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Abstract1

Most models used to generate ecological forecasts take either a time-series approach, based on2

long-term data from one location, or a space-for-time approach, based on data describing spatial3

patterns across environmental gradients. Here we consider how the forecast horizon determines4

whether the most accurate predictions come from the time-series approach, the space-for-time5

approach, or a combination of the two. We use two simulation case studies to show that forecasts6

for short and long-time scales need to focus on different ecological processes, which are reflected7

in different kinds of data. In the short-term, dynamics reflect initial conditions and fast pro-8

cesses such as birth and death, and the phenomenological time-series approach makes the best9

predictions. In the long-term, dynamics reflect the additional influence of slower processes such10

as evolutionary and ecological selection, colonization and extinction, which the space-for-time11

approach can effectively capture. At intermediate time-scales, a weighted average of the two12

approaches shows promise. However, making this weighted model operational will require new13

research to predict the rate at which slow processes begin to influence dynamics.14

Keywords: dispersal, ecological forecasting, eco-evolutionary dynamics, global change, se-15

lection16
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Introduction17

Forecasting is increasingly recognized as important to the application and advancement of eco-18

logical research. Forecasts are necessary to guide environmental policy and management deci-19

sions about mitigation and adaption to global change (Clark et al., 2001; Mouquet et al., 2015;20

Dietze et al., 2018). But forecasts can also advance understanding of the processes governing21

ecological systems by providing rigorous tests of model predictions (Houlahan et al., 2017; Di-22

etze, 2017; Dietze et al., 2018). The dual benefits of informing management and advancing basic23

knowledge makes forecasting an important priority for ecological research.24

Models used for ecological forecasting typically rely on either time-series approaches or25

space-for-time substitutions. The time-series approach involves fitting models to long-term26

datasets to describe the temporal dynamics of a system. We then use those dynamic mod-27

els to make predictions about what will happen in the future. This approach is often used to28

study population or vital rate fluctuations as a function of weather (Dalgleish et al., 2011), or29

primary production as a function of annual precipitation (Lauenroth and Sala, 1992). Whether30

process-based or data-driven (e.g., Ward et al. 2014), time-series models capture “fast processes”31

operating on interannual time-scales, such as birth, death, individual growth, small-scale disper-32

sal events, and short-term responses to environmental conditions (Fig. 1). However, models built33

using this approach normally cover a limited spatial extent (but see Hefley et al. 2017; Kleinhes-34

selink and Adler 2018), and ignore slower processes, such as evolutionary adaptation or turnover35

in community composition, that could influence dynamics at longer time scales (Clark et al.,36

2001).37

Space-for-time substitution approaches begin by describing how an ecological variable of38

interest, such as occupancy or productivity, varies across sites experiencing different environ-39

mental conditions. These spatial relationships between environment and ecological response are40

assumed to also hold for changes at a site through time. To make a forecast, we first predict the41

future environmental conditions and then determine the associated ecological response, based42

on the observed spatial relationship. This is the approach commonly used to predict population43

distribution or abundance as a function of climate (Elith and Leathwick, 2009) or mean primary44

production as a function of mean precipitation (Sala et al., 1988). Space-for-time models capture45

the outcome of interactions between fast processes and slower processes operating over long46

time periods, such as immigration, extinction, and responses to large or prolonged environmen-47

tal changes (Fig. 1). However, space-for-time models provide no information about how quickly48

the system will move from the current state to the predicted, future state. In fact, transient dy-49

namics could prevent the system from ever reaching the predicted steady state (Urban et al.,50

2012). Although both time-series and space-for-time approaches are widely used, there has been51

little discussion of their advantages and disadvantages for guiding policy decisions or advancing52

our understanding of ecological dynamics (Harris et al., 2018; Renwick et al., 2018).53

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807057doi: bioRxiv preprint 

https://doi.org/10.1101/807057
http://creativecommons.org/licenses/by-nc-nd/4.0/


Whether historical dynamics, contemporary spatial patterns, or some combination of the two54

will serve as the best source of information for forecasting may depend on how far into the future55

we are attempting to forecast (Harris et al., 2018). This potential dependency on the “forecast56

horizon” (sensu Hyndman and Athanasopoulos 2018) reflects lags in the response of ecologi-57

cal conditions to environmental change, shifts in the importance of ecological processes with58

time scale (Levin, 1992; Rosenzweig et al., 1995), and differences between time-series and spatial59

gradients in the range of environmental conditions represented in observed data (Fig. 1). At60

short forecast horizons (days to years), dynamics will reflect the physiological and demographic61

responses of the organisms present at a site more than turnover of genotypes or species, envi-62

ronmental conditions are likely to stay within the range of historical variation, and the current63

state of the system is likely to capture the influence of unmeasured processes. As a result, for64

near-term forecasts time-series approaches may capture the key dynamics and provide accurate65

predictions.66

In contrast, at long forecast horizons (decades to centuries), environmental conditions that67

have not been historically observed are likely to not only occur but to persist long enough to68

drive significant turnover of genotypes and species along with changes in the flux of energy and69

nutrients. At these long scales, the current state of the system may be little help in predicting the70

future state. For the century-scale forecasts often featured in biodiversity and species-distribution71

modeling, space-for-time approaches may effectively capture the response of ecosystems to ma-72

jor shifts in climate over long periods, producing better long-term forecasts than time-series73

approaches. Using different modeling approaches for different forecast horizons is common in74

other disciplines. For example, meteorological models for short-term weather forecasts differ75

substantially in spatial and temporal resolution and extent from the global circulation models76

used to predict long-term changes in climate.77

Here we use simulation models to 1) demonstrate that the best model-building approaches78

for ecological forecasting depend on the time horizon of the forecast, and 2) explore how time-79

series and space-for-time approaches might be combined via weighted averaging to make better80

forecasts at intermediate time scales. We conduct two simulation case studies, one focused on81

how interspecific interactions affect the population dynamics of a focal species, and the second82

focused on an eco-evolutionary scenario. Our analyses show that:83

1. For short-term forecasts, phenomenological time-series approaches are hard to beat, whereas84

longer-term forecasts require accounting for the influence of slow processes such as evolu-85

tionary and ecological selection as well as dispersal.86

2. Different kinds of data reflect the operation of different processes: longitudinal data cap-87

ture autocorrelation and fast responses of current assemblages to interannual environmental88

variation, while data spanning spatial gradients capture the long-term outcome of interac-89

tions between fast and slow processes. Whether predictive models should be trained using90

longitudinal or spatial data sets, or both, depends on the time-scale of the desired forecast.91
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Figure 1: Fast and slow processes operate at different time scales, and are reflected in different
kinds of datasets. Fast processes, such as births, deaths, and individual growth, operate at all
time scales, but are the exclusive drivers of the short-term dynamics captured in most time series
datasets. Slower processes, such as evolutionary selection on genotype frequencies, ecological
selection on species abundances, and colonization and extinction, interact with fast processes to
drive dynamics over the long-term. The influence of these slow processes is seen in very long
time series, or in spatial gradients. Understanding dynamics at intermediate time scales requires
integrating information from spatial and temporal data sources. We propose a model weighting
approach; mechanistic spatiotemporal modeling is another alternative. The time scales shown
here were chosen with vascular plants in mind, but the same concepts would apply for much
shorter-lived organisms but at shorter time scales.

3. A key challenge for future research is determining the rate at which slow processes begin to92

influence dynamics.93

Modeling approach94

In two case studies, we simulated the effects of an increase in temperature on simple systems95

with known dynamics. The “truth” is represented by a model that is mechanistic for at least one96

important process, but we treat the model as unknown when analyzing the data and we assumed97

that perfectly recovering this model would not be possible in practice. We began each simulation98

under stationary temperature, allowing the system to equilibrate; we call this the baseline phase.99

We then increased temperature progressively over a period of time, followed by a second period100

of stationary, now elevated, temperature. The objective was to forecast the response of the system101

to the temperature increase based on data gathered during the baseline period.102
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We made forecasts based on two phenomenological models, each representing processes op-103

erating at different time scales. One model represents the time-series or “temporal approach.” We104

correlated interannual variation in an ecological response with interannual variation in the envi-105

ronment at just one site. The other model represents the space-for-time substitution approach,106

which we call the “spatial approach” for brevity. We correlated the mean environment with the107

mean of an ecological state or rate across many sites. We compared forecasts from both models108

to the simulated dynamics to determine how well the two approaches performed at different109

forecast horizons. We also assessed the potential for combining the information available in tem-110

poral and spatial patterns by using a weighted average of the forecasts from the temporal and111

spatial approaches optimized to best match the (simulated) observations. We then studied how112

the optimal model weights changed over time. We expected the temporal model to best predict113

short-term dynamics, the spatial model to best predict long-term dynamics, while the weighted114

model would show potential to provide the best forecasts at transitional, intermediate time scales.115

The three statistical models are described in Supporting Information (Appendix A) and all code116

for both case studies is available at Github (https://github.com/pbadler/space-time-forecast).117

Community turnover example118

Conservation biologists and natural resource managers often need to anticipate the impact of en-119

vironmental change on the abundance of endangered species, biological invaders, and harvested120

species. Although the managers may be primarily interested in just one focal species, skillful121

prediction might require considering interactions with many other species, greatly complicating122

the problem. But at what forecast horizon do altered species interactions become impossible123

to ignore? We explored this question using a metacommunity model developed by Alexander124

et al. (2018) to study how community responses to increasing temperature depend on the inter-125

play between within-site demography and competitive interactions and the movement of species126

across sites. The model features Lotka-Volterra competitive interactions among plants within127

sites that are arrayed along an elevation and temperature gradient. Composition varies along the128

gradient because of a trade-off between growth rate and cold tolerance: cold sites are dominated129

by slow-growing species that can tolerate low temperatures, while warm sites are dominated by130

fast-growing species that are cold intolerant. Multiple species can coexist within sites because131

all species experience stronger competition from conspecifics than from heterospecifics. Sites132

are linked by dispersal: a specified fraction of each species’ offspring leaves the site where they133

were produced and reaches all other sites with equal probability. We provide a more detailed134

description of the model in SI Appendix B.135

We first simulated a baseline period with variable but stationary temperature, followed by136

a period of rapid temperature increase, and then a final period of stationary temperature. In-137

terannual variation in temperature is the same at all sites, but mean temperature varies among138

sites. All sites experienced the same absolute increase in mean temperature. We focused on the139

biomass dynamics of one focal species that dominated the central site during the baseline period.140

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807057doi: bioRxiv preprint 

https://doi.org/10.1101/807057
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: (A) Mean biomass by species (colors) across the temperature gradient during the base-
line period. The focal species, dominant at the site in the center of the gradient (vertical gray
line), is shown in dark blue. The dashed blue line shows predictions from the spatial model. (B)
Annual biomass of the focal species at the central site during the baseline period. The dashed
line shows predictions from the temporal model.

During the baseline period there were strong spatial patterns across the mean temperature141

gradient. Individual species, including our focal species, showed classic, unimodal “Whittaker”142

patterns of abundances across the gradient (Fig. 2A). These spatial patterns are the basis for143

our “spatial model” of the temperature-biomass relationship for our focal species (Fig. 2A).144

In contrast to the strong spatial patterns, population and community responses to interannual145

variation in temperature within sites were weak. At our focal site in the center of the gradient, the146

biomass of the focal species was quite insensitive to interannnual variation in temperature, but147

showed strong temporal autocorrelation (Fig. 2B). Our “temporal model” estimates this weak,148

linear temperature effect, along with the strong lag effect of biomass in the previous year.149

We fit both a temporal and a spatial statistical model to forecast the effect of a temperature150

increase (Fig. 3A) on the focal species’ biomass at one location in the center of the tempera-151

ture gradient. The predictions from the spatial and temporal models contrasted markedly, with152

the temporal model predicting a large increase in biomass and the spatial model predicting a153

decrease. Initially, the simulated abundances followed the increase predicted by the temporal154

model, but as faster-growing species colonized and increased in abundance at the focal site, the155

biomass of the focal species decreased, eventually falling below its baseline level (Fig. 3B).156

To combine the temporal and spatial model into a single forecast, we fit a weighting parame-157

ter, ω, which varies over time and is bounded between 0 and 1. At any time point, t, this weighted158

forecast is ω · T(Nt−1, Kt) + (1− ω) · S(Kt) where T is the temporal model, which depends on159

population size, N, and expected temperature, K, and S is the spatial model, which depends only160
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on K (see SI Appendix A for a full description of the approach). The weighted model accurately161

predicts the simulated dynamics across the full forecast horizon (Fig. 3B). It also shows that the162

most rapid shifts in the model weights occurred during the period when warm-adapted, faster163

growing species were increasing most rapidly in abundance (Fig. 3C). However, the reason the164

weighted models works so well is that the weights were determined by fitting directly to the165

data. Unlike our spatial and temporal model forecasts, we did not generate out-of-sample pre-166

dictions from the weighted model; it merely provides a convenient way to quantify how rapidly167

dynamics shift from being dominated by interannual variation captured in the temporal model168

(time t = 0 to t ≈ 1250 in Fig. 3B) to being dominated by the steady-state equilibrium captured169

by the spatial model (time t ≥ 2500). A true forecast from the weighted model would require a170

method to determine the model weights a priori.171

The compositional turnover affecting our focal species also influences total biomass, linking172

community and ecosystem dynamics. We repeated our focal species analysis for total commu-173

nity biomass, and the results were similar: the temporal model initially made the best forecasts174

immediately following the onset of the temperature increase, but as the identity and abundances175

of species at the study site changed, the model weights rapidly shifted to the spatial model (SI176

Figs. S-1 and S-2).177

Eco-evolutionary example178

Evolutionary adaptation is a key uncertainty in predicting how environmental change will im-179

pact a focal population at a given location (Hoffmann and Sgro, 2011). Like the shifts in species180

composition illustrated in the previous example, shifts in genotype frequencies can also influ-181

ence dynamics and forecasts at different time scales. Although shifts in genotype frequencies182

at the population level are analogous to changes in species composition at the community level,183

the mechanisms are distinct: heterozygosity and genetic recombination have no analogue at the184

community level. We demonstrate how these processes influence short and long-term forecasts185

with a standard eco-evolutionary model for a hypothetical annual plant population in which186

fecundity is temperature dependent, and different genotypes have different temperature optima187

(Fig. 4A). Our model describes how the local density of each genotype changes between years,188

which depends on temperature and genotype densities in the previous year. Transient temporal189

dynamics are computed directly from the model; these dynamics define our temporal forecast.190

To create “spatial data”, we simulated the equilibrium density of each genotype under differ-191

ent mean temperatures. The pattern of equilibrium densities across a gradient in mean annual192

temperature defines our spatial forecast: cold sites will be dominated by the cold-adapted ho-193

mozygous genotype, warm sites will be dominated by the heat-adapted homozygous genotype,194

and intermediate sites will be dominated by the heterozygous genotype (Fig. 4B). The full model195

description is provided in SI Appendix C.196
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Figure 3: (A) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts, at the focal site. (B) Simulated focal species biomass and forecasts
from the spatial, temporal and weighted models at the focal site in the metacommunity model.
(C) Simulated changes in biomass of the focal species (black) and all other species (grey), and
the weight given to the temporal model for focal species biomass (blue). Year 1000 in each panel
corresponds to the start of the temperature increase.
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Figure 4: (A) Reaction norms of the three genotypes. (B) The spatial pattern of individual geno-
types (colors) and total population abundance (black) at sites arrayed across a gradient of mean
annual temperature. The dashed line shows predictions from an empirical “spatial model,” a
linear regression that describes mean population size as a function of mean temperature. (C) The
relationship between annual temperature and per capita growth rate at a location with a mean
temperature that favors the cold-adapted genotype. Colors show population size (the green
to brown gradient depicting low to high population density), which influences the population
growth rate through density dependence.

The spatial pattern shown in Fig. 4B is the outcome of steady-state conditions. But at any one197

site, the population’s short-term response to temperature will be determined by the dominant198
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genotype’s reaction norm (Fig. 4A). For example, at a cold site dominated by the cold-adapted199

homozygous genotype, a warmer than average year would cause a decrease in population size200

due to decreases in fecundity (blue line in Fig. 4A), even though the heat-adapted homozygote201

might perform optimally at that temperature. However, if warmer than normal conditions persist202

for many years, then genotype frequencies should shift, and the heat-adapted homozygote will203

compensate for the decreases of the cold-adapted genotype.204

To demonstrate these dynamics, we simulated a diploid annual plant population at a colder205

than average site. During the baseline period, the population is dominated by the cold-adapted206

genotype. We used the simulated data from this baseline period to fit an empirical model that207

assumes no knowledge of the underlying eco-evolutionary process. This empirical temporal208

model (Appendix A) predicts population growth rate as a function of annual temperature and209

population size (Fig. 4C). We then imposed a period of warming, followed by a final period of210

higher stationary temperature (Fig. 5 top).211

With the onset of warming, the population crashed as the cold-adapted genotype decreased212

in abundance. Eventually, frequencies of the heterozygous genotype and the warm-adapted213

homozygous genotype began to increase and the population recovered (Fig. 5 bottom). The214

temporal model (solid blue line in Fig. 5) accurately predicted the impact of the initial warming215

trend, but eventually became too pessimistic, while the spatial model (solid red line in Fig. 5)216

did not handle the initial trend but accurately predicted the eventual, new steady state (Fig. 5217

bottom).218

As in the community turnover example, we also fit a weighted average of the spatial and219

temporal model, with the weights changing over time. This weighted model initially reflected220

the temporal model (decrease from t = 500 to t = 600), but then rapidly transitioned to reflect the221

spatial model (t ≥ 700). The rapid transition in the weighting term, ω, occurred during the period222

of most rapid change in genotype frequencies (Fig. S-3). The weighted model’s predictions look223

impressively accurate, but, as in the community turnover example, that is because we used the224

full, simulated time series to fit the weighting term. A true forecast would require an independent225

method to predict how the model weights shift over time.226

Discussion227

Ecological forecasts are typically made using either a space-for-time substitution approach based228

on models fit to spatial data or using dynamic models fit to time-series data. Our results demon-229

strate that these two approaches can make very different predictions about the future state of eco-230

logical systems. Which approach provides the most accurate forecasts depends on the forecast-231

horizon. In our simulations, time-series approaches performed best for short-term forecasts,232

whereas models based on spatial data made more accurate long-term forecasts. In addition, our233

simulations demonstrate extended transitional periods during which neither the time-series or234

the spatial approach is effective on its own. The challenge is determining what is “short-term,”235

what is “long-term,” and how to handle the many forecasts we need in ecology which fall in236
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Figure 5: (Top) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts. (Bottom) Simulated population size and forecasts from the spatial,
temporal and weighted models.

between. We have proposed that a weighted combination of the time-series and space-for-time237

approaches may produce better forecasts at these intermediate forecast horizons.238

We designed our simulation studies to illustrate how the change in model performance with239

increasing forecast horizon reflects differences in the types and scales of processes captured by240

spatial and temporal data sets. How could these hypotheses be tested with empirical data?241

The hypothesis that time-series models will be most effective for near-term forecasts already has242

empirical support, in the form of recent analyses of biodiversity forecasts at time scales from243

one to ten years (Harris et al., 2018). The result should not be surprising, since local time-series244

data capture demographic processes, lagged effects, and responses of current assemblages to245

small changes in environmental conditions. In addition, the state of the system in the near246

future depends heavily on the current state. Since short-term forecasts do not typically require247

extrapolating into novel conditions, a model based on the historical range of variation which248

incorporates lags and accurate initial conditions is likely to be successful.249
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Space-for-time modeling approaches for predicting long-term, steady-state outcomes of eco-250

logical change have also been tested empirically, primarily via hind-casting. Overall, the results251

are mixed: some tests show reasonable prediction of changes in community composition (Blois252

et al., 2013; Illán et al., 2014) or species distributions (Norberg et al., 2019), supporting the hy-253

pothesis that datasets spanning spatial gradients capture the long-term outcome of interactions254

between fast processes and slower processes such as ecological and evolutionary selection, dis-255

persal, and responses to large changes in the environment. Other attempts to validate predictions256

from space-for-time models have been discouraging (Worth et al., 2014; Illán et al., 2014; Davis257

et al., 2014; Brun et al., 2016; Veloz et al., 2012), indicating violations of model assumptions or ef-258

fects of transient dynamics. However, predictions from the space-for-time approaches are rarely259

compared directly to predictions from time-series models (Harris et al. 2018 but see Renwick260

et al. 2018). We need more such comparisons to identify the appropriate modeling approach for261

different forecast horizons.262

The greatest empirical challenge will be testing our hypothesis that a weighted average of263

spatial and temporal models will make the best forecasts at intermediate time scales. There are264

two problems: finding appropriate data and determining the model weights a priori. Many data265

sets have both a longitudinal and spatial dimension, but we could not think of one which also266

featured a clear ecological response to significant environmental change. Surely such datasets267

exist, and we hope researchers who work with them will test our proposed weighted model. De-268

termining model weights may be more difficult. In our simulations, we fit the weights directly to269

the simulated data, which is impossible to do for actual forecasting when the future is unknown.270

We need new theory or empirical case studies in order to assign these weights a priori.271

Theory could explore the influence of different parameters on the rate at which slow processes272

begin to influence dynamics. The effects of some parameters are intuitive: in the community273

turnover example, increasing the fraction of dispersing individuals caused a more rapid shift in274

species composition and in model weights (Fig. 6A). Other parameters have less intuitive effects:275

we expected that increasing the temperature tolerance of genotypes in the evo-evolutionary ex-276

ample would accelerate the shift in model weights by maintaining higher genetic diversity. Our277

simulations showed the opposite effect, with wider tolerances slowing the shift in model weights278

(Fig. 6B), presumably by decreasing the strength of selection. Additional factors to consider279

include organism lifespans and the magnitude of directional environmental change relative to280

historical interannual variation.281

Empirical research could inform model weights by accumulating enough case studies to in-282

fer patterns in the weighting functions and guide applications in new systems. Developing283

rules of thumb would require testing many forecasts from both time-series and spatial models284

across a range of time-horizons. This effort may require a novel integration of typically disparate285

approaches, such as analyses of paleoecological data (e.g., Worth et al. 2014), long-term observa-286
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Figure 6: The rate of change in the weight of the temporal forecast (y-axis) depends on (A) the
fraction of propagules dispersing in the community turnover example and (B) on the temperature
tolerance of genotypes, given by σT (larger values indicate wider thermal niches) in the eco-
evolutionary example. Year 0 in these figures corresponds to the start of the temperature increase.

tional (e.g., Nice et al. 2019) or experimental data (e.g., Silvertown et al. 2006), and model systems287

with short-generation times (e.g., Good et al. 2017).288

An alternative to a weighted combination of predictions from time-series and space-for-time289

models is to rely on fully process-based models. If we could accurately characterize all of the290

processes governing a system, then a model based on that understanding should make accurate291

predictions at all time-horizons. For example, rather than fitting phenomenological models to292

our simulated time-series, we could have fit the exact process-based models that we used to gen-293

erate those time-series. Assuming reasonable estimates of the parameter, those models would294

have accurately predicted the dynamics at all forecast horizons. Process-based models should295

also be more robust for making predictions outside of historically observed conditions and even296

beyond the conditions observed across spatial gradients, which will be especially important for297

making predictions in a future with increasingly novel combinations of environment and species298

interactions (Williams and Jackson, 2007). Unfortunately, in most cases this approach is not cur-299

rently feasible because we lack a detailed knowledge of all the complex and interacting processes300

influencing the dynamics of real ecological systems. Even if the general form of the models was301

known, estimating the high number of parameters and quantifying how they vary across ecosys-302

tems typically requires more data than is currently available even for well studied systems. As303

a result, models used for ecological forecasting will include at least some phenomenological304

components. But that does not mean that phenomenological forecast models do not benefit305

from process-based understanding. The message from our simulations is that different processes306

should be considered for different forecast time-scales, and this can be done by fitting models307

to different kinds of datasets. Even when process-level understanding does not enable a fully308

mechanistic model, it can improve the specification of phenomenological models.309

While fully process-based models may not be practical, there are more mechanistic alterna-310

tives to our phenomenological, weighted model for integrating spatial and temporal information.311
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Spatiotemporal statistical modeling approaches are being developed to study patterns and pro-312

cesses of interest to ecological forecasters, such the spread of an invasive species or population313

status of a threatened species (Wikle, 2003; Williams et al., 2017; Schliep et al., 2018). Because314

these models include both fast processes, such as births and deaths, and slower processes, such as315

colonization and extinction dynamics, they have the potential to make better predictions at inter-316

mediate forecast horizons than purely spatial or temporal models. However, these spatiotempo-317

ral models have rarely been used in a forecasting context, due to a combination of data limitation318

and computational challenges. Many data sources contain either spatial or temporal variation,319

but not both, and when spatiotemporal datasets are available they often involve irregular sam-320

pling, creating challenges for modeling. Fitting and generating predictions from spatiotemporal321

models is also computationally intensive, especially with large datasets (McDermott and Wikle,322

2017). Fortunately, thanks to large-scale monitoring efforts from remote sensing platforms, the323

National Ecological Observatory Network (https://www.neonscience.org/), and community sci-324

ence projects (e.g., eBird), large scale spatiotemporal data is increasingly available. In addition,325

new methods for spatiotemporal forecasting are being developed that address existing compu-326

tational challenges (McDermott and Wikle, 2017), and access to high performance computing327

resources is increasingly common. Given these developments, future ecological forecasting ef-328

forts should explore spatiotemporal approaches and assess whether they improve predictions at329

intermediate time scales relative to traditional spatial or temporal models.330

Our results have important implications for the emerging field of ecological forecasting. First,331

they suggest that evaluating both near-term and long-term forecasts will be essential as research332

on forecasting methods accelerates. Second, while single approaches may perform reasonably333

well at either short or long forecast horizons, skillful predictions at intermediate time horizons334

may require a combination of information from spatial and temporal patterns. Intermediate335

time horizons pose challenges in other forecasting contexts as well. Weather forecasts based336

on regional-scale meteorological models are very effective for forecasting a week to ten days in337

advance, but then become largely uninformative. Forecasting these intermediate scales has been338

challenging in meteorology and will likely be challenging in ecology as well. While the recent339

emphasis on near-term iterative forecasting (Dietze et al., 2018) is the logical and tractable starting340

point, we also need to build understanding and capacity for forecasting ecological dynamics341

across all temporal scales of interest.342
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Appendices

A Spatial, temporal and spatial-temporal-weighted models441

The two simulation models in the main text describe how population size, N(x, t), at location x442

changes over time (t). We assume that the temperature, K(x, t), at each location can vary in time443

and space. To forecast the dynamics generated by these simulations models, we fit a series of444

statistical models.445

The spatial model, which we refer to as S, is a quadratic regression of the mean long-term446

population density at a location (N̄(x)) against the mean temperature at that location (K̄(x)).447

The quadratic term describes the unimodal relationship between N̄ and K̄. The spatial statistical448

model is449

N̄(x) = S(K̄(x)) = βS
0 + βS

1K̄(x) + βS
2K̄(x)2

+ ε (1)

The temporal model, which we call T, starts with a time-series of “observed” population450

sizes, or total biomasses, at one location, N(t), for t = 1...n (the spatial index is suppressed451

because we only focus on one location at a time). In the community turnover example, we fit the452

following regression, which predicts biomass at time t + 1 as a function of biomass (N(t)) and453

annual temperature (K(t)) at time t,454

ln(N(t + 1)) = T(N(t), K(t)) = βT
0 + βT

1 ln(N(t)) + βT
2 K(t) + ε (2)

In the eco-evolutionary example, the response variable is the log of the population growth rate.455

The regression is456

ln
(

N(t + 1)
N(t)

)
= T(N(t), K(t)) = βT

0 + βT
1 ln(N(t)) + βT

2 K(t) + βT
3 K(t)2 + ε (3)

This version of the temporal model returns a per capita growth rate on the log scale. To predict457

population size at the next time step, we exponentiate the growth rate and multiply it by the458

current population size: exp(T(N(t), K(t)))N(t).459

The weighted model is a weighted average of predictions from the spatial and temporal460

models, with the weights changing as a function of time, here expressed as the forecast horizon.461

The weights change as a function of the square root of the forecast horizon, to allow rapid shifts462

in the model weights.463

logit(ωt) = βW
0 + βW

1

√
t (4)

For the community turnover example, the predicted biomass from the weighted model is:464

N̂(t + 1) = ω · T(N(t), K(t)) + (1−ω) · S(K(t)) (5)
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Again, we suppress the spatial subscript (x) here because we are focused on densities at just465

one location. For the eco-evolutionary example, the predicted population size from the weighted466

model is:467

N̂(t + 1) = ω · exp(T(N(t), K(t)))N(t) + (1−ω) · S(K(t)) (6)

We used the optim function to estimate the βWs that minimize the sum of squared errors,468

(N̂(t + 1)− N(t + 1))2.469

In the main text, we show the point forecasts but not the uncertainty around the forecasts.470

After exploring that uncertainty, we decided that presenting it would be misleading. For the spa-471

tial and, especially, the temporal statistical models, the uncertainty is unrealistically low, because472

the models are estimated with very large samples sizes from the simulations. Furthermore, the473

simulations do not include noise; the only reason there is any uncertainty is because the statis-474

tical models are slightly mis-specified with respect to the process models. Showing uncertainty475

for the weighted model would be even less meaningful, because it is not a true, out-of-sample476

forecast (parameters are fit directly to the observations for which we make predictions). The R477

code to compute uncertainties for the spatial and temporal forecasts is available on our Github478

repository (https://github.com/pbadler/space-time-forecast), but is commented out.479

B Description of the meta-community model480

Alexander et al. (2018) developed a meta-community model to represent dynamics of local com-481

munities arrayed along a one-dimensional elevation gradient, as influenced by three main pro-482

cesses: temperature-dependent growth, competition, and dispersal. Here we adapt their notation483

to be consistent our own.484

The population size of species i in cell x at time t + 1, Ni(x, t + 1), is computed in two485

steps. The first step accounts for changes in local population sizes due to dispersal. In each486

local community, all species export a fraction (d) of their local population to the two adjacent487

communities in the 1-dimensional landscape:488

N′i (x, t) = (1− d) · Ni(x, t) +
d
2
· (Ni(x + 1, t) + Ni(x− 1, t)) (7)

Here N′ distinguishes the post-dispersal population size from the pre-dispersal population size.489

The second step computes population growth, taking into account competition:490

Ni(x, t + 1) = N′i (x, t) + N′i (x, t)[gi(K(x)− Kmini)− ciN′i (x, t)− li ∑
k

N′k(x, t)] (8)

In the absence of competition, the growth rate (gi) is determined by the difference between the491

temperature at site x (K(x)) and the focal species’ minimum temperature tolerance, Kmini, the492

lowest temperature at which a species can maintain a positive growth rate. Growth is further493

reduced by intraspecific and interspecific competition, parameterized by ci and li. All species are494
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assigned the same value of ci, which represents an additional effect of intraspecific competition495

on top of interspecific competition. This stabilizes coexistence, since every species will exert496

stronger intra- than interspecific competition. However, values of l vary among species to create497

a trade-off between growth rates and competitive ability versus low temperature tolerance: fast-498

growing species (high gi) are more tolerant of interspecific competition (low li) but are more499

limited by temperature (high Kmini).500

C Description of the eco-evolutionary annual plant model501

Haploid Model: Begin with a haploid model that describes the number of seeds present in a

seed bank. Ni,t is the number of seeds of species i at time t. The model is

N1,t+1 = s1[1− g1(K(t))]N1,t +
λ1g1(K(t))N1,t

1 + α11g1(K(t))N1,t + α12g2(K(t))N2,t

N2,t+1 = s2[1− g2(K(t))]N2,t +
λ2g2(K(t))N2,t

1 + α21g1(K(t))N1,t + α22g2(K(t))N2,t

(9)

where gi(K(t)) is the probability of germination, K(t) is the temperature at time t, si is the seed502

survival probability for species i, and λi is the seed production rate per plant. Below we refer to503

the αij as intra- and inter-genotype competition coefficients.504

Diploid Model: Consider a one-species diploid model. The genotypes are denoted by AA, Aa,505

and aa. The number of each genotypes at time t is NAA(t), NAa(t), and Naa(t). The germination506

rates for each genotype are gAA(K(t)), gAa(K(t)), and gaa(K(t)). The seed survival probability507

and seed production rate for genotype AA are sAA and λAA, respectively. The analogous param-508

eters for the other genotypes are similarly denoted. The competition coefficients are denoted by509

αi,j, e.g., αAA,AA or αAA,Aa. Throughout we assume that gametes mix randomly in the population.510

First consider the case where the competition coefficients are zero (αi,j = 0). Let T denote the511

total number of gamete-pairs produced in a given year,512

T = λAANAA(t)gAA(K(t)) + λAaNAa(t)gAa(K(t)) + λaaNaa(t)gaa(K(t)). (10)

The first term is the number of gamete-pairs produced by AA individuals. The second and third

terms are the numbers of gamete-pairs produced by Aa and aa individuals, respectively. The

proportion of A gametes (φA) and the proportion of a gametes (φa) are given by

φA =
λAANAA(t)gAA(K(t)) + 1

2 λAaNAa(t)gAa(K(t))
T

and φa = 1− φA. (11)
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Note that the T in the denominator of φA shows up because we are computing proportions.

Combining all of these we get the dynamics for each genotype,

NAA(t + 1) = sAA[1− gAA(K(t))]NAA(t) + φ2
AT

NAa(t + 1) = sAa[1− gAa(K(t))]NAa(t) + φAφaT

Naa(t + 1) = saa[1− gaa(K(t))]Naa(t) + φ2
a T

(12)

Now consider the case where the competition coefficients are non-zero (αi,j 6= 0). Including

competition changes the way in which we compute T, φA, and φa. Specifically, because the total

number of seeds produced per year by each genotypes is reduced based on intra- and inter-

genotype competition, the total number of gamete-pairs becomes

T =
λAANAA(t)gAA(K(t))

1 + αAA,AAgAA(K(t))NAA(t) + αAA,AagAa(K(t))NAa(t) + αAA,aagaa(K(t))Naa(t)

+
λAaNAa(t)gAa(K(t))

1 + αAa,AAgAA(K(t))NAA(t) + αAa,AagAa(K(t))NAa(t) + αAa,aagaa(K(t))Naa(t)

+
λaaNaa(t)gaa(K(t))

1 + αaa,AAgAA(K(t))NAA(t) + αaa,AagAa(K(t))NAa(t) + αaa,aagaa(K(t))Naa(t)
.

(13)

The first line is the number of gamete-pairs produced by AA individuals after accounting for the

effects of competition. The second and third lines are the numbers of gamete-pairs produced by

Aa and aa individuals, respectively. The proportions of A gametes and a gametes are

φA =
1
T

λAANAA(t)gAA(K(t))
1 + αAA,AAgAA(K(t))NAA(t) + αAA,AagAa(K(t))NAa(t) + αAA,aagaa(K(t))Naa(t)

+
1

2T
λAaNAa(t)gAa(K(t))

1 + αAa,AAgAA(K(t))NAA(t) + αAa,AagAa(K(t))NAa(t) + αAa,aagaa(K(t))Naa(t)

φa = 1− φA

(14)

Combining all of this results in the same model as above,

NAA(t + 1) = sAA[1− gAA(K(t))]NAA(t) + φ2
AT

NAa(t + 1) = sAa[1− gAa(K(t))]NAa(t) + 2φAφaT

Naa(t + 1) = saa[1− gaa(K(t))]Naa(t) + φ2
a T,

(15)

but the definitions of T, φA, and φa are given by equations (13) and (14) .513
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D Supplementary Figures514

Figure S-1: (Results for total biomass from the community turnover model. Blue points show
mean total biomass during the baseline period at locations across the temperature gradient, and
the blue line shows predictions from the spatial model. Red points show annual total biomass
during the baseline period as a function of annual temperature at the central site on the gradient.
The red line shows predictions from the temporal model.
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Figure S-2: Results for total biomass from the community turnover model. (A) Simulated annual
temperatures (grey) and expected temperature (black), which was used to make forecasts, at the
focal site. (B) Simulated total biomass and forecasts from the spatial, temporal and weighted
models. (C) Simulated changes in biomass of all species (grey) at the focal site in the metacom-
munity model, and the weight given to the temporal model for total biomass (blue). Year 1000 in
this figure corresponds to the start of the temperature increase.
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Figure S-3: Simulated shifts in genotype abundances, and the model weighting term, ω, dur-
ing the warming phase and the following stationary temperature phase. Year 0 in this figure
corresponds to the start of the temperature increase.
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