</i>
610	(Mm.PT.58.32703659), mouse <i>II10</i> (Mm.PT.58.13531087), and mouse <i>Tgfb</i>
611	(Mm.PT.58.11254750).

613 **Preparation of brain slices and Ca²⁺ imaging**

The methods used have been described previously [56,70]. Briefly, 8-week-old male mice were anesthetized with pentobarbital (100 mg kg⁻¹, i.p.). Cold cutting ACSF, composed of 92 mM NaCl, 2.5 mM KCl, 1.2 mM NaH₂PO₄, 30 mM

617	NaHCO ₃ , 20 mM HEPES, 25 mM D-glucose, 5 mM sodium ascorbate, 2 mM
618	thiourea, 3 mM sodium pyruvate, 10 mM MgCl ₂ , and 0.5 mM CaCl ₂ saturated
619	with 95% O_2 -5% CO_2 , was perfused transcardially. Coronal slices of the
620	hippocampus (300 $\mu\text{m})$ were cut using a vibrating microtome (Pro7, Dosaka) in
621	cutting ACSF. Slices were incubated at 34 °C for 10 min in recovery ACSF,
622	composed of 93 mM N-methyl-D-glucamine, 93 mM HCl, 2.5 mM KCl, 1.2 mM
623	NaH ₂ PO ₄ , 30 mM NaHCO ₃ , 20 mM HEPES, 25 mM D-glucose, 5 mM sodium
624	ascorbate, 2 mM thiourea, 3 mM sodium pyruvate, 10 mM MgCl ₂ , and 0.5 mM
625	CaCl ₂ saturated with 95% $O_25\%$ CO ₂ , and subsequently stored in ACSF
626	comprising 124 mM NaCl, 2.5 mM KCl, 1.2 mM NaH ₂ PO ₄ , 24 mM NaHCO ₃ , 5
627	mM HEPES, 12.5 mM D-glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM
628	sodium pyruvate, 2 mM MgCl ₂ , and 2 mM CaCl ₂ saturated with 95% O_2 and 5%
629	CO_2 at room temperature. After 1 h of recovery, slices were submerged in ACSF
630	at approximately 32 °C. Slices were imaged using an Olympus Fluoview
631	FVMPE-RS two-photon laser scanning microscope equipped with a Maitai HP
632	DS-OL laser (Spectra-Physics). We used a 920 nm laser and 510 nm high-pass
633	emission filter. Astrocytes were selected from the CA1 stratum radiatum region
634	and were typically 30–50 μm from the slice surface. Images were gathered using

a 25× water immersion lens with a numerical aperture of 1.05.

636	For Fluo-4AM measurements, we dropped 2.5 μ l Fluo-4AM (2 mM) onto the
637	hippocampal slices followed by incubation in ACSF for 60 min, then transferred
638	the slices to dye-free ACSF for at least 30 min prior to experimentation. The final
639	concentration of Fluo4-AM was 5 μ M with 0.02% Pluronic F–127. Astrocytes
640	were selected from the CA1 stratum radiatum region and were typically 30-50
641	μm from the slice surface. TTX (1 μM), 2-APB (100 μM), and CPA (20 μM) were
642	solubilized in ACSF. Baseline astrocytic activity was recorded prior to drug
643	application. Subsequently, drugs were applied onto the slice for 10 min and
644	astrocytic activity was recorded for 10 min.

645

646 Image analysis

Images were acquired using inverted confocal laser-scanning systems (Olympus FV-1000) at 40× magnification with a 1.30 numerical aperture objective lens. Information regarding z-stack images is described in the figure legends. Astrocytes were selected from the CA1 stratum radiatum region and imaged based on GFAP immunostaining. Microglia were imaged based on Iba1 immunostaining at the CA1 stratum radiatum region. Subsequent images were

38

processed and guantified using ImageJ (US National Institutes of Health; NIH). 653 For the quantitative analysis of the area containing Iba1 positive microglia, we 654 randomly chose three fields per mouse. Images were converted to gray scale 655 and the quantification threshold was set constantly for all specimens within each 656 experimental group. The percentage of Iba1-positive area was calculated by 657 dividing the area of Iba1-positive region by the total area of the region of interest. 658 For the quantitative analysis of GFAP positive cell size, we randomly chose one 659 field per mouse. Images were converted to gray scale and the quantification 660 threshold was set constantly for all specimens within each experimental group. 661 To quantify the GFAP positive cell size, particles were analyzed based on GFAP 662 immunoreactivity and we chose the three largest GFAP positive cells per field. 663 The methods used for Ca²⁺ imaging data analysis have been described 664 previously [56,70]. Briefly, imaging data were analyzed using ImageJ. We 665666 selected regions of interest from somatic regions of astrocytes by visual examination of the time lapse image. Using these regions of interest, raw 667 fluorescence intensity values (F) were taken from the original videos and 668 669 converted to delta F/F (dF/F) in Originlab (Origin Lab Corp.). We analyzed Ca²⁺ signals when their dF/F values were greater than 0.2. We analyzed Ca²⁺ signals 670

and their amplitude (dF/F) and duration (full width at half maximum) using the

672 Originlab "peak analysis" function.

673

674 Statistical analysis

- All statistical analyses were performed using SPSS version 19.0 (SPSS Inc.)
- software. Data are presented as the means ± SEM. Most data were analyzed
- 677 using one-way ANOVA followed by Dunnett's multiple post hoc test for
- 678 comparing more than three samples, and two-sample unpaired *t*-tests. *P* values
- 679 <0.05 were considered as statistically significant.
- 680

681 Acknowledgements

- We thank Dr. K. Takanashi, Mr. R. Komatsu, Mrs. Y. Fukasawa, Mrs. M.
- Tachibana, Mrs. Y. Koseki, and Mrs. Y. Hoshino (Univ. Yamanashi) for technical
- assistance, and all members of the Koizumi Laboratory for critical discussion.

685

686

687 **References**

- 688 1. Engel J Jr. Mesial temporal lobe epilepsy: what have we learned?
- 689 Neuroscientist. 2001;7(4): 340-52.
- 690 2. Herman ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology.
- 691 **2002;59(9 Suppl 5): S21-26**.
- 692 3. French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer
- 693 SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history
- and physical examination. Ann Neurol. 1993;34(6): 774-80.
- 4. Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging
- 696 mechanisms. Nat Rev Neurol. 2009;5(7): 380-391.
- 5. Binder DK, Steinhauser C. Functional changes in astroglial cells in epilepsy.
- 698 Glia. 2006;54(5): 358-368.
- 699 6. Seifert G, Steinhauser C. Neuron-astrocyte signaling and epilepsy. Exp
- 700 Neurol. 2013;244: 4-10.
- 701 7. Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation
- following pilocarpine-induced seizures in rats. Epilepsia. 2008;49 Suppl 2:33-41.
- 8. Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2

markers during the development of epilepsy in two mouse models. Epilepsia.

706 **2015;56(6)**: **895-905**.

- 9. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1): 31-40.
- 10. Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E. Evidence
- of activated microglia in focal cortical dysplasia. J Neuroimmunol.
- 711 **2006;173(1-2): 188-195**.
- 11. Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, et al.
- Functional role of inflammatory cytokines and antiinflammatory molecules in
- seizures and epileptogenesis. Epilepsia. 2002;43 Suppl 5: 30-35.
- 12. Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies
- associated with hippocampal sclerosis. Acta Neuropathol. 2014;128(1): 21-37.
- 13. Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, et al.
- Author Correction: Reactive astrocytes function as phagocytes after brain
- ischemia via ABCA1-mediated pathway. Nat Commun. 2017;8(1): 1598.
- 14. Haj-Yasein NN, Jensen V, Vindedal GF, Gundersen GA, Klungland A,
- 721 Ottersen OP, et al. Evidence that compromised K+ spatial buffering contributes
- to the epileptogenic effect of mutations in the human Kir4.1 gene (KCNJ10).

723 Glia. 2011;59(11): 1635-1642.

- 15. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et
- al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate

transporter GLT-1. Science. 1997;276(5319): 1699-1702.

- 16. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, et al.
- Astrocytes contain a vesicular compartment that is competent for regulated
- exocytosis of glutamate. Nat Neurosci. 2004;7(6): 613-620.
- 17. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and
- epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3): 174-184.
- 18. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ. Intercellular signaling in
- 733 glial cells: calcium waves and oscillations in response to mechanical stimulation
- and glutamate. Neuron. 1991;6(6): 983-992.
- 19. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces
- race calcium waves in cultured astrocytes: long-range glial signaling. Science.
- 737 1990;247(4941): 470-473.
- 20. Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron.
- 739 2017;96(3): 697-708.
- 21. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A.

Gliotransmitters travel in time and space. Neuron. 2014;81(4): 728-739.

- 743 Cortical astrocytes rewire somatosensory cortical circuits for peripheral
- neuropathic pain. J Clin Invest. 2016;126(5): 1983-1997.
- 745 23. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for
- gliotransmission in health and disease. Trends Mol Medi. 2007;13(2): 54-63.
- 24. Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, et al. Enhanced
- 748 astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status
- r49 epilepticus. J Neurosci. 2007;27(40): 10674-10684.
- 25. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, et al. An astrocytic basis of
- r51 epilepsy. Nat Med. 2005;11(9): 973-981.
- 26. Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of
- temporal lobe epilepsy. J Neurosci Methods. 2008;172(2): 143-157.
- 27. Levesque M, Avoli M, Bernard C. Animal models of temporal lobe epilepsy
- following systemic chemoconvulsant administration. J Neurosc Methods.
 2016;260: 45-52.
- 28. Clasadonte J, Dong J, Hines DJ, Haydon PG. Astrocyte control of synaptic
- NMDA receptors contributes to the progressive development of temporal lobe

- r59 epilepsy. Proc Natl Acad Sci U S A. 2013;110(43): 17540-17545.
- 29. Groticke I, Hoffmann K, Loscher W. Behavioral alterations in a mouse model
- of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp
- 762 Neurol. 2008;213(1): 71-83.
- 30. Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M. Inducible gene
- deletion in astroglia and radial glia--a valuable tool for functional and lineage
- 765 analysis. Glia. 2006;54(1): 21-34.
- 31. Zariwala HA, Borghuis BG, Hoogland TM, Madisen L, Tian L, De Zeeuw CI,
- et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J
- 768 Neurosci. 2012;32(9): 3131-3141.
- 32. Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, et
- al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy
- 771 metabolism. Science. 2005;309(5744): 2232-2234.
- 33. Abraham J, Fox PD, Condello C, Bartolini A, Koh S. Minocycline attenuates
- microglia activation and blocks the long-term epileptogenic effects of early-life
- seizures. Neurobiol Dis. 2012;46(2): 425-430.
- 34. Hirayama Y, Ikeda-Matsuo Y, Notomi S, Enaida H, Kinouchi H, Koizumi S.
- Astrocyte-mediated ischemic tolerance. J Neurosci. 2015;35(9): 3794-3805.

777	35. Matsuda T, Murao N, Katano Y, Juliandi B, Kohyama J, Akira S, et al. TLR9
778	signalling in microglia attenuates seizure-induced aberrant neurogenesis in the
779	adult hippocampus. Nat Commun. 2015;6: 6514.
780	36. Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, et al.
781	Colony-stimulating factor 1 receptor inhibition prevents microglial plaque
782	association and improves cognition in 3xTg-AD mice. J Neuroinflamm. 2015;12:
783	139.
784	37. Shinozaki Y, Shibata K, Yoshida K, Shigetomi E, Gachet C, Ikenaka K, et al.
785	Transformation of astrocytes to a neuroprotective phenotype by microglia via
786	P2Y1 receptor downregulation. Cell Rep. 2017;19(6): 1151-1164.
787	38. Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK.
788	Microglia dictate the impact of saturated fat consumption on hypothalamic
789	inflammation and neuronal function. Cell Rep. 2014;9(6): 2124-2138.
790	39. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E. Status
791	epilepticus induces a particular microglial activation state characterized by
792	enhanced purinergic signaling. J Neurosci. 2008;28(37): 9133-9144.
793	40. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K,
794	Tsuda M, et al. UDP acting at P2Y6 receptors is a mediator of microglial

46

⁷⁹⁵ phagocytosis. Nature. 2007;446(7139): 1091-1095.

- 796 41. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia.
- 797 2005;50(4): 427-434.
- 42. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta
 Neuropathol. 2010;119(1): 7-35.
- 43. Eyo UB, Murugan M, Wu LJ. Microglia-neuron communication in epilepsy.
- 801 Glia. 2017;65(1): 5-18.
- 44. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of
- 803 AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J
- 804 Neurosci. 2005;25(12): 3219-3228.
- 45. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, et
- al. Neurologic disease induced in transgenic mice by cerebral overexpression of
- interleukin 6. Proc Natl Acad Sci U S A. 1993;90(21): 10061-10065.
- 46. Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ,
- 809 Campbell IL. Profound increase in sensitivity to glutamatergic- but not
- 810 cholinergic agonist-induced seizures in transgenic mice with astrocyte
- 811 production of IL-6. J Neurosci Res. 2003;73(2): 176-187.
- 47. Coulter DA, Steinhauser C. Role of astrocytes in epilepsy. Cold Spring Harb

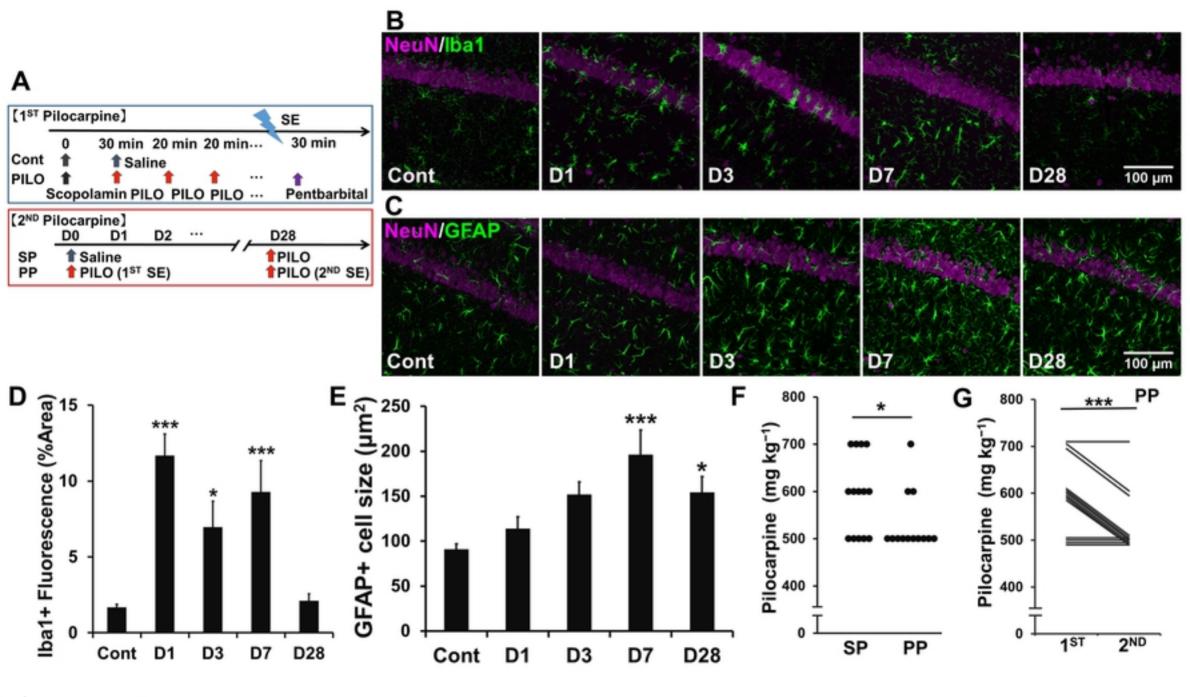
- 813 Perspect Med. 2015;5(3): a022434.
- 48. Seifert G, Carmignoto G, Steinhauser C. Astrocyte dysfunction in epilepsy.
- 815 Brain Res Rev. 2010;63(1-2): 212-221.
- 49. Steinhauser C, Grunnet M, Carmignoto G. Crucial role of astrocytes in
- temporal lobe epilepsy. Neuroscience. 2016;323: 157-169.
- 50. Alvarez-Ferradas C, Morales JC, Wellmann M, Nualart F, Roncagliolo M,
- Fuenzalida M, et al. Enhanced astroglial Ca2+ signaling increases excitatory
- synaptic strength in the epileptic brain. Glia. 2015;63(9): 1507-1521.
- 51. Gomez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, Brondi
- 822 M, et al. An excitatory loop with astrocytes contributes to drive neurons to
- seizure threshold. PLoS Biol. 2010;8(4): e1000352.
- 52. Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat
- 825 Neurosci. 2016;19(2): 182-189.
- 53. Haydon PG. GLIA: listening and talking to the synapse. Nat Rev Neurosci.
- 827 **2001;2(3)**: **185-193**.
- 54. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A,
- 829 et al. Albumin induces excitatory synaptogenesis through astrocytic
- TGF-beta/ALK5 signaling in a model of acquired epilepsy following blood-brain

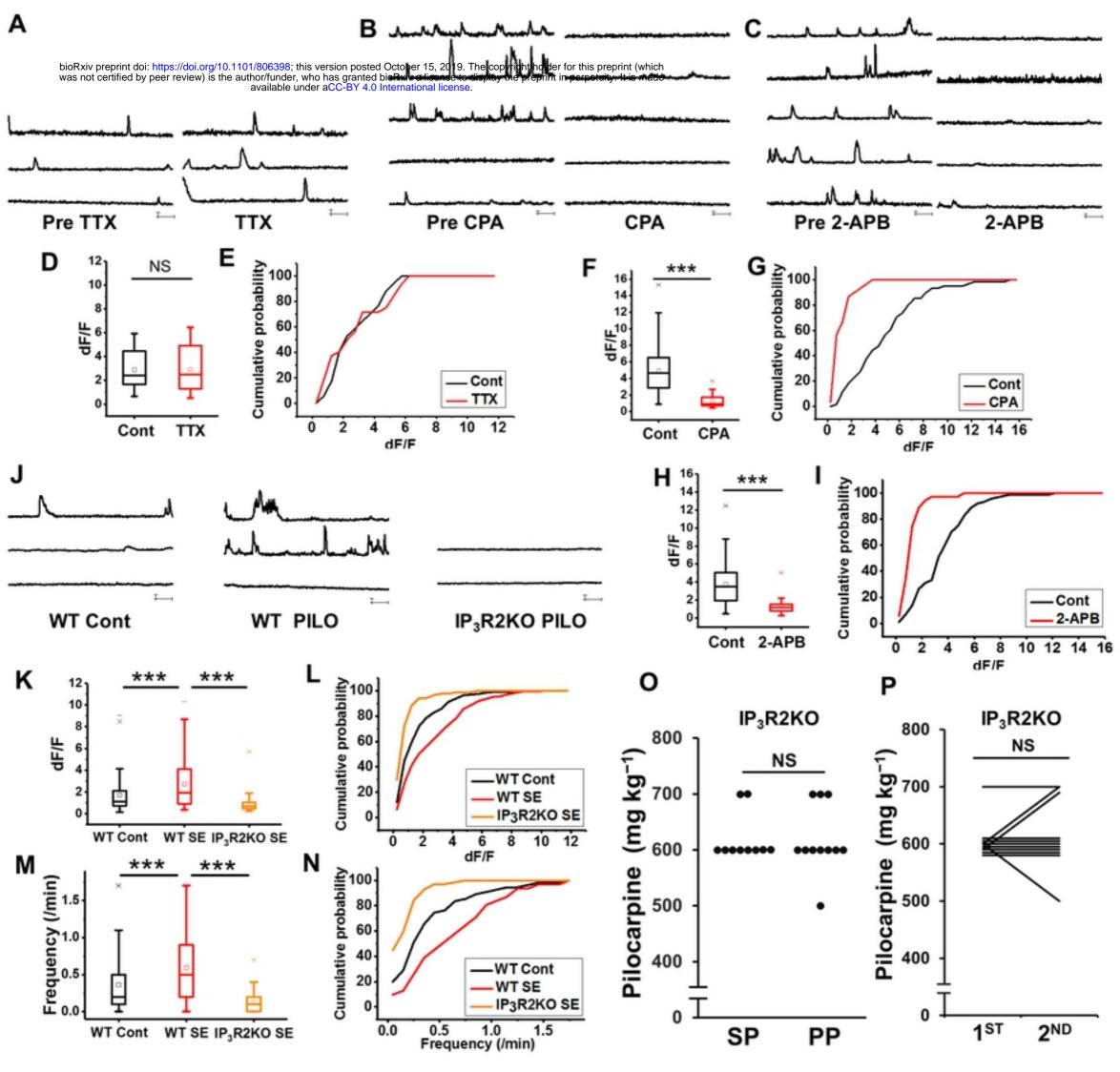
barrier dysfunction. Neurobiol Dis. 2015;78: 115-125.

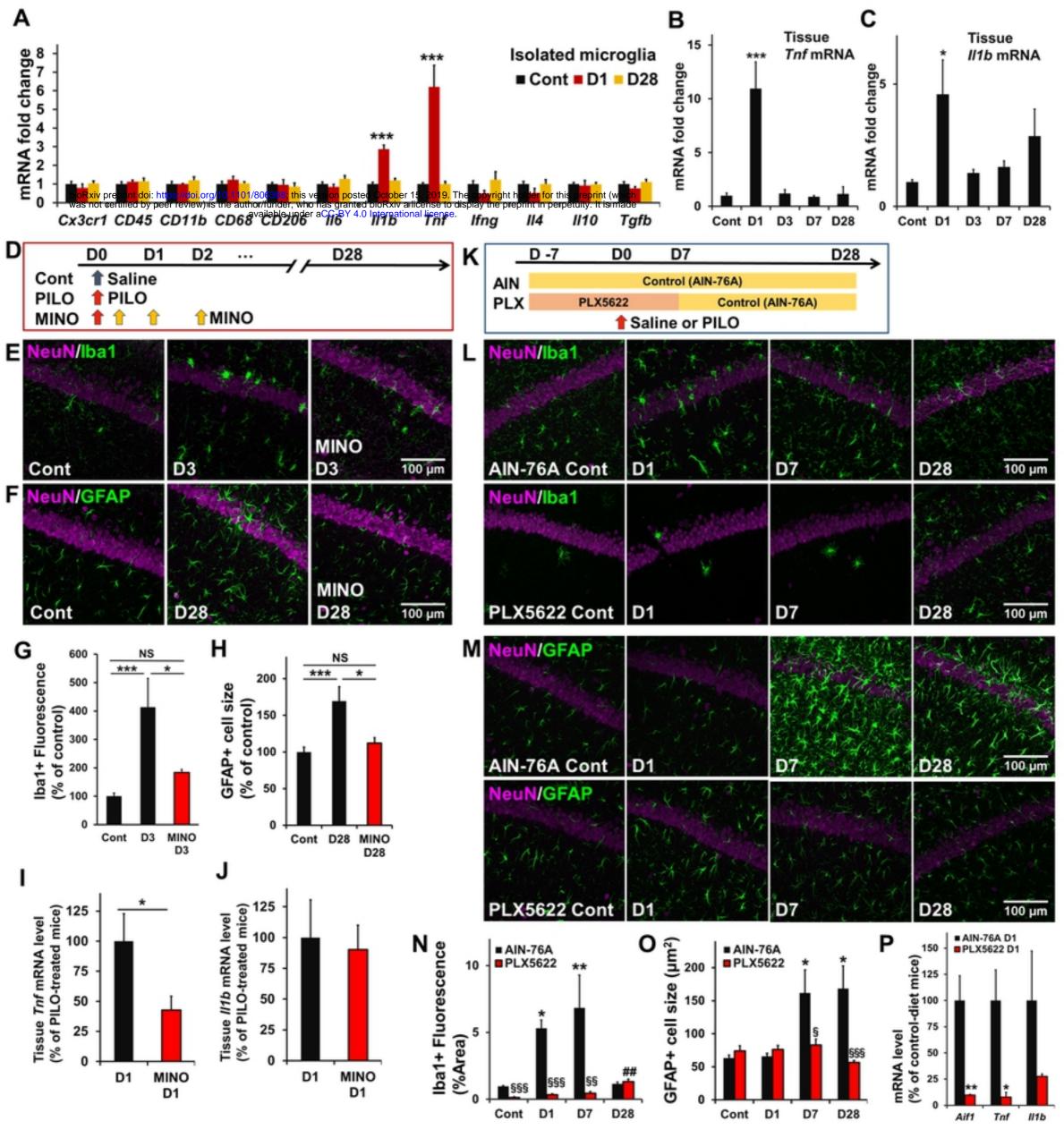
- 55. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics,
- homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7): 517-529.
- 56. Saito K, Shigetomi E, Yasuda R, Sato R, Nakano M, Tashiro K, et al.
- Aberrant astrocyte Ca(2+) signals "AxCa signals" exacerbate pathological
- alterations in an Alexander disease model. Glia. 2018;66(5): 1053-1067.
- 57. Bedner P, Dupper A, Huttmann K, Muller J, Herde MK, Dublin P, et al.
- 838 Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain.
- 839 2015;138(Pt 5): 1208-1222.
- 58. Bordey A, Lyons SA, Hablitz JJ, Sontheimer H. Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J
- 842 Neurophysiol. 2001;85(4): 1719-1731.
- 59. Bordey A, Sontheimer H. Properties of human glial cells associated with
 epileptic seizure foci. Epilepsy Res. 1998;32(1-2): 286-303.
- 60. Steinhauser C, Seifert G, Bedner P. Astrocyte dysfunction in temporal lobe
- epilepsy: K+ channels and gap junction coupling. Glia. 2012;60(8): 1192-1202.
- 61. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L,
- et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature.

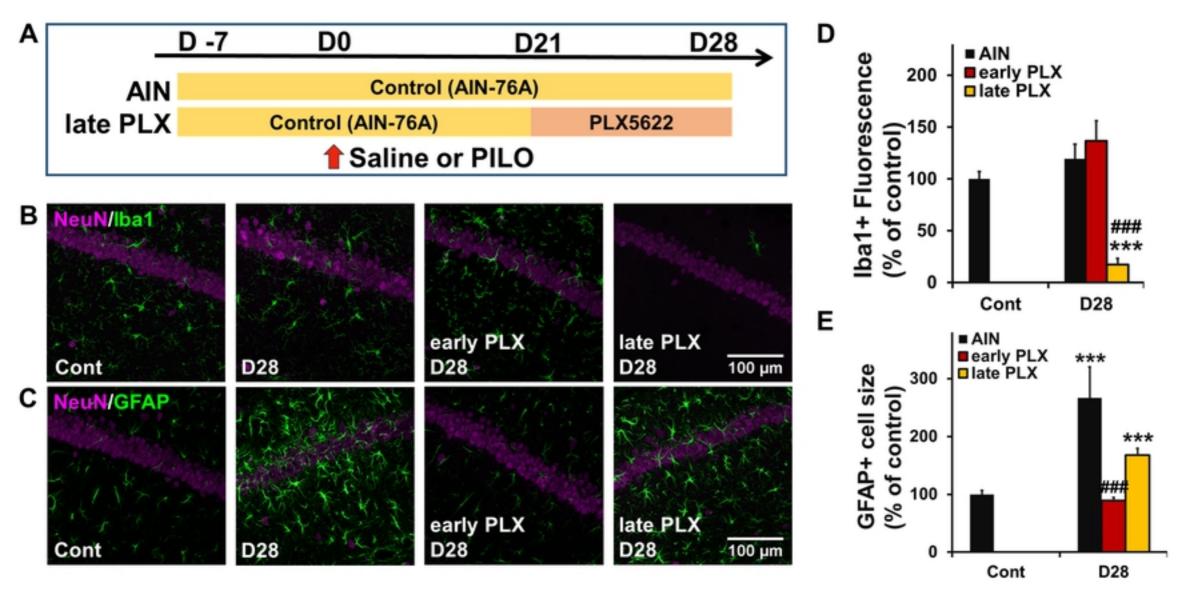
849 2017;541(7638): 481-487.

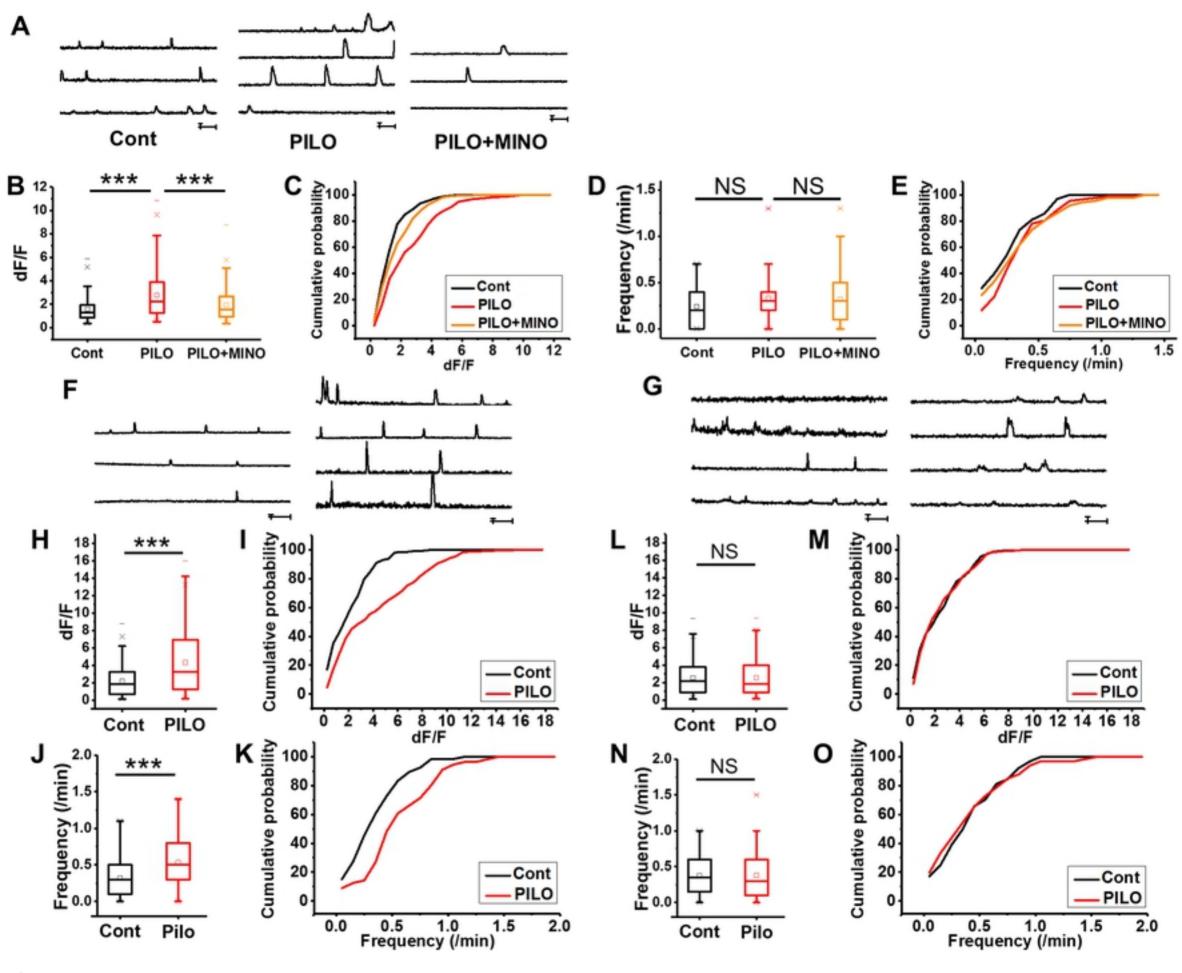
- 62. Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the
- ⁸⁵¹ brain diseases. Curr Med Chem. 2007;14(11): 1189-1197.
- 63. Kingwell K. Neurodegenerative disease: Microglia in early disease stages.
- 853 Nat Rev Neurol. 2012;8(9): 475.
- 64. Shinozaki Y, Nomura M, Iwatsuki K, Moriyama Y, Gachet C, Koizumi S.
- 855 Microglia trigger astrocyte-mediated neuroprotection via purinergic
- gliotransmission. Sci Repo. 2014;4: 4329.
- 65. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial
- activation and TNFalpha production mediate altered CNS excitability following
- peripheral inflammation. Proc NI Acad Sci U S A. 2008;105(44): 17151-17156.
- 66. Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, et al.
- 861 Interleukin-1beta immunoreactivity and microglia are enhanced in the rat
- ⁸⁶² hippocampus by focal kainate application: functional evidence for enhancement
- of electrographic seizures. J Neurosci. 1999;19(12): 5054-5065.
- 864 67. John GR, Lee SC, Brosnan CF. Cytokines: powerful regulators of glial cell
 865 activation. Neuroscientist. 2003;9(1): 10-22.
- 866 68. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar


50


- 867 formation. Trends Neurosc. 2009;32(12): 638-647.
- 69. Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, et al.
- Microglia release ATP by exocytosis. Glia. 2013;61(8): 1320-1330.
- 70. Shigetomi E, Hirayama YJ, Ikenaka K, Tanaka KF, Koizumi S. Role of
- purinergic receptor P2Y1 in spatiotemporal Ca(2+) dynamics in astrocytes. J
- 872 Neurosci. 2018;38(6): 1383-1395.
- 873


874 Supporting Information


- 875 **S1 Fig** Initial microglial activation is observed after SE in IP3R2KO mice.
- 876 S2 Fig Immunohistochemical analysis of GCaMP expression in the
- hippocampus in Glast-CreERT2::Flx-GCaMP3 mice.
- 878 **S1 Table** Cell-specific markers in GCaMP3-expressing cells in the hippocampus
- of Glast-CreERT2::Flx-GCaMP3 mice (tamoxifen i.p. at P7).
- 880 **S1 Movie** Ca²⁺ dynamics of astrocytes in the CA1 stratum radiatum region in
- 881 Glast-CreERT2::flx-GCaMP3 control mice and approximately 4 weeks after SE
- 882 with or without minocycline treatment.
- 883 **S2 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
- 884 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and


- 885 after TTX application.
- 886 **S3 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
- 887 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
- 888 after CPA application.
- 889 **S4 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
- 890 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
- 891 after 2-APB application.
- 892 **S5 Movie** Astrocytic Ca²⁺ dynamics as revealed by Fluo4 in the CA1 stratum
- ⁸⁹³ radiatum region in WT control, WT after SE, and IP₃R2KO mice after SE.
- 894 **S6 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
- 895 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice.
- 896 **S7 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
- 897 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice with or
- 898 without PLX5622 treatment.

