
GENETIC DESIGN AUTOMATION FOR AUTONOMOUS FORMATION
OF MULTICELLULAR SHAPES FROM A SINGLE CELL PROGENITOR

A PREPRINT

Evan Appleton1,2,+, Noushin Mehdipour3,+, Tristan Daifuku1,2,+, Demarcus Briers3,4,+, Iman Haghighi3,+,
Michael Moret1,2, George Chao1,2, Timothy Wannier1,2, Anush Chiappino-Pepe1,2,

Jeremy Huang1,2, Calin Belta3, and George Church1,2

1Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
2Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA

3Department of Systems Engineering, Boston University, Boston, Massachusetts, USA
4Bioinformatics Program, Boston University, Boston, Massachusetts, USA

+These authors contributed equally
*Correspondences addressed to evan_appleton@hms.harvard.edu, cbelta@bu.edu, and gchurch@genetics.med.harvard.edu

September 18, 2020

ABSTRACT

Multi-cellular organisms originate from a single cell, ultimately giving rise to mature organisms of1

heterogeneous cell type composition in complex structures. Recent work in the areas of stem cell2

biology and tissue engineering have laid major groundwork in the ability to convert certain types of3

cells into other types, but there has been limited progress in the ability to control the morphology of4

cellular masses as they grow. Contemporary approaches to this problem have included the use of5

artificial scaffolds, 3D bioprinting, and complex media formulations, however, there are no existing6

approaches to controlling this process purely through genetics and from a single-cell starting point.7

Here we describe a computer-aided design approach for designing recombinase-based genetic circuits8

for controlling the formation of multi-cellular masses into arbitrary shapes in human cells.9

Keywords Developmental biology · Synthetic biology · Computer-aided design ·Multi-cellular structures10

1 Introduction11

Developmental biology is the study of the process by which multi-cellular organisms grow and differentiate. All of12

these processes can be traced back to a single ‘totipotent stem cell’ from which all differentiated cells originate. These13

single cells robustly divide and differentiate with impeccable accuracy based on the genetics of this original cell and14

its surrounding environment. While it is understood that this process happens in different ways for each organism,15

many of the critical steps along the way are not well understood. Furthermore, the ability to coerce cells to develop in16

ways outside of the normal developmental context (i.e. stem cell engineering) is relatively nascent. The fields of stem17

cell biology, regenerative biology, and tissue engineering have long-term goals for using the knowledge of how cells18

and organisms develop to create novel solutions for disease modeling, drug testing, organ replacement, among other19

applications [1].20

While most of these applications are still currently science-fiction, there have been significant advancements in the21

basic foundations on which these goals could be accomplished. Namely, the field of stem cell biology has been very22

active in producing methods for differentiating stem cells into other types of cells following the breakthrough creation23

of induced pluripotent stem cells (iPSCs) [2]. These methods span from using over-expression of transcription factors24

[3], to recapitulating the natural developmental environment with engineered surface conditions and complex media25

with growth factors [4], to using 3D bioprinters to place different types of cells in specific locations [5]. Recently, these26

types of approaches have even been used to engineer small organ-resembling masses called ‘organoids’ [1, 6].27
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To date, there have been clear advances in the ability to differentiate cells into different types, but there is still a major28

struggle to steer cells into forming structured cellular masses that perform a systematic organ-like function. Furthermore,29

repeatability of the formation of structures as cells grow has been problematic. Recent efforts in human stem cell30

biology have demonstrated the successful recapitulation of development of human embryos in vitro up to 13 days31

post-fertilization [7, 8] but again, there is no control over the morphology formed at this small scale. 3D bioprinting is32

one proposed solution to this problem, but this does not always integrate well with genetic processes because placing33

different types of cells physically next to each other does not necessarily mean that the cells will behave as intended,34

had they been produced via cell divisions and genetic control.35

One possible solution to these obstacles would be to create genetics-controlled methods to control both cellular identity36

and morphology. In such a solution, structures could form seamlessly as cells divide, with identity changes also37

controlled genetically. This approach would require synthetic DNA to force cells to form structures and change identity.38

Fortunately, there are many examples of using genetics to force cell type conversions - the primary knowledge gap39

is how to use genetics to inform shape formation. Some preliminary work has been done in this area using cadherin40

surface binding proteins and cell-signaling [9], but this problem is still relatively unexplored.41

In order to build genetic solutions to both cell identity control and shape control, one would need to integrate recent42

advances in the areas of synthetic biology, modeling, and computer-aided design (CAD) to build ‘genetic circuits’43

for this purpose. In synthetic biology, genetic circuits are compositions of DNA fragments that each independently44

produce a cellular function (i.e. transcription, translation, etc.). When stitched together, these circuits can perform a45

more sophisticated function [10, 11, 12, 13]. Over the past 20 years, many genetic circuit design components have46

been thoroughly characterized and design principles have been established [14]. More recently, design automation and47

modeling have been used to automatically design genetic circuits from a library of characterized components [15, 16],48

giving rise to a variety of successful large, complex constructs in a variety of organisms [17, 18, 19, 20].49

Here we describe a computer-aided design software tool, called CellArchitect, that uses design automation approaches to50

design genetic circuits to control the shape formation of multi-cellular masses originating from a single cell (Figure 1).51

To do this, we first breakdown this large problem into smaller sub-problems related to cellular development. Specifically,52

we identified and solved the following sub-problems: selection of orthogonal cell surface binders to form a shape,53

definition of a ‘developmental tree’ that maps a cellular population back to its original progenitor, automated design of54

recombinase-based genetic circuits to control when during development specific genes are expressed, and modeling of55

cell growth with these genetic circuits integrated into their genome. We make the argument that even if our current56

solutions are not optimal for forming all shapes, that a computer-aided design solution is needed to attempt these types57

of problems — human cells divide and differentiate so slowly that it would take an intractable amount of time and58

money to attempt to solve these problems through trial-and-error. As a proof of principle, we focus on a few small59

examples of shapes that could be formed with these tools and the sub-problem solutions for their respective genetic60

circuit design process. Since our input to these tools is a shape and the output is a DNA sequence, these circuits can be61

directly synthesized and tested in the laboratory.62

2 Results63

2.1 Decomposing large shapes into cellular blocks64

The first sub-problem to address when solving how to form large structures of many cells, is how to break these cells65

into more easily built sub-structures (Figure 1). In our software framework, we choose to solve this problem using an66

approach called meshing - subdividing continuous geometric space into discrete geometric and topological units. This67

strategy is used in engineering fields for different types of analyses [21, 22], but in our case we use it to divide tessellate68

3D-space into discrete tetrahedrons (‘tets’) and cubes (‘quads’). We result in shapes made of these geometric elements69

that resemble the original shape in an arbitrary amount of granularity (Figure 2). We choose to represent larger objects70

as compositions of tets and quads because we have identified these as achievable building blocks from the 4-cell and71

8-cell stage of early embryonic development. The overall strategy is to represent large shapes as sets of ‘cellular blocks’72

that can be individually created and stuck together with a calculated choice of orthogonal surface-binding proteins73

[23, 24].74

The input file to this part of the workflow (and the workflow more generally) is an STL file [25], a standardized CAD file75

format in either ASCII or binary. This ‘shape file’ is the starting point from which the genetic circuit is determined, and76

is used a comparison to the multi-cellular results produced by the simulator and experimentally acquired microscopy77

data. These comparisons give a statistical metric of success for candidate genetic circuits and also a quantitative measure78

of success of experiments compared to what is desired in the shape specification step.79
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2.1.1 Creating cellular meshes80

In order to break up user-provided target shapes into blocks of cells, we initially turned to the world of shape meshing81

algorithms. However, canonical shape meshing algorithms proved ill-suited to our application, as they generally82

prioritize shape fidelity over block consistency – that is, in order to achieve a mesh that strictly matches the original83

shape, the algorithms will choose blocks that are significantly deformed, or are of disparate volumes. Because we chose84

to model K562 cells as spheres of identical volumes, it was important to find a meshing technique that would instead85

prioritize generating blocks of regular shape and size.86

For hexahedral meshing, this was as simple as overlaying a 3-dimensional grid of cubes over the target shape and87

retaining only those cubes that fell within the shape, thus ensuring that every cube was identical (Figure 2a). A similar88

method was used to create a tetrahedral mesh but, as regular tetrahedra do not tessellate space, it was necessary to89

instead overlay a tessellation of near-regular tetrahedra. We therefore implemented the “Irish" Tessellation [26] which90

tessellates space using 3 types of tetrahedra, the largest of which has a volume less than 13% larger than that of the91

smallest, and all of which have dihedral angles between 53.1 and 78.5 (a regular tetrahedron has a dihedral angle of92

70.5) (Figure 2b). As with the hexahedral meshing, only tetrahedra that fall within the shape are retained.93

2.1.2 Minimization of orthogonal surface binding proteins94

Once a cellular mesh has been created, we aim to minimize the number of orthogonal surface-binding proteins required95

to hold the desired shape. This is done because the number of well characterized orthogonal surface protein binders96

currently known is relatively small. This step takes a mesh for the desired shape as input and outputs a list of cell-cell97

connections required for the shape to be formed. We solve this problem with two alternative type of applied algorithms:98

a Maximum Leaf Spanning Tree (MLST) algorithm [27] and a Minimum Spanning Tree (MST) algorithm [28].99

The first algorithm we use to minimize connections in a mesh is MLST [27]. The algorithm relies on maintaining lists100

of nodes (i.e. cell in a cellular block and its neighboring cells in the mesh) that qualify for different rules in a forest (i.e.101

MLST we are building):102

Rule 1 Any node in the forest with at least two neighbors not in the forest.103

Rule 2 Any node not in the forest that has at least one neighbor in the forest and at least three neighbors not in the104

forest.105

Rule 3 Any node not in the forest with at least one neighbor in the forest and exactly two neighbors not in the forest.106

Rule 4 Any node not in the forest with at least three neighbors also not in the forest.107

Starting with a single seed node (i.e. cell in a cellular block and its neighboring cells in the mesh), the algorithm108

“expands" the forest to add nodes, prioritizing Rule 1 over Rule 2 over Rule 3 over Rule 4 (Figure 2g). The algorithm109

expands the forest until there are no more nodes in the rule lists, then looks for any node in the forest that has neighbors110

outside the forest and adds those neighbors. Next a breadth first search (BFS) on the forest is performed on the forest111

to determine if all nodes in the forest are connected. If they are not, the algorithm adds edges from nodes that are112

connected to the node BFS was run initiated at to the nodes that are not connected until the tree is connected. This113

algorithm generates a tree that maximizes the number of nodes (blocks) with only one connection, and can serve as a114

starting point for choosing block connections. It is hypothesized that having more leaves may lead to greater shape115

fidelity, as it would likely lead to a smaller, more dense, core shape. Moreover, when cell-surface binding proteins need116

to be reused within a shape, leaf blocks are logical candidates because they can all be identical.117

The second algorithm we use to minimize cell block connections is a MST [28]. This algorithm finds a generic minimum118

spanning tree from an input 3D cell-block mesh mapped to a 2D graph. We then take this minimal graph and attempt119

to reduce “floppiness" by adding edges to minimize the number of nodes with only two connections. The algorithm120

begins by identifying problem nodes - the nodes with only 2 connections. It then considers all edges it could add to the121

graph to remove the problem (it identifies these options by comparing the original graph of all possible connections122

to the MST). Each edge is assigned a score. Edges that solve 2 problem nodes at once receive higher scores. Edges123

are penalized if they would inhibit other edges that solve 2 problems since we only wish to add one edge per problem124

node (this stipulation could be revisited). They are also penalized if they connect to leaves. Once these scores are125

assigned, the list of potential edges is sorted by their scores. Solution edges are added to the graph until there are no126

more potential edges or all of the problem nodes have been resolved (Figure 2d-f).127

These two algorithms result in alternative connectivity solutions for the same input shape. Currently, the solution with128

the fewest required sets of orthogonal surface binding pairs is selected, but the algorithm that produces this answer129

is subject to the input shape. Finally, this graph is traversed and results in a list of cellular blocks, where each cell is130

required to have specific binding proteins.131
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2.2 Constructing a developmental tree from a list of cellular blocks132

After determining a set of cellular blocks that could form and hold a shape, we must determine how these final cells will133

be formed from a single progenitor cell. To solve this problem we invented the idea of a ‘developmental tree’ - a map134

back from which all final cells arise from the original cell. This map tells us which progenitor cells must undergo certain135

biological processes en route to a final set of cells. The key behaviors that we consider in the context of this problem136

are asymmetrical cell divisions, cell surface binding protein expression, cell-cycle arrest and apoptosis. Asymmetrical137

cell division is key because unique shapes require heterogeneous cell populations, cell-surface binding proteins to form138

the shape, cell cycle arrest to stop cells dividing to hold a structure, and apoptosis to remove extra cells that are not139

needed for a structure. To solve this problem, we created an algorithm that inputs a set of cell-cell connections and140

outputs a tree illustrating which cells must exist over time to give rise to the correct final set of cells to create the input141

graph. It determines which surface proteins need to be expressed by each cell, then groups cells based on these proteins142

and determines a pathway to go from one cell to the final population.143

The module begins by going through each block in the graph and determining the surface binders that need to be144

expressed by each of its cells. Tet blocks are bound together by a single homodimer. Quad blocks are bound together145

with three heterodimers: one binder to make a trigonal planar shape with four cells, another to make a second trigonal146

planar shape with the other four cells, and then the third binder to interlock the 3 outside cells of each trigonal planar147

shape (Figure 3). Connections between hex blocks are made using 2 homodimers, one at each end of a diagonal across148

the face of the cube. Care is taken to ensure that the orientations of the blocks relative to each other is preserved: this is149

achieved via a lookup table that correctly matches the corners of the two blocks. For tet blocks, one homodimer and150

one heterodimer are used to bind blocks, the heterodimer at two corners and the homodimer at the third. The relative151

orientation between two blocks is again preserved: binders are assigned to specific corners depending on which face is152

in play. In both the tet and hex cases, multiple binders are used to try to prevent rotation of blocks against each other.153

Once all the binders have been assigned, the cells are sorted by the proteins they are expressing. Cells are added to the154

tree (stored in a list) starting at the bottom layer. If the final number of required cells is not a power of two, there will be155

two bottom layers. Note that any number of cells n ∈ N can be obtained by building a perfect binary tree of height156

k ∈ N where 2k−1 ≤ n < 2k, then having n− 2k−1 cells in the bottom layer of the tree divide once more, so we need157

at most two bottom layers. Cells at the bottom layer are then merged in pairs to create the preceding layer. The merging158

process determines if the two cells are identical, and can therefore be generated by a standard division, or if they their159

proteins differ, and must therefore be generated by an asymmetrical division. This process is repeated until the top of160

the tree is reached. If there are two bottom layers, then the second lowest level will contain a mix of cells that must161

divide again and cells that are in their final state. As each layer is created, it is appended in order, cell by cell, to the list162

containing the developmental tree, with each cell containing a code — −1 for no division, −2 for standard division,163

and −3 for asymmetrical division — as well as the set of expressed proteins (surface binders and fluorescent proteins)164

determined previously. The tree in this format can easily be read from right to left to pull out the information on tree165

structure: the top layer is in the last spot, the second layer is in the second and third to last spots, and so on, with each166

layer being read internally from left to right.167

Finally, we perform one final optimization on this partially-complete developmental tree in attempt to maximize168

similarity of ancestor cells in order to minimize asymmetrical division events. We take a list of sets containing protein169

names where each set represents a cell and its expressed proteins, and we group cells based on the similarity of their170

sets of proteins. We begin by calculating the ratio of shared proteins to total proteins between every pair of cells and171

create an undirected graph where cells are nodes and the ratios are edge weights and then generate a hamiltonian path172

through the graph, using a greedy approach — we the edge with the highest weight that does not violate the hamiltonian173

requirements until the path is complete.174

2.3 Designing a genetic circuit from a developmental tree175

To execute the genetic program of a given developmental tree, the cells must have a way in which to program specific176

genes to become expressed at discrete cell divisions. We choose to control this process through the use of genetic177

counting circuits. Specifically we use DNA recombinase components to invert and excise DNA [20, 19], cell cycle178

dependent promoters [29] and degradation tags [30] to have recombination events only once per cell cycle, and cell179

cycle-arrest [31] and apoptosis-inducing genes [32] (Figure 4a). We report our designs for genetic counter constructs180

that express specific recombinases in each cell cycle and genetic register constructs that manipulate which genes are181

expressed as a function of which recombinase is present in the cell (Figure 5). We describe three general options for182

counter and register constructs.183
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2.3.1 A genetic counter circuit that counts cell divisions184

The counter construct drives the behavior of the register and can be designed in three ways: linear excision, linear185

inversion [13], and binary inversion. The linear options are simpler but you can only count as high as the number of186

orthogonal recombinases you have and the construct’s DNA base length scales linearly with count number (Figure 5).187

To solve this problem, we invented a circuit architecture to count recombination events in a binary manner. The binary188

counter can count to 2n with n recombinases. We reason that since a human body has approximately 37 trillion cells,189

approximately 45 to 50 counts should be an adequate ceiling for counts required for a large hypothetical human structure190

and therefore linear constructs would need 50 orthogonal recombinases to count that high, and binary constructs only 6.191

For the linear inversion architecture, this algorithm puts the first recombinase in the forward orientation following192

the promoter, and puts all subsequent ones in order in the reverse orientation, with facing recombinase sites radiating193

outwards (so every count flips a larger piece of DNA, and flips the next recombinase into position after the promoter)194

(Figure 4c). For the linear excision architecture, we have one promoter at the starting position and oriented forward into195

a gene and terminator that will get excised upon production of the recombinase before the following count (Figure 5b).196

For the binary counting architecture, we uses a pattern in which n recombinase/reverse-directionality-factor (a.k.a. RDF197

or XIS) pairs [33] can be used to count 2n genetic recombination events. If there is only one recombinase, then we put198

the first recombinase after the cell cycle dependent promoter. Otherwise, we begin with a forward cycle dependent199

promoter. Then for each recombinase in the recombinase sequence, we insert a forward attB site immediately after200

the initial promoter. For the first two recombinases, we then add a reverse cell cycle dependent promoter. For all201

recombinases, we then put the recombinase gene in the forward direction, then add a forward terminator, then, for all202

but the first recombinase, we add a reverse terminator followed by the RDF of the previous recombinase in the reverse203

direction. Finally, we add a reverse attP site for each recombinase (Figure 4d).204

2.3.2 A genetic register circuit expresses genes of interest at discrete genetic counts205

The register constructs have a constitutive promoter and orthogonal pairs of recombination sites to manipulate which206

genes are transcribed given which recombinase is currently expressed by the counter [34, 19] (Figure 4d). An algorithm207

designs a register circuit based on a developmental tree. This method can create a register compatible with a binary208

counter architecture or a linear architecture. The code begins by reserving some recombinases for use in the counter, as209

additional recombinases will generally be required for asymmetrical divisions in the registers. The register architecture210

is divided into two kinds of sub-registers - ‘the final count register’ and the ‘frame register’. The final count register is211

the same for the two architectures. Note that unlike the rest of the register, this final expression register is expressed on a212

constitutive promoter as we need the surface proteins to be expressed despite the fact that we have halted the cell cycle.213

For the linear registers we create a replica of the counter architecture without the recombinases and replace the214

recombination sites with alternative, orthogonal recombination sites to complete the frame registers. For the binary215

architecture, the algorithm takes the log2 of the number of counts and rounds up to get the number of recombinases.216

The frame register for the final count is then determined from the binary tree - an alternating-strand architecture is217

employed: a central promoter that flips directions every other count with output slots fanning out on either side, counts218

1, 4 (rev. strand), 5, 8 (rev. strand), ... on the right and counts 2 (rev. strand), 3, 6 (rev. strand), 7, ... on the left.219

2.3.3 Recursive design of register constructs based on developmental tree220

A recursive function then builds the final output register that corresponds to a developmental tree (Figure 5a). For the221

linear registers, the algorithm descends the tree until it reaches the leaves, putting in required sites for asymmetrical222

division as necessary. Once it reaches a leaf, it creates the expression circuit for that cell, consisting of a reverse223

promoter that will be flipped at the cell’s final count, and the genes the cell must express. Then, on the way back up,224

it determines if there is redundancy between two daughter cells (if they are expressing some of the same genes). If225

so, it moves those genes outside of the asymmetrical division recombinase sites. It also accounts for situations where226

one daughter cell divides more times than the other (necessitating completely separate circuits, since the final count227

promoters for those two cell populations must flip on at different counts).228

For binary registers, the recursive addition of the final register and asymmetrical components is more complicated —229

the binary expression register requires the use of nested recombinase site pairs. The algorithm recursively descends230

through one side of the binary expression register, starting at the largest, exterior pair and calls itself on each interior231

pair until it reaches one with no interior pair (Figure 5b).232

This algorithm begins by checking if there is only one count between the current sites. In this case, the count must be233

the 0th, 4th, 8th, ... or 1st, 5th, 9th, ... count, as the other counts cannot appear by themselves (they would always be234

paired with one of the counts listed previously). We can eliminate the tier 1 (the second recombinase, which flips every235
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4 counts) sites immediately surrounding this count. We must flip this final count if n mod 8 ∈ {0 mod 8, 1 mod 8}236

where n is the count in order to ensure that the count is correctly oriented when it should be expressed. Next, we check237

to see if any of the counts between the current sites actually contain genes. If they do not, then the current sites are not238

necessary and we can simply put a forward and a reverse terminator in their place (these terminators are necessary to239

ensure that potential later counts are not expressed prematurely). Otherwise, if we are at the lowest tier (ie we have 2240

counts), we use the sites, put the genes for the first count in the forward direction followed by a forward terminator,241

then add a reverse terminator followed by the genes for the second count in the reverse direction. If we are not at the242

lowest tier, the function calls itself on the tier below and encloses the output in facing sites.243

For our 3-tet shape, the register is formed in 4 recursive stages, starting from the leaves of the last two tetrahedrons to244

form (Figure 5a,b). The ’final registers’ are determined and compiled upwards into the frame registers as dictated by245

asymmetrical divisions. While the linear and binary register conditions are different, the differences in the final register246

are relatively minor (Figure 5b).247

2.4 State machines for simulating genetic circuit dynamics248

Once a genetic circuit is designed by our software, it should function assuming perfect functionality by its components;249

however, any synthetic biologist could tell you that this will not be the reality. While the recombinase components are250

some of the most robust in the synthetic biology world and we can demonstrate very orthogonal binding behavior for251

some surface binding proteins, these biological components are imperfect. Furthermore, it’s possible that synthetic252

genetic components will have unexpected interaction with endogenous genetic components. To accommodate for this253

imperfection, we use the mathematical model of finite state machines as a simulation framework for placing our circuits254

into living cells (Figure 5a). We argue that this framework is fitting for this problem because recombination-based255

circuits lend perfectly to finite-state behavior — the circuit has one starting condition and can be manipulated via256

recombinases to another condition where it has other behavior. Based upon experimentally-measured probabilities257

of a recombination event given the expression of a recombinase, we can assign real probabilities to each of the state258

transitions. When we couple these recombinaton events to the cell cycle and cell division, we can create a simulated259

cellular environment that guides individual cell behavior based upon the state of the circuit in each cell and additional260

environmental factors(Figure 6a).261

This step inputs a genetic circuit and outputs a state machine reflecting all of the possible recombined states the circuit262

could end up in (nodes) and the probabilities of each state transition (edges). This state machine is represented slightly263

differently than the canonical state machine — in our context, we must accommodate for cell division; we have one cell264

in one particular state that divides into two cells, each with a possible state transition. Therefore, we represent state265

transitions as pairs of edges as opposed to a single edge. The computing therefore resets for each cell at the beginning266

of the next cell cycle (Figure 5b). As a consequence of this ‘forking’, the state machines for even a relatively simple267

circuit can balloon in size rather quickly. Furthermore, if we consider rare off-target events, the number of possible268

states also balloons, and we are left with state machines that increase in complexity exponentially. To reduce complexity269

of state machines, we eliminate state transitions whose probability falls below a specified threshold and its probability270

reassigned to other transitions from the original state (methodology explained in greater detail below). This allows us to271

limit the size of the state machine by decreasing the number of transitions and ignoring states that are very unlikely to272

ever be reached. The probability for each transition is calculated for one state going to a pair of other states, as we are273

hoping to tie changes to the circuits to the cell cycle using cycle-dependent promoters and degradation tags and have274

each circuit operation occur independently in each daughter cell soon after a cell division.275

The algorithm to build state machines from a starting circuit starts by scanning the components and identifying the276

expressed genes and RDFs and checking if the cycle arrest gene is expressed. If the cycle arrest gene is expressed,277

then no transitions to other states are considered. For states that are not in cycle arrest, we find active recombinase278

site pairs (i.e. pairs of the same site ID, for the same recombinase, that are of complimentary types (eg attP and attB)279

and whose recombinase is active). These pairs are stored in a dictionary, and base probabilities for each site pair are280

looked up (the probability of a recombination event between an attB/P or attL/R site occurring given the expression of a281

recombinase and/or RDF), then all allowable combinations of site pairs are determined. Each combination will define a282

state that the current state can transition to. We next calculate the probability of those transitions — these probabilities283

are directly dependent on which recombinases are active in the cell. It is therefore necessary to calculate the probability284

of each transition for each possible set Sn of active recombinases such that Sn = T ∪ (n ∈ N) where T is the set of all285

expressed recombinases.286

The next step is to threshold transitions that have probabilities that are too low. In order to reduce memory usage,287

two rounds of thresholding are performed. This is necessary as the second thresholding event considers all size 2288

combinations of the transitions that made it through the first thresholding event. The threshold value, however, is meant289
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to be applied to the final size 2 combinations; since we are unable to calculate those immediately, it is necessary to290

calculate a stand-in probability for each transition for use in the first round of thresholding. The probability is:291

P (c1, c2) =

{
P (c1|A)2 c1 = c2
2 · P (c1|A) · P (c2|A) c1 6= c2

where c1 and c2 are combinations of site pairs, A is the case where all recombinases are active, which equates to292

the probability of the first state multiplied by the probability of the second state, times 2 if the states are different293

since there are then two unique ways to achieve that state pair. This assumes that the efficacy of each recombinase in294

one daughter cell is independent from the efficacy of that same recombinase in the other daughter cell. The program295

determine the probabilities of each state-transition option in the following way: the combinations are sorted by the296

stand-in probabilities, then a binary search is used to determine the first combination whose stand-in probability is297

above the threshold. Subsequently, alternative combinations are generated for each combination. With large circuits,298

the combinatorial space of possible state transitions is immense, so when there are greater than 1000 combinations,299

the program does not intelligently reassign probabilities of problematic combination pairs. Rather it sums the true300

probabilities of these pairs and reassigns it proportionally to the other pairs according to the following formula:301

P ′(p) = P (p)
1−u where p is a valid pair and u is the sum of the cut probability. When there are fewer than 1001302

combinations, the program reassigns the probability intelligently using the previously generated lists of alternatives.303

The 3-tet shape example has >1000 states for both linear and binary format, so we do not show this example here.304

Instead we show two example counters (Figure 6b,c) to show how the edges can be visualized and that we must305

accommodate for two cell divisions in this way, as each daughter cell has its own state. All state transitions from one306

node to all others add up to 1 and when we consider low-likelihood state transitions, the number of possible changes307

expands very quickly, even for 5 states as opposed to 3.308

2.5 Modeling multicellular self-assembly in 4D space309

Multicellular pattern formation is an emergent behavior in mammals that controls complex behaviors, such as embryonic310

development, and is tightly regulated by biochemical and mechanical cues in both 3D space and time (we refer to this as311

a 4D space). Currently, there are several exploratory approaches to induce multi-cellular patterning in mammalian cells312

using directed self-organization driven by interfacial tension [35], micro-patterned surfaces [36, 37], or biochemical313

signaling [38]. However, inducing these behaviors requires significant manual intervention from the experimenter or314

requires the assistance of artificial scaffolds. These approaches that requires manual intervention are difficult to scale up315

and produce more complex patterning.316

In addition to the need for manual intervention, most approaches to control self-organization are driven by trial-and-317

error design which becomes increasingly difficult as multicelluar systems become more complex. Briers and Libby318

et. al. [39], demonstrated the ability to combine a 2D Cellular Potts model with Particle Swarm Optimization to319

automated the design and experimentally validate 2D symmetrical patterns in human induced pluripotent stem cells.320

To overcome limitations of trail-and-error driven experimentation, and allow more more complex pattern formation,321

we have developed a computational model to simulate the self-assembly from a single cell into 3D structures with out322

manual intervention.323

Once a state machine has been built for a genetic circuit, we can simulate what would happen to a cell population324

containing that circuit as it expands into a multi-cellular population. When modeling the role of tissue mechanics (eg325

cell-cell adhesion, cell migration, cell shape, haptotaxis), the most common agent-based modeling (ABM) frameworks326

are Cellular Automaton [40], Cellular Potts framework [41], Vertex models, Cell Center-based models (this includes327

particle models and rigid body models like we use in this paper), and hybrid models that combine aspects of multiple328

ABM frameworks [42]. We chose to model the programmatic self-assembly of K562 cells as incompressible spheres329

propelled by Brownian Motion. This modeling framework is appropriate since our experiments involve K562 cells that330

are cultured in a suspension media lacking extracellular matrix or any stiff surface for self-propulsion by individual331

cells. For the duration of experiments, the aqueous growth media is autonomously shaken. We model this collision of332

water molecules with cells as Brownian motion.333

In each simulation, a biophysical simulation is run in which the circuit is placed in one starting cell and cells are334

expanded and genetically modified over time as per the state machine and external conditions. External conditions335

include the expression of cell surface binding proteins and Brownian motion of cells in a confined space (simulated336

shaking cell culture). In this case we consider the physical properties of cell line K562 [43] (Figure 7a). This cell line337

is chosen because it is an immortalized blood cell line that naturally has no surface binders. The cell line also has a338

spherical, generally uniform size — these properties are ideal because they allow us to model the cells as non-adhering339
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uniform spheres for which Brownian motion approximates well when these cells are shaken. In our case Brownian340

motion is desirable as it increases the frequency of cell-cell contacts needs to self-assemble. Cells that are confined to341

planar cell migration at the bottom of a dish are extremely unlikely to ever find their correct binding partners in the342

sparse environment with relatively few cells.343

At the beginning of the simulation, we create one cell, giving it the density of water and a radius of 6 microns and344

establish the ODE objects needed to represent the cell. This cell has a counter that counts how long it has been since it345

was last part of a division. If the cell is allowed to divide (i.e. it is not expressing the Cycle Arrest gene), then when the346

count reaches twenty hours the cell divides. New states are determined for the two daughter cells based on the state347

machine for the circuit.348

As the cells divide and express proteins as per the state machine, the original cell becomes one of the daughter cells,349

while a second daughter cell is randomly placed a half cell radius away and apply a number of important physical350

considerations to the cells as they move around in the environment. First, we consider the forces applied to each351

individual cell in isolation. When unbound to another cell, a random force F = Fx + Fy + Fz is generated and then352

each cell receives a force F ′ = r1 · Fx + r2 · Fy + r3 · Fz where r1, r2, and r3 are randomly picked for each cell from353

a uniform distribution on [0.5, 1.5). The correlated forces functionality was added to try to stop groups of cells from354

breaking apart too readily, and may in fact mirror reality more closely, given that there is no reason for connected cells355

to try to move in diametrically opposite directions. A drag force is also applied to the cells to try match the reality that356

the cells would not accelerate up to very high speeds in a liquid. The flow is assumed to be laminar (as opposed to357

turbulent) so the force applied is proportional to the cell’s velocity.358

Second, we also consider distances between cells and change the forces applied if they are bound to other cells — when359

cells are too close, they repel each other, and when cells that are connected are too far apart, the connection either360

breaks or the cells are pulled together (to mirror the behavior the binder proteins). For this to occur, the ODE joints361

between the cells must be broken as the joints try to maintain their original lengths. Thus, the joints are broken, then362

reformed (unless the cells are too far apart) before the Brownian motion step. If a joint is no longer valid after a division363

— the two cells that were bound are no longer expressing the protein(s) that bound them — then the joint is removed. Or,364

if a new cell is near a cell that its parent cell was bound to, and that bond is still valid, then a joint is created between the365

new cell and the second cell. When two cells collide during the simulation the program checks to see if the cells can366

bind. If so, it creates a joint and changes their velocities according to a perfectly inelastic collision model.367

Finally we use a mass spring optimization to correct cell distances for cells that are adjacent to each other in 4D space368

to add reality to the simulator. We use a compression of volume based model to repel cells if they are too close, and a369

spring model to draw cells together if they are bound and are too distant. For each cell, we first determine if cells are370

near each other. Cells are sorted into a 3D grid based on their coordinates. We traverse the grid, visiting cubes that have371

cells with them, calculating the distance between those cells and cells in at most thirteen neighboring cubes. We only372

need to consider the cubes in one half of the shell around each cube, as the other half will have already been visited by373

the algorithm. If the distance between any two cells is too close, the pair is added to a set. Finally, all cells that are374

bound to each other by surface binders are also added to the set.375

Next we calculate the forces cells exert on each other due to either being too close (compression) or bound by surface376

binders but too far apart. If the cells are bound and are forced far apart, the joints between cells are broken. If the cells377

are too close, we calculate the fraction of their volumes that is shared, and adjust the position of cells to an optimal378

distance of 11 mircons. The volume of two overlapping sphere shaped cells Vd, having an equal radius, at a distance d379

microns from their cell centers is define as:380

Vd =
π

12
(4r + d)(r2 − d)2,

where r is the radius of each cell [44]. The optimal overlapping volume of two cells is defined as the shared volume of381

cells that have an optimal distance do of 11 microns between their cell centers:382

Vo =
π

12
(4r + do)(r

2 − do)2.

When cells become compressed as defined by having overlapping spherical boundaries, we can take the difference of383

the overlapping volume and the optimal overlapping volume to calculate a repulsive force that will push cells from their384

current distance to an optimal distance apart (11 microns). The force due to the compression Fc between two cells is385

calculated as:386

Fc = kuVf ~Vij ,

where ku is the spring constant for pushing cells apart, Vf is the relative percent of volume overlapping of one cells (we387

call this the volume fraction), and ~Vij is a 3D unit vector pointing from the cell i to cell j. We can consider kuVf as the388
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magnitude of repulsion, and ~Vij as the direction of repulsion. This force is equally applied to each cell that is too close389

to the current cell.390

If the cells are too far apart (more than three cell radii), their joint is broken. Otherwise, a spring force is calculated —391

F = kp(d− 11) where kp is a spring constant the pulls cells together and d is the distance between the cells. Once all392

the pairwise interactions have been considered, the forces due to the shared volumes are calculated.393

As we show in (Figure 7d), once accounting for external events including cellular biophysics (Figure 7c) and orthogonal394

surface binding (both on- and off-target as per (Figure 7b), our simulations sufficiently approximate the forces of cell395

division, cell-cell adhesion, and Brownian Motion. This gives us confidence that as long as we model the internal396

genetic changes properly, the simulated spatio-temporal organization of the cell population should align closely with397

real cells in 4D (3D space + time) culture.398

2.6 Verification of cellular growth outcomes399

With the objective of enabling the programmatic assembly of cells into user-defined structures, a computational400

framework is needed to allow the user to specify a shape, design and build the required circuit, verify whether the401

specified shape is achieved for the candidate circuit, and determine the success rate of achieving the desired shape.402

Computer-aided verification allows us to test if a candidate circuit will result in the formation of the desired shape with403

a given probability and confidence level, eliminating the need to run many costly and time-consuming experiments.404

In the verification step, we need to define a meaningful metric that captures different notions of the structure and405

design an algorithm to calculate this metric, with the goal to assign a quantitative value that can be used to compare406

the desired shape to the shape observed from a circuit. For this sub-problem, we use graphs to represent the desired407

and observed 3-dimensional structures. Each node in the undirected graph represents a cell, and the edge between408

two nodes demonstrates the cell-cell binding. We assume two input graphs are given in the verification step: the first409

graph G1 is produced from the CAD software in which the user identifies the desired shape and a graph is derived by410

applying meshing algorithms, and the second graph G2 is produced from the observed shape for a candidate circuit411

in our simulated model. The verification can be transformed into a graph matching problem that checks whether the412

two graphs G1 and G2 corresponding to the desired and observed shapes match. Therefore, classical graph matching413

algorithms [45] can be employed to solve this problem.414

Graph similarity has been studied in various fields, from social networks [46] to biological networks [47], and many415

algorithms have been proposed to measure the similarity of graphs such as techniques using distance-based metrics and416

feature extraction [45]. We use the spectral eigenvalue similarity method [48] as the basis for our algorithm to determine417

the graph similarity, and propose an algorithm to calculate and score the similarity of the desired and observed graphs.418

Eigenvalues of a graph contain important information about its structure. For a given graph G, the degree matrix D is419

a diagonal matrix containing information about the degree of each node, i.e., the number of edges connected to the420

node. The adjacency matrix A is a square matrix with each element ai,j indicating whether pairs of nodes i and j in the421

graph are adjacent ai,j = 1 or not ai,j = 0. The laplacian matrix L is defined as L = D −A and is a representation422

of the graph and can be used to define different properties of the graph structure (e.g. connectivity) and construct a423

low-dimensional embedding of the graph.424

Let L1 and L2 be the laplacian matrices of graphs G1 and G2 with n nodes, respectively. The similarity score between425

the two graphs is defined based on the euclidean distance of the eigenvalues λ of the laplacian matrices as:426

score =
k∑

i=1

(λ1i − λ2i)2,

where score is a real non-negative number, λji is the ith largest eigenvalue of the graph j and k is chosen such that the427

top k eigenvalues contain 90% of the graph spectrum energy:428

min
j

(∑k
i=1 λji∑n
i=1 λji

> 0.9

)
.

The eigenvalues of the laplacian matrix of a graph are invariant with respect to node permutations. Therefore, if two429

graphs G1 and G2 are isomorphic, i.e., the desired and observed shapes are exactly the same and possibly rotated, their430

laplacian matrices will have the same eigenvalues, and the score will be 0. A score closer to 0 indicates that graphs are431

more similar, while higher values show dissimilarity of the graphs.432

In the considered cases the desired structure consists of substructures (blocks of tetrahedron) of cells with different433

expressions (colors). Therefore, we employ a 2-stage algorithm where the similarity score is determined by the similarity434
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of the overall observed structure with the desired one, augmented with the similarity of each substructure compared to a435

single block (tetrahedron). We use an upper-bound threshold ε for which we can automatically discard simulations with436

a similarity score greater than ε, i.e., we reject the circuits which yield to dissimilar shapes. Another challenge here is437

the fact that the observed graphs (shapes) for a given circuit can possibly have different number of nodes (cells) and438

edges (binding connections). To tackle this issue, we measure the similarity by comparing the desired graph with the439

largest connected subgraph in the observed graph. We also provide the expected probability of achieving the desired440

shape and determine the statistical significance of the candidate circuit.441

For the two example shapes in (Figure 7e,f), we simulated 96 outcomes from one starting cell, resulting in a variety of442

scores, which is expected for this stochastic simulation process. Fortunately we saw many shapes that both appeared443

to be the 2-tet and 3-tet shape we wanted and got strong scores from the verification algorithm. This algorithm helps444

us sort through massive amounts of image to determine if we are successfully forming shapes. Since their are many445

different types of errors that can occur resulting in different scores that are all in relative units, a scientist must draw a446

line for where success is measured to determine the ultimate chance of success of a given shape.447

In general, the proposed graph matching algorithm provides reasonable results for the case studies we consider in this448

paper. More advanced techniques can be employed to verify the similarity of more complex shapes. One approach is to449

define other shape metrics such as sphericity, as well as the graph similarity score, and apply machine learning methods450

to cluster (unsupervised) or classify (supervised) large sets of simulated shapes.451

3 Discussion452

This work describes a computer-aided design (CAD) software, CellArchitect, that can be used to create genetic circuits453

that can be integrated into one cell and to grow into arbitrary multi-cellular 3D shapes. It represents the first described454

CAD workflow for solving the developmental biology problem of shape formation entirely based on genetic circuits.455

While we show some simple examples end-to-end to demonstrate that each sub-problem solution is reasonable, the456

software is built to accommodate shapes of arbitrary size. Each individual sub-problem solution could likely be457

improved — however, we are the first to break the multi-cellular shape formation into solvable sub-problems with clear458

boundaries: 1. using a geometry to define substructures; 2. creating developmental trees to represent which cellular459

progenitors should be responsible for certain tasks; 3. developing genetic circuits to count cell cycles and express genes460

at discrete developmental time points; 4. using a finite-state-machine model to simulate genetic recombination circuits461

over time from a single-cell origin; 5. simulating cell growth in the context of internal (genetic circuit) behavior and462

external (environmental) variables in 4D; and 6. using quantitative verification methods to compare the desired shape to463

the shapes observed both in silico and in vitro. This method or others like it will likely be needed to execute complicated464

synthetic developmental behavior — human cells simply take too long to grow for trial-and-error approaches to be465

debugged on any reasonable time scale.466

While we defined sub-problems that must be solved for shape formation and provided solutions for each of these areas,467

there are some limitations of these solutions that must be built on in future work to allow this software to scale properly.468

First, the state-machine solution does not scale well with increasingly complicated genetic circuits, so we choose to469

ignore rare events. Even in this case, the computational cost of making these determinations gets very high — this470

will need to be addressed for larger cells masses. Similar problems exist for the simulation framework — the cell-cell471

interactions complexity also scales exponentially. These bio-physical and genetic assumptions will need to be revisited472

and improved upon in future versions of this software.473

Some sub-problem solutions are also potentially useful for other applications or future projects in different offshoot474

projects. Specifically, the developmental tree is a potentially interesting idea in problems not specifically related to475

shape formation. Many different types of events happen during development, such as the expression of certain signaling476

factors. Mapping back cell division events and identifying asymmetrical events and when cells stop proliferating. This477

model might be useful for those types of problems as well. Our developments in automated genetic circuit design478

for developmental biology might also be useful for other applications. As with the developmental tree, it would be479

potentially useful for problems outside of shape formation, such as the inclusion of genes to change cell type. It is480

already an open challenge to get cell masses of heterogeneous cell type composition, so using our counter constructs to481

signal differentiation and asymmetrical division during specific time points in development could be useful outside482

of shape alone. Furthermore, our developments in adding the first known framework for simulating the impacts of a483

genetic circuit over time based upon component characterization data could be applied to recombinase-based circuits484

outside the context of human or developmental biology. Combined with the automated genetic circuit design, these485

two modules could be applied in many different types of genetic circuits in different types of organisms to simulate486

outcomes of system-level behavior with synthetic biology circuits.487
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While we have attempted to create a framework for solving the challenging problem of shape formation, the larger488

idea was to develop a new framework for thinking about ‘synthetic developmental biology’. While there are certainly489

other exciting approaches to scaling up tissue engineering and developmental biology applications, we have added490

a new framework for genetics and synthetic biology to synergize with other complementary technologies. For491

example, 3D bioprinting might be a good tool to form larger structures with populations of cells, but it still might492

be important to genetically form certain small-scale structures over time in a tissue. While we generally overlook493

complex media condition manipulations in our current work, all cells must grow in media, and so future extensions494

to include considerations for this could be highly beneficial. This work also complements well with existing work to495

differentiate cells with transcription factors — the combination of the ability to change cell type and multi-cellular496

shape autonomously in the same genetic system could lead to the creation of novel tissue-like structures that might be497

hard to create with tools like 3D-bioprinting.498

4 Methods499

All algorithms and software are implemented in Python 3 using numpy, panda3d, matplotlib, dnaplotlib, and psutil. The500

cell simulator uses Open Dynamics Engine (ODE) as a physics engine, as implemented by the panda3D package (note501

that the underlying ODE framework is implemented in C++). Cell simulation visualization is performed in ParaView.502

Large computing jobs were carried out on a Linux-based computing cluster.503

5 Acknowledgments504

EA, TD, MM, GC, and TW developed meshing and genetic circuit software components. EA, NM, TD, DB, IH,505

ACP, and CB developed the simulation and verification software. GC and TW provided data for physical simulation506

parameters. EA, GC, TW, and GC devised the preliminary vision of the project. EA, NM, TD, DB, CB, and GC wrote507

the paper. The authors would like to thank Justin Gallivan, Jesse Dill, Blake Bextine, Nathaniel Borders, Clair Travis,508

and Helene Kuchwara for helpful conversations. This work was supported by the DARPA ELM Program under contract509

W911NF-17-2-0079.510

References511

[1] Madeline A Lancaster and Juergen A Knoblich. Organogenesis in a dish: modeling development and disease512

using organoid technologies. Science, 345(6194):1247125, 2014.513

[2] Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, Megumi Narita, Tomoko Ichisaka, Kiichiro Tomoda, and514

Shinya Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell,515

131(5):861–872, 2007.516

[3] Thomas Graf and Tariq Enver. Forcing cells to change lineages. Nature, 462(7273):587, 2009.517

[4] Marius Ader and Elly M Tanaka. Modeling human development in 3d culture. Current opinion in cell biology,518

31:23–28, 2014.519

[5] Sean V Murphy and Anthony Atala. 3d bioprinting of tissues and organs. Nature biotechnology, 32(8):773, 2014.520

[6] Xiaolei Yin, Benjamin E Mead, Helia Safaee, Robert Langer, Jeffrey M Karp, and Oren Levy. Engineering stem521

cell organoids. Cell stem cell, 18(1):25–38, 2016.522

[7] Alessia Deglincerti, Gist F Croft, Lauren N Pietila, Magdalena Zernicka-Goetz, Eric D Siggia, and Ali H Brivanlou.523

Self-organization of the in vitro attached human embryo. Nature, 533(7602):251, 2016.524

[8] Marta N Shahbazi, Agnieszka Jedrusik, Sanna Vuoristo, Gaelle Recher, Anna Hupalowska, Virginia Bolton,525

Norah ME Fogarty, Alison Campbell, Liani G Devito, Dusko Ilic, et al. Self-organization of the human embryo in526

the absence of maternal tissues. Nature cell biology, 18(6):700, 2016.527

[9] Satoshi Toda, Lucas R Blauch, Sindy KY Tang, Leonardo Morsut, and Wendell A Lim. Programming self-528

organizing multicellular structures with synthetic cell-cell signaling. Science, 361(6398):156–162, 2018.529

[10] Timothy S Gardner, Charles R Cantor, and James J Collins. Construction of a genetic toggle switch in escherichia530

coli. Nature, 403(6767):339, 2000.531

[11] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regulators. Nature,532

403(6767):335, 2000.533

[12] Alvin Tamsir, Jeffrey J Tabor, and Christopher A Voigt. Robust multicellular computing using genetically encoded534

nor gates and chemical ‘wires’. Nature, 469(7329):212, 2011.535

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2020. ; https://doi.org/10.1101/807107doi: bioRxiv preprint 

https://doi.org/10.1101/807107
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - SEPTEMBER 18, 2020

[13] Ari E Friedland, Timothy K Lu, Xiao Wang, David Shi, George Church, and James J Collins. Synthetic gene536

networks that count. science, 324(5931):1199–1202, 2009.537

[14] Jennifer AN Brophy and Christopher A Voigt. Principles of genetic circuit design. Nature methods, 11(5):508,538

2014.539

[15] Evan Appleton, Curtis Madsen, Nicholas Roehner, and Douglas Densmore. Design automation in synthetic540

biology. Cold Spring Harbor perspectives in biology, 9(4):a023978, 2017.541

[16] Alec AK Nielsen, Bryan S Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya Paralanov, Elizabeth A Strychal-542

ski, David Ross, Douglas Densmore, and Christopher A Voigt. Genetic circuit design automation. Science,543

352(6281):aac7341, 2016.544

[17] Lauren B Andrews, Alec AK Nielsen, and Christopher A Voigt. Cellular checkpoint control using programmable545

sequential logic. Science, 361(6408):eaap8987, 2018.546

[18] Benjamin H Weinberg, NT Hang Pham, Leidy D Caraballo, Thomas Lozanoski, Adrien Engel, Swapnil Bhatia,547

and Wilson W Wong. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian548

cells. Nature biotechnology, 35(5):453, 2017.549

[19] Nathaniel Roquet, Ava P Soleimany, Alyssa C Ferris, Scott Aaronson, and Timothy K Lu. Synthetic recombinase-550

based state machines in living cells. Science, 353(6297):aad8559, 2016.551

[20] Lei Yang, Alec AK Nielsen, Jesus Fernandez-Rodriguez, Conor J McClune, Michael T Laub, Timothy K Lu, and552

Christopher A Voigt. Permanent genetic memory with> 1-byte capacity. Nature methods, 11(12):1261, 2014.553

[21] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for crack growth without remeshing.554

International journal for numerical methods in engineering, 46(1):131–150, 1999.555

[22] Dietmar Ulrich, Bert van Rietbergen, Harrie Weinans, and Peter Rüegsegger. Finite element analysis of trabecular556

bone structure: a comparison of image-based meshing techniques. Journal of biomechanics, 31(12):1187–1192,557

1998.558
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Figure 1: Goal and overview of the software tool process. a. The CAD software inputs a shape file, compiles it to a
genetic circuit, which is then synthesized and integrated into the genome of a cell. This cell expands and self-assembles
into the desired shape. b. The CAD software sub-problems and how they link together.
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Figure 2: Meshing and connection optimization. a. Two example shapes rendered from an STL file and how they
are meshed into cubic approximations of variable numbers of cells. The top row shows how a hollow box would be
meshed into a 16-, 256-, and 2048-cell approximation as quads. The bottom row shows how a sphere would be meshed
into a 32-, 256-, and 2048-cell approximation as quads. b. The hollow box from ’a.’ meshed into tets using the ‘Irish
Bubble’ meshing algorithm. c. A toy shape can be meshed into 3 tets that interface one another composed of 12 cells.
Using the MLST algorithm, we can determine where linkages need to be placed to hold the shape together. d. A fully
connected graph where all possible linkages between components are preserved. e. The MST algorithm starts with a
fully connected graph and finds a random path of linkages to hold all of the nodes together. f. To reduce floppiness of
an MST, we traverse the MST graph adding connections to nodes with only 2 connections. g. The MLST algorithm
uses prioritized heuristics to traverse the graph and add linkages based on these heuristics.
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Figure 3: Developmental trees are produced from lists of blocks and connections they must form. a. Each tet block is
made from a single homodimer (protein A) and each quad block from three orthogonal heterodimer pairs (proteins A/A’,
B/B’, and C/C’). b. Starting from the final cells that must exist in a shape, a binary tree can be created to determine how
many divisions must happen to form all of the blocks and optimize where asymmetrical divisions must occur.
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Figure 4: Genetic recombination for genetic circuits that count cell divisions. In this figure, all promoters are cell-cycle
dependent promoters that initiate transcription for less time than it takes to produce a mature protein from the transcript
it initiates. a. Serine integrases recognize pairs of recognition sites called attB/attP and attL/attR sites. attB/attP sites
are converted to attL/attR upon recombination and upon use of an RDF they can be reverted to attB/P. When the
recombinase sites are on the same strand the internal DNA is excised and discarded, when the recombinase sites are
on opposing strands, the recombinase inverts the DNA in the middle. b. A linear excision counter and register. In the
first count, a recombinase expression transcript is initiated and once it is fully mature, it excises regions from both the
counter and register (pictured in maroon). In this example, we also show how using orthogonal recombination site pairs
(‘1’ and ‘2’) allow us to perform asymmetrical divisions — when the recombinase is expressed, it will perform excision
‘i’, but either ‘ii’ or ‘iii’, not both, since ‘ii’ makese ‘iii’ not possible and vice-versa. After recombination, the next
recombinase is exposed for transcription. c. A linear inversion counter and linear excision register. These constructs
are similar to linear excision devices, except DNA strands are inverted to advance counts. Asymmetrical division is
illustrated with the blue recombinase as per in ‘c’, except that the recombinase will flip the counter DNA and excise
the register DNA. d. A binary inversion counter and register. These constructs use inversion like the linear inversion
circuits, but also use RDFs (a.k.a. XIS genes) to convert attL/attR sites back to attB/attP sites, again inverting the DNA
in the process. Because it uses these RDFs to ‘flip back’ sections of DNA, it counts in binary and can accomplish 2n

operations per recombinase.
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Figure 5: A genetic register is built recursively based on the developmental tree input. This register is built for the 3-tet
shape using its developmental tree as input. After optimization to minimize asymmetrical divisions, final expression
circuits are given to the final steps and built upwards using asymmetrical division conventions using multi-recombination.
a. A linear excision register. built recursively from the ‘leaves’ b. A binary inversion register built recursively from the
‘leaves’. The addition to this register that demonstrates the difference between this and the linear register is highlighted
in yellow
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Figure 6: State machines are used in the physical simulation to determine internal cellular conditions. a. An example
state machine with 3 states — upon any event, the object has assigned probabilities of transitioning to other states
or remaining in the same state. These probabilities all must add up to 1. b. A state machine for a toy recombinase
circuit. Since each cell divides into two cell, each of which has a different recombination (state transition) event, state
transitions are calculated for pairs of outcomes (i.e. one daughter cell undergoes recombination, the other remains
unrecombined at that time). c. A state machine for a counter with five states. We can see that as we consider all of the
off-target recombination activities that are possible, the number of edges expands exponentially.
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Figure 7: Physical simulation and verification. a. Mixture of 6 cell populations expression 3 orthogonal pairs of
heterodimer surface binding pairs in K562 cell line. b. Based upon observation of microscopy data in ‘a’, a matrix
of relative binding efficiency could be created. c. Physical conditions approximated by the physical model — cells
are moving around a confined 3D space in Brownian motion. d. Simulation results for the number of cells present in
‘a’ with our model. e. Modeling and verification of a 2-tetrahedron shape. Upon applying the full modeling scheme
to input shapes, the verification algorithm can compare simulated outcomes to the initial specification to determine
frequency of success for this circuit. On the left is the desired shape and 3 simulated outcomes and their corresponding
connectivity graph used to calculate verification score. f. Modeling and verification of the 3-tetrahedron shape. At the
left is the specified shape and its corresponding connectivity graph. We show increasing scores (i.e. worse outcomes) of
simulations from left to right. The scores are determined both for overall shape (left in brackets) and for individual
tetrahedron formation (right in brackets).
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