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Abstract: 

Information on species’ habitat associations and distributions, across a wide range of spatial and 

temporal scales, are a fundamental source of ecological knowledge. However, collecting 

information at relevant scales is often cost prohibitive, although it is essential for framing the 

broader context of more focused research and conservation efforts. Citizen-science has been 

signaled as an increasingly important source to fill in data gaps where information is needed to 

make comprehensive and robust inferences on species distributions. However, there are 

perceived trade-offs of combining highly structured, scientific survey data with largely 

unstructured, citizen-science data. As a result, the focus of most methodological advances to 

combine these sources of information has been on treating these sources as independent. The 

degree to which each source of information is allowed to directly inform a common underlying 

process depends on the perceived quality of the data. We explore these trade-offs by applying a 

simplified approach of filtering citizen-science data to resemble structured survey data, and 

analyze both sources of data under a common framework. To accomplish this, we integrated 

high-resolution survey data on shorebirds in the northern Central Valley of California with 

observations in eBird for the entire region that were filtered to improve their quality. The 

integration of survey data with the filtered citizen-science data resulted in improved inference, 

and increased the extent and accuracy of distribution models on shorebirds for the Central 

Valley. The structured surveys improved the overall accuracy of ecological inference over 

models using citizen-science data only by increasing the representation of data collected from 

high quality habitats for shorebirds. The practical approach we have shown for data integration 

can be also be used to improve the efficiency of designing biological surveys in the context of 

larger, citizen-science monitoring efforts, ultimately reducing the financial and time expenditures 

typically required of monitoring programs and focused research. The simple processing and 
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filtering method we present can be used to integrate other types of data (e.g. camera traps) with 

more localized efforts (e.g. research projects), ultimately improving our ecological knowledge on 

the distribution and habitat associations of species of conservation concern worldwide. 

Keywords: citizen science, data filtering, data integration, data quality, species distribution 

model, structured survey   
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INTRODUCTION 

Information on species’ habitat associations and distributions are a fundamental source of 

ecological knowledge (Sofaer et al. 2019).This information is often of interest across a broad 

range of spatial and temporal scales, from high-resolution information that is more relevant for 

research on habitat selection (Matthiopoulos et al. 2011) or needed to inform management 

objectives (Zipkin et al. 2010) to larger-scale inferences that are useful to address broader 

questions (e.g. potential range-shifts with changing climatic conditions; Lyon et al. 2019). 

However, the process of collecting biological observations across large-spatial scales is often 

cost-prohibitive for most research and monitoring efforts. Under the best-case scenario, 

researchers and practitioners are able to monitor plant and animal communities just within their 

study regions, and during specific times of year. However, the need to make inferences beyond 

the sampled range of environmental conditions and seasons often limits our understanding of the 

boarder context of our results, and can limit the use of applied research to inform future 

monitoring efforts and effective conservation actions. 

 Citizen-science data has been signaled as a promising source of information to fill-in 

information gaps needed to model species distributions (Bradter et al. 2018, Gouraguine et al. 

2019). However, there are few examples of the potential trade-offs of combining observational 

data collected at more localized scales with large-scale citizen-science data. This might be due in 

part to inherent differences that often exist between the two data types. On the one hand, you 

may have data that is collected at a high spatial resolution using skilled observers, sampling 

effort is often standardized, and sampling occurs across a habitat gradient that is representative 

of the region of interest.  On the other hand is citizen-science data, which can be collected across 

a wide range of sampling conditions by observers that vary widely in their level of expertise, 
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collected across a wide range of spatial resolutions, and sampling effort is not standardized. This 

has created a perceived trade-off between data quality and quantity among data collected from 

structured, scientific surveys and data collected from larger-scale, volunteer-based monitoring 

efforts (Figure 1). The assumption being made is that an increase in quantity of citizen-science 

data comes at a significant cost to quality.  Therefore, the logical framework to integrate these 

two sources of information would be one that would treat them as independent sources of 

information used to inform a common underlying distribution for a given species (Pacifici et al. 

2017). 

The integration of different data sources is a growing area of methodological 

development in ecological statistics, and recent advances have been made to develop ways of 

integrating survey data (e.g. structured) with citizen-science data (e.g. un-structured data) (Miller 

et al. 2019).  For observational data collected at discrete locations, these methods include 

specifying a joint-likelihood for the two data sources to estimate the underlying species 

distribution (Miller et al. 2019). In cases where this is not possible, the data source that is 

deemed as of lower quality (e.g. citizen science data, museum observations) can be used in two 

ways: 1) modeled as a covariate of the underlying distribution, or 2) used to estimate a separate 

species distribution, where a correlation structure is specified to share information across data 

sources. Pacifici et al. (2017) tested these different approaches to integrate observational data 

from the citizen science project eBird (Sullivan et al, 2017) with more structured data from the 

North American Breeding Bird Survey (BBS; Sauer et al. 2017).  Their results showed that the 

joint-likelihood approach of combining eBird and BBS data outperformed all other approaches, 

including using BBS data alone.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/806547doi: bioRxiv preprint 

https://doi.org/10.1101/806547
http://creativecommons.org/licenses/by-nc-nd/4.0/


The approach used by Pacifici et al (2017) and Miller el at (2019) summarized 

observational data at a coarse, grid-level in order to account for differences in effort, sampling 

approach, and other variables that are known to influence detectability (Guillera-Arroita 2017). 

In addition, Pacifici et al (2017) wanted to reduce potential bias related to the degree of 

uncertainty about the spatial scale that observations were collected for each independent eBird 

checklist.  This mismatch in scales between the two data sources is what often makes data 

integration between high-resolution survey data (e.g. point count observations) with lower-

resolution citizen-science data non-trivial. However, many citizen-science programs collect high-

scale resolution information (e.g. camera traps) in ways that we can infer absences, and collect 

additional information on effort (e.g. distance traveled, number of hours sampled) that is highly 

valuable for improving the accuracy of SDMs (Kelling et al. 2019). 

Here, we explore a practical approach for data integration between high-quality, citizen-

science data with structured survey data that builds upon existing methods for ‘data pooling’ 

(e.g. Fithian et al. 2015). We explore the trade-offs in inference of using citizen-science data 

alone, more localized and structured data alone, and pooling together both data sets combined. In 

addition, we examine specific trade-offs when combining structured and un-structured data 

sources by exploring the performance of increasing the quantity of citizen-science data through 

simulations, vs. the addition of data from more targeted survey efforts.  To accomplish this, we 

use The Nature Conservancy’s (TNC) BirdReturns project as a case study (Reynolds et al. 2017).  

We explore ways of combining high-resolution bird survey data collected for shorebirds on rice 

fields in the northern region of the Central Valley in California, with observations in eBird for 

the entire Central Valley that are filtered to improve their quality. The specific aim of the case 
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study is to provide a framework for leveraging survey data with citizen-science data to build 

more accurate distribution models for shorebird species across the extent of the Central Valley. 

METHODS 

Data 

We used point counts carried out during spring surveys (February 1- May 31; n = 8,192) as part 

of the TNC BirdReturns project conducted in 2014-2017. This project used predicted shorebird 

occurrence and abundance (Johnston et al., 2015) along with predicted surface water in the 

Sacramento River Valley to identify times and locations that were likely to be important for 

migrating shorebirds. TNC used a reverse auction approach to select and incentivize rice farmers 

in the identified locations to flood their fields during the spring and fall, making temporary 

wetlands available to the migrating shorebirds. Observers made point counts at fields enrolled in 

the program and at unenrolled control sites, surveying a semi-circle with a 200 m fixed-radius. 

Each site was surveyed for at least two minutes and lasted as long as necessary to count all birds 

present (for more detail on count methods see Golet et al. 2018). Effort for each point count 

consisted of date, time started and ended, and name of observer. 

 We combined the point counts with data from the citizen science project eBird (Sullivan 

et al. 2014) collected during the same time period as the point counts. The eBird data was 

restricted to the Central Valley of California, USA, and to complete checklists so that non-

detection could be inferred (Johnston et al. 2019). We also restricted the eBird data to stationary 

checklists and traveling checklists limited to 300 m. After filtering this data, we were left with 

12,891 checklists. Effort variables for the eBird data set were date, time observations started, 
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duration of observation in minutes, survey protocol (stationary or traveling), distance traveled in 

meters, and number of observers.  

We calculated the effort variables from the point counts to match those of the eBird data 

set. Observer name in the point count data set was converted into number of observers (however 

it was always one for this study), time started and ended for the point counts was used to 

calculate duration in minutes, and each point count was treated as a stationary count (distance 

traveled = 0). By doing this, the two data sets contained the same effort information and were 

identical in structure which allowed us to simply join them into one combined data set. We 

added a variable to the combined data set to note whether an observation was a TNC point count 

or an eBird checklist. We also calculated a checklist calibration index (CCI) for each checklist in 

the combined dataset to account for variation in expertise among observers (e.g. expertise score; 

Johnston et al. 2018). We attached the remotely sensed Cropland Data Layer (CDL; Boryan et al. 

2011, Han et al. 2012) to the combined data set by computing the percent of each land cover or 

crop type in the CDL that was present within a 300 m radius centered on each point count or 

eBird checklist. We also similarly attached cloud-filled data from Water Tracker (Reiter et al. 

2018), a high spatial and temporal resolution surface water tracking system for the Central 

Valley of California.  

A comprehensive data set was created using all of the above eBird checklists (12,891) 

plus simulated eBird checklists equal to the number of TNC point counts that were included in 

the combined dataset (8,192). This resulted in a dataset that was the same magnitude as the 

combined dataset and allowed us to determine if the improvement in accuracy from combining 

the datasets was simply a function of increasing the sample size. The simulated eBird data was 

created by slightly jittering the spatial covariates of 8,192 randomly chosen checklists, similar to 
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the oversampling procedure in Fink et al. (2019), however we used all checklists rather than only 

positive observations here. This ensured that we were maintaining roughly the same prevalence 

rate in the dataset, and also were not simply making exact copies of the randomly chosen 

checklists. 

Spatial Filtering and Class Imbalance 

As spatial bias is always a concern when using citizen science data (Geldmann et al. 2016), we 

spatially subsampled the combined data set. The data was sparse for many species (proportion of 

detections for a species < 0.05 for all checklists in the dataset), so class imbalance was also a 

concern  (He and Garcia 2009). We spatially undersampled the data (e.g. Robinson et al. 2017) 

by first creating a hexagonal grid of 3.5 km cells over the region from which our observations 

came via the dggridR package (Barnes et al. 2018) in R (R Core Team 2019). We then split the 

data for a single species into checklists on which the species was detected (positive observations) 

and those on which the species was not detected (negative observations). We selected one 

checklist from the negative observations from within each grid cell and recombined the filtered 

negative observations with the positive observations. As almost all of the spatial bias was from 

the negative observations (i.e. only a small percentage of the total number of observations were 

positive observations), this procedure relieves much of the spatial bias, and because only 

negative observations were filtered out of the dataset, class imbalance is also addressed here 

(King and Zeng 2001, Robinson et al. 2017). 

 To alleviate the effects of class imbalance, after spatially sampling eBird checklists for 

training distribution and population trend models, Fink et al. (2019) oversampled eBird 

checklists for species that had a prevalence rate of less than 25%. After spatially undersampling 
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our data for the current study, class imbalance was still a concern, as our undersampling 

improved the imbalance, but it did not improve class balance to 25% for species other than 

Yellowlegs. Following the recommendation of Fink et al. (2019), we oversampled the positive 

observations for each of our species below 25% prevalence before training the distribution 

models. We used the synthetic minority oversampling technique (SMOTE; Chawla et al. 2002) 

to create one new example of the positive class in the training dataset for every positive 

observation in the spatially undersampled dataset. The SMOTE algorithm does not create exact 

copies of the positive class as in traditional oversampling, but instead creates examples of the 

positive class that occupy the parameter space between a randomly chosen positive observation 

and a nearest neighbor. We did not randomly undersample our data as is recommended when 

using SMOTE (Chawla et al. 2002) because our data had already been spatially undersampled as 

described above. The spatial undersampling and SMOTE procedure was done to each of the 

datasets. As the spatial undersampling randomly chooses from negative observations within a 

grid cell, many negative observations may not be included in training the model. Therefore, we 

sampled the data using this procedure 100 times, creating 100 unique datasets.  

Analysis 

We selected and spatially subsampled (but did not oversample) 15% of the combined dataset to 

be the testing data for evaluation of each model. This test set was selected because our goal is to 

make accurate predictions across the entire Central Valley, and give equal importance to each 

location. Therefore, the test set must include observations across the spatial extent of evaluation 

and be spatially balanced. For the training datasets, we removed any checklist or point count that 

was in the test set. 
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We used the R package ‘ranger’ (Wright et al. 2019) to train a random forest model for 

each of the seven species (or combined species; Table 1) and for each of four datasets: 1) TNC 

point counts alone, 2) eBird checklists alone, 3) an oversampled eBird dataset, 4) the combined 

TNC and eBird dataset. For each species, 1000 trees were grown in the ensemble and the number 

of variables from which the model could select at each split for each tree was set to the square 

root of the number of variables included in the model ( n  = 12 ≈ √142 ). We evaluated the 

accuracy of the models using multiple predictive performance metrics (PPMs). We did not 

evaluate the models using the out of bag (OOB) metric calculated by random forest internally as 

it favors total accuracy over correctly predicting the minority class, and is highly sensitive to 

class imbalance. We used the test dataset to evaluate mean squared error (MSE) between the 

model predictions of presence or absence and the true presence or absence in the test set. We also 

evaluated error using Brier score (Brier 1950), the mean squared error of the probabilistic model 

predictions and the true presence or absence in the test set. We evaluated each model’s ability to 

rank positive observations higher than negative ones using the area under the curve (AUC; 

Fielding and Bell 1997). We evaluated each model’s ability to predict presence or absence using 

Cohen’s Kappa (Kappa; Cohen 1960) and its components, sensitivity (true positive rate), and 

specificity (true negative rate). We produced distribution maps for each species and dataset, and 

we recorded the predictor importance metrics from models trained on each dataset. 

RESULTS 

The fields that are stored as part of the eBird project allowed us to filter the data to be of a 

similar protocol as the TNC point counts. This filtering reduced uncertainty in the location of 

eBird checklists and eliminated the need for coarse level summaries of the data for integration 

(Pacifici et al. 2017, Miller et al. 2019). For all species, the combined dataset had higher 
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predictive accuracy than either the TNC point counts or eBird checklist datasets on their own; 

however error (MSE, Brier score) was relatively low and AUC was relatively high for all species 

and all datasets, particularly for the three datasets where eBird checklists were included  (Figure 

1; S1). Improvement in accuracy varied among species, however; for the Kappa statistic 

(predicting presence and absence against the test set), the combined dataset was an improvement 

over all three of the other datasets evaluated (4.5% - 35.5% improvement; Figure 2). The 

improvement or loss in the error statistics was usually negligible (with the exception of LBCU; 

Figure 4; S1) for the combined dataset versus the next best dataset; however, error metrics were 

already very low for most species, so great improvement here was not likely. Likewise, AUC 

was relatively high for most species and for the three datasets containing eBird checklists, 

therefore the gain was negligible for many species (improvement of -0.60% - 7.5%; S1). For the 

few species/metrics combinations where the combined dataset was not the best performing 

model, it was the second best, with the best being the eBird checklists with simulated eBird 

checklists added. The TNC point counts, nor eBird checklists alone performed better for any 

metric than the dataset where the two were combined. 

 We produced distribution maps for each species (Figure 5; S1) to determine if there was a 

difference in the overall pattern of distribution estimated by models trained on the different 

datasets. For most species, there was greater contrast between the presence estimates and 

absence estimates for the combined dataset when compared to the other three. Visually, this 

means hotter ‘hotspots’ and darker regions where absence is predicted (Figure 5; S1). We also 

collected the important variables for the model when run with each of the datasets. For all 

species, the importance of rice and water was apparent as it was among the top variables for each 

of the datasets, however, it was not until the datasets were combined that each rice and the Water 
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Tracker layer had a high importance score (Figure 6; S1). The combination of the data allowed 

the models to hone in on rice and surface water as highly important, where they had only 

moderate importance comparatively when using the other datasets. This is likely because only 

1.5 % of eBird checklists in our study come from locations where the percent land-cover is 

>50% rice. Conversely, almost 60% of the TNC point counts come from locations where the 

percent land-cover is >50% rice.  

 

DISCUSSION 

Our results lend further support to efforts looking to combine data from multiple sources 

to improve the inference and/or predictive ability of distribution models (Pacifici et al. 2017, 

Miller et al. 2019). We have shown that citizen-science data can be filtered to generate a high-

quality data set that can closely match the resolution and sampling approach of structured 

surveys, supporting the call for current and future citizen-science projects to collect essential 

information related to location and effort, as well as complete surveys (Kelling et al, 2019). The 

integration of survey data with the filtered citizen-science data in eBird resulted in improved 

inference, predictive ability, and ultimately increased the extent of inference of the structured 

surveys. In turn, the structured surveys were able to improve the ecological inference of the 

citizen-science data, by improving the representation of sampled habitats that are key for 

shorebird species. Most importantly, the practical approach we have shown for data integration is 

an improvement on simpler ‘data pooling’ approaches for data integration, and can be used to 

improve the efficiency of designing biological surveys to collect distribution information in the 
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context of larger, citizen-science monitoring efforts, ultimately reducing the financial and time 

expenditures typically required of monitoring programs and focused research (Reich et al. 2018).  

 The combined dataset resulted in improved accuracy across all metrics relative to the 

TNC survey data or eBird data alone, for all of the species considered in this study. Our 

combined approach also predicted presence/absence via agreement with a test data set more 

accurately than the different permutations of datasets considered (e.g. TNC alone, eBird alone, 

eBird plus simulated eBird). The observed improvement in accuracy is not likely a function of 

simply increasing sample size, since augmenting eBird data with simulated data did not show the 

same levels of improvement. The addition of the TNC survey data to eBird data improved the 

coverage of the data both spatially and in targeted habitats. Previous work has shown that 

migrating shorebirds heavily use flooded rice fields in the Central Valley, including unflooded 

rice fields (Elphick and Oring 1998, Golet et al. 2018). Given that rice fields are the main focal 

habitat of the TNC BirdReturns program, ~60% of the survey data from this project was carried 

out at sites where at least 50% of the landcover is rice. In contrast, the majority of the rice fields 

in the Central Valley are not accessible to regular eBird participants, as they are often on private 

lands. This is likely why we see so few (~1.5%) eBird checklists from the Central Valley in 

locations where at least 50% of the landcover is rice. The addition of more data from high quality 

habitat is what provided the improvement in accuracy of the combined eBird and TNC data set.  

This highlights the importance and value of more targeted research and survey efforts within the 

context of large-scale citizen-science monitoring efforts. Given that private lands make up more 

than half of the land in the United States, supporting wildlife monitoring efforts on privately held 

lands that are linked into large-scale efforts such as eBird can greatly improve inferences on 
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species distributions and habitat associations across scales of interest for all stakeholders (Hilty 

and Merenlender 2003). 

Interestingly, models based only on the TNC point counts struggled to learn where each 

species was likely to be absent across the entire Central Valley because the data came largely 

from “good” shorebird habitat in the northern portion of the Central Valley. The original intent 

of this project was not focused on species distribution modeling, so this does not come as a 

surprise. However, given that absence information allows for more accurate distribution models 

(Brotons et al. 2004), the addition of eBird data was able to provide information on where 

species are likely to be absent, and improved inferences on what habitat types most benefit 

shorebirds, but were not surveyed as part of the TNC monitoring efforts. On the other hand, the 

models using the eBird data alone were able to predict absences well, and had relatively high 

accuracy when predicting presence/absence, but overall ecological inference was improved when 

combined with the point count dataset. The TNC point counts acted as targeted surveys in under-

surveyed habitat, which previous work has shown can improve the accuracy of distribution 

models using eBird checklists (e.g. Xue et al. 2016). The complementary nature of the datasets is 

also shown when examining the important predictors. For Dunlin (Figure 6), the rice landcover 

and the Water Tracker layer are important predictors for each dataset, however their importance 

values more than double when the combined dataset is used to train the model. While other 

species do not show such a drastic shift in the importance value for these two habitat variables, 

the pattern is similar for most in that these variables become more important to the model’s 

predictions when the datasets are combined.  

The approach we present for combining data is applicable for other conservation 

monitoring programs and ongoing research efforts, given that a significant amount of research is 
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conducted over small spatial and temporal scales (Heidorn 2008), and often difficult to scale-up 

without similarly structured data (Poisot et al. 2019).  The data fields that exist in eBird data 

facilitated further processing and filtering to match the structure of the individual dataset of 

interest, and allowed us to leverage the strengths of both data sources. However, even citizen-

science datasets that do collect effort information are often lacking information on sampling 

locations, although incentivizing participants to collect data in these data-poor locations  has 

been shown to improve the accuracy of distribution models (e.g. avicaching; Xue et al. 2016). 

Similarly, data from smaller-scale, individual research projects can also help fill in these gaps in 

citizen-science data. Given that inferences from small-scale studies cannot be extrapolated to 

larger spatial extents (Sandel and Smith 2009), the approach we present here for combining data 

from small-scale studies with citizen-science data filtered to match the existing data structure 

will increase the overall extent of inference, and improve our ability to conceptualize 

conservation actions within the larger context of the target population(s) of interest.  

Information on species distributions across large scales is one of the most fundamental 

information needs for basic and applied research fields in ecology. However, this level of 

information often requires large-scale, coordinated surveys that can be time consuming and 

costly to manage. In addition, models used to estimate species distributions are often data-

hungry, and are often unable to generate information at the spatial and temporal scales that are 

most relevant for research and conservation efforts. We have shown the utility of combining 

survey data with semi-structured citizen science data (Kelling et al, 2019) for improving 

accuracy in species distribution models, which can result in more efficient and cost effective 

surveys (Pacifici et al. 2017, Reich et al. 2018, Miller et al. 2019). The simple processing and 

filtering method we present for citizen science data allows for the integration of a small-scale 
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point count data set with eBird checklists, can be used to integrate similar types of data being 

collected by citizen-scientists (e.g. camera traps) with more localized efforts (e.g. patrolling by 

park rangers), ultimately improving our ecological knowledge on the distribution and habitat 

associations of species of conservation concern worldwide. 
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Table 1. List of species for which we modeled spring distribution in the Central Valley of 

California with each of the four datasets. 

Common Name Latin Name Abbreviation in Tables & Figures 

American Avocet Recurvirostra americana AMAV 

Dunlin Calidris alpina DUNL 

Greater Yellowlegs* Tringa melanoleuca YLEG* 

Least Sandpiper Calidris minutila LESA 

Lesser Yellowlegs* Tringa flavipes YLEG* 

Long-billed Curlew Numenius americanus LBCU 

Long-Billed Dowitcher** Limnodromus scolopaceus DOWI** 

Short-billed Dowitcher** Limnodromus griseus DOWI** 

Western Sandpiper Calidris mauri WESA 

  * Combined in analysis and referred to collectively as “Yellowlegs” in this study 

  ** Combined in analysis and referred to collectively as “Dowitcher” in this study 
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Figure 1. The perceived trade-off between data quality and quantity of data collected using structured surveys and 

citizen-science efforts. You can bypass this tradeoff by processing and filtering citizen-science data using criteria 

such as count type (e.g. stationary vs. traveling), duration of counts (e.g. all observations < 30mins), and other 

measures that align well with the existing data set. This approach is recommended as the most flexible data 

integration method for the application of a broad-range of species distribution models. 
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Figure 2. Boxplots for MSE, AUC, Brier score, Cohen’s Kappa, Sensitivity and Specificity for models run for Least 

Sandpiper (LESA) with each dataset; TNC point counts (TNC), eBird checklists (eBird), eBird checklists with 

additional simulated eBird data (eBird + sim), and the dataset of TNC point counts and eBird checklists combined 

(Combined). 
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Figure 3. Average improvement in Cohen’s Kappa for distribution models of each species when using the combined 

dataset versus the dataset that provided the next highest Kappa value.  
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Figure 4. Average improvement or loss in Brier score for distribution models of each species when using the 

combined dataset versus the dataset that provided the next lowest value.  
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Figure 5. Predicted probability of an expert surveyor detecting a Dunlin in the spring of 2016 on 

a one-hour long checklist where the distance traveled was < 300m., as estimated by the model 

using TNC point counts alone (A), eBird checklists alone (B), eBird checklists with added 

simulated eBird checklists (C), and the combined dataset of TNC point counts and eBird 

checklists.  
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Figure 6. Important variables selected by the model trained on each data set for Dunlin as 

selected by Gini importance index; TNC point counts alone (A), eBird checklists alone (B), and 

the combined dataset of TNC point counts and eBird checklists (C). Please note the different 

scales for each panel, and that this only represents the importance of each variable, not the 

direction of its relationship with probability of detection. 

 

Supplementary Information 1 

 

Boxplots for MSE, AUC, Brier score, Cohen’s Kappa, Sensitivity and Specificity for models run 

for American avocet (AMAV), long- and short-billed dowitcher combined (DOWI), dunlin 

(DUNL), long-billed curlew (LBCU), western sandpiper (WESA) and greater and lesser 

yellowlegs combined (YLEG) with each dataset; TNC point counts (TNC), eBird checklists 

(eBird), eBird checklists with additional simulated eBird data (eBird + sim), and the dataset of 

TNC point counts and eBird checklists combined (Combined). Accuracy metrics for least 

sandpiper (LESA) are in the main text. 
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Supplementary Information 2 

 

Average improvement or loss in mean squared error and AUC for distribution models of each 

species when using the combined dataset versus the dataset that provided the next lowest value. 

Recall that the values for these metrics were already very low (for MSE) and very high (for 

AUC) to begin with. So even a somewhat large change in the percent improvement or loss 

represents a rather small change for most species. The plots showing improvement or loss for 

Brier score and Kappa are in the main text. 
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Supplementary Information 3 

 

Predicted probability of an expert surveyor detecting an American avocet (AMAV), long- and 

short-billed dowitcher combined (DOWI), dunlin (DUNL), long-billed curlew (LBCU), least 

sandpiper (LESA), western sandpiper (WESA) and greater and lesser yellowlegs combined 

(YLEG) in the spring of 2016 on a one-hour long checklist where the distance traveled was < 

300m., as estimated by the model using TNC point counts alone (A), eBird checklists alone (B), 

eBird checklists with added simulated eBird checklists (C), and the combined dataset of TNC 

point counts and eBird checklists (D). Maps for dunlin (DUNL) are in the main text. 
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Supplementary Information 4 

Variable Importance for American Avocet, Dowithcer sp., Long-billed Curlew, Least Sandpiper, 

Western Sandpiper, and Yellowlegs sp. These figures for Dunlin appear in the main text. 

Important variables selected by the model trained on each data set for American Avocet as 

selected by Gini importance index; TNC point counts alone (A), eBird checklists alone (B), and 

the combined dataset of TNC point counts and eBird checklists (C). Please note the different 

scales for each panel, and that this only represents the importance of each variable, not the 

direction of its relationship with probability of detection. 
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Important variables selected by the model trained on each data set for short- and long-billed 

dowitcher combined as selected by Gini importance index; TNC point counts alone (A), eBird 

checklists alone (B), and the combined dataset of TNC point counts and eBird checklists (C). 

Please note the different scales for each panel, and that this only represents the importance of 

each variable, not the direction of its relationship with probability of detection. 
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Important variables selected by the model trained on each data set for long-billed curlew as 

selected by Gini importance index; TNC point counts alone (A), eBird checklists alone (B), and 

the combined dataset of TNC point counts and eBird checklists (C). Please note the different 

scales for each panel, and that this only represents the importance of each variable, not the 

direction of its relationship with probability of detection. 
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Important variables selected by the model trained on each data set for least sandpiper as selected 

by Gini importance index; TNC point counts alone (A), eBird checklists alone (B), and the 

combined dataset of TNC point counts and eBird checklists (C). Please note the different scales 

for each panel, and that this only represents the importance of each variable, not the direction of 

its relationship with probability of detection. 
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Important variables selected by the model trained on each data set for western sandpiper as 

selected by Gini importance index; TNC point counts alone (A), eBird checklists alone (B), and 

the combined dataset of TNC point counts and eBird checklists (C). Please note the different 

scales for each panel, and that this only represents the importance of each variable, not the 

direction of its relationship with probability of detection. 
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Important variables selected by the model trained on each data set for greater and lesser 

yellowlegs combined as selected by Gini importance index; TNC point counts alone (A), eBird 

checklists alone (B), and the combined dataset of TNC point counts and eBird checklists (C). 

Please note the different scales for each panel, and that this only represents the importance of 

each variable, not the direction of its relationship with probability of detection. 
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