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Abstract 
Motivation: Accurately predicting cancer prognosis is necessary to choose precise strategies of treatment for patients. 

One of effective approaches in the prediction is the integration of multi-omics data, which reduces the impact of noise 

within single omics data. However, integrating multi-omics data brings large number of redundant variables and relative 

small sample sizes. In this study, we employed Autoencoder networks to extract important features that were then input 

to the proportional hazards model to predict the cancer prognosis.  

Results: The method was applied to 12 common cancers from the Cancer Genome Atlas. The results show that the 

multi-omics averagely improves 4.1% C-index for prognosis prediction over single mRNA data, and our method 

outperforms previous approaches by at least 7.4%. A comparison of the contribution of single omics data show that 

mRNA contributes the most, followed by the DNA methylation, miRNA, and the copy number variation. In the case study 

for differential gene expression analysis, we identified 161 differentially expressed genes in the cervical cancer, among 

which 77 genes (65.8%) have been proven to be associated with cancer. In addition, we performed the cross-cancer 

test where the model trained on one cancer was used to predict the prognosis of another cancer, and found 23 pairs of 

cancers have a C-index larger than 0.5, with the largest value of 0.68. Thus, this study has provided a deep learning 

framework to effectively integrate multiple omics data to predict cancer prognosis. 

 
 
1 Introduction 
Clinical studies show that significant variations in prognosis happen 

among patients of the same tumor type. The variations are caused by 

genetic heterogeneity in subpopulations of cells, which contribute most 

to hinder the development of effective therapies for cancers (Dagogo-

Jack and Shaw, 2018). Therefore, it is necessary to distinguish high-

risk patients from low-risk patients for choosing appropriate treatment 

and surveillance. 

Currently, many studies for cancer prognosis risk prediction have 

been designed based on single omics data (Kourou, et al., 2015). The 

most frequently used data is gene expression measured by microarray 

(Beer, et al., 2002; Calon, et al., 2015). With the development of next 

generation sequencing techniques other types of genomic data are 

becoming popular to be employed, including DNA methylation 

(Stirzaker, et al., 2015), miRNA (Volinia and Croce, 2013), and copy 

number variation (CNV) (Wu, et al., 2018). However, each type of the 

omics data represents a single view for patients, and is difficult to 

obtain accurate prediction. In order to achieve a comprehensive view 

of patients in genomics, many studies have sequenced multiple types 

of omics data from the same patient. Systematic studies have been 

performed by using the Cancer Genome Atlas (TCGA) that provides 

more than ten thousands of samples over 33 cancer types (Tomczak, et 

al., 2015). The valuable data enables an integrated analysis based on 

multiple omics data for comprehensive analysis for cancer prognosis. 

Though multi-omics data analysis could reduce the impact of 

noise from single source of omics data (Li, et al., 2018), it is 

challenging to effectively integrate the high-dimensional data. In the 

past years, many statistical methods have been developed to utilize 

multi-omics data for dealing with different biological questions. For 

example, Rohart et al designed a general package based on sparse 

partial least square-discriminant analysis (Rohart, et al., 2017); 

Mariette et al used an unsupervised multiple kernel framework for 

predicting breast cancer clinical outcomes (Mariette and Villa-

Vialaneix, 2018); Kim et al designed a grammatical evolution neural 

networks to evaluate ovarian cancer prognosis (Kim, et al., 2017); 

Ahmad proposed a hierarchical Bayesian graphical model that 

combines a Gaussian mixture model with an accelerated failure time 

model to find the breast cancer clinically relevant disease subtypes 
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(Ahmad and Frohlich, 2017); Corett identified differentially expressed 

genes of different cancer risk subtypes by combining sparse correlation 

matrix estimator and maximum likelihood estimator algorithm 

(Coretto, et al., 2018). However, these traditional statistical methods 

are limited to capture effective features from thousands of variables 

through dozens or hundreds of samples. 

Recently, deep learning techniques have been proven to be 

powerful in many fields including bioinformatics (Min, et al., 2017). 

Chaudhary et al integrated RNA-seq, miRNA-seq, and DNA 

methylation data by unsupervised Autoencoder model to rebuild 

representative composite features (Chaudhary, et al., 2018). However, 

the unsupervised classification algorithm used in the study can only 

separate the patients into two groups, and has failed to directly link the 

composite features to the survival time. As a result, the model achieved 

limited accuracy in the prediction of survival prognosis. In addition, 

the discrete prediction of only two groups could cause problems for 

patients of intermediate risks, which required to predict the continuous 

risk scores for the patients.  

To integrate multi-omics data for predicting the prognosis risk of 

cancer patients, we proposed a deep learning method named as DCAP. 

In this method, the multi-omics data was input into Autoencoder to 

obtain representative composite features. These features were then 

input to the Cox proportional hazards (Cox-PH) model to predict the 

patients’ prognosis. The tests on 12 common cancers demonstrated the 

DCAP outperforms all previous methods. In order to reduce the 

number of features in the prognosis predicting model, we further 

selected important features to re-establish the model by XGboost 

algorithm, which shows a competitive performance.  

 

2 Methods 
2.1 Datasets 

In this study, cancer datasets were download from the TCGA portal 

(https://tcga-data.nci.nih.gov/tcga/) by the R package “TCGA-

assembler”(v1.0.3, (Wei, et al., 2018)). Totally, four types of multi-

omics data: mRNA, miRNA, DNA methylation, and copy number 

variation (CNV) data were employed. Here, “mRNA” was RNA 

sequencing data generated by UNC Illumina HiSeq_RNASeq V2; 

Level 3, “miRNA” was miRNA sequencing data obtained by BCGSC 

Illumina HiSeq miRNASeq, DNA methylation data was generated by 

USC HumanMethylation450, and CNV data that generated by 

BROAD-MIT Genome wide SNP_6. All these data are in TCGA data 

level 3.   

The inputs of DNA methylation and CNV were the average values 

of copy number variations and DNA methylation of CpG sites, 

respectively. The missing values were imputed using a similar way as 

the previous study(Chaudhary, et al., 2018). Briefly, one feature would 

be excluded if it was missed in more than 20% of patients. On the other 

hand, the patients were excluded from the study if they missed more 

than 20% features. For the remained data, the missing values were 

imputed by R package “imputeMissings” (Bokde, et al., 2018). We 

selected 12 cancers for facilitating comparison with methods reported 

in other articles. The numbers of samples for 12 cancer types range 

from 132 to 613, which include 59774 to 61255 genomic features. The 

details of the datasets are shown in Table S1. 

 

2.2 The architecture for cancer prognosis prediction  

Figure. 1 shows the architecture of the method for predicting cancer 

prognosis. The high dimensional features from multi-omics data were 

inputted into a three-hidden layers Autoencoder network to obtain 

representative features. And then the generated features were input into 

Cox-PH model for cancer prognosis prediction. To further reduce the 

number of input features, we utilized XGboost to select the most 

important features and re-establish the prediction model.  

  

 

 

 

 

 

 

 

 

 
 

 

Figure. 1 The workflow of DCAP. Firstly, inputting multi-omics into 

a three-hidden layers Autoencoder to reconstructing the representative 

composite features; Next, estimating the cancer prognosis by Cox-PH 

model using the reconstructed features; Finally, building the XGboost 

regression model for cancer prognosis prediction based on the 

estimated risks by Cox-PH model. 

 

2.3 Autoencoder to rebuild representative composite 

features  

Autoencoder is a kind of artificial neural network to learn an efficient 

representation of the input data in an unsupervised manner (Burbank, 

2015). Supposing 𝑥 = (𝑥1, … , 𝑥𝑛)  are high dimensional features, 

which were reconstructed by replacing x with x’. x’ is the output of the 

Autoencoder in the same dimension as x. x’ is obtained by the tanh that 

is used as the activation function for all layers. The cross-entropy 

function is used for the loss function: 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠(𝑥, 𝑥′) = ∑ (𝑥𝑖𝑙𝑜𝑔(𝑥′𝑖) + (1 − 𝑥𝑖)𝑙𝑜𝑔(1 − 𝑥′𝑖))𝑛
𝑖=1  (1)               

In this study, regularization penalties were added to the Autoencoder 

to control overfitting: 

𝐿(𝑥, 𝑥′) = 𝑙𝑜𝑔𝑙𝑜𝑠𝑠(𝑥, 𝑥′) + ∑ (𝛼‖𝑊𝑖‖1 + 𝛾‖𝐹1→𝑖(𝑥)‖2
2)𝑘

𝑖=1   (2)            

where k was set 5 for layers (input, output, and 3 hidden layers), 𝛼 and 

𝛾 were the coefficients for L1 and L2-norm regularization penalties, 

here they were both set as 0.0001. In this study, the number of nodes 

in the three hidden layers were set as 500, 200, and 500 respectively. 

The Autoencoder was trained by back-propagation via Adam optimizer 

with a dropout rate of 0.5. 

 

2.4 Cox proportional hazard model for risk estimation 

The 200 features from the middle hidden layer were used for building 

Cox proportional hazard (Cox-PH) model to estimate the cancer 

prognosis risks. The Cox-PH model was implemented by the “glmnet” 

package in R (Simon, et al., 2011). First, the univariate Cox model was 

used to select significant features that were able to distinguish the high-

risk and the low-risk patients with log-rank p-value <0.05. These 

selected features were input to the multivariate Cox-PH model to 

estimate the patients’ risks. The multivariate Cox proportional hazard 

model was defined as  

ℎ(𝑡|𝑋𝑖) = ℎ0(𝑡)𝜃𝑖                    (3)  

where ℎ0(𝑡) was the underlying baseline hazard function to describe 

how the risk changes at time t, and 𝜃𝑖 = exp (𝛽𝑋𝑖)  was used to 

describe how the hazard varies in response between coefficients vector 

𝛽 and covariates vector 𝑋𝑖 by patient i. 

The probability of the death for the patient i at the time 𝑡𝑖 was written 

as: 

𝐿𝑖(𝛽) =
ℎ0(𝑡𝑖)𝜃𝑖

∑ ℎ0(𝑡𝑖)𝜃𝑗𝑗:𝑡𝑗>𝑡𝑖

                  （4) 

Hence the corresponding log partial likelihood function was given as: 

𝑙(𝛽) = log(𝐿(𝛽 ∏ 𝐿𝑖(𝛽)𝑖 )) = ∑ (𝑋𝑖𝛽 − 𝑙𝑜𝑔 ∑ 𝜃𝑗𝑗:𝑡𝑗>𝑡𝑖
)𝑖      (5)                     

This partial likelihood function was solved by using the Newton-

Raphson algorithm. The computed 𝛽 can be used to estimate the risk 

scores in the Cox-PH model.  

 
2.5 Application of XGboost in feature selection 
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In order to reduce the number of features for cancer prognosis 

prediction, we employed XGboost for feature selection. XGboost is an 

ensemble of k regression trees (𝑇1(𝑋, 𝑌) … 𝑇𝑘(𝑋, 𝑌), where X is the 

features and Y is the corresponding patients’ risks (Chen and Guestrin, 

2016). If we supposed the multi-omics dataset containing n samples 

and p features, the multi-omics data of all the patients can be described 

as  𝒟 = {(𝑥𝑖 , 𝑦𝑖)} (|𝒟| = 𝑛, 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌) . The XGboost model 

with K trees was used to select the best features in predicting the 

patients’ risks as described by Equation (6).  

𝑦̂𝑖 = ∅(𝑥𝑖) = ∑ 𝑓𝑘
𝐾
𝑘=1 (𝑥𝑖), 𝑓𝑘 ∈ ℱ         （6） 

where  ℱ = {𝑓(𝑥) = 𝑤𝑞(𝑥)} (𝑞: ℝ𝑚 → 𝑇, 𝑤 ∈ ℝ𝑇) represents the 

space of the regression trees, q was the tree structure and T was the 

number of leaves in each tree. And each 𝑓𝑘 represented a regression 

tree structure q with weight w. This method was implemented by 

“XGboost” package in R (Chen, et al., 2015).  

 
2.6 Cross Validation 

The parameters of the above Cox-PH and XGboost models have been 

optimized by 10-fold cross validation to avoid over-training. Here, the 

patients were randomly divided into 10 folds, from which nine folds 

were used to train a model and the rest fold was used for test. This 

procedure was repeated for 10 times, and results were collected for 

model evaluation. We also performed multiple tests with different 

random seeds in dividing folds to test robustness of the method. 

 
2.7 Evaluating cancer prognosis prediction  

We evaluated the prediction of cancer prognosis by two measurements, 

Concordance Index (C-index) and log-rank p-value. The C-index 

represents the fraction of all pairs of individuals whose predicted 

survival times are correctly ordered based on the Harrell’s C statistics 

(Van Belle, et al., 2011). A C-index 0.5 means a random prediction, 

and the higher C-index means the better performance of the prediction. 

The log-rank p-value is obtained from significance of the risk scores in 

separating the patients into high-risk and low risk groups.  

After the prognosis prediction, patients were divided into high-

risk and low-risk groups by Cox-PH model. In these groups of patients, 

genes expressed significantly different were defined as associated with 

prognosis. The gene expression was analyzed by the “DESeq2” 

package (Love, et al., 2014) in R. The genes with log2 fold change >1 

and FDR <0.05, were considered as related to cancer prognosis. The 

enriched pathways of these genes were obtained by the online tool 

Metascape (http://metascape.org). The pathway databases used in this 

study including GO Biological Processes, KEGG Pathways, Reactome 

Gene Sets, Canonical Pathways and CORUM. The enriched pathways 

(p-value<0.05, a minimum count=3) were collected and grouped into 

clusters based on their membership similarities. The most significant 

pathway in statistics within a cluster was chosen to represent the cluster.  

 

3 Results 
3.1 Predicting cancer prognosis with multi-omics data 

For cancer prognosis prediction, high dimensional multi-omics 

features were put into Autoencoder networks to construct 200 

representative composite features. Based on the representative features, 

we utilized Cox-PH model to predict the prognosis risks of 12 types of 

cancers. As shown in Table 1, DCAP achieved C-index values between 

0.661 and 0.871, with an average of 0.711. The highest C-index was 

0.871 in prediction of KIRP. The lowest C-index 0.661 was achieved 

on prediction of PAAD. The P-values of subgroups estimated by 

DCAP were ranged from 3.0E-11 to 1.2E-5, with a median value of 

4.3E-8. By comparison, when we also employed k-means, an 

unsupervised method, to cluster the patients according to the same 

representative features generated by Autoencoder. The method, namely 

DCAP-kmeans, only produced an average C-index value of 0.646, 

which was 9.1% lower than DCAP. The corresponding P-values by 

DCAP-kmeans were also less significant with a median of 2.2E-4. 

Based on the subgroups estimated by DCAP and DCAP-kmeans, the 

survival curves were shown in Figure. 2. The curves by DCAP for the 

high and low risk groups were consistently separated better than those 

by DCAP-kmeans. 

 

Table 1. The C-index and P-values of prognosis prediction on 12 

cancers from the TCGA dataset by two methods  

 

We further detailed the contribution of each omics type in the 

DCAP method. As shown in Table 2, when using single type of omics 

data, mRNA performed the best with an average C-index value of 

0.683, and CNV had the lowest performance with C-index of 0.65. The 

methylation and miRNA ranked the 2nd and 3rd, respectively. 

Consistently, when excluding one omics type from the DCAP, mRNA 

caused the largest decrease of C-index from 0.711 to 0.687, while the 

smallest decrease was from an exclusion of CNV. These results 

indicated that mRNA plays the most important role to discriminate 

high risk patients while CNV makes the least contribution, and 

integrating multi-omics averagely improves 4.1% C-index for 

prognosis prediction over only using mRNA data. 

 

Table 2. The contribution of each omics data for cancer prognosis 

evaluation by using only one type of omics data or subtracting one type 

from the final model. 

Single Omics C-index Multi-omics C-index 

  All 0.711 

mRNA 0.683  -mRNA 0.687  

miRNA 0.665  -miRNA 0.695  

Methylation 0.673  -Methylation 0.693  

CNV 0.650  -CNV 0.701  

 

3.2 Comparing to other methods 
Table 3 compared DCAP with other state-of-the-art methods that all 
the methods only used mRNA data. Table 3 also showed the results of 

the DCAP using multi-omics data at last column. In comparison, the 

C-index obtained by three traditional methods (general Cox model, 
Cox model with lasso regularization, and Cox model with elastic net) 

achieved C-index values between 0.565 and 0.569, which were much 

lower than those obtained by some advanced methods in recent studies 
(Cox_DL, Cox_transfer, Cox_TRACE, Cox_cCMTL) (Cheerla and 

Gevaert, 2019; Wang, et al., 2017). These advanced methods obtained 

C-index values between 0.605 and 0.632, with an average of 0.620. The 
Cox_transfer achieved the highest average C-index value among these 

 C-index P-value 

DCAP DCAP-kmeans DCAP DCAP-kmeans 

BLCA 0.672 0.611 1.4E-10 1.2E-4 

BRCA 0.677 0.608 1.2E-5 0.0018 

CESC 0.742 0.632 7.2E-10 0.0011 

KIRC 0.760 0.669 1.0E-5 5.2E-4 

KIRP 0.871 0.725 2.0E-8 3.7E-5 

LIHC 0.744 0.708 6.5E-10 2.7E-5 

LUAD 0.673 0.617 9.2E-7 0.0058 

LUSC 0.670 0.624 4.3E-8 0.023 

PAAD 0.661 0.615 4.1E-6 3.3E-4 

SKCM 0.678 0.622 3.0E-11 1.4E-7 

STAD 0.675 0.616 2.6E-8 1.3E-7 

UCEC 0.716 0.706 3.8E-6 7.3E-6 

Average 0.711 0.646 - - 

Median 0.678 0.623 4.3E-8 2.2E-4 
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four methods. Nevertheless, the Cox_transfer is a transfer learning 

framework which requires downloading large numbers of other cancer 

datasets, and the prediction process would take large amount of 
computational time. By comparison, the highest average C-index value 

obtained by Cox-transfer is 0.632, which was 7.4% lower than DCAP-

mRNA (C-index=0.683), and 11.1% lower than DCAP (C-
index=0.711). As indicated by Table 3, DCAP-mRNA consistently 

performed better than all Cox methods only using mRNA information 

in all 12 cancer datasets, and DCAP consistently outperform DCAP-
mRNA by using multi-omics data. 

 

3.3 Selecting important features for prognosis prediction 

using XGboost 

DCAP constructed by all multi-omics features may contain redundant 

variables, which increase the computation time in real-world medical 

examination. In order to remove the redundancy, we employed 

XGboost to select features. The features were selected according to the 

importance computed by XGboost in fitting the patients’ risk scores. 

By using selected features, low redundant models were constructed. 

The number of features were given in Table 4. The largest number of 

used features was in BRCA dataset, where the XGboost selected 139 

features. And the least one was in UCEC, which only 61 selected 

features were used to re-establish the model. As shown in Table 4, 

using XGboost achieved C-index values between 0.602 and 0.829, with 

an average of 0.657. The differences between the C-index values 

obtained by DCAP_XGboost and DCAP were ranged from 4.82% to 

16.44% with an average of 7.58%. This indicated that although feature 

selection slightly reduced the accuracy of the prediction, the number of 

features used is greatly reduced.  

 

3.4 Cross-cancer prognosis prediction 

To explore the similarities between different cancers in cancer 

prognosis, we used the DCAP models trained on one cancer to predict 

the prognosis of another cancer. It should be noted that the tested 

cancer wasn’t included in training model. Figure 3 includes the C-index 

values of 12 cancer types by cross-cancer prediction. If the prognosis 

of two cancers were predicted mutually with a C-index value large than 

0.5 (a threshold commonly considered to be significant), these two 

cancers were defined cancer pairs sharing similarities in prognostic risk. 

In Figure 3, there were 23 cancer pairs have C-index values larger than 

0.5. Among these, the model trained on the KIRC achieved the largest 

C-index (0.68) in prediction the prognosis of BLCA. The value was 

even slightly higher than the model trained by the data from BLCA. On 

the other hand, the model trained on KIRC also had an accurate 

prediction on BLCA with a C-index of 0.60. These results were 

possibly due to that the bladder cancer and kidney cancer are both 

urinary system diseases (Gottardo, et al., 2007). Another example is on 

the prognosis prediction model constructed by the DCAP to predict the 

prognosis of LUAD, which achieved C-index value 0.6, and the 

reversed prediction achieved C-index value 0.58. It shows that the 

prognosis prediction model for the cancers in the same area are similar.  

 

 
Figure. 2 The survival curves for high and low risk patients group predicted by DCAP for 12 common cancers from the TCGA. The red line 

represents the high-risk patients and the green line represents the low risk-patients. The x-axis represents the survival time and the y-axis represents 

the survival probability. The solid lines were drawn by DCAP and the dotted lines (grey) were drawn by DCAP-kmeans. 

 

 

Table 3. Performance comparison of the DCAP and other existing related methods using C-index values in 12 cancers 

 Coxa Cox_lassoa Cox_elastic neta Cox_DLa Cox_transferb Cox_TRACEb Cox_cCMTLb DCAP_mRNAc DCAP 

BLCA 0.561 0.524 0.539 0.600 0.605 0.613 0.621 0.655 0.672 

BRCA 0.548 0.588 0.564 0.570 0.627 0.602 0.623 0.648 0.677 

CESC 0.572 0.576 0.554 0.670 0.679 0.592 0.630 0.709 0.742 

KIRC 0.601 0.629 0.608 0.610 0.670 0.691 0.704 0.711 0.760 

KIRP 0.745 0.740 0.749 0.650 0.803 0.794 0.804 0.837 0.871 
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LIHC 0.534 0.552 0.545 0.640 0.650 0.606 0.651 0.715 0.744 

LUAD 0.497 0.490 0.498 0.630 0.569 0.555 0.597 0.653 0.673 

LUSC 0.578 0.550 0.562 0.500 0.571 0.601 0.600 0.632 0.670 

PAAD 0.528 0.563 0.567 0.570 0.580 0.545 0.557 0.623 0.661 

SKCM 0.536 0.578 0.527 0.560 0.654 0.616 0.596 0.666 0.678 

STAD 0.463 0.499 0.486 0.630 0.554 0.485 0.527 0.661 0.675 

UCEC 0.637 0.542 0.576 0.630 0.626 0.644 0.655 0.681 0.716 

Average 0.567 0.569 0.565 0.605 0.632 0.612 0.630 0.683 0.711 

a: The results reported in reference (Wang, et al., 2017) 
b: The results reported in reference (Cheerla and Gevaert, 2019) 
c: DCAP using only mRNA 

 

 

 

Table 4 The prognosis prediction performances obtained by XGboost compared with the DCAP in different TCAG datasets 

 BLCA BRCA CESC KIRC KIRP LIHC LUAD LUSC PAAD SKCM STAD UCEC AVE 

Biomarkers 112 139 92 68 128 112 116 114 67 109 118 61 103 

DCAP_XGboost 0.602 0.623 0.700 0.635 0.829 0.705 0.625 0.610 0.637 0.631 0.606 0.674 0.657 

DCAP  0.672 0.677 0.742 0.76 0.871 0.744 0.673 0.670 0.661 0.678 0.675 0.716 0.711 

Difference 10.41% 7.97% 5.66% 16.44% 4.82% 5.24% 7.13% 8.95% 9.64% 6.93% 10.22% 5.86% 7.59% 

 

 

 

Figure. 3 The C-index values obtained by DCAP models in cross-cancer prognosis prediction. The DCAP models trained on one cancer are used 

to predict prognosis on another cancer. Figure.3 indicated that there were 23 pairs of cancers with similarity in predicting prognosis. All the cancer 

pairs are given in Table S2. 

 

3.5 Case study: Differential gene expression analysis in 

CESC 

DCAP classified the CESC patients into high-risk and low-risk groups. 

For these two groups of patients, we performed differential gene 

expression analysis. Totally, 161 genes were identified with FDR<0.05 

and log2 fold change >1, among which 116 genes are down-regulated 

and 45 up-regulated.  

The heat map of 161 genes in these patients was shown in Figure 

4(a). Among them, 22 genes were reported associated with cervical 

cancer in previous study (Tables S3). For example, the overexpression 

of CYP26A1 (p=7.6E-6) was found contributing to the development 

and progression of cervical cancer (Osanai and Lee, 2014); The MIA 

(FDR= 2.5E-3) was proved to be associated with the tumor progression 

and metastasis in the cervical cancer, and was presented as a new 

biomarker in cancer treatment (Sasahira, et al., 2016). Other 20 genes: 

CCL18, CD200R1, ZNF683, APOC1, IGF1, WT1, CXCL11, TRPA1, 

TNF, PPP1R3C, MMP3, TREM1, C1QTNF1, IL1B, STC1, IL1A, 

FGF13, TFPI2, IL12A and CXCL5 were also reported to be associated 

with the cervical cancer. Meanwhile, 84 genes (52.2%) were reported 

associated with other cancers. For example, the promoter region of 

GFRA3 shows significant hypermethylation in many different types of 

tumors, and it was found associated with survival and other 

clinicopathological parameters in cancer patients (Eftang, et al., 2016); 

PLXNA4 was reported as promoting tumor progression and 
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angiogenesis by enhancing VEGF and bFGF signaling (Kigel, et al., 

2011). Thus, 106 out of the 161 (65.8%) genes have been proven to be 

associated with cancer. 

For these 161 genes, we performed pathway analysis to identify 

their enriched pathways. Totally, 31 pathways were found to be 

significantly enriched by these genes. Figure 4(b) shows the percentage 

of enriched pathways in different function categories. The top eight 

most significant pathways were in the functional category related with 

immunology that is well known to be associated with cancer prognosis. 

All these immunology pathways were cancer microenvironment 

related. Additionally, there were three pathways about the cell growth, 

two pathways about the metabolism, one pathway associated with drug 

resistance, and one pathway about the malignant reproductive 

phenotype. Table S3 detailed all 161 identified genes and the 

corresponding enriched pathways. Table S4 listed all the differential 

expressed genes in 12 cancers.  

 
4 Discussion 
For a long time, people used single omics data to predict the cancer 

prognosis. However, these methods ignored the complementary effects 

and interactions between different omics data, and the results were easy 

to be affected by noise. The increase of multi-omics data in cancer 

study promoted the integration of multi-omics to predict cancer 

prognosis. The multi-omics data analysis could effectively alleviate 

problems encountered in single data analysis for cancer prognosis. 

Although several recent studies have been reported to integrate multi-

omics data in predicting cancer prognosis, the complex relationship 

between the omics data and the exponential increase of the 

computational complexity pose challenges to design suitable methods. 

In this study, we proposed DCAP to predict cancer prognosis by 

integrating the multi-omics data using Autoencoder. DCAP is different 

from the previous methods because it used Cox-PH model for 

classifying the patients, and the XGboost for feature selection. 

Application of DCAP in 12 common cancers achieved significant 

better performance than the previous approach for cancer prognosis 

prediction.   

One of the important applications of DCAP is on predicting the 

prognosis of patients in real world. In this study, the most informative 

features were selected to construct the prediction model by XGboost. 

The reduced number of features makes the clinical data collection 

easier and computing faster. Another application of DCAP is in 

identification of cancer driver genes. In this study, we show 161 

cervical cancer associated genes identified by DCAP. The reliability of 

these genes was tested by the literature searching. The results indicated 

that about 65.8% of the genes reported as cancer related previously.  

We tested the performances of DCAP in prediction of prognosis 

cross multiple cancers. Among 12 cancers, 24 cancers pairs were 

identified predicted effectively by the models developed based on other 

cancers. These results may implicate the similar mechanisms of cancer 

prognosis.  

In the future, we will further improve the model by combining 

multi-omics data with other biomedical data, such as medical images 

and clinical data. The comprehensive integration of multimodal data is 

helpful to reveal the relation of genotypic and phenotypic information, 

and thus helps to discover new biomarkers determining cancer 

prognosis. 

 

Figure. 4 The biological analysis performance in CESC dataset. (a). The heat map using differential expressed genes in CESC (p-value <0.05 and 

log2Fold >1); (b) The percentage of enriched pathways in different function categories in CESC.
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