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ABSTRACT

Attention-deficit and hyperactivity disorder (ADHD) is a common childhood disorder with a 

substantial genetic component. However, the extent to which epigenetic mechanisms play 

a role in the etiology of the disorder is not known. We performed epigenome-wide 

association studies (EWAS) within the Pregnancy And Childhood Epigenetics (PACE) 

Consortium to identify DNA methylation sites associated with ADHD symptoms at two 

methylation assessment periods: birth and school-age. We examined associations of DNA 

methylation in cord blood with repeatedly assessed ADHD symptoms (age range 4-15 

years) in 2477 children from five cohorts and DNA methylation at school-age with 

concurrent ADHD symptoms (age 7-11 years) in 2374 children from ten cohorts. CpGs 

identified with nominal significance (p<0.05) in either of the EWAS were correlated 

between timepoints (ρ=0.30), suggesting overlap in associations, however, top signals 

were very different. At birth, we identified nine CpGs that were associated with later ADHD 

symptoms (P<1*10-7), including ERC2 and CREB5. Peripheral blood DNA methylation at 

one of these CpGs (cg01271805 located in the promotor region of ERC2, which regulates 

neurotransmitter release) was previously associated with brain methylation. Another 

(cg25520701) lies within the gene body of CREB5, which was associated with neurite 

outgrowth and an ADHD diagnosis in previous studies. In contrast, at school-age, no CpGs

were associated with ADHD with P<1*10-7. In conclusion, we found evidence in this study 

that DNA methylation at birth is associated with ADHD. Future studies are needed to 

confirm the utility of methylation variation as biomarker and its involvement in causal 

pathways.
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Introduction

Attention-deficit and hyperactivity disorder (ADHD) is a common 

neurodevelopmental disorder characterized by impulsivity, excessive activity and attention 

problems. Symptoms often become apparent during school-age with a world-wide 

prevalence of 5-7.5%.1 Genetic heritability is estimated between 64%-88%.2,3 Additionally 

several environmental factors are suspected to impact ADHD, e.g. prenatal maternal 

smoking or lead exposure.4–7 However, the genetics and environmental pathways 

contributing to ADHD risk remain unclear. Possibly, DNA methylation, an epigenetic 

mechanism regulating gene expression, may mediate genetic or environmental effects.

Several studies have investigated DNA methylation in relation to ADHD diagnoses 

or symptoms using candidate approaches or epigenome-wide association studies (EWAS) 

in peripheral blood and saliva tissue.8,9 A leading hypothesis concerning the etiology of 

ADHD suggests that deficiencies in the dopamine system of the brain impact ADHD 

development.4,10 Consequently, candidate studies have focused on genes related to 

dopamine function. For instance, DNA methylation alterations in DRD411–13, DRD512, and 

DAT112,14 genes have been associated with ADHD, though not consistently15. Beyond the 

candidate gene approach, three studies tested DNA methylation across the whole 

genome. One study performed an EWAS with saliva samples in school-aged children 

using a case-control design.16 The study identified differentially methylated probes in 

VIPR2, a gene expressed in the caudate and previously associated with psychopathology. 

Another EWAS investigated cord and peripheral blood DNA methylation at birth and at 7 

years of age.17 At birth, 13 probes located in SKI, ZNF544, ST3GAL3 and PEX2 were 

associated with ADHD trajectories from age 7 to 15 years, but the methylation status of 
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these probes at age 7 was not associated with ADHD cross-sectionally. An EWAS in adults

with ADHD failed to find any differentially methylated sites in peripheral blood.18

Large multi-center epigenome-wide studies, which allow for increased power and 

generalizability, are lacking for childhood. Here we performed the first epigenome-wide 

prospective meta-analysis to identify DNA methylation sites associated with childhood 

ADHD symptoms in cohorts from the Pregnancy And Childhood Epigenetics (PACE) 

Consortium19. Since the temporal stability of methylation potentially associated with ADHD 

symptoms is unclear, we tested DNA methylation both at birth using cord blood and in 

school-age (age 7-9 years) using DNA derived from peripheral whole blood. In the 

analyses of cord blood methylation, the aim was to explain ADHD symptoms between 

ages 4 and 15 years. Many participating cohorts assessed ADHD repeatedly and we 

employed a repeated measures design to increase precision. Furthermore, we utilized 

data in childhood to examine cross-sectional DNA methylation patterns associated with 

ADHD symptoms at school age.
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Materials and methods

This study comprises a birth methylation EWAS and a school-age methylation EWAS 

described successively below.

Birth Methylation EWAS

Participants

Five cohorts (Avon Longitudinal Study of Parents and Children (ALSPAC),20–22 Generation 

R (GENR),23 INfancia y Medio Ambiente (INMA),24 Newborn Epigenetic Study 

(NEST)25,26 and Prediction and prevention of preeclampsia and intrauterine growth 

restriction (PREDO)27) in the PACE consortium had information on DNA methylation in 

cord blood and ADHD symptoms. These cohorts have a combined sample size of 2477 

(Table 1). Participants were mostly of European ancestry, except for NEST, an American 

cohort which also included participants of African ancestry. In NEST, separate EWAS were 

conducted for participants identifying as black or white to account for ancestry 

heterogeneity. See Supplementary Information 1 for full cohort descriptions.

DNA Methylation and QC

DNA methylation in cord blood was measured using the Illumina Infinium 

HumanMethylation450K BeadChip (Table S1). Methylation levels outside of the lower 

quartile minus 3*interquartile or upper quartile plus 3*interquartile range were removed. 

Each cohort ran the EWAS separately according to a pre-specified harmonized analysis 

plan. The distribution of the regression estimates and p-values were examined for each 

cohort and pooled results. Deviations from a normal distribution of regression estimates or 
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a higher number of low p-values than expected by chance may be signs of residual 

confounding, or the result of a true poly-epigenetic signal. To help in interpretation of the 

results, we used the BACON method.28 BACON analyzes the distribution of regression 

coefficients and estimates an empirical null distribution. Results can then be compared 

against the empirical null, which already includes biases, rather than the theoretical null. 

We excluded CpG probes, that were available in fewer than four cohorts, fewer than 1000 

participants, and allosomal probes, due to the complex interpretation of dosage 

compensation.

ADHD Symptoms

ADHD symptoms were measured when children were 4-15 years old (depending on the 

cohort) with parent-rated instruments, specifically the Behavior Assessment System for 

Children (BASC),29 Child Behavior Checklist (CBCL),30,31 Conners32 and the Development 

and Well-Being Assessment (DAWBA)33 (Table S2). If a cohort had measured ADHD 

symptoms repeatedly (3 cohorts), we used a mixed model (see statistical analysis). The 

repeated measure design increased the precision of the ADHD severity estimate and 

sample size, since missing data in an assessment can be handled with maximum 

likelihood. Given the variety of instruments used within and across cohorts, all ADHD 

scores were z-score standardized to enable meta-analysis. 

Statistical analysis

Cohorts with repeated ADHD assessment were analyzed using linear mixed models, with 

z-scores of ADHD symptoms as the outcome and methylation (in betas, ranging from 0 

(unmethylated) to 1 (methylated)) as the main predictor. Each CpG probe was analyzed 

separately and pooled p-values were adjusted for multiple correction using Bonferroni 

adjustment. We used a random intercept on the participant and batch level, to account for 

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/806844doi: bioRxiv preprint 

https://doi.org/10.1101/806844
http://creativecommons.org/licenses/by/4.0/


clustering due to repeated measures and batch effects. The following potential 

confounders were included as fixed effects: maternal age, educational level, smoking 

status (yes vs no during pregnancy), gestational age, sex, and estimated white blood cell 

proportions (Bakulski reference estimated with the Houseman method).34 Mixed models 

were fitted using restricted maximum likelihood. We used R35 with the lme436 package to 

estimate the models. Cohorts with a single ADHD assessment wave used a model without 

random effects or batch level only.

Meta-analysis was performed using the Han and Eskin random effects model.37 This

model does not assume that true effects are homogeneous between cohorts, however, it 

does assume that null effects are homogeneous. This modified version of the random 

effect model has comparable power to a fixed effects analysis, while better accounting for 

study heterogeneity, such as ancestry differences, in simulation studies.37 Genome-wide 

significance was defined at the Bonferroni-adjustment threshold of p<1*10-7, suggestive 

significance at p<1*10-5, and nominal significance at p<0.05.

Follow-up analyses

We performed several look-ups of genome-wide significant probes. We used the 

BECon database38 to check the correlation between peripheral and brain methylation 

levels in post-mortem tissue. To test genetic influence we interrogated the genome-wide 

significant probes in MeQTL39 and twin heritability databases.40 We also attempted to 

replicate genome-wide significant probes reported in a previous EWAS from the ALSPAC 

study.17 For replication we reran the meta-analysis without the ALSPAC cohort. To quantify 

the variance explained by genome-wide significant probes, we predicted ADHD scores at 

age 8 in Generation R by all meta-analytically genome-wide significant probes. We applied
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10-fold cross-validation with 100 repetitions to improve generalizability and reduce bias 

from Generation R, which was part of the discovery.

Pathway Analysis

Pathway enrichment analysis were performed with the missMethylpackage41 on 

suggestive probes (P<1*10-5). We used as references: gene ontology (GO), KEGG and 

curated gene sets (http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2) from 

the Broad Institute Molecular signatures database42. P-values were adjusted using the 

default procedures by the number of CpGs associated with each gene43 and false 

discovery rate.

To test enrichment for regulatory features (gene relative position, CpG island 

relative position and blood chromatin states) we applied χ2 tests. Enrichment tests were 

performed for all CpGs, hypo and hypermethylated CpGs separately. CpG annotation was 

performed with the IlluminaHumanMethylation450kanno.ilmn-12.hg19 R 

package.44 Annotation to chromatin states was from the Roadmap Epigenomics Project 

(https://egg2.wustl.edu/roadmap/web_portal/). See Supplementary Information 2 for full 

description.

School-age methylation EWAS

Participants

Nine cohorts (ALSPAC, GENR, HELIX45 and GLAKU46) with a combined sample size of 

2374 joined the school-age methylation EWAS (Table 1, Supplementary Information 1). 

HELIX consists of six jointly analyzed sub-cohorts45 All cohorts had participants of 

European ancestry, except HELIX, which also included participants with a Pakistani 

background living in the UK, which were treated as a separate cohort in the meta-analysis.
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Fifty-three percent of participants in the school-age EWAS were also part of the birth 

EWAS.

DNA Methylation and QC

DNA methylation was measured at ages 7-12 in peripheral whole blood. The Illumina 

Infinium HumanMethylation450K BeadChip and Infinium MethylationEPIC Kit (GLAKU) 

were used to interrogate CpG probes. QC steps were identical to the birth methylation 

EWAS.

ADHD Symptoms

ADHD symptoms were measured at the same age as DNA methylation (age 7-11 years) 

with the parent-rated measures DAWBA and CBCL (Table S2). Only the assessment 

closest to the DNA methylation assessment age was analyzed.

Statistical analysis

The statistical model was similar to the model used in the birth methylation EWAS without 

participant level random effect. However, cell counts were estimated with the Houseman 

method using the Reinius reference.47. We also added assessment age as covariate. The 

meta-analysis methods were identical to the birth methylation EWAS. 

Follow-up analyses

We did not perform follow-up analyses due low signal. However, we attempted to 

replicate six probes identified as suggestive in a previous case-control EWAS in school-

age.16

12
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Results

Birth Cord Blood Methylation

EWAS Quality Check

Four out of the six cohorts showed larger number of low p-values than expected 

under the null, as indexed by high λ (Table 1). BACON analysis suggested that the 

majority of the inflation was due to a true signal, as indicated by inflation values clearly 

lower than λ. To test the impact of sample size on λ, we restricted the GENR sample 

randomly to 900 and 1100 participants, resulting in 812 and 991 participants due to 

missing covariates. The lambdas were 0.96, 1.21, 1.51 for 812, 991, and 1191 

participants. We thus conclude that the over-representation of low p-values is mostly due 

to sufficient power to detect associations at higher sample sizes.

The BACON analyses also indicated a trend towards positive/negative regression 

coefficients in some of the datasets, which might indicate confounding, e.g. by population 

stratification. To test this, we added principal components of ancestry in GENR and 

ALSPAC, but these did not meaningfully change results.

We conducted the meta-analysis under the assumption that any such biases will be 

corrected in the pooled analysis, since they were not homogeneous across cohorts. 

Indeed, the pooled estimates did not show a trend towards positive or negative regression 

estimates (Median=+0.02), only an overrepresentation of low p-values (λ=1.86, Figure 1). 

The BACON estimates for inflation suggested that these are mostly due to a true signal 

(Inflation=1.1).

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/806844doi: bioRxiv preprint 

https://doi.org/10.1101/806844
http://creativecommons.org/licenses/by/4.0/


Single Probe Analysis

After QC, 472,817 CpG sites remained for the meta-analysis. Results of the cord 

blood EWAS are shown in Figure 2. Nine CpG sites showed genome-wide significance 

(p<1*10-7, Table 2). ADHD symptoms were between 0.16SD (SE=0.03) and 0.44SD (SE= 

0.12) higher with 10% lower methylation at these probes. Eight probes out of nine that 

were available in the BECon database38 are typically methylated in both whole blood and 

the brain (Figures 3, S1 and S2). A lookup in the BECon database revealed that the CpG 

site cg01271805 in the promoter region of gene ERC2 shows variable methylation in three 

brain regions (BA10, BA20, BA7). Importantly, methylation levels in the brain are 

moderately correlated with whole blood methylation (ρ=0.33-0.46) (Figure 3), suggesting 

that peripheral cg01271805 methylation levels are a useful marker for brain methylation 

levels. The other seven genome-wide significant probes showed less consistent 

correlations between blood and brain tissues and associated genes had less specificity for 

expression in the brain, based on GTEx48 data. No SNP was associated with our nine top 

CpG probes when accounting for linkage disequilibrium according to the MeQTL 

database39. Furthermore, all nine probes had a twin heritability below 20% in a previous 

study (Table S3).40 After adjusting for inflation and bias with BACON, only one CpG 

remained statistically significant (cg25520701, CREB5, ß =-3.54, SE = 0.66, p = 9.59*10 -8).

It should be noted, that the BACON adjusted p-values rely on statistics from the traditional 

random effects model. With the traditional model, only cg25520701, cg09762907 and 

cg22997238 remained genome-wide significant. Thus the difference in p-value is not 

solely the result of adjustment for the inflation, but also the use of more conservative tests.

In Generation R, the joint explained variance of ADHD scores at age 8 by the genome-

wide significant probes was 1.8% (R2 from 10-fold repeated cross-validation).

14
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Pathway Analysis

Two-hundred forty-nine probes showed suggestive (P<1*10-5) associations and 

were annotated to 182 unique genes. In gene-based analyses no pathway survived 

multiple testing correction.

The 248 suggestive CpGs were enriched in intergenic regions. Of these, 

hypomethylated CpGs were enriched for 3’UTR regions and depleted for TSS200 and first 

exon regions, open sea, north shelf and south shelf regions, south shore and islands. 

Regarding chromatin states, hypomethylated probes showed an enrichment for 

transcription (Tx and TxWk), quiescent positions and depletion for transcription start site 

positions (TSSA, TxFlnk, TxFlnk), bivalent (EnhBiv) and repressor (ReprPC) positions. 

Hypermethylated probes showed the opposite enrichment/depletion patterns. See 

Supplementary Information 2 for full results.

Replication of previous EWAS

We attempted to replicate findings for 13 CpGs, at which DNA methylation at birth 

was associated with ADHD trajectories.17 However, no probe survived multiple-testing 

correction. (Table S4).

School-age methylation

EWAS Quality Checks

The regression coefficient distribution showed no signs of errors, but three out of 

the five cohorts showed a trend towards positive associations in separate analyses (Table 

1). The lambda was below 1.11 for all cohorts. BACON suggested no inflation of the test 

statistics due to confounding or other biases, though the trend towards positive 

associations remained. The pooled results showed a low lambda (λ=0.96), no inflation 
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(BACON inflation estimate = 0.92), but a slight over-representation of positive associations

(BACON bias estimate = 0.14).

Single Probe Meta-Analysis

We associated DNA methylation at school-age in whole-blood at 466,574 CpG sites

with ADHD symptoms at the same age. No CpG reached genome-wide significance (all 

p>4.96E-06, Figure 2). Furthermore, none of the loci at which DNA methylation at birth 

was significantly associated with ADHD symptoms, also showed a cross-sectional 

association at school-age (p>0.33). 

Replication of previous EWAS

We attempted to replicate the six most suggestive EWAS CpGs of a previous case-

control study.16 While all but one showed a consistent direction, none of the CpGs were 

statistically significant. (Table S5)

Stability of methylation association across age

The associations between methylation at birth with ADHD symptoms and 

methylation at school-age with ADHD symptoms were largely consistent for nominally 

significant probes. The regression estimates from CpG sites, with nominally significant 

associations at birth (p<0.05, n=73,057) correlated with the regression estimates of the 

school-age EWAS (ρ=0.45). When restricting the school-age methylation EWAS to those 

cohorts, which were not featured in the birth methylation EWAS (thus excluding overlaps), 

the correlation remained (ρ=0.30). Vice versa, when filtering for probes which were 

nominally significant at school-age, 23,770 probes remained of which 4075 overlapped 

with nominally significant probes at birth. The correlation for this set was very similar, 

ρ=0.47 among all cohorts and ρ=0.35 between independent cohorts.
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Discussion
In this population-based study, we performed the first epigenome-wide meta-

analysis of ADHD symptoms in childhood, using two DNA methylation assessments (birth 

and school-age), as well as repeated measures of ADHD symptoms. DNA methylation at 

birth, but not at school-age, was associated with later development of ADHD symptoms 

with genome-wide significance at nine loci. Interestingly, the identified probes showed a 

pattern of a high average rate of methylation in cord blood, while lower levels of 

methylation were associated with more ADHD symptoms in childhood. DNA methylation in 

cord blood reflects the effects of genetics and the intrauterine environment. The results 

suggest that cord blood DNA methylation is a marker for some of the ADHD risk factors 

before birth or functions as a potential mediator of these risk factors. While not impossible, 

reverse causality at this age is unlikely to explain our results, as ADHD only manifests at 

later stages of development. 

We analyzed DNA methylation in cord and peripheral blood, which may not 

correspond to the methylation status in the brain. DNA methylation in the brain arguably 

has the strongest a priori likelihood of representing causal mechanisms. Seven out of eight

significant probes did not show consistent correlation between methylation status in whole 

blood and post-mortem brain tissue in a previous study, i.e. DNA methylation levels in 

blood may not represent brain levels and thus associations with ADHD may be different.38

However, methylation levels of cg01271805 in whole blood are associated with 

methylation levels in various brain regions. Importantly, this probe lies in the promoter 

region of the gene ERC2, that is highly expressed in brain tissue. ERC2 regulates calcium 

dependent neurotransmitter release in the axonal terminal.49 Specifically, ERC2 is 

suspected to increase the sensitivity of voltage dependent calcium channels to 

hyperpolarization, resulting in higher neurotransmitter release. SNPs in the ERC2 locus 
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have been suggested to distinguish schizophrenia and bipolar disorder patients50 and to 

impact cognitive functioning51. ERC2 is especially expressed in Broadmann area 9 of the 

frontal cortex.48 Previous imaging studies have demonstrated differential activation in this 

area when children with or without ADHD performed various cognitive tasks.52,53 The 

correlation with brain methylation, the location in a promoter and gene expression in the 

brain make cg01271805 a plausible candidate locus, where reduced methylation may be 

mechanistically involved in ADHD development. We hypothesize, that lower methylation 

levels at cg01271805 increases the expression of ERC2, which in turn increases 

neurotransmitter release, with an adverse impact on the development of ADHD symptoms.

Another gene with a genome-wide significant probe and high relevance for neural 

functioning is CREB5 (cg25520701). CREB5 is expressed in fetal brain and the prefrontal 

cortex, and has been previously related to neurite outgrowth. Moreover, SNPs in this gene 

were associated with ADHD in two recent GWAS.54,55 Thus, it is plausible that differences 

in DNA methylation at this locus may modify ADHD risk during development.

While the birth methylation EWAS identified several loci, associating school-age 

methylation with concurrent ADHD symptoms revealed no genome-wide significant 

associations. Furthermore, the overall association signal was lower, despite similar sample

sizes. None of the probes, which were significantly associated at birth showed any 

association when measured at school-age. Given that sample sizes were comparable, this

difference must come from changes in the epigenome or study heterogeneity, rather than 

differences in statistical power. In terms of instrument heterogeneity, the school-age EWAS

was more homogeneous, almost exclusively using CBCL. Additionally, as both EWAS 

feature a mix of several cohorts selected based on the same criteria and around half of the

participants were represented at both time points, study heterogeneity appears to be an 

unlikely explanation. The stronger signal in the birth EWAS may be considered surprising 
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given that typically two measures are typically more strongly associated if measured in 

closer temporal proximity. However, in line with our results Walton et al. also observed in a 

previous EWAS,17 that birth methylation may be a better predictor of later ADHD symptoms

than childhood methylation, possibly reflecting sensitive periods. Whether DNA 

methylation in cord blood has stronger causal effects or is a better marker for early life 

factors cannot be concluded from the present study. Alternatively, tissue differences 

between cord blood and whole blood may account for the differences in association 

pattern. Finally, it is possible that interventions in childhood and other environmental 

influences reduced the initial epigenetic differences at birth between children with higher 

and lower ADHD symptoms. Yet, we observed consistency in the associations of 

methylation at both timepoints with ADHD symptoms. The regression estimates of both 

EWAS correlated on a genome-wide level.

Strengths of this study include the large sample size, repeated outcome measures, 

Spanish Institute of Health Carlos III extensive control for potential confounders and the use 

of DNA methylation at two different time-points, enabling us to characterize both 

prospective and cross-sectional associations with ADHD symptoms. However, several 

limitations need to be discussed as well. A causal interpretation of our findings is 

challenged by the possibility of residual confounding and reverse causality. DNA 

methylation might be a marker for untested adverse environmental factors that could affect

ADHD via independent pathways. In addition, children with higher ADHD symptoms may 

evoke a particular environment, which might shape the epigenome. Larger sample sizes 

are necessary to detect further methylation sites. As is typical for (epi-)genetic studies, the 

effect size of individual top probes was rather small: the joint effect of the genome-wide 

probes was estimated below 2%. However, the strong genome-wide epigenetic signal 
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suggests a potential for the development of epigenetic-scores based on birth methylation, 

which could lead to early prevention efforts before ADHD symptoms arise.

In summary, we identified nine CpG sites for which lower methylation status at birth 

is associated with later development of ADHD symptoms. The results suggest that DNA 

methylation in ERC2 and CREB5 may exert an influence on ADHD symptoms, potentially 

via modification of neurotransmitter functioning or neurite outgrowth.
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Figures

Figure 1: Quantile-quantile plot of observed −log10 p-values in the cord blood and school-

age EWAS vs expected −log10 p-values under assumption of chance findings only. The 

diagonal line represents the distribution of the expected p-values under the null. Points 

above the diagonal indicate p-values which are lower than expected.
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Figure 2: Manhattan plot of −log10 p-values vs CpG position (basepair and chromosome). 

Red line indicates genome-wide significant (p<1*10-7) and blue line suggestive threshold 

(p<1*10-5).
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Figure 3: Lookup of brain-blood correlations and variability of genome-wide significant CpG sites in the BECon database.
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Tables

Table 1: Cohort characteristics

Standardized regression coefficients BACON estimates

Cohort Ancestry/
Ethnicity

n Methylation 
Age

ADHD
Age

Instrument 
(Age)

33% 50% 66% λ Inflation Bias

 Birth EWAS

ALSPAC European 714 0 8, 11, 14, 15 DAWBA -0.21 0.25 0.89 1.60 1.10 0.37

GENR European 1191 0 6,8,10 CBCL (6,10),
Conners (8)

-0.48 0.01 0.53 1.51 1.20 0.05

INMA European 325 0 7,9 Conners (7), 
CBCL (9)

-1.37 -0.40 0.43 0.80 0.87 -0.19

NEST Black 55 0 5 BASC -3.50 -0.03 3.63 1.16 1.10 0.00

NEST White 56 0 5 BASC -2.54 -0.09 2.36 0.80 0.92 -0.01

PREDO European 136 0 5 Conners -1.55 -0.25 1.20 1.45 0.95 0.21

META - 2477 - - - -0.37 0.02 0.42 1.86 1.10 0.01

 School-age EWAS

ALSPAC European 651 7 8 DAWBA -0.61 -0.10 0.54 1.09 1.00 -0.08

GENR European 395 10 10 CBCL -0.93 -0.00 0.98 1.00 0.97 -0.01

GLAKU European 215 12 12 CBCL -0.79 0.31 1.50 0.92 0.96 0.13

HELIX European 1034 8 8 CBCL -0.26 0.47 1.40 1.11 0.98 0.28

HELIX Pakistani 79 7 7 CBCL -1.66 1.86 5.48 0.98 0.96 0.26

Meta - 2374 - - - -0.24 0.14 0.62 0.96 0.92 0.14

n Number of participants

33%, 50%, 66% Quartiles of regression coefficient distribution

λ Inflation of p-values

Inflation Inflation of p-values due to suspected bias

Bias Trend toward negative/positive distribution of regression coefficients due to suspected bias
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Table 2: EWAS Results

Birth methylation School-age methylation

CpG Gene Chr Position nstudies n B SE p nstudies n B SE p

cg25520701 CREB5 7 28800657 6 2450 -3.53 0.60 4.95E-09 5 2279 -0.13 1.09 0.94

cg24838839 Intergenic 5 61031569 6 2468 -4.15 1.79 3.95E-08 5 2287 1.52 1.38 0.33

cg22997238 Intergenic 7 36014218 6 2465 -1.63 0.30 8.81E-08 5 2291 -0.06 0.47 0.94

cg21600027 Intergenic 4 124443502 6 2464 -3.04 0.81 2.64E-08 5 2281 0.98 0.89 0.33

cg17876201 ZBTB38 3 141139991 6 2457 -4.41 1.20 7.58E-09 4 2066 0.56 1.32 0.73

cg11251614 PPIL1 6 36839846 6 2451 -3.43 0.68 3.89E-08 5 2276 0.77 1.52 0.68

cg09762907 TRERF1 6 42290256 6 2460 -2.11 0.39 8.76E-08 5 2284 -0.55 0.64 0.46

cg09158638 Intergenic 16 62309996 6 2470 -2.55 1.40 1.89E-08 5 2270 -0.33 1.04 0.80

cg01271805 ERC2 3 55694954 6 2469 -2.86 1.71 5.24E-08 5 2289 0.28 0.73 0.76

Chr Chromosome
nstudies Number of studies
n Number of participants
B Regression coefficient
SE Standard error
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