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ABSTRACT 

Characterizing the taxonomic diversity of a microbial community is very important to 

understand the roles of microorganisms. Next generation sequencing (NGS) provides 

great potential for investigation of a microbial community and leads to Metagenomic 

studies. NGS generates DNA fragment sequences directly from microorganism samples, 

and it requires analysis tools to identify microbial species (or taxonomic composition) 

and estimate their relative abundance in the studied community. However, only a few 

tools could achieve strain-level identification and most tools estimate the microbial 

abundances simply according to the read counts. An evaluation study on metagenomic 

analysis tools concludes that the predicted abundance differed significantly from the 

true abundance. In this study, we present StrainPro, a novel metagenomic analysis tool 

which is highly accurate both at characterizing microorganisms at strain-level and 

estimating their relative abundances. A unique feature of StrainPro is it identifies 

representative sequence segments from reference genomes. We generate three 

simulated datasets using known strain sequences and another three simulated datasets 

using unknown strain sequences. We compare the performance of StrainPro with seven 

existing tools. The results show that StrainPro not only identifies metagenomes with 

high precision and recall, but it is also highly robust even when the metagenomes are 

not included in the reference database. Moreover, StrainPro estimates the relative 

abundance with high accuracy. We demonstrate that there is a strong positive linear 

relationship between observed and predicted abundances. 

 

Background 

Microorganisms are extremely diverse and they play crucial roles in the different 

environments and human health. Some are a vital component of fertile soils; some have 

been used to convert carbohydrates to alcohol in the fermentation process; some 

colonize in human bodies and perform specific tasks useful to the human host; while 

some are pathogenic or harmful to human health. Characterizing the taxonomic 

diversity of a microbial community is very important to understand the roles of 

beneficial and harmful microorganisms. However, a majority of microorganisms can 

only survive in specific habitats and cannot be cultured in the laboratory[1]. Next 
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generation sequencing (NGS) provides great potential for investigation of a microbial 

community and leads to Metagenomic studies. NGS generates DNA fragment 

sequences directly from microorganism samples, and it requires analysis tools to 

identify microbial species and estimate their abundance within the sampling community. 

A number of analysis tools have been developed, which can be categorized into two 

groups: those targeting the entire genomic content of a sample (i.e., metagenomics) and 

those focusing on marker genes (i.e., metataxonomics) [2]. The former group includes 

Centrifuge[3], CLARK[4], Genometa[5], GOTTCHA[6], Kraken[7], KrakenUniq[8], 

MEGAN[9], Sigma[10], etc. The latter group includes MetaPhlAn[1, 11], 

MetaPhyler[12], mOTU[13], QIIME[14], etc. Though metataxonomics provides 

information of species composition of a microbiome, the marker gene-based (e.g. 16S 

rRNA gene for bacteria) methodologies can only capture organisms that have the 

conserved genes, and it is estimated >50% of the organisms evaded detection with 

classical 16S amplicon sequencing [15]. More importantly, the marker gene-based 

methodologies are often insufficient for discrimination at the species and strain levels 

of classification [16, 17]. Shotgun based methodologies can overcome the limitations 

by targeting the entire genomic content of a sample. Moreover, the data obtained by 

shotgun approach are getting more complete and the sequencing cost is getting less 

expensive, the use of shotgun metagenomics is becoming more popular [18]. In this 

study, we focus on developing new approaches to analyze shotgun metagenomic data. 

Metagenomic analysis tools are developed to characterize the taxonomic composition 

of the studied community. They can be further classified into three classes [19]: 1) 

kmer-based ; 2) alignment-based ; and 3) Bayesian or EM-based classifiers. All these 

methods compare the sequencing data with reference databases. Among these methods, 

only a few methods could achieve strain-level identification. Strain or sub-species is a 

low-level taxonomic rank to differentiate microorganisms of the same species. They are 

more important to clinical diagnostics or pathogen identification. For example, most  

Escherichia coli strains in the human intestine are non-pathogenic, while only a certain 

strains of E.coli can cause disease [20]. O157:H7 group is one example of E.coli strains 

that produces potentially lethal toxins. Therefore, strain-level taxonomic assignment of 

a metagenomics-based study can provide more useful information in clinical 

diagnostics or epidemiological tracking.  

 

However, to achieve strain-level identification, an analysis tool requires a 

comprehensive database of reference genomic sequences, which can result in a huge 

amount of sequence comparison and therefore become a bottleneck in the metagenomic 

data analysis. For example, the RefSeq database contains around 16,500 complete 

bacterial genomes in 2019, which consists of 55 billion nucleobases. Particularly, 
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metagenomic data often involves hundreds of millions of read sequences. It requires an 

efficient algorithm to overcome all these challenges.  

 

Another important issue is the estimation of relative microbial abundance, which is 

critical for understanding the microbial ecology of the environment and human health 

[21]. Most metagenomic analysis tools estimate the microbial abundances simply 

according to read counts. However, the estimation could be biased dramatically due to 

the genome size and sequence uniqueness. An evaluation study [2] on metagenomic 

analysis tools concluded that the predicted abundance differed significantly from the 

true abundance, and there was a large variation in the predicted abundance estimations 

of phyla between tools. 

 

Here we briefly describe a few representative algorithms of metagenomic data analysis 

tools. CLARK collects all unique k-mers in the reference genomes and it classifies a 

read to a reference genome if they share the highest number of k-mers. Centrifuge 

reduces the size of reference genomes by compressing genomic sequences and builds a 

FM-index for those compressed sequences. Firstly, it compares two highly similar 

genomes, say G1 and G2, using a genome comparison tool and discards sequences of 

G2 that are ≥99% identical to G1. The unique sequences of G2 are then added to G1, 

forming a merged genome, G1+2. This process repeats for the entire database until no 

merged genomes have sequences ≥99% identical to any other genome. Centrifuge then 

maps reads against the FM-index and assigns each read a single or multiple taxonomic 

labels. Kraken builds a database of k-mers from reference genomes and assigns a 

taxonomic identifier (taxid) to each k-mer according to the LCA (lowest common 

ancestor) of all organisms whose genomes contain that k-mer. It classifies reads by 

querying the database using the k-mers in read sequences. The taxa associated with a 

read’s k-mers form a taxonomy tree and the classification is made by finding the leaf 

node with the highest score in the tree. MetaPhlAn2 uses a set of around one 

million markers to detect the taxonomic clades present in a microbiome sample. 

The markers are substrings of reference genomes that represent clade-specific 

sequences. It then uses Bowtie2 to map all reads against the marker set and 

assign taxid accordingly. 

 

In this study, we present StrainPro, a novel metagenomic analysis method, which is 

highly accurate both at characterizing microorganisms at strain-level and estimating 

their relative abundance. A unique feature of StrainPro is it identifies representative 

sequence segments from reference genomes. A representative sequence segment is a 

DNA substring that can be only found in genomes of a specific taxon and can be 
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considered a signature for that taxon. Thus identical DNA fragments can be collapsed 

into a single copy. StrainPro searches NGS short reads against the representative 

sequence database and characterizes the underlying taxonomic composition of the 

metagenomic sample. The experiment result shows that StrainPro can identify strains 

and estimate their relative abundances more accurately than existing tools. We 

implemented StrainPro in C/C++, and the source codes and benchmark datasets are 

available at https://github.com/hsinnan75/StrainPro. 

 

Methods 

StrainPro is an alignment-based method. It contains three major components: a) 

representative sequence identification; b) read mapping; and c) strain composition 

identification. We describe the detailed algorithm of each major component below. 

 

Finding representative sequence segments  

To compile a comprehensive database of reference genomic sequences, we download 

all completed microbial genomes in the NCBI RefSeq database. We then cluster those 

genomes according to taxonomic information. At first, genomes of the same species are 

clustered together. We define the cluster size as the total genome sizes in that cluster. If 

a cluster size is less than one billion nucleobases, we then merge those clusters with the 

same genus (or family, order, and so on) until the merged cluster meets the threshold or 

there are no more such clusters. Since each taxon of a particular ranking has different 

number of genomes, not every cluster is formed by gathering genomes with the same 

taxonomic rank. For example, a cluster may only contain genomes of Escherichia coli 

(rank: species) since E.coli is a large and diverse group, while another cluster contains 

genomes of Proteobacteria (rank: phylum) since the underlying sub-groups are not large 

enough to form an independent cluster. After clustering, we build a BWT index for each 

genome cluster. Thus, we will build n BWT indexes if there are n genome clusters. 

 

Since genomes are clustered based on taxonomic information, those which belong to 

the same taxid share a certain degree of sequence similarity and each of the genomes 

may also possess a certain degree of sequence uniqueness. Thus we can divide genome 

sequences into different segments with variable length and assign each to the LCA 

according to the taxids of involved genomes. For example, a sequence segment is 

assigned to 83334 (taxid of E.coli O157:H7 strains) if it can only be found in those 

strains; and another segment is assigned to 1224 (taxid of Proteobacteria) if it can be 

found in diverse genomes whose LCA is 1224. Once we collect all representative 

sequence segments from the original genome database, we can build a more compact 

database for read classification. 
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To identify the representative sequence segments, we introduce the idea of pseudo-

reads. Given a reference genome G of size N, let Gi be the i-th nucleobase of G and G[i, 

j] be the substring between Gi and Gj. We define ps_readi is a pseudo-read of length l 

whose sequence is G[i, i+l−1]. Thus we have N−l+1 pseudo-reads in G and each read 

is used to search against the cluster that contains G. Suppose ps_readi can only be found 

in G, we assign Gi to the taxid of G; otherwise we assign Gi to the LCA taxid of the 

genomes containing that pseudo-read. Notably, if ps_readi has multiple occurrences in 

G or in other genomes, we only assign the first occurrence to the LCA taxid, and the 

others are assigned to 0 meaning they are redundant. After all pseudo-reads have been 

checked for every genomes in that cluster, we convert each genome sequence into a 

long list of taxids and 0s. We perform a linear scan through each long list and divide it 

into sub-lists if any two adjacent taxids on the list are different. Thus each sub-list 

indicates a representative sequence segment associated with the same taxid. We ignore 

all sub-lists which are associated with 0. Notably, the pseudo-read length l is a trade-

off between specificity and sensitivity. A small l will lose the specificity of a pseudo-

read though it is more likely to have more occurrences among reference genomes; A 

large l will lose the sensitivity of a pseudo-read though it is more likely to capture the 

uniqueness of a strain sequence. By default StrainPro uses 101-bp since it is the most 

common length of NGS short reads. The user can modify the value based on their NGS 

data. 

 

Figure 1 shows an example illustrating our idea of representative sequence segments. 

In this example, there are two genomes in the cluster, G1(taxid:A) and G2(taxid:B), and 

we assume LCA(A,B) = C. Each pseudo-read is used to search against the two genomes 

and is assigned to taxid of A, B, C, or 0 according to its occurrences. The search result 

shows that G1 can be divided into five segments which are associated with taxid of A, 

C, A, C, A respectively, and G2 can be divided into two segments which are both 

associated with taxid of B. Those segments which are associated with 0 are redundant 

sequences and they are discarded in the compact database construction. 

 

We replace the original reference genomes with those representative sequence segments 

and cluster those segments the same way we do for the original reference genomes. 

Notably, each representative sequence segment is considered as an independent 

sequence entry. The resulting clusters are used to build BWT indexes as the compact 

database for read mapping.  
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Figure 1. The identification of representative sequence segments with two genomes. G1(taxid:A) and G2(taxid:B), 

and LCA(A,B) = C. 

Read mapping 

Since the representative sequences are clustered into multiple groups according to the 

taxonomic information, we build a BWT index for each representative sequence cluster. 

StrainPro uses a modified algorithm of KART to perform read mapping. The detailed 

read mapping algorithm of KART can be found in our previous study [22]. Here we 

focus on the high-level methodology description. StrainPro adopts a divide-and-

conquer strategy to handle matches and mismatches separately between read sequence 

and reference genome. StrainPro identifies all locally maximal exact matches 

(LMEMs). We then cluster those LMEMs according to their coordinates and fill gaps 

between LMEMs to create candidate alignments. 

 

StrainPro aligns every individual read sequence onto each representative sequence 

cluster and assigns it to the taxid of the mapped representative sequence segment with 

the highest alignment score. If a read has multiple best alignments, it is assigned to the 

LCA of those hits. Although we have removed redundant sequences by using pseudo-

reads, a read could still have multiple hits due to sequence variations or the duplications 

locating in different clusters. The read mapping is performed iteratively until all the 

representative sequence clusters have been searched.  

 

Identifying taxonomic composition and estimating relative abundance 

Each representative sequence segment associated with a taxid is a basic unit for 

identifying the taxonomic composition and estimating relative abundances. We infer 

the presence and absence of a taxid by quantifying the reads that are mapped onto a 

representative sequence segment. Thus we can differentiate between true alignments 

and false alignments by checking the read density in the corresponding representative 

sequence segment.  
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To explain the detailed implementation of this concept, we here use a 3-tuple, (Taxids, 

Freqs, Sizes) to denote the mapping profile of a representative sequence segment S, 

where Taxids is the taxid of S, Freqs is the number of reads that are mapped onto S, and 

Sizes is number of all pseudo-reads of S. It can be expected that if a genome containing 

S is present in the metagenomic sample, Freqs should be in direct proportion to the 

abundance of S theoretically and empirically. Furthermore, a sequencing depth of d 

implies that the probability of a short read of length l starting at a specific position is 

approximately equal to d / l. Therefore, the ratio Rs of Freqs to Sizes is positively 

correlated with d / l. Based on this theoretical model, we can calculate the sequencing 

depth of each strain and estimate relative abundance based on their sequencing depths. 

We here use an example to demonstrate how we infer taxonomic composition with 

representative sequence segments. Suppose we are given two mapping profiles of 

representative sequence segments A and B, which are (TaxidA, 100, 100) and (TaxidB, 

100, 1000). Although both the segments contain 100 of read count, the mapping density 

of segments A is much larger than that of segment B. It implies that reads that are 

mapped onto B are more like random mappings. In such cases, segment B is less likely 

present in the metagenomic sample.  

 

To prevent false identification of taxonomic composition, we set a threshold t on the 

ratio Rs. We only consider S to be present in the metagenomic sample if Rs > t. Thus 

given a taxids at strain-level, the sequencing depth is estimated as follows: 

depth(𝑡𝑎𝑥𝑖𝑑𝑠) = 𝑙 ×
∑ 𝐹𝑟𝑒𝑞𝑠

∑ 𝑆𝑖𝑧𝑒𝑠
 , for all representative sequence segments S associated 

with taxids and Rs > t.  

The relative abundance of taxids is then estimated as follows: 

RA(𝑡𝑎𝑥𝑖𝑑𝑠) = 
𝑑𝑒𝑝𝑡ℎ(𝑡𝑎𝑥𝑖𝑑𝑠)

∑ 𝑑𝑒𝑝𝑡ℎ(𝑡𝑎𝑥𝑖𝑑𝑖)𝑖
× 100%.   

To estimate the relative abundance of a taxid at species-level and above, we adopt an 

alternative metric since genomes between different species are more distinguishable 

and not every microorganism is classified into strain-level. If we only use the abundance 

of taxids at strain-level to infer those at species-level, the estimation may not cover the 

whole present microorganisms in the metagenomic sample. Thus for those taxids at 

species-level and above (denoted as taxidp), we estimate their abundance using the 

number of reads that are mapped onto a representative sequence segment P. Notably, P 

here represents all representative sequence segments that are associated with taxidp or 

its sub-types and Rp > t. The relative abundance of taxidp is estimated as follows: 

RA(𝑡𝑎𝑥𝑖𝑑𝑝) = 
∑ 𝐹𝑟𝑒𝑞𝑝

∑ 𝐹𝑟𝑒𝑞𝑞𝑞
, where q ∈ {taxids of the same level as taxidp}.   
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Results 

Simulated metagenomic datasets and performance metrics 

The genuine metagenomic samples lack ground-truth taxonomic compositions. The 

true strains and species in those samples are mostly unknown. It is difficult to use 

genuine metagenomic datasets to assess performance on the taxonomic predictions in 

this study. Instead, we generate simulated taxonomic compositions using real strains in 

NCBI RefSeq database. The NCBI RefSeq database contains around 16,500 complete 

bacterial genomes, where 6,200 genomes are associated with taxids of strain-level and 

the other 10,300 genomes are with species-level. In this study, we generate three 

simulated taxonomic compositions which each contains around 50 random strain-level 

genomes. Since strains are randomly chosen from the 6,200 genomes, some of them 

may belong to the same sub-species. We use the whole database to generate the 

representative sequence segments. For each simulated taxonomic composition, we use 

the WGSIM program (https://github.com/lh3/wgsim) to generate metagenomic reads 

with read length 101bp, 0.2% sequencing error rate and 50X sequencing depth. The 

three simulated metagenomic datasets are referred to as SimData_1, SimData_2, and 

SimData_3 respectively. To assess the taxonomic prediction accuracy on unknown 

strains, we also simulate novel strains by modifying genome sequences in each 

simulated taxonomic composition. We use WGSIM to alter genome sequence with 1% 

of mutation rate (15% of which are INDELs and 85% are SNPs) to simulate 

polymorphism for novel strains and generate their metagenomic reads with the same 

arguments. The three simulated metagenomes of novel strains are referred to as 

SimNovel_1, SimNovel_2, and SimNovel_3 respectively. Table 1 shows the strains in 

the three simulated taxonomic compositions.  

Table 1. The taxonomic compositions and number of reads in the simulated datasets. The genome sequences in 

SimNovel_1/2/3 are modified with 1% of mutation rate to simulate polymorphism for novel strains. 

Dataset Strain # Read # taxonomic compositions 

SimData_1 

SimNovel_1 

50 115,104,050 NC_010628, NZ_LN831776, NZ_CP016079, NZ_CP027742, NZ_CP027718, NC_018080, NZ_CP020659, 

NZ_AP019314, NC_011566, NC_017200, NC_013716, NC_018661, NC_011773, NC_003997, NC_012997, 

NC_017079, NZ_CP016385, NZ_LT905063, NZ_CP007523, NZ_LT904876, NZ_CP016406, NZ_LS483419, 

NZ_CP009792, NZ_CP007358, NZ_CP007329, NC_021713, NZ_CP009887, NZ_CP008702, NZ_CP009197, 

NZ_CP032855, NZ_CP018146, NZ_CP032867, NZ_CP032861, NZ_CP009751, NZ_CP004023, NC_010554, 

NC_020518, NZ_CP023067, NZ_CP026671, NZ_CP012019, NZ_CP008762, NZ_AP013044, NZ_CP009160, 

NC_007435, NZ_CP007032, NC_008314, NC_008555, NC_010552, NZ_CP022291, NC_011059  

SimData_2 

SimNovel_2 

49 111,090,084 NZ_CP017599, NC_010612, NZ_CP005975, NZ_CP014314, NZ_CP017188, NC_004431, NZ_CP009876, 

NZ_CP018014, NC_009901, NZ_CP013674, NZ_CP023159, NZ_CP022168, NZ_CP014358, NZ_CP024239, 

NZ_CP029875, NZ_CP022912, NZ_CP029930, NZ_CP029646, NZ_CP029882, NZ_LT904871, NZ_CP009712, 
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NZ_CP029336, NZ_CP007320, NZ_CP007321, NZ_CP007306, NZ_CP007274, NZ_CP007420, NZ_CP008897, 

NZ_CP022019, NZ_CP009973, NZ_CP020896, NC_018143, NZ_CP012110, NZ_CP020414, NZ_CM001775, 

NZ_CP009161, NZ_CM000658, NZ_CP007242, NC_010682, NC_021729, NC_015590, NC_014734, 

NZ_CP016870, NZ_CM001799, NC_009922, NC_011593, NC_019970, NC_015425, NC_014010  

SimData_3 

SimNovel_3 

51 128,122,470 NC_014623, NZ_CP006871, NC_020504, NZ_CM000950, NZ_CP010849, NZ_CP027708, NZ_CP027749, 

NZ_HG917972, NC_016641, NZ_CM000734, NZ_CP007014, NZ_CP010005, NZ_CP028302, NC_002655, 

NC_014121, NC_006347, NZ_CP009590, NZ_CM002401, NC_015856, NZ_CP022270, NZ_CP014969, 

NZ_CP013685, NZ_CP007559, NZ_CP019206, NZ_CP023475, NZ_CP007345, NZ_CP007369, NZ_CP019411, 

NZ_CP019418, NC_014328, NZ_CP010023, NZ_CP006783, NZ_CM002049, NC_021712, NZ_CP006692, 

NC_018020, NZ_CP014566, NC_015064, NC_019897, NZ_CP004003, NZ_AP012496, NC_023137, NC_003295, 

NC_020409, NZ_CM001371, NC_004567, NC_007722, NC_021224, NC_016024, NZ_LR134089, NC_014392  

 

We use precision, recall, and run-time to evaluate the performance of each tool. A 

predicted taxid is considered a true positive (TP) if it is present in the simulated 

metagenome and its read count above a certain threshold; a predicted taxid is considered 

a false positive (FP) if it is absent in the simulated metagenome and its read count above 

the threshold. Given a simulated metagenome of N strains, precision is defined as TPs 

/ (TPs+FPs) and recall is defined as TPs / N. 

 

In this study, we compare the performance of StrainPro with seven existing tools, 

including Centrifuge, CLARK, GOTTCHA, Kraken2, KrakenUniq, MetaPhlAn2, and 

Sigma. All these tools are able to achieve strain-level classification except CLARK and 

Sigma. We tried to include more other metagenomic analysis tools; however, some tools 

failed in the middle of execution, some lacked reference database for all 

microorganisms, and some were designed for marker genes only.   

 

Performance comparison on simulated metagenomes (original strains) 

In this comparison, we assess the precisions and recalls of each method at strain-, 

species-, and genus-levels. Figure 2 illustrates the comparison result on the three 

simulated metagenomes. Notably, some tools only perform taxonomic classification for 

every read without generating the taxonomic composition. In such cases, we write a 

simple script to infer the taxonomic composition based on read count of each associated 

taxid. We also find a proper threshold for each tool to filter out some taxids according 

to their performance. The commands as well as the reference database and argument 

setting used for each tool are shown in Table S1 in the supplementary materials. 

 

It can be observed that StrainPro achieves the best precisions and recalls at the three 

taxonomic levels among the selected tools. In particular, StrainPro consistently yields 
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Figure 2. Performance comparison on the three simulated metagenomes (present strains are included in the reference 

database). 

higher precision and recall at the strain-level than the other tools. For example, the F1-

scores for StrainPro on the three datasets are 0.988, 0.972, and 0.989 respectively. 

Though CLARK is not able to achieve strain-level resolution, its precisions and recalls 

at the species- and genus-levels are very close to those of StrainPro. Centrifuge yields 

the second best performance in general, while Kraken2 performs slightly worse than 

Centrifuge. Centrifuge’s F1-scores are 0.925, 0.886, and 0.907 respectively. The F1-

scores at strain-level for Kraken2 are 0.773, 0.861, and 0.816 respectively. KrakenUniq 

is derived from Kraken, however, its performance is surprisingly not as good as 
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Kraken2. It yields much worse recalls than Kraken2. Its F1-scores at strain-level are 

0.213, 0.400, and 0.167 respectively. MetaPhlAn2 produces good performance both at 

species- and genus-levels, but its recall at strain-level is not satisfactory. Likewise, 

GOTTCHA’s precisions are higher than its recalls. We assume their pre-built databases 

are not comprehensive enough to cover all kinds of strains and customized databases 

are not supported yet for both tools. Though Sigma uses the whole NCBI RefSeq as the 

reference genomes, there is a huge gap between its precision and recall at species- and 

genus-levels. It achieves perfect precisions, while all its recalls are around 25% for the 

three metagenomes. 

  

Performance comparison on simulated metagenomes (novel strains) 

In this experiment, we simulate novel strains by altering the original strains with 1% of 

mutation rate. The purpose is to assess the prediction accuracy of a metagenomic 

analysis tool when the present genomes are not included in the reference database. In 

this comparison, we only assess the prediction accuracy at species- and genus levels 

since sequence modification has changed the original strain sequences, the original 

strain-level classification is not applicable. Figure 3 shows the comparison result on the 

three simulated metagenomes. Here we use the same thresholds to filter out taxids 

according to their read counts. 

 

It can be observed that StrainPro still produces the best performance on these 

metagenomes. We demonstrate that StrainPro is very robust even though the novel 

strains are not included in the reference database. StrainPro achieves the highest F1-

scores at species- and genus-levels. Interestingly, Centrifuge is the second best tool in 

the previous experiment; however, its precision declines significantly with the same 

threshold of read count. We could have increased the threshold to improve its precisions, 

but the manipulation of threshold values is based on the knowledge of metagenomes. 

There are no clear rules on the threshold setting when it comes to real datasets. 

MetaPhlAn2 generally performs the second best on those metagenomes. It suggests 

MetaPhlAn2 is also robust to novel strains. Its precisions and recalls at species- and 

genus-levels are very similar to those on original metagenomes. CLARK and Kraken2 

also produce comparable performance to MetaPhlAn2, though CLARK yields less 

satisfactory precision on SimNovel_3, and Kraken2’s precisions at species-level on 

mutant metagenomes are worse than those on original metagenomes. GOTTCHA 

performs comparably to KrakenUniq. Their performance is also similar to that on 

original metagenomes. Likewise, Sigma achieves perfect precisions, while its recalls 

are also around 25% for the three metagenomes. 
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Figure 3. Performance comparison on the three simulated metagenomes (present strains are not included in the 

reference database). 

Performance comparison on classification speed  

Due to the huge amount of short reads in metagenomic data and the size of reference 

databases, the classification speed is also an important issue. We assess the 
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evaluated its speed using 16 threads. Notably, the run-time for database creation is not 

considered here. Figure 4 illustrates the comparison result. It can be observed that 

Centrifuge, Kraken2, KrakenUniq, and CLARK perform similarly in term of 

classification speed. These tools are able to classify more than 100 million reads in a 

half hour or less. StrainPro, GOTTCHA, and MetaPhlAn2 are the second fastest groups. 

They spend around two or three hours on each metagenome. Sigma is the lowest tool 

in this comparison. It spends more than 10 hours on each metagenome. 

 

 

Figure 4. Run-time comparison on the three simulated metagenomes. 

The relative abundance estimation at strain-level 

In this study, we estimate the relative abundance of each taxid based on the mapping 

density at representative sequence segments. It is very different from that simply based 

on read counts. We here analyze the average difference between the true and predicted 

abundance of each strain-level taxid. Given a strain-level taxid, if the true relative 

abundance is X%, and the predicted relative abundance is Y%, then the difference is 

defined as |X-Y|. We also measure the linear correlation between the two abundances 

using the Pearson correlation coefficient (PCC). Table 2 summaries the analysis result. 

In this analysis, we compare StrainPro to Centrifuge and Kraken2 since the three tools 

produce at least 0.8 of recall at strain-level prediction. It can be observed that StrainPro 

yields the smallest average difference between true and predicted abundances. The PCC 

scores of StrainPro are around 0.95. In contrast, Centrifuge and Kraken2 yield much 

larger average difference and their PCC scores suggest that there is no linear correlation 

between true and predicted abundances.  
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Table 2. The evaluation of relative abundance prediction in StrainPro, Centrifuge, and Kraken2. 

Dataset Tools Average difference Pearson correlation coefficient 

SimData_2 StrainPro 0.29 0.943 

Centrifuge 2.89 -0.083 

Kraken2 2.48 0.176 

SimData_3 StrainPro 0.68 0.967 

Centrifuge 3.79 -0.069 

Kraken2 2.51 0.444 

SimData_4 StrainPro 0.20 0.986 

Centrifuge 2.56 -0.046 

Kraken2 2.76 -0.013 

 

Representative sequence segment analysis 

The identification of representative sequence segments is a unique design in this study. 

We demonstrate the representative sequence segments are more suitable to classify 

short reads and identify the metagenomic composition. We here analyze the efficiency 

of representative sequence segments. 

 

The RefSeq database contains 16,500 complete bacterial which are separated into 28 

clusters according to our algorithm. We then identify representative sequence segments 

in each cluster. The original cluster size and the resulting representative sequence 

segment size are shown in Figure S1 in the supplementary materials. The original 

reference genomes contain 54.94 billion nucleobases. After identifying the 

representative sequence segments and removing redundant sequence segments, the 

remaining sequences only contain 26.96 billion nucleobases. We reduce the database 

size by around 50%. The more strains of the same species in a cluster, the more 

redundant sequences we can remove. For example, the original cluster size of E.coli 

strains is 3.6 GB, and the resulting representative sequence’s size is only 0.29 GB. We 

reduce the reference genome size of E.coli strains by more than 90%. However, we still 

keep all the unique sequence fragments of each E.coli strain. 

 

Conclusions 

In this study, we describe a novel metagenomic analysis tool, called StrainPro to 

classify NGS short reads and identify the underlying metagenomic composition at 

strain-level and above. We define representative sequence segments as the sequence 

features for each taxonomic identifier. The relative abundance estimation is based on 

the mapping density at the representative sequence segments. Thus StrainPro is able to 
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differentiate between true mapping and false mapping by measuring the mapping 

density in the representative sequence segments. We demonstrate the mapping density 

is useful to filter random alignments out. Moreover, identifying the representative 

sequence segments can also remove redundant sequences and reduce the database size 

significantly. 

 

To assess the classification accuracy, we generate three simulated metagenomes using 

known strain sequences and another three simulated metagenomes using mutant strain 

sequences. We compare the performance of StrainPro to seven existing tools. The 

comparison results show that StrainPro not only identifies the metagenomic 

composition with high precision and recall, but it is also highly robust when the 

metagenomes are not included in the reference database. Furthermore, StrainPro 

estimates the relative abundance with high accuracy. The average difference between 

the true and predicted abundance is very small and the two abundances shows a highly 

positive linear relationship. 

 

Though StrainPro is not as fast as some existing tools, it is able to identify strains and 

estimate their relative abundances more accurately than existing tools. More and more 

medical and biological researches adopt shotgun metagenomics to study taxonomic 

diversity of a microbial community nowadays, we are confident that StrainPro is able 

to provide reliable and accurate metagenomic data analysis. 
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Figure 1. The identification of representative sequence segments with two genomes. 

G1(taxid:A) and G2(taxid:B), and LCA(A,B) = C.  
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Figure 2. Performance comparison on the three simulated metagenomes (present strains are included in the 

reference database). 
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Figure 4. Run-time comparison on the three simulated metagenomes. 
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