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ABSTRACT A possible way to slow down the antibiotic resistance crisis is to be17

more strict when it comes to antibiotics prescriptions. For accurate antibiotic pre-18

scriptions, antibiotic susceptibility data are needed. With the increasing availability19

of next-generation sequencing (NGS), bacterial whole genome sequencing (WGS) is20

becoming a feasible alternative to traditional phenotyping for the detection and surveil-21

lance of AMR.22

This work proposes a machine learning approach that can predict the minimum23

inhibitory concentration (MIC) for a given antibiotic, here ciprofloxacin, on the basis of24

genome-wide mutation profiles alongside profiles of acquired resistance genes. We25

analyzed 704 Escherichia coliWGS samples coming from different countries along with26

their MIC measurements for ciprofloxacin. The four most important predictors found27

by the model, mutations in gyrA and parC and the presence of any qnrS gene, have been28

experimentally validated before (van der Putten BCL et al, J Antimicrob Chemother.29

2019 Feb 1;74(2):298-310. doi: 10.1093/jac/dky417). Using only these four predictors30

with a linear regression model 65% and 92% of the test samples’MIC were correctly31

predicted within a two- and a four-fold dilution range, respectively. The presented32

work goes further than the typical predictions using machine learning as a black box33

model concept. The recent progress in WGS technology in combination with machine34

learning analysis approaches indicates that in the near future WGS of bacteria might35

be cheaper and faster than a MIC measurement.36

IMPORTANCE Whole genome sequencing has become the standard approach to37

study molecular epidemiology of bacteria. However, uptake of WGS in the clinical38

microbiology laboratory as part of individual patient diagnostics still requires significant39

steps forward, in particular with respect to prediction of antibiotic susceptibility based40

on DNA sequence. Whilst the majority of studies of prediction of susceptibility have41

used a binary outcome (susceptible/resistant), a quantitative prediction of susceptibility,42

such as MIC, will allow for earlier detection of trends in increasing resistance as well as43
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the flexibility to follow potential adjustments in definitions of susceptible and resistant44

categories (breakpoints).45

KEYWORDS: AMR, MIC, machine learning, antibiotics, personalized medicine,46

ciprofloxacin47

INTRODUCTION48 Antibiotics are an essential resource in the control of infectious diseases; they have49

been a major contributor to the decline of infection-associated mortality and50

morbidity in the 20th century. However, the recent rise of antimicrobial resistance51

(AMR) threatens this situation (1). With the increasing availability of next-generation52

sequencing (NGS), bacterial whole genome sequencing (WGS ) is becoming a feasible53

alternative to traditional phenotyping for the detection and surveillance of AMR (2),54

(3), (4). However, data analysis remains the weak point in this approach; fast and55

scalable methods are required to transform the ever-growing amount of genomic data56

into actionable clinical or epidemiological information (5). Several recent studies have57

shown that machine learning is a promising approach for this kind of data analysis.58

Bacterial resistance to antimicrobials is associated with a higher likelihood of59

therapeutic failure in case of infections. Accurate and fast prediction of resistance in60

bacteria is needed to select the optimal therapy.61

Resistance can be predicted in numerous ways. In addition to classic and highly62

standardized phenotypic testing of resistance, several methods of resistance predic-63

tion have been developed. Most novel methods use a genetic or genomic approach,64

although transcriptomic approaches have been investigated as well (6), (7), (8). An im-65

portant factor in the choice of the resistance prediction method is the microorganism66

under study. For example, the CRyPTIC consortium managed to predict resistance67

to four first-line drugs in Mycobacterium tuberculosis, using only known mutations ex-68

tracted from WGS (9). However, M. tuberculosis displays little-to-no horizontal gene69

transfer and low genomic evolution rate (10), which makes it feasible to predict resis-70

tance only from known mutations (11). For other bacteria, more advanced analysis71

methods such as machine learning need to be used to allow for accurate prediction.72

Machine learning has been applied to predict resistance from WGS data in several73

settings. To date, these methods have been restricted mostly to assign bacteria to74

binary categories, i.e. susceptible or non-susceptible (12), (13), (14), (8), (15), (16), (17).75

However, clinical breakpoints used to define susceptible and non-susceptible categories76

can change and such binary categories do not allow following more subtle changes in77

susceptibility in time. MICmeasures offer an adequate resolution to see if susceptibility78

is changing in a population, which is useful for epidemiological purposes. Therefore,79

a resistance prediction method would preferably output a continuous estimate of80

resistance similar to MIC, instead of binary classification (S/R) as a number of studies81

already proposed (18), (19), (20), (21).82

Additional issues should be considered when developing a reliable and useful83

prediction model. Firstly, genotypes are often geographically clustered (22). This84

implies that if a prediction model is trained on data from one country, this model might85

not be generalized to data from another country. Data from multiple countries are86

thus needed. Secondly, complex combinations between chromosomal point mutations87

and acquired resistance genes influence antimicrobial resistance. Therefore, different88

data types need to be combined to obtain a biologically relevant set of input data.89

Lastly, while machine learning is able to analyze highly complex patterns of features,90
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Interpretable ciprofloxacin MIC prediction for E. coli

TABLE 1 The collected and used data in the analysis grouped by country and MIC values.

MIC (mg/L) Denmark Italy NA* USA UK Vietnam Total
0.010 0 0 9 0 0 2 11
0.012 0 0 0 0 0 1 1
0.015 119 13 42 49 92 0 315
0.016 0 0 0 0 0 2 2
0.023 0 0 0 0 0 1 1
0.030 12 0 6 3 4 0 25
0.060 1 0 7 1 0 0 9
0.120 0 0 11 2 0 0 13
0.125 0 0 0 0 0 6 6
0.190 0 0 0 0 0 10 10
0.250 6 0 22 11 3 16 58
0.380 0 0 0 0 0 5 5
0.500 0 0 6 2 0 11 19
0.750 0 0 0 0 0 1 1
1.000 0 0 5 2 0 5 12
2.000 0 0 3 0 0 1 4
4.000 0 0 2 6 0 1 9
8.000 0 0 30 0 1 2 33
12.00 0 0 0 0 0 1 1
16.00 0 0 23 0 0 0 23
24.00 0 0 0 0 0 1 1
32.00 0 0 72 0 0 45 117
64.00 0 0 28 0 0 0 28
Total 138 13 266 76 100 111 704

*country metadata is Not Available

the model would preferably output generally understandable data. K-mer profiles have91

been used to predict resistance, but these can be difficult to interpret (19) (20).92

In this study, we focus on predicting a quantitative measure of ciprofloxacin resis-93

tance (MIC) for a geographically diverse population of E. coli using machine learning.94

We chose to study ciprofloxacin resistance in E. coli because of three reasons:95

1. this pathogen-drug combination has been studied intensively96

2. ciprofloxacin resistance in E. coli can be caused by many different chromosomal97

and plasmid-mediated mechanisms (23)98

3. clinical relevance of ciprofloxacin in the treatment of E. coli infections99

In our selection of machine learning models, an important criterion was that high-100

scoring features could be extracted from the model. This would allow us to explore the101

reasoning behind each prediction and thus to interpret and understand the model.102

RESULTS103

Data 704 E. coli genomes were analyzed in this study which had MIC measurement104

for ciprofloxacin (24). Paired-end sequencing was performed on all of them and the105

results were stored in FASTQ format. The samples originated from Denmark, Italy, USA,106

UK, and Vietnam. 266 out of the 704 E. coli genomes had no country metadata available107

and were used as an independent test set, see the MIC distribution on Table 1. The108

generated phylogenetic tree, Fig 1, indicates that the selected test data significantly109
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FIG 1 Midpoint-rooted phylogenetic tree of the 704 E. coli samples that had ciprofloxacin MIC measurement. It is clearly visible
that the test data is clustered separately from the training data suggesting the generalization power of our model. Nodes with
lower than 80% bootstrap support are collapsed.

differ from the training dataset. All data were deposited in EBI SRA system which110

consists of raw sequencing data, ciprofloxacin minimum inhibitory concentration, and111

additional metadata such as the origin of the samples.112

Modeling We trained a machine learning model using genome-wide mutation113

profiles alongside the ResFinder-based profiles of acquired resistance genes. We114

ranked the predictors proposed by the model itself, see Table S1. The model performed115

with high accuracy on the training set leave-one-country-out cross-validation using116

four predictors, see Fig S1. The addition of more features did not seem to improve the117
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Interpretable ciprofloxacin MIC prediction for E. coli

TABLE 2 Number of features, R 2 score, Pearson correlation, Major Error, Very Major Error, area under the receiver operating

curve, Accuracy within a two/four-fold dilution and Mean Absolute Fold Error on the unseen test data. For the AUC, ME, VME

the data was binarized using 1 mg/L threshold. The number of features were selected according to the performance using

leave-one-country-out validation on the training data, see Fig. S1

model N_feat +R2 +R #*ME #*VME AUC ACC-2 ACC-4 #MAFE

random forest 4 0.932 0.966 1 0 1.000 0.654 0.944 0.891

random forest 15 0.890 0.944 4 0 0.998 0.684 0.891 1.007

linear regression 4 0.914 0.957 1 0 1.000 0.654 0.921 0.998

*number of samples
+calculated on the log2 values
#the lower the better

cross-validation results, and therefore we kept only the first four, allowing for a simple118

and understandable model.119

Using these four predictors, 265 out of the 266 test data samples were correctly120

classified by our models at susceptible/non-susceptible level, and more than 92% of121

the corresponding MIC values were correctly predicted within a four-fold dilution, see122

Table 2.123

These 4 predictors are the following:124

1. gyrA mutation at amino acid #87125

2. gyrA mutation at amino acid #83126

3. parC mutation at amino acid #80127

4. presence of any qnrS gene128

All of the predictors above are binary (presence/absence) therefore there are129

24 = 16 different possible prediction for any sample based on these features, see Table130

S2. A linear regression model fitted on the log2 values of the MIC measurements could131

achieve similar performance as a more complex random forest model, see Figure 3.132

Linear regression is preferred due to its simplistic nature. Having a random forest133

regressor with hundreds of decision trees and thousands of genomic features as134

predictors it is difficult to understand why the model made that particular prediction,135

leaving doubts of its clinical usefulness.136

DISCUSSION137

Here we present a novel method for predicting ciprofloxacin resistance for E. coli.138

With minimal prior knowledge (that is mainly the use of ResFinder) and a data-driven139

approach, wemanaged to create amachine learningmodel that was not only accurately140

predicting the susceptible/non-susceptible labels but also accurately predicting at MIC141

level. Additionally, the highlighted features of our approach could be narrowed down142

to four biologically understandable features, making the method more simple and143

therefore applicable to clinical microbiology practice. It is worthy to note that the144

model was trained on all possible mutations, not only acquired resistance genes from145

a curated database. Therefore the model could discover new mutation-based resistant146

mechanisms.147

It was previously shown that accurate ciprofloxacin resistant/susceptible binary148

prediction is possible for E. coli (17) (12) (3). For some other bacteria-antibiotic combi-149

nations even MIC level predictions were performed (19), (20), (18), (21). This study goes150

beyond by not only predicting MIC level ciprofloxacin resistance for E. coli, but also151

highlighting the underlying reasoning behind the predictions. Furthermore, this study152

is one of very few that includes the presence or absence of genes located on mobile153
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FIG 2 Workflow of the study. First, a random forest model was fitted to the training data with leave-one-country-out validation.
Feature importances of the fitted models are averaged over all the folds and the four best features are kept. Then the random
forest model and a linear regression model were fitted on all the training samples using only the four best features. And model
performances are tested using the independent test dataset.
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FIG 3 Prediction on the unseen test set was generated via random forest and linear regression model using the best four predic-
tors. It can be clearly seen that the two models do not differ much in terms of predicted values.
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genetic elements (MGEs), in combination with chromosomal point mutations, in the154

machine learning algorithm. This is a crucial step since particularly in Gram-negative155

microorganisms such as E. coli, AMR is often encoded by genomic determinates located156

on MGE, or a combination of chromosomal and MGE encoded determinants, as is157

demonstrated in our study for ciprofloxacin. In addition, this study used data from158

different countries and regions thus ensuring potential variation in determinants that159

may contribute to ciprofloxacin resistance are represented in the data set.160

Notably, a linear regression model based on only the four most important features161

of the random forest model performed nearly as well as the full model. These features162

comprise two gyrAmutations, one parC mutation and the presence of any qnrS gene.163

All features have been associated with ciprofloxacin resistance before (23). Our results164

indicate that for prediction of ciprofloxacin susceptibility on the basis of whole-genome165

sequencing the analysis could be limited to only these four determinants.166

However, our study also has some limitations, which mostly pertain to the dataset.167

For strains with measured MICs in the range of 8-64 mg/L, our model performs worse168

than for strains with lower MICs. This is most likely due to the fact that the majority169

of resistant strains in our training data have an MIC of 32 mg/L, with only very few170

other resistant MICs. This hampers accurate prediction of MIC for more resistant E. coli.171

Additionally, our dataset is not yet diverse and complete enough to be applied on a172

wide scale. This is a common problem for many studies aiming to predict resistance173

from WGS data. Solving this would require continuous updating of databases and an174

adequate database structure, the latter we have addressed previously (24). Potentially,175

these efforts could allow machine learning methods to enter routine clinical and176

epidemiological practices to continuously improve predictions.177

Our approach could work for other antibiotics too if an adequate amount of diverse178

data is collected that includes the full range of susceptibility and resistance values for179

the antibiotic under study. For E. coli the ciprofloxacin resistance determinants that180

were predicted in our machine learning approach have been experimentally verified,181

but for other antibiotics, our approach could detect novel genomic variants associated182

with resistance.183

MATERIALS AND METHODS184

Data preprocessing. Raw reads were mapped on the ATCC 25922 reference185

genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_000743255.1) using BWA-MEM186

v0.7.17 (25) with default settings. Pileup files were generated with bcftools v1.9 (26)187

with "–min-MQ 50" settings. SNPs and indels were called using bcftools v1.9 with188

"–ploidity 1 -m" flags. Further filtering was applied via bcftools v1.9 "%QUAL>=50 &189

DP>=20" flags. Bcftools output data was expressed as either a SNP (value: 1), an INDEL190

(value: 5) or no mutation (value: 0) per position in the reference genome. Exact num-191

bers are irrelevant, as tree-based methods are not sensitive to the scale. The intention192

was to differentiate between reference alleles, SNPs and INDELs at a given position.193

We also encoded the exact mutations, however, that did not yield in any improvement194

so in the final version only REF/SNP/INDEL distinction was made. Acquired resistance195

genes were identified using ResFinder v3.1.0 (27) with a coverage threshold of 60%196

and an identity threshold of 90% using a database downloaded on 5th Dec. 2018.197

ResFinder was used with KMA v1.1.4 (28). The ResFinder output data was expressed as198

presence (value: 1) or absence (value: 0) of resistance genes. The SNP/INDEL data and199

ResFinder data were subsequently merged which provided a matrix with more than200

830,000 columns representing reference genome positions with at least one mutation201

and 959 columns representing detected resistance genes. Two more binary columns202
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were added manually, which describe if any qnr or qnrS gene is present in the given203

genome or not.204

Phylogenetic tree generation. The merged variant call files were converted to a205

FASTA alignment using vcf2phylip v2.0, retaining positions that were called in at least206

50% of isolates (29). The invariant positions were removed from the alignment using207

snp-sites v2.4.0 (30). The phylogeny was inferred using RAxML v8.2.9 in rapid bootstrap208

mode (-f a) with 100 bootstraps using a General Time Reversible model with Gamma209

rate heterogeneity including Lewis ascertainment bias correction (-m ASC_GTRGAMMA)210

(31). The resulting phylogeny was visualized in iTOL (32).211

Metrics. We used the following metrics for the evaluation of the model:
AUC - area under the receiver operating characteristics curve. We used the clinical break-
point for ciprofloxacin, 1 mg/L, based on the Clinical & Laboratory Standards Institure

guideline (33) to binarize the samples whether they are resistant or not.

R2 score - coefficient of determination
R 2 = 1 −

∑
i (yi − ŷi )2∑
i (yi − y )2

where212

• yi is the true value for sample i ,213

• ŷi is the predicted value for sample i ,214

• y is the mean of the true values.215

R - Pearson correlation coefficient
RX ,Y =

cov (X ,Y )
σXσY

where cov is the covariance and σ is the standard deviation.216

ME - major error - when the sample is non-resistant by measurement, but it is pre-217

dicted to be resistant. Non-resistant and resistant labels are derived from MIC via218

thresholding.219

VME - very major error - when the sample is resistant by measurement, but it is pre-220

dicted to be non-resistant. Non-resistant and resistant labels are derived from MIC via221

thresholding.222

ACC-2 - accuracy within two-fold dilution - the fraction of the samples with MIC prop-223

erly predicted within a two-fold dilution. If the measured MIC is x, then the prediction is224

counted as properly predicted within a two-fold dilution if it falls to the [x/2;2x] interval.225

ACC-4 - accuracy within four-fold dilution - the fraction of the samples with MIC prop-226

erly predicted within a four-fold dilution. If the measured MIC is x, then the prediction227

is counted as properly predicted within a four-fold dilution if it falls to the [x/4;4x]228

interval.229

MAFE - mean absolute fold error - The mean absolute difference between the log2230

values of the prediction and the measurements.231

Importance of the validation scheme. Proper validation is a key element in232

machine learning as most of the models have a large number of parameters. In233

image recognition, popular convolutional neural networks can have more than 100M234

parameters (34). This number of parameters is orders of magnitudes larger than the235

number of pixels of a single image or even the number of the images in the whole usual236

training data set, such as ImageNet (35). Having that many parameters it is possible to237

memorize the training data without generalizing any knowledge to the test data or for238

future use.239

However, with having a proper validation scheme it is easy to test the generalization240

power of a model. Inmany cases simply randomly splitting the samples into two groups241
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to a test and a validation set is enough. If the data set is small, cross-validation is242

needed, usually, K-fold cross-validation, where the data set is split into K set, each243

having the same size. Then, the model is trained on using data from K − 1 set and244

the predictions are made for the one set that was not used in the training process.245

Repeating the process, K times predictions can be generated for the whole data set246

in a way that the model did not see in training time any of the samples for which it is247

generating predictions. The weights of the model are reset between any two training.248

K-fold cross-validation can produce too optimistic results if the samples are clus-249

tered. For example, when the data collection is biased, bacterial isolates from one250

country are predominantly resistant whilst isolates from other countries are predomi-251

nantly susceptible to an antibiotic. In addition, genetic signatures are often clustered252

by country (22). Due to such clustering, the model may predict the country of origin of253

the bacterial isolate, which may be correlated with the MIC, on both the training and254

the validation data sets, but it is not guaranteed that the same will happen in real-life255

usage later.256

Leave-one-country-out validation. Here we propose a more strict and reliable257

validation method. Instead of randomly splitting the data into K different folds, we split258

the folds by country. Using this approach, the model is not rewarded if it only learns259

country-specific attributes. Leave-one-country-out validation was performed during260

the selection of the most important features in the data set, see Table S1. The random261

forest model was fitted K = 5 times leaving out one country each time from the training262

data set. Then the feature importances were summed over each fold resulting in the263

final feature importance rankings.264

Random forest model. For tabular data most often tree-like models perform the265

best. The random forest model is an ensemble of numerous (usually hundreds of)266

decision trees. In the training process, each tree is trained separately and each of them267

uses only a random fraction of the data, which ensures that the decision trees will268

not be identical. For a new sample, the prediction is the average of the prediction of269

the trees, or for classification the category that was predicted the most often by the270

individual trees. This ensemble technique ends up an accurate, robust, scalable model.271

The prediction error is usually large for each individual tree, but as long as the errors272

of the trees are uncorrelated, averaging their prediction lowers the final error.273

Random forest regressor was trained with mean squared error criterion,274

min_samples_leaf = 1, min_samples_split = 2, and n_estimators = 200 for the feature275

selection. For the final evaluation mean squared error criterion, min_samples_leaf = 1,276

min_samples_split = 5, and n_estimators = 100 parameters were used. The random277

seed was fixed. Other parameters remained default. Scikit-learn v0.21.2 (36) was used278

for fitting the model in Python 3.6.5.279

Random forest feature importance. For decision trees the input variables, the280

features can be sorted by their importance. The importance can be defined in various281

ways; the used scikit-learn v0.21.2 (36) implementation calculates the mean decrease282

impurity averaged over all the trees in the forest (37) (38). In this approach, the283

identification of the most important predictors becomes feasible even for cases when284

there are hundreds of thousands of features.285

Model fitting. All models were fitted on the log2 values of the MIC, which is the286

natural scale for the MIC measurement. Later the predicted values were converted287

back to the MIC units.288

Study pipeline. The pipeline of this study is shown in Figure 2. First, the raw289

reads were converted to a numerical table indicating mutations and plasmid related290

resistant genes. In the second step, a random forest model is fitted on the train data291
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via leave-one-country cross-validation. Features importances were averaged over each292

fold. Then the highest-ranking features were kept which significantly reduced the293

dimensionality of the data. Using this low dimensional training data a random forest294

model and a linear regression was fitted. For fitting the models always the log2 MIC295

values were used as a natural scale for the MIC measurements.296

At the last step, the performance of the models was evaluated on the unseen test297

data using the same restricted feature set.298

Availability of data and materials. All used data is publicly available at the EBI299

SRA system. Download details and scripts are available at the linked GitHub repository300

below.301

Code is available at https://github.com/patbaa/AMR_ciprofloxacin .302

SUPPLEMENTAL MATERIAL FILE LIST303

• TABLE S1 shows the feature importances over the different leave-one-country-304

out folds305

• TABLE S2 shows the parameters of the fitted linear regression and the 24 = 16306

possible predicted values based on the 4 features.307

• FIGURE S1 shows the leave-one-country cross-validation R 2 results based on308

the number of features.309

• FIGURE S2 shows the results of the models for an additional 100 E. coli genomes310

from Bangladesh. These genomes had only disk diffusion test measurements,311

that is the reason they were not discussed in the paper.312

• FIGURE S3 shows data quality control checks for the dataset.313
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TABLE S1 Feature importances of the fitted random forest models. Random forest model was fitted on the training data using

leave-one-country-out validation. Each entry shows the feature importance for the given feature for the validation step when

the samples from the given country were not used to train the model. Sorted by the sum of the feature importances.

The features are following the gene # amino acid position naming where possible. For the mutations where there were no genes

associated, the naming is chromosome name _ position. For the features coming from ResFinder, the ResFinder naming was

kept. has_qnr and has_qnrS are binary features describing if the sample had any qnr/qnrS entry in the ResFinder results.

feature Denmark Italy USA UK Vietnam sum

gyrA#87 0.555 0.567 0.570 0.558 0.010 2.260

gyrA#83 0.114 0.148 0.107 0.141 0.690 1.200

parC#80 0.181 0.151 0.199 0.172 0.001 0.705

has_qnrS 0.042 0.039 0.019 0.037 0.004 0.140

qnrS1_1_AB187515 0.012 0.007 0.017 0.004 0.000 0.041

blaCTX-M-55_1_DQ810789 0.002 0.009 0.009 0.013 0.000 0.033

blaVIM-48_1_KY362199 0.004 0.001 0.016 0.002 0.000 0.022

CP009072.1_3517597 0.000 0.000 0.000 0.000 0.013 0.014

CP009072.1_1734215 0.000 0.000 0.000 0.000 0.008 0.009

blaCTX-M-14_1_AF252622 0.000 0.002 0.002 0.003 0.000 0.008

CP009072.1_3517591 0.000 0.000 0.000 0.000 0.007 0.007

CP009072.1_113480 0.000 0.000 0.000 0.000 0.005 0.006

CP009072.1_1205372 0.003 0.002 0.001 0.000 0.000 0.006

has_qnr 0.005 0.000 0.000 0.000 0.000 0.005

CP009072.1_459777 0.001 0.002 0.000 0.002 0.000 0.005

TABLE S2 Parameters of the fitted linear regression model. The interception is −5.796, and the parameters associated with
gyrA#87, gyrA#83, parC#80, has_qnrS are 4.116, 3.935, 2.078 and 3.542. Prediction is calculated as 2 to the power of the sum of

interception and the present mutation/genes.

prediction (mg/L) gyrA#87 gyrA#83 parC#80 has_qnrS

0.018 No No No No

0.076 No No Yes No

0.210 No No No Yes

0.275 No Yes No No

0.312 Yes No No No

0.885 No No Yes Yes

1.162 No Yes Yes No

1.317 Yes No Yes No

3.207 No Yes No Yes

3.634 Yes No No Yes

4.771 Yes Yes No No

13.537 No Yes Yes Yes

15.341 Yes No Yes Yes

20.140 Yes Yes Yes No

55.585 Yes Yes No Yes

234.649 Yes Yes Yes Yes
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Interpretable ciprofloxacin MIC prediction for E. coli
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FIG S1 R squared score calculated on the training set using random forest model. The features were ranked based on Table S1
and iteratively a random forest model was fitted on the training set with leave-one-country-out validation. The highest score was
achieved with the top four features.
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FIG S2 Prediction for samples that had only disk diffusion testmeasurement. As the larger zone diameter corresponds to smaller
MIC values, a negative correlation is desirable on this plot. The same models were used with 4 predictors as it was used for the
test set.
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FIG S3 VCF file length distribution and the number of raw reads in the collected dataset.
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