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Abstract

In observational genomics datasets, there is often confounding of the effect of an exposure on gene
expression. To adjust for confounding when estimating the exposure effect, a common approach involves
including potential confounders as covariates with the exposure in a regression model of gene expression.
However, when the exposure and confounders interact to influence gene expression, the fitted regression
model does not necessarily estimate the overall effect of the exposure. Using inverse probability weight-
ing (IPW) or the parametric g-formula in these instances is straightforward to apply and yields consistent
effect estimates. IPW can readily be integrated into a genomics data analysis pipeline with upstream data
processing and normalization, while the g-formula can be implemented by making simple alterations to
the regression model. The regression, IPW, and g-formula approaches to exposure effect estimation are
compared herein using simulations; advantages and disadvantages of each approach are explored. The
methods are applied to a case study estimating the effect of current smoking on gene expression in adipose
tissue.
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gression
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Introduction

Increasing numbers of large-scale observational genomic datasets are available, in which tissue is collected
from human donors sampled from a population. These donors differ in various ways, for example they
may differ by age, sex, and other demographic variables, as well as by clinical or exposure variables such
as body-mass index (BMI), diet, level of physical activity, history of medicine use, history of smoking or
alcohol use, or various environmental exposures. Investigators are often interested in assessing the effect
of various exposures on genomic variables, such as gene expression, as this may be useful to generate
hypotheses about potential cellular mechanisms through which exposures may influence the development
of diseases in human populations. Gene expression is a common molecular measurement in the context of
exposure effects, although additional genomic assays, such as methylation, metabolites, protein abundance,
may also be of interest.

A number of statistical methods have been proposed to address the problem of structural technical varia-
tion in gene expression measurements (Gagnon-Bartsch and Speed, 2012; Leek and Storey, 2007; Stegle
et al., 2012), where structural refers to variation in the measurements across samples that is common across
many genes. These methods address sample non-independence with a focus on estimation of latent fac-
tors, orthogonal to the biological condition of the samples, to be included in a linear model framework
as regressors to account for the technical variation in the measurements. These methods can account for
differences in measurements among sample preparation batches that may otherwise impair correct infer-
ence of differences across the biological conditions. Additionally, methods have been proposed to address
sample correlations that arise from biological sources, for example repeated measures or genetically related
individuals. Such sample non-independence can be addressed by explicit modeling of the known sample
correlation structure as in a random effects framework (Cui et al., 2016); software for this approach include
the duplicateCorrelation method (Smyth et al., 2005) in the limma package (Smyth, 2004), the ShrinkBayes
package (Van De Wiel et al., 2012), or the MACAU package (Sun et al., 2017).

Regression frameworks alone may not be able to properly address the problem of confounding variables,
whether measured or unmeasured, in observational datasets. Confounding is an issue when estimating
causal effects, and as such is a distinct problem from the technical and biological sources of correlations
among samples described above. Confounding has received relatively less attention in computational ge-
nomics, compared to the problems of structural technical variance or repeated measures. Existing work
addressing confounding in observational genomic datasets has focused on sample matching (Heller et al.,
2008), the combination of targeted minimum loss-based estimation (TMLE) and empirical Bayes shrinkage
estimation (Hejazi et al., 2017), and TMLE for differential methylation controlling for observed methylation
at neighboring genomic sites (Hejazi et al., 2018).

Since the exposure in an observational study is not randomly assigned, there is often confounding of the
effect of exposure on the outcome. In general, randomized clinical trials to assess how various exposures
affect gene expression cannot be conducted in human populations for ethical or feasibility reasons. Similar
randomized studies can be performed on model organisms, but there is unique value in understanding the
mechanism of these exposures in humans, and human populations are readily available for observational
studies. In light of the increasing number of observational genomics studies on humans and the antici-
pated presence of confounding in such studies, methods of exposure effect estimation are worth further
investigation.

For many studies, it is often useful to assess exposure effects on gene expression in the exposed individuals.
This may be the case when researchers have particular interest in the effect of an exposure only on those
types of individuals who likely will experience the exposure. For example, when studying the effect of
smoking, it is often most relevant to obtain effect estimates interpretable for those who actually smoke, as
opposed to the effect smoking would have, averaging over all the persons in the general population. In
these cases, the target estimand is referenced as the exposure effect in the exposed; this terminology will
be used interchangeably with the average treatment effect in the treated (ATT) throughout. In contrast, the
average treatment effect (ATE) is a different estimand and is interpretable in the context of the population
as a whole, including both treated and untreated individuals. This paper will focus on obtaining estimates
for the former, the ATT.
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The conventional approach to quantifying the effect of exposure, while attempting to adjust for confound-
ing, is to fit a linear model of gene expression with the exposure and various potential confounders as
covariates. In this approach, the estimated coefficient of the exposure variable is often interpreted as an
estimate of the exposure effect. However, fitting the conventional linear model falls short of our goal in two
respects: (1) it does not directly produce an estimate of the effect of interest, the effect of the exposure in
the exposed individuals, who may differ in various respects from unexposed individuals, and (2) it may not
appropriately adjust for confounding, resulting in estimates that are not consistent and confidence intervals
that do not provide their nominal coverage. For these reasons, this paper demonstrates existing causal in-
ference methods that can be employed in these scenarios to adequately adjust for confounding and return
consistent exposure effect estimates and valid confidence intervals.

Regression, inverse probability weighting (IPW), and the parametric g-formula are compared herein for
obtaining exposure effect estimates. Both IPW and the parametric g-formula are methods established and
widely applied to observational studies in the causal inference and epidemiology literature. This paper seeks
to demonstrate that these methods also have utility in the space of observational genomics. In general, IPW
uses weights to construct a “pseudo-population” in which there is no longer confounding of the effect of
an exposure on the outcome of interest; simple linear regression is then applied to this “pseudo-population”
to obtain consistent estimates of the exposure effect (Robins et al., 2000). The parametric g-formula, also
referred to as standardization, entails fitting an outcome regression model and then averaging the predicted
outcomes across all individuals for a fixed level of the exposure. Both IPW and the parametric g-formula
rely on standard assumptions of causal inference (conditional exchangeability, positivity, and consistency),
but they differ in the modeling assumptions required (Naimi et al., 2017). Statistical validity of the IPW
and parametric g-formula methods rely on asymptotic justifications, and are not guaranteed to perform well
for small sample sizes.

The following is an outline for the remaining sections of this paper. A brief summary is given of the models
used, followed by more extensive description in the Methods section for both the simulation study and data
analysis; formal definitions are left to the Supplementary Methods. In the Results section, the methods are
compared in simulations and a data analysis. Simulation studies are based on the Metabolic Syndrome in
Men Finnish cohort (METSIM) (Laakso et al., 2017) analysis dataset (n = 770). In particular, scenarios
falling into three categories for a binary exposure effect on gene expression are investigated: no confound-
ing, and confounding both with and without interaction(s) between exposure and covariates. The METSIM
cohort data is then analyzed to investigate the effect of current smoking on gene expression in adipose
tissue. The Discussion section concludes with reviewing and providing insight into the main results, and
addresses limitations of and future directions for this research. The Supplementary Methods gives details
on the models for the regression, IPW, and g-formula approaches, as well as estimates of standard errors
and assumptions required for each approach. In the Supplementary Results, it is first established why the
proposed methods are being compared to linear regression alone, and not to the linear model with empir-
ical Bayes moderation of the standard errors (for example, as implemented in the limma package (Smyth,
2004)). The Supplementary Results section concludes with sensitivity analyses for the METSIM cohort
data. Appendix A demonstrates the equivalence of the g-formula estimator presented in the main text and
the g-computation algorithm of Snowden et al. (2010). Appendix B provides R markdown (Rmd) workflows
showing the generation of the simulated data and performing the three methods on a simulated dataset.

Methods

Summary of models compared

Three exposure effect estimation approaches were assessed in the following evaluation: traditional linear
regression, inverse probability weighting, and the parametric g-formula. In fitting the models associated
with each approach, it was assumed that the models were correctly specified, the set of confounders iden-
tified was sufficient to adjust for confounding, and the data were free from selection bias and systematic
measurement error. The regression model with the exposure and potential confounders as predictors was
fit using ordinary least squares for both the parameter estimates and their standard errors, in keeping with
the conventional approach. For the IPW approach, the confounders were used as predictors in a logistic
regression model of the exposure to obtain the weights, and the weights were used in the simple linear
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regression model of gene expression on the exposure using weighted least squares. In the g-formula ap-
proach, all potential confounders were centered at the mean value in the exposed, and the linear regression
model with the exposure, centered confounders, and their interactions was fit using ordinary least squares.
The standard errors for both the IPW and g-formula estimators were computed using stacked estimating
equations (Stefanski and Boos, 2002). The details of using these methods with observational genomics data
are described further in the Methods Section, formally defined in the Supplementary Methods section that
follows the main body of the paper, and demonstrated in the R code included in Appendix B.

Simulation Study

Performance of methods was first compared using a simulation. The simulated covariates and exposure
were based on counterparts from the METSIM data analysis in the next section. Specifically, the simulated
variables included a current smoking indicator and five variables considered to be potential confounders of
the relationship between current smoking and gene expression. Table 1 below gives more details regarding
variable distributions and dependencies.

[Table 1 about here]

Following the generation of the variables in Table 1, normalized gene expression values for various scenar-
ios were simulated as well. For scenarios where no confounding was present, the mean of the expression
values were dependent on only the exposure or none of the variables. When confounding was present, the
mean expression values were dependent on both the exposure and the other covariates, with some scenarios
including interactions between the exposure and the covariates. Expression values were generated with
different means for each individual and each gene, according to the simulated exposure and covariates. The
mean for gene g and individual i was

µgi = βg1 agei +βg2 alci +βg3 vegi +βg4 hexi +βg5 bmii+

smki
(
βg6 +βg7 alci +βg8 vegi +βg9 hexi +βg10 bmii

)
where the βgk, k = 1, ...,10, varied by gene and were restricted to βgk ∈ [−2,2] for this simulation study.
Here age, alc, and bmi were each centered about their population mean and scaled. Note that there was
no quadratic age term and no interaction term for age and smoking in the true model for mean expression,
although the former was included in the analysis models; these terms can be thought of as not contributing
to the true mean gene expression for any individual. The standard deviation of each gene was set to the
same value to aid with comparing results for different genes, and was equal to 0.24.

The variables listed in Table 1 were generated for a population of 10 million individuals, from which the
true ATT was calculated for each gene. From this population, 1000 sets of 770 individuals were randomly
selected with replacement to build the analysis datasets. The sampling algorithm allowed for the same
individual to be present in more than one dataset, but not more than once within a single dataset.

In all instances the regression model had the same form shown in equation S.1 of the supplementary ma-
terials, namely the exposure and covariates (with both linear and quadratic age terms) were each present
as main effects in the model and no interaction terms were included; the covariates age, age2, alc and
bmi were centered at their sample mean and scaled for each dataset, as would typically be done to avoid
collinearity with the intercept. The standard errors used to construct the 95% confidence intervals were
obtained through fitting the model with ordinary least squares.

For the IPW approach, first the logistic regression model in equation S.2 of the supplementary materials
was used to compute the components needed for the weights for each dataset, with terms for the five
covariates and a quadratic age term. Weights for the ATT were then constructed according to expression
S.3 of the supplementary materials. Then the linear regression model of gene expression in S.4, with only
the exposure and an intercept, was fit with the weights to obtain the effect estimate. Standard error estimates
used to obtain the 95% confidence intervals were computed with the stacked estimating equations approach
using the geex package (Saul and Hudgens, 2017) in R, taking into account estimation of the weights by
stacking the estimating equations for the logistic regression model with those used in computing the IPW
estimator.
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The regression model given in equation S.5 of the supplementary materials was used to obtain the g-formula
estimate for each dataset. It contained variables for the main effects of the exposure and covariates (includ-
ing both linear and quadratic age) as well as interactions between smk and each of bmi, veg, hex, and alc.
Since the ATT is being compared across methods in this simulation study, the non-exposure covariates were
all centered at the sample mean in the exposed. The standard error estimates used for the 95% confidence
intervals were computed with stacked estimating equations by passing geex the set of stacked estimating
equations corresponding to the covariate means and the regression model parameters.

METSIM Smoking Exposure Effect

In the METSIM project dataset, the goal was to obtain the estimated effect of current smoking on gene
expression in the smokers, adjusting for the set of potential confounders: linear and quadratic age, BMI,
alcohol consumption, vegetable consumption, and hobby exercise. The data consisted of adipose gene
expression values and several covariates, measured for n = 770 individuals (details on data preprocessing
in Supplementary Methods). There were no missing outcome, exposure, or covariate values. This cohort
was analyzed in Civelek et al. (2017), where BMI and linear and quadratic age were considered confounding
variables for various phenotypic traits. This analysis, and consultations with a subject-matter expert, guided
the choice of the confounding variable set. Note that current smoking was not examined by Civelek et al.,
so their analyses were not compared directly to those in this paper. Each of the three methods introduced
above were implemented for this cohort in the analyses that follow.

Table 2 briefly summarizes the variables used in this analysis; the range, mean and standard deviation are
reported for continuous variables and the levels and distribution are given for each categorical variable. For
hobby exercise, higher levels denote increased activity levels.

[Table 2 about here]

Note that the models used for the data analysis had the same form as those fit for the simulation study,
described in the section above. The estimated exposure effect was obtained using regression, IPW, and the
g-formula for each of the 18,510 genes; the coefficient for current smoking represented the exposure effect
in each model. The models were fit and standard errors computed, again using the same process as for the
simulation study. With each approach, a t-test of no effect of exposure on gene expression was performed
for each gene and the resulting p-values were adjusted using the correction from Benjamini and Hochberg
(1995) to control the false discovery rate.

To compute weights for the 770 individuals, the logistic regression model of current smoking was fit with the
previously listed covariates as predictors. Before computing effect estimates and standard errors, it is good
practice to check that the weights have a mean value close to the expected value (details in Supplementary
Methods) and that none of the weights are extreme. The weights had mean value 0.34, which was exactly
what was expected for these data. There was one weight with a value of 5.26, substantially larger than the
rest; for this reason, a sensitivity analysis was conducted in the Supplementary Results section where the
observation with this large weight was deleted and the same analysis was performed again to investigate the
influence of this observation.

For both the g-formula and regression methods, leverage values were computed for each observation to
determine if there were any influential points in these analyses; the same observation returned the largest
leverage point for both the g-formula and regression, which took values 0.38 and 0.11 respectively. In
both instances these leverage values were approximately twice the magnitude of the next largest value, so
another sensitivity analysis was conducted in the Supplementary Results where the observation with this
large leverage value was deleted and the analysis was performed again to investigate its influence.
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Results

Simulation Study

The empirical bias and confidence interval coverage and width for the regression, IPW, and g-formula
estimators are shown in Table 3, averaging over 1000 simulations per scenario. While there were instances
where all estimators appeared to perform well, the IPW and g-formula estimators provided advantages
over regression in a subset of the simulated scenarios. In particular, the IPW and g-formula estimators
remain unbiased and meet nominal confidence interval coverage in all scenarios, but the regression estimator
manifests bias and fails to meet nominal coverage in the presence of exposure-covariate interactions. The
reported coverage represents the proportion of confidence intervals which included the true value of the
ATT. The true ATT value is shown for each scenario, and is based on the original population of 10 million
individuals. The null case where there was no effect of current smoking on gene expression is shown in
addition to several representative scenarios where confounding was present, two without and three with one
or more interactions between exposure and confounders.

[Table 3 about here]

True ATT values in these simulations are in units of log2 fold change in gene expression. The most ex-
treme scenario shown here, where the true ATT is 2.00, thus represents a 4-fold change in gene expression
attributable to smoking. Additional simulation studies were conducted that are not shown in this table, but
the results were similar to those included. Across all simulations run, the average bias of the regression esti-
mator took values in the range [−0.29,0.29], whereas the IPW and g-formula average biases were contained
to [−0.01,0.01]. For this simulation study setup, the regression bias appears to be larger in magnitude when
interaction terms involving alcohol and hobby exercise contributed to the true ATT.

When smoking and the confounders did not interact to influence gene expression, e.g., the first three ex-
amples in Table 3, all methods met nominal coverage and yielded no bias on average. In scenarios where
interactions existed between smoking and the confounders, the regression effect estimator had nonzero aver-
age bias and substantially below nominal confidence interval coverage. The IPW and g-formula estimators
both resulted in very low or no bias on average, and both uniformly met (or very nearly met) the nominal
confidence interval coverage. Except in the null case, the IPW and g-formula estimators were generally
more variable than the regression estimator. When smoking and the confounders interacted, the IPW and
g-formula estimates had confidence intervals that were on average approximately twice as wide as those for
regression. Of the two methods that overall maintained the nominal coverage across scenarios, IPW and
g-formula, they tended to have comparable interval width except in one of the no-interaction scenarios, in
which IPW had nearly double the average interval width of g-formula.

METSIM Smoking Exposure Effect

Regression, IPW, and g-formula were applied in order to assess the effect of smoking on gene expression
among smokers in the METSIM cohort. Estimates and confidence intervals for each of the three methods,
for the top two genes as ranked by p-value are presented in Figure 1a - 1b (the top two genes are shown as
their effect sizes and test statistics were appreciably larger compared to the other genes). The three methods
were in agreement on the ranking for the top three genes, but beyond this the rankings were not consistent
across method (Figure 1c). The top two genes in terms of estimated effect size and test statistic were
CYP1A1 and CYP1B1, which were expected as they play a role in metabolizing cigarette smoke (Nebert
and Russell, 2002). The confidence intervals for the IPW and g-formula estimates of the top two genes
were similar in width, and the regression confidence interval was substantially less wide. While the − log10
adjusted p-values for the top two genes were all large for each of the three methods (highly significant),
those from regression were much larger than those from IPW and the g-formula (CYP1A1: R=119, W=44,
G=44; CYP1B1: R=30, W=18, G=20). This is in accordance with the displayed difference in confidence
interval widths for the smoking effect estimates of these two genes. Although the ATT estimates were
similar across methods for the genes shown, instances of substantial differences in standard error produced
vastly different confidence intervals and p-values.
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[Figure 1 about here]

IPW and the g-formula tended to produce larger p-values than regression for these data, though this was not
the case for every gene (Figure 1c). Note that in this figure the top two genes were not represented, as their
− log10 adjusted p-values were much larger than the others. Additionally, the smoking effect estimates for
all genes except the top two were in the range (−0.5,0.5), with many very close to zero.

Discussion

Geneticists and epidemiologists may analyze differential gene expression due to exposures in a population
in order to generate hypotheses as to how those exposures may be related to health outcomes. Results of
these analyses, i.e., lists of genes affected by the exposure under a false discovery rate bound and their
associated effect sizes, may be inaccurate and irreproducible across study populations unless potential con-
founders of the exposure and gene expression are properly adjusted for. Here, exposure effect estimates
were compared using causal inference techniques such as IPW and the parametric g-formula, as well as
with common practice techniques such as regression. Comparisons were performed across simulated data
and a data analysis in which gene expression was measured in subcutaneous adipose tissue. Tissue donors
also had various clinical and demographic covariates measured, and it was desired to adjust for differences
among the exposed and unexposed donors when estimating the ATT. Analyses of the METSIM cohort found
that estimation method did not make a substantial difference for the effect estimates for the top two genes,
CYP1A1 and CYP1B1. Simulations based on the METSIM data showed that there was potential for the
regression estimate to be biased, but the effect biases observed in the data analyses were small. Differences
between the methods were most pronounced when examining the standard errors and therefore also the
resulting confidence intervals and p-values. In particular, simulations based on the METSIM data showed
that if there were any interactions of the exposure with the confounder(s), the regression method produced
confidence intervals that can have far below nominal coverage. Furthermore, what may appear to be modest
changes in standard errors can produce a dramatically different set of adjusted p-values for a given set of
genes.

In addition to the standard errors, regression as applied here differs from IPW and the parametric g-formula
in that the regression estimates do not represent the effect of exposure in the exposed, but rather in the
population as a whole. While IPW and the g-formula can be adapted to produce the exposure effect in the
population or sub-population of interest, regression estimates remain population-wide estimates — unless
operating under the assumption that ATE and ATT are equal.

It should be mentioned that if all appropriate interaction terms were included in the regression model, the
parameter estimates could be combined to yield consistent, conditional exposure effect estimates. However,
this approach was not taken here for two reasons: (i) the goal was to obtain one exposure effect estimate that
could be read directly from software output without additional steps, and (ii) the exposure effect estimate
constructed via combination of exposure and interaction terms would be interpreted conditional on values of
the covariates, whereas the desired exposure effect estimate has a marginal interpretation. Expanding on this
second reason, regression with all appropriate interaction terms would result in a variety of exposure effects
across combinations of covariates used for conditioning, as opposed to the causal approaches presented here
which provide one exposure effect integrating over the exposed individuals. If all appropriate interaction
terms were included in the regression model and centered at the mean in the population of interest, then the
regression model would be equivalent to the parametric g-formula model.

Often in analyses of exposure effects on microarray gene expression, the limma method is used to fit the
regression models and obtain a moderated t-statistic (Smyth, 2004), whereas here the ordinary t-statistic
was used. The simulation results illustrating the rationale behind this choice are included in the Supple-
mentary Results section. In short, the sample size of the cohort analyzed here (n = 770) was sufficiently
large that the ordinary and moderated t-statistics are practically equivalent. More recently, another method
has been proposed involving the combination of TMLE and empirical Bayes shrinkage estimation, which
has demonstrated utility with small and moderate sample sizes (Hejazi et al., 2017). The intended audience
of this paper is working with larger datasets, allowing for reliance on large sample theory; for this reason
the simpler and more readily available approach was used for the regression analysis. Here, pre-normalized
microarray gene expression, which takes continuous values, was analyzed, while RNA sequencing experi-
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ments result in count-valued observations for gene expression. In order for the causal inference approaches
shown here to be applied to count data from RNA sequencing, it would be desirable to first perform library
size scaling and apply a variance stabilizing transformation to the gene expression (Anders and Huber,
2010; Law et al., 2014), though such datasets and procedures were not evaluated in the present work.

The IPW and parametric g-formula approaches are both presented here as alternates to regression that
adequately adjust for confounding in a wider variety of circumstances. While IPW and the g-formula
both accomplish this goal, they require slightly different assumptions and they have different strengths and
weaknesses. The IPW estimator relies on correct specification of the exposure model, which is often more
plausible than correct specification of the outcome model. IPW can be sensitive to extreme weights, as
shown in the sensitivity analysis results for the METSIM data, and can be more variable than the g-formula
estimator. While the consistency of the g-formula estimator relies heavily on the correct specification of
the outcome model, it appears to be less sensitive to extreme values of the covariates and can be less
variable than the IPW estimator. Due to the limited overall differences in the bias and efficiency of the IPW
and g-formula estimators, the researcher is encouraged to choose among methods based on their relative
confidence in specification of the exposure or outcome models.

There are several assumptions made in these analyses which may be violated and deserve further explo-
ration. Firstly, the assumption of causal consistency states that there are not multiple ways to be a current
smoker. This assumption is clearly not met since the amount of cigarettes smoked daily can vary from
person to person, but this assumption can be replaced by another less stringent assumption. In particular,
it can more reasonably be assumed that these different versions of exposure do not have any bearing on
the causal effect; this is referred to as treatment variation irrelevance. The data analyses above rely on
the additional assumptions that the set of confounders L are sufficient to adjust for confounding, and that
there is no systematic measurement error or selection bias influencing these data. If any of these assump-
tions are unmet then the exposure effect estimates may be biased. Furthermore, formal arguments for the
methods presented rely on large sample theory; while there is some empirical evidence suggesting that, for
example, IPW can perform well with moderate sample sizes (Pirracchio et al., 2012), these methods are not
guaranteed to perform well for small or moderate samples.

The performance of doubly robust estimators for estimating exposure effects on gene expression could be
investigated in future work. Doubly robust estimators have been shown to provide advantages over IPW
or the g-formula (Lunceford and Davidian, 2004; Moodie et al., 2018; Naimi and Kennedy, 2017), and
could conceivably allow a relaxation of certain modeling assumptions in observational genomics analyses
while maintaining the desirable properties of causal methods. Additionally, this paper focuses on binary
exposures but future work could expand this to allow for continuous or longitudinal exposures.
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Tables

Table 1: Definitions of exposure and confounding variables for simulation study comparing regression,
IPW, and the parametric g-formula

Variable Distribution Dependencies
Age (age) Normal None
Alcohol Consumption (alc) Exponential None
Vegetable Consumption (veg) Binary None
Hobby Exercise (hex) Categorical (4 levels) veg
BMI (bmi) Normal veg, hex
Current Smoking (smk) Binary alc, bmi, veg, hex

Table 2: Descriptive statistics for the METSIM cohort data.

Variable Range Mean (SD)
Age (yrs) (45, 68) 55 (5)
Alcohol Consumption (g/wk) (0, 1134) 105 (119)
BMI (kg/m2) (18.5, 48.1) 26.6 (3.5)

Level Proportion
Vegetable Consumption Everyday 0.83

Not Everyday 0.17
Hobby Exercise 1 0.05

2 0.28
3 0.18
4 0.49

Current Smoking Yes 0.17
No 0.83

Table 3: Average empirical bias and 95% confidence interval (CI) coverage and width for the regression
(Reg), IPW, and g-formula (G-form) estimators.

True Estimate Bias 95% CI Coverage 95% CI Width
Scenario ATT Reg IPW G-form Reg IPW G-form Reg IPW G-form
Null Case 0.00 0.00 0.00 0.00 0.96 0.96 0.95 0.10 0.10 0.10
No Interactions 1 -2.00 -0.00 0.00 0.00 0.95 0.96 0.95 0.10 0.11 0.10
No Interactions 2 2.00 0.02 0.01 -0.00 0.91 0.92 0.94 0.15 0.35 0.18
Interactions 1 1.59 0.12 0.00 0.00 0.34 0.96 0.96 0.18 0.39 0.39
Interactions 2 -0.36 -0.20 0.00 0.00 0.19 0.96 0.95 0.23 0.51 0.51
Interactions 3 -1.75 -0.20 0.01 0.01 0.37 0.95 0.95 0.31 0.70 0.70
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Figure

(a) Top Ranked Gene: CYP1A1 (b) Second Ranked Gene: CYP1B1

(c) Remainder of Top 50 Genes

Figure 1: METSIM analysis results for the top 50 genes, ranked by p-value. (a)-(b) Estimates and 95%
confidence intervals for the effect of current smoking in the smokers for genes CYP1A1 and CYP1B1,
respectively. Note that the null value for the smoking effect estimate (log2 fold change = 0) is not included
on the x-axis. (c)− log10 adjusted p-values for the top 50 genes (omitting top 2), for each of R = Regression,
W = Inverse Probability Weighting, and G = Parametric G-Formula.

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2019. ; https://doi.org/10.1101/806554doi: bioRxiv preprint 

https://doi.org/10.1101/806554
http://creativecommons.org/licenses/by/4.0/


Appendix A Equivalence of g-formula estimator and Snowden’s g-
computation algorithm

Proof that the g-formula estimation method presented in this paper is equivalent, in this setting, to the
g-computation algorithm outlined by Snowden et al. (2010) for both the ATE and the ATT.

Let Y be an outcome variable and A be a binary treatment variable. Assume L is a vector of length J which
represents a sufficient set for confounding adjustment. Consider the following linear model

E[Y |A,L] = β0 +β1A+β
T
2 L+β

T
3 LA (A.1)

where β2, β3 are parameter vectors of length J. Model A.1 is assumed to be correctly specified. The
parameter estimates β̂ = (β̂0, β̂1, β̂

T
2 , β̂ T

3 )T are found by solving

min
β

∑
i

{
Yi−

(
β0 +β1Ai +β

T
2 Li +β

T
3 LiAi

)}2
(A.2)

where β =(β0,β1,β
T
2 ,β T

3 )T . The Snowden g-formula estimator for the ATE is obtained using the parameter
estimates β̂ = (β̂0, β̂1, β̂

T
2 , β̂ T

3 )T to compute the predicted values under the counterfactual scenarios of no
treatment (a = 0) and treatment (a = 1) for all. Specifically, let Ŷ a = Xaβ̂ denote the vector of predicted
values for each individual under the counterfactual scenario that all individuals receive treatment a, and
where the design matrix Xa has rows of the form Xa

i = [1, a, LT
i , aLT

i ] for i = 1, ...,n and a = 0,1. The
Snowden g-formula estimator of the ATE can be expressed

ˆAT ES =
1
n

n

∑
i=1

(Ŷ 1
i − Ŷ 0

i )

=
1
n

n

∑
i=1

(X1
i −X0

i )β̂

=
1
n

n

∑
i=1

(
[1, 1, LT

i , LT
i ]− [1, 0, LT

i , 0]
)

β̂

=
1
n

n

∑
i=1

(0, 1, 0T , LT
i )β̂

= β̂1 + β̂
T
3 L̄

where L̄ is a vector of length J with elements equal to the sample means of the J confounding variables.

Now, let L̃i = (Li− L̄) and γ = (γ0, γ1, γT
2 , γT

3 )
T . Consider finding γ̂ = (γ̂0, γ̂1, γ̂T

2 , γ̂T
3 )

T which solves

min
γ

∑
i
{Yi− (γ0 + γ1Ai + γ

T
2 L̃i + γ

T
3 L̃iAi)}2

or equivalently

min
γ

∑
i
{Yi−

(
(γ0− γ

T
2 L̄)+(γ1− γ

T
3 L̄)Ai + γ

T
2 Li + γ

T
3 LiAi

)
}2 (A.3)

We can find γ̂ by first reparameterizing. Let β0 = γ0− γT
2 L̄, β1 = γ1− γT

3 L̄, β T
2 = γT

2 , and β T
3 = γT

3 . This
optimization problem is then equivalent to solving A.2 above, which yields the usual least squares estimator
β̂ = (β̂0, β̂1, β̂

T
2 , β̂ T

3 )T . Therefore, γ̂0 = β̂0 + γ̂T
2 L̄, γ̂1 = β̂1 + γ̂T

3 L̄, γ̂T
2 = β̂ T

2 , and γ̂T
3 = β̂ T

3 . That is, γ̂1 =

β̂1 + β̂ T
3 L̄. Note that γ̂1 is the estimated exposure coefficient from the g-formula model proposed in the

Supplementary Methods for the ATE, and the right side of this equality is exactly ˆAT ES from above. The
equivalence of the two g-formula estimators has thus been shown for the ATE.

The equivalence proof for the ATT estimators is analogous to the ATE proof above. Wang et al. (2017)
propose an extension of Snowden et al.’s g-computation algorithm for the ATT; they show that by restricting
Xa to only the treated individuals (i.e., those with A = 1), the algorithm returns a consistent estimate of
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the ATT. In particular, let Ŷ a, A=1 = Xa, A=1β̂ denote the vector of predicted values for the n1 individuals
with A = 1 under the counterfactual scenario that these individuals receive treatment a, and where the
design matrix Xa, A=1 has n1 rows with the same form given above. Here β̂ remains the usual least squares
estimator found by solving A.2 above. The Wang et al. (2017) extension to the Snowden g-formula estimator
for the ATT can be expressed

ˆAT T S =
1
n1

n1

∑
i=1

(Ŷ 1 A=1
i − Ŷ 0, A=1

i )

=
1
n1

n1

∑
i=1

(X1, A=1
i −X0, A=1

i )β̂

=
1
n1

n1

∑
i=1

(
[1, 1, LT

i , LT
i ]− [1, 0, LT

i , 0]
)

β̂

=
1
n1

n1

∑
i=1

(0, 1, 0T , LT
i )β̂

= β̂1 + β̂
T
3 L̄∗

where L̄∗ is a vector of length J with elements equal to the sample means among the treated of the J
confounding variables.

Now let L̃i = (Li− L̄∗) and γ∗ = (γ∗0 ,γ
∗
1 ,γ
∗T
2 ,γ∗T3 )T , and consider finding γ̂∗ = (γ̂∗0 , γ̂

∗
1 , γ̂
∗T
2 , γ̂∗T3 )T which

solves

min
γ∗

∑
i
{Yi− (γ∗0 + γ

∗
1 Ai + γ

∗T
2 L̃i + γ

∗T
3 L̃iAi)}2

Rearranging this optimization problem similarly to A.3 and reparameterizing analogously to above yields
γ̂∗1 = β̂1 + β̂ T

3 L̄∗. Note that γ̂∗1 is the estimated exposure coefficient from the g-formula model proposed in
the Supplementary Methods for the ATT, and the right side of this equality is exactly ˆAT T S from above.
Thus the equivalence of the two g-formula estimators has been shown for the ATT as well.

The proof for the equivalence of the average treatment effect in the untreated (ATU) is similar to the proof
for the ATT.
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Appendix B R Workflows

B.1 Generate Population Data and Analysis Dataset

This section contains R code for (i) generating a simulated dataset similar to those used in the simulation
studies of the main text, and (ii) analyzing these data with each of regression, IPW, and the parametric g-
formula to obtain the estimated effect of smoking in the smokers and the corresponding estimated standard
errors. The dataset contains 770 individuals, which are sampled from a population of 10 million people.

set.seed(1)
n <- 770 # individuals per dset
nsim <- 1 # number of simulated dsets
nsup <- 1e7 # population size

The following variables are generated for the population, according to the observed characteristics of the
METSIM cohort.

## Age
age <- rnorm(nsup, mean=54.76, sd=5.07)
age.c <- scale(age, scale = TRUE)

## Alcohol consumption
totalcw <- rexp(nsup, rate=1/104.6)
totalcw.c <- scale(sqrt(totalcw), scale = TRUE)

## Everyday vegetable consumption
veg <- rbinom(nsup, 1, 0.83)

## Hobby exercise level
hex.p <- cbind(0.05 - 0.01*veg, 0.28 - 0.03*veg, 0.18 + 0.01*veg,

0.49 + 0.03*veg)
hobbyex <- sapply(1:nsup, function(i) sample(1:4, 1, replace=TRUE,

prob=hex.p[i,]))

## Body Mass Index
BMI.mn <- 26.59 - 0.33*(veg-0.5) - 0.25*(hobbyex - 1)
BMI <- rnorm(nsup, mean=BMI.mn, sd=3.47)
BMI.c <- scale(BMI, scale = TRUE)

## Current smoking
lp.smk <- exp(0.51 - 0.66*veg + 0.51*totalcw.c -

0.57*hobbyex - 0.42*BMI.c)
smoke.cu <- rbinom(nsup, 1, prob=lp.smk/(1+lp.smk))

dsn <- matrix(data=cbind(age, age.c, totalcw, totalcw.c, veg,
hobbyex, BMI, BMI.c, smoke.cu,
smoke.cu*totalcw.c, smoke.cu*veg,
smoke.cu*hobbyex, smoke.cu*BMI.c),

nrow=nsup)
colnames(dsn) <- c("age", "age.c", "totalcw", "totalcw.c", "veg",

"hobbyex", "BMI", "BMI.c", "smoke.cu",
"smk_totalcw", "smk_veg",
"smk_hobbyex", "smk_BMI")

The dataset is assembled by sampling without replacement from the population. Note that if multiple
datasets were being generated (i.e., nsim> 1), the same individual may be represented in more than one
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dataset. However, as written, this code doesn’t allow for individuals to be represented more than once
within a single dataset.

samps <- matrix(sapply(1:nsim,
function(x) sample(1:nsup,

n,
replace=FALSE)),

nrow=nsim, ncol=n, byrow = TRUE)
dsn.s <- matrix(dsn[t(samps),], nrow=nsim*n, ncol=ncol(dsn))
colnames(dsn.s) <- colnames(dsn)

B.2 Generate Gene Expression Data

Next, a matrix of coefficients is defined to set the influence of each of the covariates, the exposure, and their
interactions on the average treatment effect in the treated. These six sets of coefficients correspond to the
six simulation scenarios described in the main text.

## Coefficients of exposure, covariate, and intxn terms
## for individual gene expression means
coef <- matrix(c(rep(0, 10),

c(0.05, -0.1, 0.15, -0.2, 0.25, -2, rep(0, 4)),
c(-0.5, 1.0, -1.5, -1.0, 0.5, 2, rep(0, 4)),
c(rep(0.05, 5), 2, -1, 0, 0, 0),
c(rep(0.05, 5), 2, 1, 0, -1, 0),
c(rep(0.05, 5), 2, 0, 0, -1.5, -1.5)), nrow=10)

ngn <- ncol(coef)

The individual covariate values are combined with the coefficients to produce a mean expression level for
each gene in each individual. In other words, each person is given a mean expression level for each of the
simulated genes based on their set of covariate and exposure values. These means are used to generate gene
expression values from a normal distribution with standard deviation 0.24, for each gene.

## Compute the mean expression level for each simulated gene
covars.gnmn <- c("age.c", "totalcw.c", "veg", "hobbyex", "BMI.c",

"smoke.cu", "smk_totalcw", "smk_veg",
"smk_hobbyex", "smk_BMI")

gn.mn.s <- dsn.s[ ,covars.gnmn] %*% coef

GE <- matrix(sapply(1:ngn,
function(x) rnorm(nsim*n,

mean=gn.mn.s[,x],
sd=0.24)),

nrow=n*nsim, ncol=ngn, byrow=FALSE)
colnames(GE) <- c("Null", "NoInt1", "NoInt2", "Int1", "Int2", "Int3")

B.3 Obtain True ATT for Each Gene

The true population ATT is computed for each gene by summing the contributions from each covariate. The
covariate main effects don’t contribute to the ATT, only the exposure and the exposure-covariate interaction
terms. Since the ATT is of interest, the contributions made by the interaction terms are the product of
the coefficients and the mean value of each covariate in the current smokers (i.e., in the exposed). The
contribution from the exposure is just the coefficients themselves.
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dsn <- data.frame(dsn)
covmn.trt <- apply(dsn[which(dsn$smoke.cu == 1),

c("totalcw.c", "veg", "hobbyex", "BMI.c")],
2, mean)

smk.eff <- coef
smk.eff[1:5,] <- 0
smk.eff[7:10,] <- covmn.trt*smk.eff[7:10,]

tru.att <- colSums(smk.eff)

B.4 Analyze Simulated Dataset

Analyses are conducted according to the models used in the main text for each method. This includes the
addition of the quadratic term for age, though in simulations this term doesn’t contribute to the ATT. For
each method, the estimates and their estimated standard errors can be used to construct Wald confidence
intervals and obtain t-statistics and p-values.

dsn.s <- data.frame(dsn.s)
dsn.s$age2 <- I(dsn.s$age^2)

B.4.1 Traditional Regression Analysis

The linear regression model is fit to the data once per gene using the lmFit function from the limma package
for convenience and speed. Note that the standard errors recorded are the usual least squares estimates, not
the moderated standard errors that the lmFit function also produces.

## Create design matrix and fit linear model for each gene
design <- model.matrix(~smoke.cu + BMI.c + veg + totalcw.c +

hobbyex + age.c + scale(age2), dsn.s)
fit <- lmFit(t(GE), design)

## Collect and display results
Ests <- fit$coefficients[,2]
SEs <- fit$sigma*fit$stdev.unscaled[,2]
data.frame(rbind(Ests, SEs))

## Null NoInt1 NoInt2 Int1 Int2 Int3
## Ests 0.002323104 -2.0439902 2.01500677 1.74938784 -0.67929583 -1.98868044
## SEs 0.025139323 0.0245301 0.02507283 0.04947473 0.05932175 0.07061574

B.4.2 Inverse Probability Weighting Analysis

Begin the IPW analysis by fitting a logistic regression model of the exposure to obtain parameter estimates
needed for constructing the IP weights. Once the weights have been computed, it is good practice to check
their distribution for extreme values and to ensure the mean is close to its expected value E[ŵAT T ] = 2P(A=
1). For this dataset, there appear to be no extreme values and the mean is very close to its expected value.

fit_wts <- glm(smoke.cu ~ BMI + veg + totalcw + hobbyex + age + age2,
family=binomial(link="logit"), data=dsn.s)

ncov <- length(coef(fit_wts))
wt.sato <- ifelse(dsn.s$smoke.cu == 0,

exp(fit_wts$linear.predictors), 1)
summary(wt.sato)
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01905 0.10330 0.17826 0.33902 0.42134 1.28176

2*mean(dsn$smoke.cu) # 2*P(A=1)

## [1] 0.3317606

A simple linear regression model is fit for each gene with the weights, again using the lmFit function. The
estimated ATT for each gene is recorded.

## Fit simple linear reg model
design <- model.matrix(~smoke.cu, dsn.s)
fit <- lmFit(t(GE), design, weights=wt.sato)
Ests <- fit$coefficients[,2]

The standard error estimates from ordinary least squares are not appropriate in general for the IPW estima-
tor, so the geex package is used to compute consistent standard error estimates. This approach stacks the
estimating equations for the weights with those for the Hajek estimator using the function estfun_IPW,
thereby accounting for estimation of the weights. The m_estimate function of the geex package com-
putes the variance-covariance matrix for all estimated quantities, and the elements corresponding to the
Hajek estimator are selected to compute the standard error estimate for each gene.

## First argument required for m_estimate function of geex
## Constructs the stacked estimating equations
estfun_IPW <- function(data, model){

L <- model.matrix(model, data=data)
A <- model.response(model.frame(model, data=data))
Y <- data[,1]

function(theta){
p <- length(theta)
p1 <- length(coef(model))
lp <- L %*% theta[1:p1]
rho <- plogis(lp)

IPW <- ifelse(A == 1, 1, exp(lp))

score_eqns <- apply(L, 2, function(x) sum((A - rho) * x))
ce1 <- IPW*(A==1)*(Y - theta[p-1])
ce0 <- IPW*(A==0)*(Y - theta[p])

c(score_eqns,
ce1,
ce0)

}
}

## Estimated counterfactual means
notexp <- unname(which(fit$design[,2] == 0))
mu0_hat <- rowMeans(fitted(fit)[,notexp])
mu1_hat <- rowMeans(fitted(fit)[,-notexp])

## Compute SEs, accounting for weight estimation
vcovs <- sapply(colnames(GE),

function(x) vcov(m_estimate(
estFUN = estfun_IPW,
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data = data.frame(GE[,x],
dsn.s[,c("age", "age2",

"totalcw", "veg",
"BMI", "hobbyex",
"smoke.cu")]),

roots = c(coef(fit_wts), mu1_hat[x], mu0_hat[x]),
compute_roots = FALSE,
outer_args = list(model = fit_wts)

)), simplify = FALSE )
SEs <- sapply(1:ncol(GE),

function(x) sqrt(vcovs[[x]][ncov+1, ncov+1] +
vcovs[[x]][ncov+2, ncov+2] -
2*vcovs[[x]][ncov+1, ncov+2]))

data.frame(rbind(Ests, SEs))

## Null NoInt1 NoInt2 Int1 Int2 Int3
## Ests 0.007559031 -2.04134088 2.07096587 1.6588133 -0.5233402 -1.8802092
## SEs 0.026950887 0.02623274 0.06423069 0.1077299 0.1346590 0.1568875

B.4.3 Parametric G-formula Analysis

Fitting the g-formula model requires first centering all non-exposure covariates at their sample mean in the
exposed. Once the appropriately centered main effects and interactions are generated, the full regression
model is fit to obtain the estimated ATT for each gene, once more using lmFit. As with IPW, the standard
error estimates are computed using stacked estimating equations to take the estimation of the covariate
means into account.

## Covariate means in the exposed
pdat <- dsn.s[, c("smoke.cu", "BMI", "veg", "totalcw",

"hobbyex", "age", "age2")]
covs <- pdat[, -1]
cov.mns <- apply(covs[which(pdat$smoke.cu == 1),], 2, mean)

## Create centered covariates
ncov <- length(cov.mns)
pdat[, c("BMI.c", "veg.c", "tot.c", "hob.c", "age.c", "age2.c")] <-

sapply(1:ncov, function(x) covs[,x] - cov.mns[x])

## Create intxn terms
intx <- c("smkBMI", "smkveg", "smktot", "smkhob")
cov.t <- pdat[, c("BMI.c", "veg.c", "tot.c", "hob.c")]
pdat[, intx] <- pdat$smoke.cu * cov.t

## Fit reg model
design <- model.matrix(~smoke.cu + BMI.c + veg.c + tot.c + hob.c +

age.c + age2.c + smkBMI + smkveg + smktot +
smkhob, pdat)

fit <- lmFit(t(GE), design)
Ests <- fit$coefficients[,2]

Similarly to above, the estfun_gf function is required by geex to produce the set of stacked estimating
equations. The m_estimate code is analogous to that shown above for IPW, but here the standard error
estimate of the g-formula estimator can be obtained directly from the diagonal of the variance-covariance
matrix for each gene.
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## First argument required for m_estimate function of geex
## Constructs the stacked estimating equations
estfun_gf <- function(data){

L <- data[,3:ncol(data)]
A <- data[,2]
Y <- data[,1]
I <- rep(1, length(Y))

function(theta){
pL <- ncol(L)
X.Lc <- matrix(NA, nrow = length(Y), ncol = pL)
for (i in 1:pL) {

X.Lc[,i] <- L[,i] - theta[i]
}

X <- cbind(I, A, X.Lc,
A*X.Lc[,1], A*X.Lc[,2], A*X.Lc[,3], A*X.Lc[,4])

p <- ncol(X)

b <- cbind(theta[(pL+1):(p+pL)])
Xb <- X %*% b

mn_eqns <- apply(X.Lc, 2, function(x) sum(A * x))
score_eqns <- apply(X, 2, function(x) sum((Y - Xb) * x))

c(mn_eqns,
score_eqns)

}
}

## SEs accounting for weight estimation
SEs <- sapply(colnames(GE),

function(x) sqrt( vcov(m_estimate(
estFUN = estfun_gf,
data = data.frame(GE[,x],

pdat[,c("smoke.cu", "BMI",
"veg", "totalcw",
"hobbyex", "age",
"age2")]),

roots = c(cov.mns, fit$coefficients[x,]),
compute_roots = FALSE

))[ncov+2, ncov+2] ) )

data.frame(rbind(Ests, SEs))

## Null NoInt1 NoInt2 Int1 Int2 Int3
## Ests 0.004852312 -2.03990409 1.93530314 1.6513069 -0.5340888 -1.8797919
## SEs 0.027014533 0.02551567 0.04884979 0.1090459 0.1330511 0.1560926
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Supplementary Methods

Data Preprocessing

Microarray data (Affymetrix Human Genome U219 Array) from the METSIM project (Laakso et al., 2017)
was downloaded from GEO accession GSE70353 (Civelek et al., 2017) using the Bioconductor package
GEOquery (Davis and Meltzer, 2007). The downloaded data was normalized by the study authors. Mi-
croarray measurements per probeset were summarized for each gene using the median polish method from
Tukey (1977) (the medpolish function in the R programming environment) on log2 transformed, normal-
ized expression data.

In general, missing covariate values in the data set must be addressed before employing regression, IPW, or
the parametric g-formula. If the percentage of individuals with missing covariates is low and the data are
believed to be missing completely at random (MCAR), then a complete case analysis may be expected to not
introduce bias. However, it is rarely the case that both of these criteria are met, and so it is recommended to
take a more sophisticated approach such as multiple imputation (Moodie et al., 2008; Perkins et al., 2018).
For further details and recommendations on handling missing covariates data when fitting causal models,
see Moodie et al. (2008).

Assume for all of the following models that Yg have been log2 transformed and normalized, and that all
probe sets have been collapsed (e.g., using median polish) resulting in one measure per gene per subject.
All vectors are assumed to be column vectors throughout.

Comparing Approaches for Exposure Effect Estimation

Regression

For modeling gene expression Yg of gene g as a function of some exposure of interest A in the presence
of confounding, linear regression is the conventional approach. All potential confounders L, where L is a
vector of length J, were included in the model as covariates along with the exposure variable A. In particular,
the model can be written

E[Yg|A,L] = θg0 +θg1A+θ
T
g2L (S.1)

for each gene g, where θg2 is also a vector of length J. The estimated exposure effect θ̂g1 for gene g and
its estimated standard error were computed in the usual fashion using ordinary least squares. Note that this
model can be fit with or without interaction terms; here interactions were omitted from the model.

Ultimately the goal is to obtain consistent estimates and valid confidence intervals for the exposure effect
in the exposed on gene expression, i.e., the ATT. The parameter estimate θ̂g1 here is interpretable as the
exposure effect in the population, not as the exposure effect in the exposed, unless operating under the
assumption that the ATE and ATT are equal.

Inverse Probability Weighting

Inverse probability weights were computed by fitting the following logistic regression model with the binary
exposure A as the outcome and the set of J potential confounders L as the predictors.

logit(P(A = 1|L)) = α0 +α
T
1 L (S.2)

where α1 is a vector of length J. The fitted values from this logistic regression model were used to construct
the individual weights that were then used in the models for gene expression. Choice of weights depends
on the target population; this paper focuses on the ATT, so the weights given below first derived in Sato
and Matsuyama (2003) were used. These weights take the form for each individual i of the ratio of the
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conditional probability of the subject being exposed to the conditional probability of the subject’s actual
exposure status. That is, the weight for subject i equals

wAT T
i =

P(A = 1|Li)

P(A = Ai|Li)

= I(Ai = 1)
P(A = 1|Li)

P(A = 1|Li)
+ I(Ai = 0)

P(A = 1|Li)

P(A = 0|Li)

= Ai +(1−Ai)exp(α0 +α
T
1 Li) (S.3)

So, if a subject was exposed their weight was simply equal to one. For unexposed subjects, weights were
estimated by substituting in the estimates α̂0, α̂1 from fitting model S.2 for the true parameter values in S.3.
When using IPW it is good practice to check that the mean of the weights is close to their expected value;
for these weights, expect E[wAT T

i ] = 2P(A = 1). If interested in the ATE instead, see Robins et al. (2000).

After estimating the weights, the linear regression model

E[Yg|A] = θg0 +θg1A (S.4)

was fit for each gene g using weighted least squares with weights ŵAT T
i , yielding

θ̂g1 =
∑

n
i=1 ŵAT T

i AiYgi

∑
n
i=1 ŵAT T

i Ai
− ∑

n
i=1 ŵAT T

i (1−Ai)Ygi

∑
n
i=1 ŵAT T

i (1−Ai)

This estimator is sometimes referred to as the Hajek or modified Horwitz-Thompson estimator (Hernán and
Robins, 2020), and is consistent for the ATT for each gene. Note that consistency of the Hajek estimator
depends on the model for A|L in S.2 being correctly specified. No outcome model is assumed; fitting S.4 by
weighted least squares is simply a convenient way to compute the Hajek estimator using standard software.

Parametric g-formula

In this final approach, the following altered version of the initial linear regression model was fit to the data.

E[Yg|A, L̃] = θg0 +θg1A+θ
T
g2L̃+θ

T
g3L̃A (S.5)

where L̃ = (L− τ) and τ is a vector of constants of length J, and θg2,θg3 are parameter vectors of length J.
This model differs from model S.1 in two key ways: all first order interactions between A and the covariates
L have been added, and all covariates L have been centered at τ . Since the ATT was of primary interest
here, τ was chosen to contain the means of the covariates L among the exposed, E[L|A = 1]. Since the true
means are unknown, a consistent estimate for τ was substituted, namely τ̂ = ∑i AiLi/∑i Ai. If interested in
the ATE instead, let τ = E[L] and consistently estimate using τ̂ = ∑i Li/n.

The model was then fit using ordinary least squares to obtain the estimated ATT for gene g, θ̂g1. This
estimator is equivalent to the estimator Snowden et al. (2010) demonstrated, which is computed in the
CAUSALTRT procedure in SAS, and is thus consistent for the ATT; details in Appendix A.

Standard Error Estimators for Each Method

The standard errors for the exposure effect estimator from the linear regression model were obtained using
ordinary least squares, in keeping with the conventional approach. Estimating equations were used to com-
pute the standard error of both the IPW Hajek estimator and the parametric g-formula estimator (Stefanski
and Boos, 2002).

When taking an estimating equations approach to computing the standard errors, for IPW one must decide
whether or not to take the estimation of the weights into account. The variance estimator that results from
treating the weights as known is referred to here as the robust sandwich variance estimator (robust SVE).
Computing the robust SVE is readily accomplished using various R packages such as sandwich or geepack,
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or using the GENMOD procedure in SAS. Accounting for the weight estimation in the variance computa-
tion, on the other hand, is the default if using the CAUSALTRT procedure in SAS or can be accomplished
through supplying the set of estimating equations to the geex package (Saul and Hudgens, 2017) in R.

When using IPW and the ATE is of interest, there is a well-known result (Lunceford and Davidian, 2004)
which states that the robust SVE is conservative when the weights are assumed known and consistent when
weight estimation is taken into account. If using IPW to obtain the ATT, it is known from the theory of
M-estimation (Stefanski and Boos, 2002) that this variance estimator is consistent when weight estimation
is taken into account; however, it can be either conservative or anti-conservative when weights are assumed
fixed. If computing the standard errors with geex, the set of estimating equations needed include the score
equations from the logistic regression model in S.2 along with the two estimating equations corresponding
to the two pieces of the Hajek estimator.

Bootstrapping is commonly employed to obtain standard errors when the g-formula is used to obtain the
ATE or ATT (Efron and Tibshirani, 1986; Snowden et al., 2010; Wang et al., 2017), which is a valid option,
but using stacked estimating equations provides a closed-form alternative. It is recommended when using
the estimating equations approach that the covariate mean estimation be taken into account; again, by
estimating equation theory, these standard errors are consistent and yield valid confidence intervals. If
using geex to compute the standard errors for this estimator, the set of estimating equations needed are
those corresponding to the estimation of each covariate mean and the parameters in model S.5.

In the simulations and data analyses of the paper, the variance of the ATT using the IPW estimator was
calculated both ways and the two estimates were found to be fairly different in some instances and nearly
identical in others. The same approach was taken for the variance of the ATT using the g-formula estimator,
and the standard errors were substantially larger when accounting for estimation of covariate means. The
standard error estimates reported were computed taking into account the estimation of the weights and the
covariate means. The R markdown workflow that accompanies this paper includes code for computing the
variance using stacked estimating equations for both IPW and the g-formula.

The standard errors for all methods were used to construct Wald 95% confidence intervals and perform
t-tests of H0 : θg1 = 0, i.e., no effect of exposure on gene expression in the exposed for gene g.

Assumptions

With all methods presented here, it is assumed the gene expression data have already been normalized and
reduced to one observation per person per gene (i.e., not probe-level data). These methods also require
that there are no missing values; if missing values are present in the covariates L or exposure A, see the
recommendations in the section above. For these methods to yield consistent estimates, it is also assumed
that there is no bias due to selection or measurement error. Importantly, formal arguments for IPW and the
parametric g-formula involve asymptotic justifications, and there is no guarantee that these methods will
perform well for small or moderate sample sizes (e.g., n < 40 for IPW (Pirracchio et al., 2012)).

In order for the IPW and g-formula methods to adequately adjust for confounding, the set of covariates
L must satisfy the conditional exchangeability assumption (Y a ⊥ A|L). It is also required that positivity
P(A = a|L = l)> 0 for all l where dFL(l)> 0 and FL is the CDF of L, and the Stable Unit Treatment Value
Assumption (SUTVA) hold. SUTVA requires causal consistency, i.e., no different versions of exposure, and
no interference, i.e., one individual’s exposure status doesn’t affect another individual’s gene expression.

For the IPW and g-formula estimators to yield consistent effect estimates, the above assumptions must hold.
When using IPW, the additional assumption that the model of A|L is correctly specified is needed as well.
For the g-formula, no specification of a model for A|L is needed, but the model for Y |A,L must be correctly
specified.
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Supplementary Results

Simulation Study for Ordinary vs Moderated t Statistic

In observational genomics studies, the total sample size is often large enough for results depending on large
sample theory to hold. The limma package (Smyth, 2004) is used in standard practice to obtain effect
estimates, t-statistics, and p-values for each gene when assessing the effect of some exposure on gene
expression. This package computes a moderated t-statistic that is shown to perform well in small sample
sizes, as are found in traditional genetic studies, and which converges to the ordinary t-statistic as the sample
size increases. The moderation of this t-statistic comes into play with empirical Bayes moderation of the
standard errors toward a common value; here it is shown empirically that these moderated standard errors
are practically equivalent to the ordinary standard errors in large samples.

In Figure S.1 the difference between the moderated and ordinary t-statistics for an example gene are given
for a variety of sample sizes, and with balanced and unbalanced group assignment. In particular, a randomly
chosen gene from the METSIM cohort data was used, and the 770 participants were randomly sampled
according to their current smoking status to create the analysis datasets. For each combination of sample
size and group allocation, 200 analysis datasets were constructed. Samples were drawn such that the same
individual may have been represented in more than one dataset, but not more than once within a single
dataset. Both types of t-statistic and their difference were computed for each dataset, and boxplots of the
200 differences are given for each scenario in Figure S.1. Regardless of the group allocation, once the total
sample size was around 100 or larger, the moderated and ordinary t-statistics were practically equivalent.

(a) Balanced group sizes (1:1) (b) Unbalanced group sizes (5:1)

Supplementary Materials, Figure S.1: Difference between the moderated and ordinary t-statistics for various
sample sizes with (a) balanced (1 non-smoker : 1 smoker) and (b) unbalanced groups (5 non-smokers : 1
smoker). The boxplot for each sample size represented in (a) and (b) summarizes the difference in t-statistics
for 200 datasets, each derived from the same gene.

All analyses in this paper were conducted with well over 100 individuals, and so ordinary linear regression
was used for simplicity.

Sensitivity Analyses of METSIM Microarray Data

As mentioned in the main text, there was one large IP weight from the METSIM primary analysis whose
influence deserves further investigation. Deleting this individual from the data resulted in a sample of size
769, which was analyzed again in the same manner as above. Results of the regression, IPW, and g-formula
sensitivity analysis are compared to the results from the primary analysis in Figure S.2a - S.2c.
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Additionally, the leverage values for each individual were computed from the design matrices of the g-
formula and regression methods. The individual with highest leverage value was the same for both meth-
ods, and another sensitivity analysis was performed by deleting this individual; the results of this second
sensitivity analysis are compared to the results from the primary analysis in Figure S.2d - S.2f. Notably,
the individual with second highest leverage value was the same individual who generated the largest weight
and who was deleted in the sensitivity analysis above. The genes represented in this figure are the same set
as those in Figure 1, namely the top 50 genes as ranked in the primary analysis.

Sensitivity Analysis 1: Delete Observation with Largest IP Weight

(a) Percent Difference in Estimates (b) Percent Difference in Standard Errors (c) Percent Difference in − log10 adjusted
p-value

Sensitivity Analysis 2: Delete Observation with Largest Leverage Value

(d) Percent Difference in Estimates (e) Percent Difference in Standard Errors (f) Percent Difference in− log10 adjusted p-
value

Supplementary Materials, Figure S.2: (a)-(c): Comparison of METSIM primary and sensitivity analysis
results when deleting observation with largest weight. Top 50 genes are represented, ranked by p-value.
(a), (b), and (c) respectively show the percent difference (primary - sensitivity) of the effect estimates,
standard errors, and − log10 Benjamini-Hochberg adjusted p-values. (d)-(f): Comparison of METSIM
primary and sensitivity analysis results when deleting observation with largest leverage value, which was
the same observation for both the regression and g-formula methods. Top 50 genes are represented, ranked
by p-value. (d), (e), and (f) respectively show the percent difference (primary - sensitivity) of the effect
estimates, standard errors, and− log10 Benjamini-Hochberg adjusted p-values. R = Regression, W = Inverse
Probability Weighting, G = Parametric G-Formula.

In particular, the first row of this figure shows the deletion of the observation with largest weight had very
little effect on the regression and g-formula estimates, standard errors, and p-values. On the other hand IPW
appears to be more sensitive to the deletion of this observation, with percent difference in effect estimates
and standard errors ranging up to a magnitude of 30 and 25 respectively. These changes were reflected in
the− log10 adjusted p-values as well; the bulk of the IPW p-values did not change by more than a magnitude
of 50 percent, but p-values for some estimates changed by more than a magnitude of 300 percent. While
the effect on the majority of the IPW estimates, standard errors, and p-values was small, some of the top 50
genes saw substantial changes.

For the second sensitivity analysis where the observation with largest leverage value was deleted, the g-
formula and IPW estimates were affected similarly ((−8,6) percent difference) and to a slightly larger
degree than the regression estimates ((−2,3) percent difference). The change in standard errors was largest
again for IPW but still contained to (−1,5) percent difference, much smaller than for the previous sensitivity
analysis. The change in g-formula standard errors was contained to (−1,2) percent difference, and the
regression standard errors changed by less than one percent in either direction. These changes were reflected
in the − log10 adjusted p-values as well, with the percent difference for the regression and g-formula p-
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values having a spread comparable to the previous sensitivity analysis, and with the IPW p-values being
considerably less variable than before.
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