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Abstract

Microbial network inference and analysis has become a successful

approach to generate biological hypotheses from microbial sequencing data.

Network clustering is a crucial step in this analysis. Here, we present a

novel heuristic flow-based network clustering algorithm, which equals or

outperforms existing algorithms on noise-free synthetic data. manta comes

with unique strengths such as the ability to identify nodes that represent

an intermediate between clusters, to exploit negative edges and to assess

the robustness of cluster membership. manta does not require parameter

tuning, is straightforward to install and run, and can easily be combined

with existing microbial network inference tools.

1 Introduction

As most environmental covariates can only explain a small fraction of the varia-

tion in microbial communities, other factors such as species interactions have

been suggested to play a large role [1]. A range of tools has become available

to predict such associations. Many of these tools can predict positive as well

as negative associations, with the exception of some approaches such as those

based on mutual information [2]. Consequently, most microbial networks can be

assigned edge weights that quantify the strength of the association. While the

exact value of such edge weights may differ depending on tool usage, the sign is

highly informative. Microbes can co-occur or exclude each other, as a range of

ecological interactions takes place [3]. Previous work on ecological networks has

demonstrated that the ratios of these interaction types can have implications for

biodiversity and ecosystem stability [4–6].

While ecosystem stability, biodiversity patterns and nestedness have been linked

to patterns of biotic interactions [5, 7, 8], such direct links have not been demon-
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strated for association networks. Unlike many ecological networks, microbial

association networks suffer from interpretational challenges as they cannot be ob-

served directly [9]. Despite these drawbacks, clusters from microbial association

networks have been shown to reflect important drivers of community composi-

tion [10,11]. However, traditional choices for network clustering algorithms are

unable to make optimal use of information contained in edge signs. For example,

the Markov Cluster Algorithm (MCL) uses random walks based on integers to

identify network clusters [12]. While this can be achieved by scaling values or

by adjusting the inflation parameter, the algorithm depends on edge density to

infer clusters and is therefore mostly suitable for networks with a low number of

negatively-weighted inter-cluster edges.

Alternatives have been developed that are able to take edge weight into account,

such as the Louvain method for community detection [13] and the Kernighan-Lin

bisection algorithm [14], an algorithm that optimizes separation of the network

into two parts. An entirely different approach is to scale node weights such that

negatively-weighted edges are either converted to positively-weighted edges or

have lower positive weights; this approach is implemented in WGCNA [15], a

pipeline for network inference and clustering. Although scaling approaches result

in a loss of sign information, such approaches can also yield satisfactory results.

In this work, we describe manta (microbial association network clustering

algorithm), a novel flow-based method for clustering of microbial networks that

can recover biologically relevant clusters. Moreover, we include a robustness

metric to quantify whether cluster assignments are robust to the high error rates

found in microbial association networks. Our method represents an alternative

to the popular flow-based MCL algorithm [12] that in contrast to MCL can take

optimal advantage of edge signs and does not need parameter optimization.
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2 Results

2.1 manta equals or outperforms other algorithms on syn-

thetic data sets

To evaluate performance of manta compared to alternative methods, we gener-

ated synthetic data sets using two different approaches. One is based on the

generalized Lotka-Volterra (gLV) equation, while the other was developed for

the evaluation of biclustering applied to gene expression data [16] (Fig. S2).

In the right circumstances, all algorithms achieve a separation around 0.5 when

clustering the two-cluster network (Fig. 1). However, this requires the use of a

positive-edge only subnetwork for the Louvain method, the WGCNA unsigned

approach (data not shown) and the Girvan-Newman algorithm; on the complete

network, these algorithms do not separate the nodes into two clusters or fail to

separate the true-positive clusters. Shifting the edge weights failed to resolve

this (Fig. S14). For MCL, separation depends on the parameter settings (Fig.

S3). This algorithm can cluster the complete network, but only if the inflation

parameter is set to 3 or to another uneven value. In this simulation, MCL with

default parameters was unable to recover the true-positive cluster assignment

(data not shown).

Strikingly, performance is improved for the Louvain method but not for the

Kernighan-Lin bisection when only positively-weighted edges are considered.

While the Louvain method takes edge sign into account during its optimization,

negatively-weighted edges appear to have a negative effect on separation. Finally,

the results for manta with weak assignments filtered suggests that the weak

assignments increase precision even in noise-free data sets.
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These environmentally motivated clusters may not necessarily reflect the true

positive assignments due to species interactions amplifying or obfuscating environ-

mental effects. Therefore, we also assessed performance on simulated biclusters

generated with FABIA (Fig. 2).

The FABIA simulation has characteristics that prevent some algorithms from

achieving good performance. Firstly, there is no underlying interaction network

from which abundances are generated. This has a distinct effect on network

topology; for example, the median approximated node connectivity of the gLV

networks is 1, in contrast to 55 for the FABIA networks [17]. This implies that

it is much harder to fragment the FABIA networks than the gLV networks.

As a result of this change in topology, no algorithm is able to generate cluster

assignments that have sparsity scores close to 1. However, not all algorithms are

equally affected by the change in topology. Especially affected are those networks

that assume a modular or scale-free structure, such as the Louvain method and

WGCNA. The reduced performance may be attributed to one of WGCNA’s

core assumptions: gene regulatory networks are assumed to be scale-free. Conse-

quently, WGCNA infers a correlation network and soft-thresholds this network

by choosing the matrix power such that scale-freeness is optimized. In the same

vein, the Louvain method optimizes the modularity of cluster assignments and

therefore assumes a modular structure within the data set.

The high node connectivity of the FABIA networks imply that no such modular

or scale-free structure is present unless negatively-weighted edges are filtered;

in that case, the Louvain method is able to return cluster assignments. Hence,

approaches that imply the presence of structure are sensible for the simula-

tion with an underlying interaction network, but may not be optimal for the

FABIA biclusters. Neither manta nor the Kernighan-Lin method make such
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assumptions. As with the environmentally-motivated simulation, Kernighan-Lin

bisection achieves some of the best results on this simulation. Hence, if users

suspect based on a preliminary analysis that their data set contains only two

clusters, this algorithm is likely to recover that separation regardless of the

underlying structure. However, manta has the advantage of a tunable weak

cluster assignment that can handle noisier data and less accurate networks and

can handle data with more than 2 clusters. For MCL, parameter settings were

not optimized on the FABIA data set. This dependency on parameter selection

becomes apparent on data with a different structure, as the algorithm fails to

recover clusters on positive-edge-only networks.

The trends described above appear to hold for 3 clusters (Supplementary Material

Figs. 7, 8), for increasingly permuted data (Supplementary Material Figs. 9-12)

and for networks generated from data with added multinomial noise (Fig. S13).

2.2 manta identifies biologically relevant groups in cheese

rinds

We demonstrate the real-world applicability of manta on a cheese rind data set

generated by Wolfe et al. [18]. In this study, the authors analyzed 137 cheese

rind communities and identified important community members. Moreover,

they found that community assembly of cheese rind communities was highly

reproducible, despite the large geographical distances between cheeses. This

can be explained at least partially by manipulation of the rind biofilm, as

cheesemakers can introduce an initial community through starter cultures and

then control the environment during the aging process. In their study on cheese

rinds, Wolfe et al. [18] originally demonstrated that most of the community

variation could be explained by the rind type. Indeed, most samples appear
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to cluster by rind type (Fig. 3B). The authors also found that samples from

washed cheeses could cluster closely with both other types of rinds; the principal

coordinate analysis also captures this phenomenon, as samples from washed

cheeses are dispersed across the entirety of the axes.

We ran manta on the association network to assess whether cluster analysis would

be able to recapitulate some of the drivers of community structure in the cheeses

(Fig. 3A). The network visualization of the data reveals some interesting trends,

as the network contains three clusters that correlate to moisture and taxonomy.

Cluster 1 is mostly comprised of Firmicutes and its summed abundances have

a strong negative correlation to moisture. In fact, several of these taxa belong

to the genus Staphylococcus, replicating the results by Wolfe et al. [18] as they

demonstrated that Staphylococcus sp. are abundant on dry natural rinds. In

contrast, cluster 1 mostly consists of Proteobacteria and correlates positively

with moisture.

While the clusters correspond well to the results obtained by Wolfe et al. [18],

manta is able to offer additional insight in community structure through its

separation of Actinobacteria. Wolfe et al. [18] demonstrate that abundance of

taxa belonging to this phylum is negatively correlated to moisture. However,

the clusters indicate that this correlation is more nuanced. Some of the taxon

abundances may reflect a gradual response to moisture rather than a strict

preference for dry or moist cheese rinds, as summed abundances for Actinobacteria

belonging to cluster 2 and 3 display a weak and non-significant correlation to

moisture rather than the strong negative correlation associated to cluster 1.

On this data set, manta identifies clusters that correspond well with the main

drivers of community composition in this study, while also identifying taxa
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that display intermediate responses to these drivers. Hence, this case study

demonstrates that cluster analysis can yield novel insights into community

structure.

2.3 Clustering global trends in coastal plankton commu-

nities

One advantage of manta is its ability to handle networks generated through

any type of inference algorithm (though conversion to undirected networks is

necessary in some cases). We demonstrate this through a time series analysis of

coastal plankton communities [19]. Martin-Platero et al. [19] collected samples

for 93 days and used this data to demonstrate that the communities changed

rapidly, but only when lower taxonomic ranks were taken into account. The

authors demonstrate WaveClust on this data set, a novel clustering method

based on wavelet analysis of longitudinal data. Consequently, WaveClust can

find taxon associations at low and high frequencies that are not visible without

a frequency decomposition. The authors evaluated their technique on data from

coastal plankton, where clusters identified by WaveClust corresponded to rapid

growth of specific groups of taxa. A network analysis of the Granger causalities

between clusters and metadata further demonstrated that the clusters could

be separated into two regimes, both corresponding with an initial warm period

followed by a rapid or gradual cooling period. These regimes are also visible in

the ordination plot, as the samples separate over time around day 215 (Fig. 4B).

We generated a network with eLSA and clustered this with manta (Fig. 4A).

manta is not designed for time series and therefore not able to detect frequency-

specific associations. However, manta does summarize larger trends in the

data. To demonstrate this, we first computed a network with eLSA, a microbial
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network inference algorithm that takes temporal shifts into account [20,21]. A

force-directed layout reveals that the eLSA network contains a large number

of anti-correlated nodes. These clusters correlate with multiple environmental

variables, thereby closely reflecting the two meta-regimes identified by [19]. The

vector for abundances of taxa belonging to cluster 1 aligns closely with the

chlorophyll concentration and wave height; in contrast, the total abundance of

taxa belonging to cluster 0 was highest in the start of the experiment, when

the seasonal warm period was still ongoing. The vector for taxa that could not

confidently be assigned to a cluster was also significant and is directly opposite of

the silicate concentration. The silicate concentration is not part of the originally

reported Granger causality model [19], but it does increase sharply around

the transition point between the two meta-regimes (days 240-260). Hence, the

weak assignments capture a set of taxa that become less abundant during the

transition period and do not correlate strongly to taxa in the assigned clusters.

3 Discussion

The manta algorithm is able to perform as well as or better than pre-existing

algorithms available for network clustering, while its ability to identify weak

cluster assignments can assist in defining cluster cores in networks that represent

a gradient rather than distinctly separated clusters. Our case studies demonstrate

how cluster assignments recapitulate main drivers of community composition.

A key limitation of manta is its inability to deal with networks with only a few

negative edges. In such cases, cluster assignments mostly separate central nodes

from peripheral nodes. However, manta was specifically developed for weighted

networks; when only a few edges have negative weights, treating the network

as unweighted or removing negatively-weighted edges will not affect network
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structure significantly. As demonstrated by the separation scores on positive-

edge only networks, algorithms like MCL and the Louvain method will then

perform adequately. Moreover, the clusters assigned by manta can accurately be

described as ‘the enemy of my enemy is my friend’; while there are algorithms

available that require nodes to be similar to nodes within the community [22],

manta has no such requirements and may assign nodes to a cluster even though

they are not necessarily positively associated to other nodes within that cluster.

Additionally, users should be aware that cluster assignments will only reflect

main drivers of community composition, as manta tends to generate a small

number of clusters separated by weakly assigned nodes. Separating a data set by

its main drivers (e.g. sample type or location) can help identify more interesting

clusters.

Although we chose to evaluate manta in the context of microbial networks in this

manuscript, manta may also be useful for clustering other types of networks with a

large number of negative edges. For example, even though WGCNA was originally

developed for gene expression data [15], it has also been used for microbial

data [10]. The ability of manta to identify clusters without any underlying

topological structure implies that it may be especially valuable in contexts where

a small-world or scale-free structure cannot be expected. Moreover, its lack of

sensitivity to parameter settings in this simulation demonstrates that manta is

applicable in situations where little is known about the structure of the analyzed

network (Supplementary Material Fig. 6).

4 Materials and Methods

Unless otherwise specified, computations were carried out in R v3.5.1 and

Python v3.6.3. Correlation networks were generated with the rcorr function
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from the Hmisc R library (version 4.2-0) [23]. Analysis of simulated data sets

were carried out in Python using NetworkX (version 2.1) [24], numpy (version

1.15.4) [25], pandas (version 0.21.0) [26] and scipy (version 1.2.0) [27]. Additional

analyses for case studies were carried out in R using igraph (version 1.2.4.1) [28],

phyloseq (version 1.26.1) [29] and vegan (version 2.5-5) [30]. In addition to

the specified versions of NetworkX, numpy and scipy, manta uses scikit-learn

(version 0.19.1) [31].

4.1 Clustering by graph traversal

We can represent a graph as an adjacency matrix, with each node in the graph

represented as a row and column in the matrix. A non-zero entry in row i and

column j represents an edge between node i and node j. In the case of an

undirected graph, the adjacency matrix is symmetric. The adjacency matrix can

be converted to a stochastic matrix by normalizing the values so each column

sums to one. Raising the stochastic matrix A to a power n through a matrix

product corresponds to the probabilities for random walks of length n to cross

each position in the matrix. However, since this loses the sign information, we

adopted a different approach that does not convert to a probability matrix.

Here, we define a scoring matrix, initialized from the weighted adjacency matrix.

In this case, each position in the matrix corresponds to the edge weights. Crucially,

the matrix product of the weighted adjacency matrix can take on negative values,

given an even n. The product can then be scaled by dividing all values by the

largest absolute value in the matrix (Equation 1).

M =
An

w

max(abs(An
w))

(1)

where
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• M is the scaled scoring matrix

• Aw is the weighted adjacency matrix

• n is the walk length, by default 2

In the MCL algorithm, the separating effect of the matrix operation is boosted by

raising each matrix entry to a power greater than one; afterwards, the matrix is

rescaled again to acquire a column stochastic matrix (each column sums to 1) [12].

In contrast, we designed the algorithm preserve positive and negative values:

every non-zero value m of scoring matrix M has its multiplicative inverse added

to it (Equation 2). After inflation, the matrix is normalized again by dividing

by the largest absolute value in the matrix. We also tested other variants, i.e.

raising each element to a power or taking the root; unlike the multiplicative

inverse, no variant was able to capture the cluster structure. While this step may

seem counter-intuitive as it reverses differences rather than reinforcing them,

values converge to -1 and 1 each time for the toy model (Fig. 5B).

m = l +
1

l
(2)

where

• m is an element of scoring matrix M after inflation before normalization

• l is the value of the element before inflation

The stopping condition for the algorithm is defined as a threshold ε for the

average of E (Equation 3). The matrix of fractional differences E is generated

from the scoring matrices of the current and the previous iterations; zero values

are filtered out to prevent issues with dividing by zero.

E = abs(
U −M
U

) (3)
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where

• E is the error matrix

• U is the updated matrix. Only positions with non-zero values are consid-

ered.

• M is the previous iteration of the matrix. Only positions with non-zero

values in U are considered.

When the mean average of E, scaled by a factor 100 for thresholding purposes,

reaches ε (e.g. 0.02), the algorithm is considered to have reached convergence.

With the scoring matrix M as input, we use agglomerative clustering on Euclidean

distances with Ward’s minimum variance method as a linkage function to define

clusters [31]. The optimization criterion for choosing the optimal cluster number

is based on the number of cut edges (Equation 4). For a graph G = (V, e) with

edge weights w, the sparsity score of clusters Ci = (Vi, ei) is calculated as a

function of the sum of the cardinalities of different sets of edges based on their

cluster assignment (Equation 4). Consequently, the sparsity score ranges from

-1 to 1, with -1 being the worst possible cluster assignment: in this case, all

negatively-weighted edges are placed inside clusters and all positively-weighted

edges outside clusters.

s =
1

|N |
(|e(w < 0) /∈ C|+ |e(w > 0) ∈ C|

−|e(w < 0) ∈ C| − |e(w > 0) /∈ C|)
(4)

where

• s is the sparsity score

• e is an edge

• w is the edge weight
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• C is the set of edges inside clusters

• N is the total set of edges in the graph

4.2 Clustering flip-flop states through a subsetting strat-

egy

As described by Van Dongen [12], classes of matrices exist that do not converge

to a stable state after repeated iterations. Instead, these matrices exhibit flip-flop

equilibrium states and switch to alternative configurations with each iteration.

While these flip-flop states represent rare cases when MCL is applied, the use

of signed graphs by manta strongly increases the probability of these states

appearing. For example, no convergence could be observed for larger matrices

such as the simulated co-occurrence network (Fig. 5C).

This relates to the notion of balance in signed graphs [32], where a graph is

only balanced if the product of edge weights in every cycle is positive. The

balance of the graph matters for the expansion step; we observed that the sign of

non-zero elements of the expanded scoring matrix never conflicts with the sign

of non-zero elements in the weighted adjacency matrix if the adjacency matrix

corresponds to a balanced graph (Supplementary Material). If the graph is not

balanced [33], manta carries out the previously described diffusion procedure on a

subset of nodes in addition to the complete network. However, only one iteration

is carried out on this subset, as any more iterations would lead to the appearance

of flip-flop states. Hence, this is similar to a belief propagation approach [34],

where the positions in the scoring matrix are equal to the products of positions

linked to adjacent edges. The propagation approach is complemented by an

analysis of any balanced components in the graph; if those are present, multiple

iterations of expansion and inflation are carried out on the balanced subgraph
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until convergence occurs. The scoring matrix used for cluster assignment is

reconstructed from the subsets, but only from positions in the subsets where the

sign of the value is consistent with the sign reported by most subsets. However,

the accumulation of high scores for central nodes prevents the agglomerative

clustering algorithm from identifying relevant clusters. Therefore, whenever

small clusters with a size below a user-specified threshold are detected, rows

and columns in the scoring matrix that correspond to these small clusters are

removed and clusters are calculated from the remaining values. The removed

nodes are then assigned to a cluster based on the average shortest path weights

to cluster members.

manta is in theory able to handle directed graphs; in practice, strict limitations

apply (Supplementary Material).

4.3 Weak assignments and robustness

The subsetting strategy is complemented by additional information generated

through flip-flopping iterations of the network. The limits of the scoring matrix

approach -1 and 1 during flip-flop iterations, but these limits are only approached

by a few diagonal values. We identified a unique set of nodes corresponding to

these diagonals: oscillators. The maximum of the diagonal in M approaches the

positive limit for these nodes, while one position in M in the same row/column

as the oscillator reaches the minimum. With the oscillators, manta can identify

shortest paths that assess whether nodes have edges that are in conflict with

their cluster assignment. For each shortest path n from node v to oscillator t,

the product δ of the scaled edge weights is calculated. The average of these
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products is then the mean edge product (Equation 5).

Pv,t =
1

|n|

n∑
i=1

δi(v, t) (5)

where

• P is the mean edge product

• v is a node

• t is an oscillator

• n is the set of shortest paths from v to t

• δ is the product of weights from one shortest path i

The node is considered to have a weak assignment if P meets one of the following

criteria:

• The sign of Pv,t is not positive for v assigned to the same cluster as t.

• P is smaller than a user-specified threshold.

The weak assignment does not check for nodes that belong to two clusters, but

rather filters out nodes that could not be assigned to any cluster, given that the

shortest paths were in conflict with the node’s positions in the scoring matrix.

In addition to identification of weakly assigned nodes, we developed two new

robustness measures to identify robust nodes and clusters (Fig. 5E). These mea-

sures are inspired by the reliability metric developed by Frantz and Carley [35]

and highlight parts of the clustering outcome that are disproportionately sensitive

to errors in network inference. Both measures are generated from rewired and

are reported as a confidence interval of Jaccard similarity coefficients. For the

cluster-wise robustness, Jaccard similarity scores are computed for the original
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clusters and their best permuted matches (identified through the maximum Jac-

card similarity coefficient). This demonstrates how sensitive cluster compositions

are to errors in network inference. In contrast, node-wise robustness does not

use the best-matching clusters but computes Jaccard similarity coefficients for

all clusters that contain the node in question.

These confidence intervals provide two different types of information. Firstly, a

low Jaccard similarity coefficient indicates that a cluster has a different composi-

tion given a few errors, or that a node is assigned to a cluster with an entirely

different composition given a few errors. Secondly, the width of the confidence

interval demonstrates how variable cluster assignments are; wide intervals for

node-wise robustness demonstrates that the node sometimes ends up in a similar

cluster, but can also be assigned to a different cluster.

4.4 Synthetic data sets

We carried out two types of simulations with 50 replicates per simulation. For the

first type, species interaction networks with a connectivity of 5% were generated

with the R package seqtime (version 0.1.1) . The effects of environmental

factors on growth rates were sampled from a normal distribution with μ=1. The

strengths of these factors were sampled from a normal distribution with μ=3. To

ensure that the cumulative effects of the environmental factors were unique to

each condition, one factor was set to be positively weighted while the remaining

two were converted to negative values. Data sets were then generated with the

generalized Lotka-Volterra equation, with growth rates of each organism adjusted

per environmental condition. As some interaction matrices caused population

explosions, these were re-generated until enough matrices were available for

which the generalized Lotka-Volterra equation could be solved. For details and

source code on these data sets, we refer to [9]; note that in contrast to this work,
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we did not enforce a scale-free structure in the interaction network. We generated

densely connected networks from the simulated species abundances with the

Pearson correlation and filtered these for significance (α=0.05). If the absolute

value of the largest growth rate for one environmental condition divided by the

mean growth rate was larger than 0.5, the species was assigned a specific cluster

identity. This ensures that cluster assignments are not punished for failing to

assign species barely affected by the environmental factors.

The second type of simulation uses an adapted version of the FABIA R package

[16], a package that generates simulated data for evaluations of biclustering

algorithms. We adapted the makeFabiaDatablocksPos function to generate

biclusters at set locations and used these locations to define true positive clusters.

4.5 Clustering algorithms

We compared manta to the Louvain method [13], MCL [12], WGCNA [15], the

Girvan-Newman method [36] and Kernigan-Lin bisection [14]; for an overview of

properties relevant to this manuscript, we refer to Table 1 and the Supplementary

Material. We used the following implementations of the algorithms:

• WGCNA: blockwiseModules function (version 1.66) [15]

• MCL: markov_clustering (version 0.0.5)

(https://github.com/GuyAllard/markov_clustering)

• Louvain method: python-louvain (version 0.11)

(https://github.com/taynaud/python-louvain)

• Girvan-Newman algorithm: networkx (version 2.1)

• Kernighan-Lin bisection: networkx (version 2.1)
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We supplied both the complete network and the positive-edge only network to

each algorithm except WGCNA and manta. WGCNA received the simulated

data set instead of the Pearson correlations. For its evaluation, only assigned

nodes were considered (i.e. nodes with poor correlations to cluster eigenvectors

were ignored). A range of parameter settings was tested for manta, the Louvain

method, the Kernighan-Lin algorithm and MCL (Supplementary Material Figs.

3-6). We set these parameters as follows:

• manta: ratio set to 0.8, edgescale to 0.3

• MCL: On complete networks, inflation was set to 3 and expansion to 15.

On positive-edge-only networks, inflation was set to 2 and expansion to 7.

• Louvain method: On complete networks, resolution was set to 0.1. On

positive-edge-only networks, resolution was set to 1.

• Girvan-Newman algorithm: no parameter settings.

• Kernighan-Lin bisection: On all networks, max_iter was set to 10.

Cluster assignments were evaluated as described by [37]. We report both the

complex-wise sensitivity (Sn), the cluster-wise positive predictive value (PPV),

geometrical accuracy (Acc) and the separation (Sep) (Fig. S1). We also report

the sparsity score (Equation 4). When a cluster size exceeded 80% of the total

number of assigned species, all measures except the sparsity score were replaced

with missing values to avoid obfuscation of the results. The opposite case - when

nearly all species were assigned to their own clusters - was also replaced when

the number of assigned clusters exceeded 50.

4.6 Cheese rind case study

We downloaded BIOM-formatted bacterial abundances of this cheese data set

(study ID 11488, [18]) from Qiita [38]. The data set was preprocessed by removing
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samples with fewer than 10000 counts, rarefying to even depth and filtering

taxa with less than 20% prevalence. The final data set therefore included 97

taxa and 337 samples. We used these abundances to construct a network with

CoNet; an initial multigraph was constructed with Pearson correlation, Spearman

correlation, mutual information, Bray-Curtis dissimilarity and Kullback-Leibler

dissimilarity. Only edges that were supported by at least 2 methods were retained.

The bootstrapping procedure further removed edges with p-values below 0.05,

where p-values were merged with Brown’s method and the Benjamini-Hochberg

correction for multiple testing was applied. For clustering with manta, edge

weights were converted to -1 or 1 based on the inferred sign. Additionally, we

inferred Spearman correlations of taxon abundances to moisture, where taxon

abundances were either summed per phylum or per cluster. manta was run with

default settings (edge scale and ratio set to 0.8).

4.7 Longitudinal coastal plankton case study

We downloaded the supplementary files from [19]. Taxon abundances were first

agglomerated at genus level; afterwards, we removed samples with fewer than

2000 counts and rarefied to even depth. Taxa with a sample prevalence below

30% were removed, with the total counts preserved by including them in a bin.

This resulted in a final dataset of 143 taxa and 260 samples. Removed samples

were given as columns with NA values, and the time series supplied to eLSA

therefore contained 90 timepoints with 3 replicates per timepoint. We then

ran eLSA (v1.0.2, Python v2.7.12) with simple replicate merging (averaging

replicates) and a delay of 5 [20,21]. For downstream analysis with manta, only

associations with p-values below 0.05 and q-values below 0.05 were taken into

account. The network was treated as undirected and edge weights were converted

to -1 and 1 prior to clustering. manta was run with default settings except for
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an edge scale of 0.2; with the default edge scale, nearly all nodes in the network

were determined to be weakly assigned.

For an additional analysis of the clusters, a principal coordinate analysis of the

metadata with Bray-Curtis dissimilarity was carried out. Technical replicates

were averaged and the metadata features supplied by [19] were used to fit

environmental vectors onto the ordination. Significance of these vectors was

assessed through permutation testing (1000 permutations), and only vectors with

a p-value below 0.05 (after Benjamini-Hochberg multiple testing correction) and q-

value below 0.05 were retained. To compare the direction of cluster abundances

to these vectors, all bacterial abundances were summed and the covariance

between these abundance vectors and principal component vectors estimated.

These covariance values significantly exceeded covariances of permuted bacterial

abundances (1000 permutations, p-value 0.001) and were used to construct cluster

abundance vectors; an arbitrary scaling coefficient was used for visualization

purposes.

5 Data Availability

All code for manta is available under the Apache-2.0 license at https://github.

com/ramellose/manta. An archived version of manta, together with code and

synthetic data used for writing the manuscript, is available from https://

zenodo.org/record/3407044#.XXtTcmZx1EY.
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Table 1

Algorithm

Cluster number 

criterion

Unassigned 

nodes

No edge 

filtering 

required

Preferred 

network type

No 

parameter 

tuning

manta

Optimize 

sparsity ✓ ✓ Undirected ✓

WGCNA signed

Dynamic 

branch cut ✓ ✓

None (constructs 

network) ✓

WGCNA unsigned

Dynamic 

branch cut ✓ ✗

None (constructs 

network) ✓

Louvain method

Optimize 

modularity ✗ ✓

Undirected; 

directed version 

possible ✗

MCL

Parameter-

dependent ✗

✓ if 

parameters 

optimized Undirected ✗

Girvan-Newman algorithm

User-

dependent ✗ ✗

Undirected; 

directed version 

possible ✓

Kernighan-Lin bisection Only bisection ✗ ✓ Any ✓

Overview of different clustering algorithms. Different properties of 

manta, WGCNA, MCL, Louvain community detection, the Girvan-Newman 

algorithm and the Kernighan-Lin bisection algorithm. The following 

properties are summarized: how algorithms choose a cluster number, 

whether they can leave nodes unassigned, whether they perform better 

with negatively-weighted edges removed and what types of networks 

they accept. Finally, we assessed whether algorithms required extensive 

parameter tuning before achieving optimal performance on simulated 

data. 
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Figure 1: Performance of network clustering tools on two environ-
mentally motivated clusters. Clustering performance was estimated on 50
independently generated data sets generated from random interaction matrices.
Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc) and separation
(Sep) were calculated as described by [37]. Sparsity of the assignment is a
function of the edge weights of intra-cluster versus inter-cluster edges (Equation
4). The numbers next to the sensitivity results indicate how many cluster assign-
ments met the following criteria for a particular algorithm: no cluster should
exceed 80% of the total number of nodes, and there should be fewer than 50
clusters. The manta algorithm was run with and without weak assignments,
while WGCNA was run with signed networks and a signed topological overlap
matrix and with unsigned networks combined with the unsigned matrix. For all
other algorithms, we provided the complete network in addition to the positive
edge-only network (indicated with +).
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Figure 2: Performance of network clustering tools on two biclusters
generated with FABIA [16]. Clustering performance was estimated on 50
independently generated data sets without an underlying topology. Sensitivity
(Sn), positive predictive values (PPV), accuracy (Acc) and separation (Sep)
were calculated as described by [37]. Sparsity of the assignment is a function of
the edge weights of intra-cluster versus inter-cluster edges (Equation 4). The
numbers next to the sensitivity results indicate how many cluster assignments
met the following criteria for a particular algorithm: no cluster should exceed 80%
of the total number of nodes, and there should be fewer than 50 clusters. The
manta algorithm was run with and without weak assignments, while WGCNA
was run with signed networks and a signed topological overlap matrix and with
unsigned networks combined with the unsigned matrix. For all other algorithms,
we provided the complete network in addition to the positive edge-only network
(indicated with +).
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Figure 3: Network analysis of a cheese data set [18]. A CoNet network
clustered with manta. Cluster identity is encoded in node shape, whereas node
colour represents phylum membership and node border width reflects whether
manta assigned weak cluster membership. The edge colour is mapped to the
sign of the association. B Principal Coordinate Analysis (PCoA) of Bray-Curtis
dissimilarities for sample compositions. The colours indicate the different cheese
rind types: bloomy cheeses are inoculated with fungi, while washed cheeses
are repeatedly washed with a brine solution. In contrast, natural rinds are not
disturbed during aging. C Spearman correlation of moisture to summed taxon
abundances. Correlations for the phylum Actinobacteria are highlighted with
blue.
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Figure 4: Network analysis of longitudinal 16S data collected from
coastal plankton [19]. A eLSA network clustered with manta. Cluster identity
is encoded in node shape, whereas node colour represents phylum membership.
The edge colour is mapped to the local similarity score. B Principal Coordinate
Analysis (PCoA) of Bray-Curtis dissimilarities for sample compositions, overlaid
with environmental vectors and cluster abundance vectors. Significance of these
vectors was assessed through permutation testing; only significant vectors are
shown. Cluster abundance vectors were scaled independently from environmental
vectors; abundances of taxa that could not be assigned to a cluster were included
in the ’Cluster weak’ vector. The axis values are the eigenvalues of the ordination
axes.
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Figure 5: manta pipeline. A Toy graph with two clusters separated by
negatively-weighted edges. B Scoring matrix for A across six iterations. Black
and white values reflect -1 and 1 respectively. After six iterations, the scoring
matrix reaches convergence. C Scoring matrix for a 100-species co-occurrence
network simulated with the generalized Lotka-Volterra equation. Unlike B, this
matrix reaches a flip-flop state. A few values in the matrix reach -1 or 1 while
all other values oscillate near 0. D manta uses agglomerative clustering on the
scoring matrix to assign each node to a cluster. For flip-flopping matrices, the
scoring matrix is generated from subsets of the complete network. E A fraction
of the original network is rewired to generate permuted cluster assignments with
identical degree distributions. Robustness of cluster assignments can then be
estimated by comparing the Jaccard similarity of cluster memberships cluster-
wise or node-wise.
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