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Abstract

Under the current standard of care, individuals with HIV take three antiretroviral drugs simultaneously.
Triple-drug combination therapies limit HIV drug resistance evolution, because viruses resistant to a subset
of the cocktail are suppressed by the remainder of the drugs and should not complete replication and spread.
Despite this, reanalysis of HIV genetic data shortly after triple drug therapies became available (1990s and
2000s) reveals ongoing drug resistance in patients on three-drug therapies. In disagreement with expected
patterns of evolution in three-drug therapy-treated HIV populations, resistance usually evolves one mutation
at a time in a semi-predictable order. We argue here that these surprising observations can be explained using
a model that divides the human body into compartments (for example, the gut, lymph nodes and brain). If
one drug reaches a compartment that the other two drugs cannot, this creates a single-drug compartment
that can select for single-drug resistant viruses. Such viruses can potentially become resistant to additional
drugs, if they migrate to another compartment where a second drug is present, and so on. In addition to a
compartment model, for some drug combinations, an alternative model of time-heterogeneity due to short
half-lives combined with sub-optimal adherence could also explain the observations. We discuss how these
lessons from HIV drug resistance evolution may be useful for other systems.

Introduction

In the 1980s and 90s, many individuals with HIV
died after their virus became resistant to all avail-
able treatments. Triple-drug therapies, introduced in
1995, were expected to prevent the evolution of drug
resistance and subsequent treatment failure. While
these therapies saved many lives (Hogg et al., 1999;
Walensky et al., 2006), drug resistance evolution con-
tinued well into the 2000s. Indeed, we argue that
what actually happened in the years following the in-
troduction of triple-drug cocktails represents an en-
during mystery, one that has been in plain sight this
whole time. Resistance rates did fall, but each year,
a substantial number of patients on triple-drug ther-
apy continued to develop drug resistance (Lee et al.,
2014; Rocheleau et al., 2018).

The assumption behind using three-drug thera-
pies was that only a triple mutant would allow the
virus to replicate in its presence. But does this as-
sumption reflect how resistance actually emerged in

patients - three mutations at once? This HIV mystery
only deepened when resistance rates continued to fall
well into the mid-2010s, even though the number of
drugs making up the drug cocktails often remained
the same, raising a second question: How did we
ultimately curb drug resistance in HIV with triple-
drug treatments, without understanding how resis-
tance was evolving in the first place? Although this
unappreciated mystery of HIV’s resistance to triple-
drug cocktails is largely a historical one, we believe
that solving it could help us address the problem of
drug resistance better in the present.

We argue here that the mystery of drug resis-
tance evolution in patients on triple-drug therapy
can be explained using a model that divides the hu-
man body into compartments (for example, the gut,
lymph nodes and brain). If one drug is able to reach a
compartment that the other two drugs can’t, this cre-
ates a single-drug compartment. Virus in the single-
drug compartment can become resistant to the drug
it encounters there; this virus can then potentially
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become resistant to a second drug, if it migrates to
another compartment where a second drug is present,
and so on. In addition to the compartment model, an
alternative explanation of time varying drug levels
rooted in short half-life drugs and sub-optimal ad-
herence could also explain the observations for some
therapies.

To illustrate these arguments, we present data on
drug resistance from the mid-1990s through the first
decade of the 2000s and then explore how those data
fit the predictions of the compartment model. Ulti-
mately, by using the compartment model to answer
key questions about drug resistance in HIV, we be-
lieve it will be possible to extract valuable lessons that
the medical community can use to continue fighting
drug resistance across systems.

Even as HIV drug resistance remains a critical
problem in many parts of the world without access
to extensive second and third-line therapies (Gupta
et al., 2012), the topic is also highly relevant for re-
search on other systems. For example in cancer treat-
ment, where new studies are showing the importance
of spatial structure (Raab et al., 2016; Shi et al., 2014;
de Bruin et al., 2013; Heindl et al., 2015; Carmona-
Fontaine et al., 2013) and the availability of new tar-
geted drugs is making combination therapy ever more
feasible (e.g., Carter et al. (2016); Lopez and Banerji
(2017); Abramson and Arteaga (2011)).

How can resistance to multiple
HIV drugs evolve one mutation
at a time?

Today, we treat HIV with multiple drugs simultane-
ously. The rationale is that even if a virus acquires
a single drug resistance mutation, that virus will not
be able to spread within the body, because it will
still be suppressed by one or more other drugs. A
virus should need to acquire multiple resistance mu-
tations before it is able to replicate in the presence of
multiple drugs. How a fully resistant pathogen could
emerge has been examined in modeling studies fo-
cused on HIV and other pathogens treated with mul-
tiple drugs simultaneously (Lipsitch and Levin, 1998;
Rosenbloom et al., 2012; Kim et al., 2014; Moreno-
Gamez et al., 2015). In the case of HIV, it is often
claimed that three drugs are necessary to inhibit re-
sistance evolution, because double drug-resistant mu-
tants are expected to pre-exist within large viral pop-
ulations (Ribeiro et al., 1998).

However, this understanding does not fully cap-
ture the dynamics observed in intra-patient HIV pop-

ulations. A large body of research shows that drug
resistance has evolved in many patients on triple-drug
cocktails, especially in the early years of these cock-
tails. For example, a 2006 study that followed 600
HIV-infected individuals over 3 years found a sub-
stantial risk of acquired drug resistance in every year
of treatment, ranging from roughly 10% in year 1 to
just over 3% in year 2 and 3 (Margot et al., 2006).
Larger cohort studies have also documented a sub-
stantial risk of drug resistance among patients taking
triple-drug therapies (Gill et al., 2010). Triple drug
therapy does not always prevent the evolution of drug
resistance.

Even more puzzling, evidence suggests that drug
resistance mutations accumulate one at a time in
HIV, even when a treatment contains multiple drugs
(Pennings et al., 2014; Feder et al., 2016; Williams
and Pennings, 2019). Such step-wise evolution should
be impossible, according to the conventional wisdom.
Why wouldn’t the other drugs keep a single-resistance
mutant in check? In addition, step-wise mutation
also happens in patients treated with just two drugs
(Picard et al., 2001), which is even more surprising,
as double drug-resistant mutants are likely already
present in the body (Ribeiro et al., 1998). Therefore,
the conventional reasoning that a fully drug-resistant
virus must appear before resistant virus can success-
fully replicate in the body appears to be an oversim-
plification.

In the sections that follow, we will take a closer
look at how exactly resistance to multiple drugs
evolves in patients with HIV on triple-drug therapies,
using the patterns that emerge across different types
of regimens to learn about the evolutionary processes
responsible.

Order of resistance mutations on pro-
tease inhibitor-based treatments is se-
quential and predictable

Until 1995, all HIV drugs were nucleoside analog
reverse transcriptase inhibitors (NRTIs). In 1995,
the FDA approved the first protease inhibitor (PI),
saquinavir (Baker, 1995). In the industrialized world,
treatments based on a PI and two NRTIs dramat-
ically reduced mortality and morbidity due to HIV
(Palella Jr et al., 1998). Yet, these treatments were
far from evolution-proof.

For example, in a 2004 study with 653 partici-
pants, half (n=327) were randomized to treatment
with lamivudine (3TC) + stavudine (D4T) + nelfi-
nanvir (NFV), where NFV is the PI and 3TC and
D4T are the NRTIs (Kempf et al., 2004). Within the
first 2 years of therapy, drug resistance evolved in 79
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of the 327 patients (24%). Among these patients, 35
acquired 3TC resistance (11%), 35 acquired 3TC re-
sistance and NFV resistance (11%), and 8 acquired
resistance to all three drugs (3TC, NFV and D4T,
2%). One patient acquired 3TC and D4T resistance,
but not NFV resistance (0.1%). There were no pa-
tients with only D4T or only NFV resistance. These
data strongly suggest that on 3TC+D4T+NFV treat-
ment, drugs fail in a particular order: 3TC resistance
arises first, then NFV and D4T resistance (see Figure
1A).

To determine if the trend of a predictable muta-
tion order held for other PI-based combination ther-
apies, we analyzed a large data set (around 7000

patients) encompassing many different treatments
(assembled by the Stanford HIV drug resistance
database, Rhee et al. (2003); Feder et al. (2016)) to
identify the resistance profile of patients with just
one drug resistance mutation. In this data set, a mu-
tation conferring resistance to the NRTIs almost al-
ways occurred first when PI-based treatments were
used; specifically, we observed the mutation M184V
or M184I (shown in dark blue in Figure 1B), which
confers resistance to 3TC, in around 90% of the cases.

These findings indicate that in PI-based combi-
nation therapies, drug resistance mutations occur in
stepwise, predictable order.

3TC+ABC+LPV (n = 11)
3TC+AZT+LPV (n = 12)
3TC+AZT+SQV (n = 11)
3TC+D4T+LPV (n = 72)
3TC+AZT+NFV (n = 74)
3TC+AZT+IDV (n = 44)
3TC+D4T+IDV (n = 19)
3TC+D4T+NFV (n = 36)
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Figure 1: A. Resistance to the drug lamivudine (3TC) emerges first among patients with HIV taking the
triple-drug cocktail nelfinanvir (NFV) + 3TC + stavudine (D4T) (n=327). NFV is a protease inhibitor
and D4T and 3TC are nucleoside reverse transcriptase inhibitors. Source: Kempf et al. (2004). B. HIV
populations treated with first-line protease inhibitor (PI)-based combination therapies possessing a single
drug resistance mutation are most frequently resistant to 3TC or FTC via M184VI. Each bar represents a
group of patients treated with a given PI-based combination therapy, and each sub-bar represents a patient
with a single drug resistance mutation. Sub-bars are colored according to the identity of the single resistance
mutation (PI drug resistance: yellow, M184VI conferring resistance to 3TC/FTC: dark blue, NRTI drug
resistance: light blue). Sample sizes for each treatment are given by the therapy names. Data source: Feder
et al. (2016). Abbreviations: abacavir, ABC; indinavir, IDV; lamivudine, 3TC; lopinavir, LPV; nelfinanvir,
NFV; stavudine, D4T; saquinavir, SQV; zidovudine, AZT.
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Order of resistance mutations on
non-nucleoside reverse transcriptase
inhibitors-based three-drug treatments
is also sequential and predictable

To determine whether the pattern of sequential and
predictable resistance mutations was a general one
in HIV, we investigate resistance to an additional
class of drugs, the non-nucleoside reverse transcrip-
tase inhibitors (NNRTIs). In 1996, the first NNRTI,
nevirapine (NVP), was approved (Bowersox, 1996).
NNRTIs, or “non-nukes,” had a different mode of ac-
tion than other reverse transcriptase inhibitors then
available, and triple reverse transcriptase-inhibitor
therapy became an alternative to the existing PI-
based treatments. In the 2000s and 2010s, NNRTI-
based therapy became a very common HIV treat-
ment (Rocheleau et al., 2018), but like all previous
treatments, the NNRTI-based treatments were not
evolution-proof.

In a study published in 2009 (Hoffmann et al.,
2009), Hoffman and colleagues followed South
African patients treated with one of two common
NNRTI-based regimens: zidovudine (AZT)+ 3TC +
efavirenz (EFV) (95% of patients) or AZT + 3TC +
nevirapine (NVP) (5% of patients). We focused on
patients taking the AZT+3TC+EFV regimen, where
EFV is the NNRTI and AZT and 3TC are NRTIs. In
this study, 68 patients who experienced virologic fail-
ure had their virus genotyped. At the first genotyping
following virologic failure, 24 patients had no resis-
tance mutations at all (treatment failure was likely
due to lack of adherence), 19 patients had resistance
to EFV, 20 patients had resistance to both EFV and
3TC, and 3 patients had resistance to all three drugs
(EFV, 3TC, and AZT). Just 2 patients had resistance
to 3TC only. No patients had resistance to AZT,
AZT+3TC, or AZT+EFV. These data suggest that
among patients on this NNRTI-based treatment, HIV
evolved resistance in a particular order: resistance to
EFV arose first, followed by resistance to 3TC and
then AZT (see Figure 2A).

This example suggests that when someone is
treated with AZT+3TC+EFV, NNRTI resistance
(i.e., resistance to EFV) usually evolves first. Consis-
tent with this prediction, in the Stanford HIV Drug
Resistance Database dataset (Rhee et al., 2003; Feder
et al., 2016), resistance to the NNRTI evolved first
in about 80% of cases in patients taking an NNRTI-

based regimen (red in Figure 2B), whereas 3TC resis-
tance occurred first in only about 15% of cases (dark
blue in Figure 2). Note the stark contrast with PI-
based treatments, in which 3TC resistance almost
always occurred first. Resistance to the other NR-
TIs in NNRTI-based therapies, such as AZT, aba-
cavir (ABC), D4T, and tenofovir (TDF) (light blue
in Figure 2B), rarely occurred first. For some of the
NNRTI-based therapies, the pattern was quite ex-
treme. For example, for patients on EFV + TDF +
emtricitabine (FTC), NNRTI resistance evolved first
in each of the 31 cases in the Stanford data set.

These findings from a different class of drugs con-
firm that our model of drug resistance evolution in
HIV must be able to explain why resistance evolu-
tion is (1) ongoing (2) stepwise and (3) predictable.

Surprises from the data presented

Collectively, the data we have presented yield three
main surprises: (1) Drug resistance evolution was
quite common in the 1990s and 2000s, even when
treatment was with three drugs; (2) resistance evolves
in a sequential manner (first one mutation, then a
second, then a third, rather than two or three muta-
tions at the same time); (3) the order of mutations
is predictable; for example, on PI-based combination
therapy, 3TC mutations almost always occur first.
The predictability of the order of mutations cannot
be explained by different mutational target sizes or
mutation rates. For example, the product of the mu-
tation rate and target size is two times higher for PI
resistance than for 3TC resistance (1.7 · 10−4 for PIs
such as NFV and LPV, vs 8 · 10−5 for 3TC, Supple-
mental Methods), yet 3TC resistance occurs first in
about 90% of the cases (Figure 1B). The 3TC muta-
tion M184V is also very costly for the virus, which
should make it unlikely to be present as standing
genetic variation. How, then, can we explain these
patterns?

When three drugs are present at suppressive con-
centrations, resistance mutations should not spread
in the body. Therefore, to explain the patterns of
ongoing drug resistance evolution in HIV, we must
invoke some heterogeneity in drug levels. This het-
erogeneity may manifest in space (incomplete pene-
tration to all tissues) or in time (via differences in
drug half lives). We discuss these two hypotheses be-
low.
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Figure 2: A. Resistance to the drug efavirenz (EFV) emerges first among patients with HIV taking the
triple-drug cocktail EFV + lamivudine (3TC) + zidovudine (AZT) (n=68). EFV is a non-nucleoside reverse
transcriptase inhibitor and AZT and 3TC are nucleoside reverse transcriptase inhibitors. Source: Hoffmann
et al. (2009). B. HIV populations treated with first-line non-nucleoside reverse transcriptase inhibitor
(NNRTI)-based combination therapies possessing a single drug resistance mutation are most frequently re-
sistant to the NNRTI. Each bar represents a group of patients treated with a given NNRTI-based combination
therapy, and each sub-bar represents a patient with a single drug resistance mutation. Sub-bars are colored
according to the identity of the single resistance mutation (NNRTI resistance: red, M184VI conferring re-
sistance to 3TC/FTC: dark blue, NRTI resistance: light blue). Sample sizes for each treatment are given
by the therapy names. Data source: Feder et al. (2016). Abbreviations: abacavir, ABC; efavirenz, EFV;
emtricitabine, FTC; lamivudine, 3TC; nevirapine, NVP; stavudine, D4T; tenofovir, TDF; zidovudine, AZT.

Lessons from a spatially-varying
bodily compartment model

It is well known that HIV drugs do not penetrate
throughout the body uniformly, and that penetra-
tion profiles differ among individual drugs and or-
gans (Else et al., 2011; Letendre et al., 2008). Be-
cause penetration profiles differ between drugs, there
may be parts of the body (e.g., brain, lymph nodes)
that are only reached by one drug, even when some-
one is treated with three drugs (see Figure 3). These
so-called single-drug compartments provide a space
where a virus resistant to one drug can replicate. A
viral particle in such a single-drug compartment with
the right drug resistance mutation can establish an
actively replicating viral population in the compart-
ment. One of us (Pennings) and colleagues previ-
ously proposed a model (Moreno-Gamez et al., 2015)
that showed that unequal penetration profiles can the
evolution of drug resistance on combination therapies

much more likely. Here, we show how that model fits
the patterns described thus far.

We start with an example of how the compart-
ment model may work for one of the HIV treat-
ments discussed above: 3TC+NFV+D4T. If some-
one is treated with 3TC, NFV, and D4T (see Figure
1A), 3TC may be present in the brain at high lev-
els, because of its superior penetration, but the other
two drugs are likely not (Letendre et al., 2008) - NFV
because of its low penetration, and D4T because of
its very short half-life. This difference in drug lev-
els between 3TC and the other two drugs creates a
compartment, the brain, in which a virus needs to
evolve resistance to only one drug, 3TC. We have
good reasons to believe that this compartment actu-
ally exists (Letendre et al., 2008; Browne et al., 1993),
and this model explains why resistance to 3TC pre-
dictably arises before resistance to the other drugs.

The drug compartment model predicts a con-
stant risk that a 3TC-resistant virus emerges (from
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Figure 3: Schematic explaining how HIV population structure within the body and the spatio-
temporal heterogeneity of drug penetration can create conditions conducive to the evolution
of drug resistance. In patients treated with three drug therapies, drug levels may vary either in time
(A.) or through space (B.). A. Drug concentrations decay at different rates over time, including to below
suppressive concentration (dashed line). Missed doses combined with short half-lives may result in temporal
monotherapy (red box), wherein two of the three drugs do not suppress the virus. B. Different drugs
reach different compartments (here, the brain, the blood and the gut) above or below the level needed to
suppress viral replication (dashed grey line). This results in spatial monotherapy (red box), whereby some
compartments of the body (such as the brain) contain active concentrations of only a single drug, facilitating
the evolution of resistance to that drug.

the reservoir or from a drug sanctuary), invades
the single-drug compartment, and creates a self-
sustaining, replicating viral population in the brain.
Because the HIV compartments in the human body
are linked by migration, the resistant viral popula-
tion in the brain may create enough viral particles
to be noticed in a routine viral load measurement of
the blood. In fact, if virus from blood plasma is se-
quenced, it may be almost 100% 3TC resistant.

Once resistance to 3TC is established in the brain,
this viral population also constitutes a risk for two-
drug resistance, because it needs only one additional

mutation to become resistant to a second drug. If
a compartment exists that contains only two drugs,
such as 3TC and NFV (but not D4T), then the most
likely next evolutionary step would be for the virus
to acquire resistance to NFV and invade the two-
drug compartment. While we do not have direct evi-
dence for the existence of a 3TC/NFV compartment,
because D4T is not an effective drug (Rosenbloom
et al., 2012), most of the body may effectively be
the 3TC/NFV compartment (see Fig 1A). Finally, if
the patient remains on the same treatment, a viral
particle may acquire the third mutation, making it
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resistant to all three drugs in the treatment (this is
also seen in Fig 1A).

The model in which 3TC has a better penetration
profile than the other two drugs explains all three of
our surprising observations about drug resistance on
triple-drug therapies: it explains how drug resistance
can evolve, why it evolves by one mutation at a time,
and that it evolves in a predictable order - namely
in response to the best-penetrating drug first. Intu-
itively, one might think that resistance will first arise
in response to the “worst” drug in a cocktail. How-
ever, in the compartment model, a desirable property
–high penetration– actually makes 3TC vulnerable
to resistance. Evidence shows that 3TC penetration
is better than NFV penetration for both the central
nervous system (CNS) (Letendre et al., 2008)) and
the male genital compartment (Lambert-Niclot et al.,
2011) and that NFV has generally poor penetration
(Aweeka et al., 1999). As a result, counterintuitively,
the best way to prevent evolution of 3TC resistance is
not to target the shortcomings of 3TC, but to replace
one or both of the other two drugs with agents that
have better penetration profiles. Historically, intro-
ducing highly penetrant lopinavir/ritonavir in 2000
resulted in exactly this effect, as we will describe later
in this paper.

Lessons from a temporally-varying
model

Alternatively, if multiple drugs applied have different
half-lives, this could also lead to only a single drug
(the one with the longest half-life) being present and
thus a scenario in which single drug resistance muta-
tions could be selected. Therapies are normally dosed
in such a way that all three drugs should be present at
high enough concentrations at all times. However two
factors complicate this: 1) some drugs have very short
half-lives and 2) adherence varies among patients. If
a patient is put on a complicated regimen requiring
multiple drug doses per day and is not perfectly ad-
herent to the treatment, this can lead to single-drug
time periods.

We believe that this model with time-varying drug
levels could explain the patterns we observe in treat-
ments with unboosted PIs. We return to the example
of 3TC+NFV+D4T treatment. First, it is important
to know that D4T is not a very potent drug (Rosen-
bloom et al., 2012). Second, NFV is dosed twice a
day and has a very short half-life. These two things
together mean that if a patient misses a dose, 3TC
may quickly be the only potent drug present, and a
virus that is resistant to 3TC may be able to spread.
A modeling study should be conducted to determine

whether relative timescales of drug decay and viral
replication could allow the spread of a 3TC resistant
mutant during 3TC+NFV+D4T treatment with im-
perfect adherence (Rosenbloom et al., 2012).

While single-drug time periods plausibly explain
the observed data when some component drugs are
not totally suppressive and others have short half-
lives, such explanations cannot explain the failure un-
der NNRTIs.

Unlike PIs, NNRTIs have particularly long half-
lives of days. Treatment interruptions of a few days
are long enough for the other drugs to leave the sys-
tem, but short enough for NNRTIs to remain present
at a high level. However, several trials found no effect
of interrupting NNRTI-based treatment for 2 days ev-
ery week for 72 weeks (Reynolds et al., 2010) or 3 days
a week for 48 weeks (De Truchis et al., 2017). Con-
sistent with this, another clinical trial did not find
an effect of “covering” the monotherapy tail of inter-
rupted NNRTI-based treatment on the risk of drug
resistance evolution (Fox et al., 2008).

On the other hand, long NNRTI treatment inter-
ruptions of several weeks, which allow for substan-
tial viral population growth, do promote drug resis-
tance evolution (Pennings, 2012). Population growth,
rather than the single-drug time periods created by
the long half-lives of NNRTIs, have outsize impact on
the risk of drug resistance evolution.

As long as the viral population is suppressed
ahead of the NNRTI combination treatment interrup-
tion, there is insufficient virus for evolutionary forces
to operate efficiently over the relevant timescales of
single-drug time periods.

Taken together, these two factors (heterogeneity
in time or space) we believe reflect plausible mecha-
nisms through which ongoing resistance evolution has
occurred. Different drug failure mechanisms could
explain the patterns of ongoing resistance in differ-
ent types of drug combinations. Also, both mecha-
nisms could be happening at once. When penetration
of drugs into tissues is poor and drugs are declining
at different rates, this could create a scenario where
some time-spaces (as opposed to simply times or
spaces) create the environment to select for single
drug resistance. More work needs to be done to un-
derstand how these factors interact.

Below we discuss some difficulties of applying
these models:

Issues with identifying and measuring
compartments

In principle, the compartment model combined with
a comprehensive understanding of where and when
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drugs penetrate should allow us to make predictions
concerning the order in which drug resistance muta-
tions occur. In practice, understanding where, when,
and how certain drugs reach parts of the body is com-
plicated (Vendel et al., 2019). Indeed, different stud-
ies have measured different relative penetrances of
drugs into the tissue versus the plasma.

Systematic differences among people complicate
our understanding of drug penetrance. For exam-
ple, treatment with other drugs (e.g., TB drugs) may
affect the half-lives and penetration of HIV drugs
(López-Cortés et al., 2002). Genetic variation among
patients may also mediate penetrance (see Apos-
tolova et al. (2015)). For example, EFV concentra-
tions are higher in people with certain mutations, and
these mutations are more common in Black/African
groups. Different adherence patterns could hypothet-
ically make different mutational orderings more or
less likely as well. A recent paper suggests that the
combination of imperfect adherence with imperfect
penetration makes sequential drug resistance evolu-
tion likely in an in vitro system (Lustig et al., 2019).

In addition, studies of drug penetrance may not
be quantifying the correct factors to help us under-
stand where drug resistance can emerge. First, the
administered version of a drug may be at a different
concentration than the active form (Dumond et al.,
2008). Second, the intracellular concentration of a
drug, rather than the tissue concentration, may me-
diate effectiveness, requiring that we understand not
only whether drugs reach a tissue, but the rates at
which they are transported into cells (Bazzoli et al.,
2010; Dumond et al., 2008). Third, we may not
be investigating penetrance in the correct compart-
ments, or at the correct spatial scale. For example,
there can be considerable heterogeneity of drug pene-
trance within a single lymph node or gut cross section
(Thompson et al., 2015, 2019). Fourth, many stud-
ies report tissue drug concentrations relative to the
blood plasma, without considering the actual tissue
drug level and its inhibitory effect on the virus (Else
et al., 2011). Even comparing tissue drug concentra-
tion to the IC50 does not capture the full dynamics
of drug concentrations within the body (Shen et al.,
2008).

In conclusion, predicting evolutionary escape in a
spatio-temporally heterogeneous body on the basis of
available drug penetrance data is not straightforward,
even when data are consistent with the existence of
single-drug compartments. An exciting possibility is
that if drug penetration influences the order of mu-
tations, we may be able to use data on the order of
mutations to learn about relative drug penetration.

Could small fitness differences between
mutations explain the mystery of or-
dered and predictable resistance muta-
tions?

Here we explore an alternative explanation and why
we believe this explanation cannot explain all features
of the data. We ask if differences in the selective ad-
vantage conferred by different classes of mutations
can cause ongoing stepwise and predictably-ordered
evolution. For example, NNRTI mutations may oc-
cur first simply because they result in higher viral
fitness than NRTI mutations (See Fig 2), or because
they carry less of a fitness cost. A number of lines
of evidence suggest that increased fitness in the face
of three drugs cannot account for the emergence of
drug-resistant viruses.

Consider the ability of a virus to replicate. If its
absolute fitness value is 1, it will maintain its popula-
tion size. If the absolute fitness value is above 1, the
population will grow. If it is below 1, the population
will shrink until extinct (Perelson et al., 1997). Note
that HIV populations do not go extinct as the viral
population is sustained latently as provirus in T cells
and can reactivate at a later time. Note, however,
fully suppressivetherapy halts continual rounds of vi-
ral replication (Kearney et al., 2014; Brodin et al.,
2016; McManus et al., 2019).

In patients on triple-drug therapy, when there is
no drug resistance, we typically see almost no wild-
type (WT) virus in the blood because the absolute
fitness of the wildtype virus is below 1. Even if a
virus has a single resistance mutation, its absolute
fitness will still be below 1 in the context of mul-
tidrug therapy, and its population size will shrink,
although possibly more slowly than the the popula-
tion without the virus. Although differences in the
rate of population decline could lead to the apparent
increase in frequency of a drug resistance mutation,
these shrinking populations are not expected to im-
pact the viral reservoir (Brodin et al., 2016) and will
not lead to virological failure.

In addition, our knowledge viral dynamics inside
the body is inconsistent with the idea of a resistant
mutant with higher fitness out-competing the wild-
type virus already present. Typically, when virologic
failure occurs (i.e., treatment fails because the virus
has started replicating again), we observe either the
WT virus replicating (when the patient has not been
adherent to the treatment) or a drug-resistant virus
replicating, but almost never both. When drug resis-
tance is present, the majority of the virus sampled is
typically drug resistant (see, e.g., Williams and Pen-
nings (2019)). This suggests that rather than drug-
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resistant viruses slowly replacing WT viruses, drug-
resistant viruses are instead replicating in a niche that
was not previously occupied by any virus.

In short, though most explicit and implicit mod-
els of adapting populations include a mutant out-
competing the WT organism, this does not seem to
be what is happening when drug resistance arises in
HIV infection. Instead, it appears that the mutant
drug-resistant virus is able replicate in a part of the
body where (or during a time when) the WT virus
cannot replicate, which is only possible if there is a
space (or time) in which only one drug is present at
a high level.

Spatial-temporal heterogeneity
can also explain why acquired re-
sistance rates have fallen since
1996

Having proposed the compartment model as an ex-
planation for why acquired drug resistance rates were
a significant problem at the beginning of the highly
active antiretroviral therapy (HAART) era, in the
mid 1990s, we would now like to propose the model as
an explanation for a second phenomenon: the grad-
ual fall in acquired drug resistance rates that occurred
between 1996 and the mid-2010s. The nature of the
treatments did not change over this period: NNRTI-
and PI-based triple-drug therapies continued to be
used almost exclusively (Tseng et al., 2015). How-
ever, we hypothesize that several subtle but key im-
provements in treatment either reduced overall viral
replication or reduced the size of single-drug com-
partments in patients, limiting opportunities for drug
resistance to evolve.

Above, we predicted that, according to the com-
partment model, the best way to curb resistance
is to improve the penetrance of the “worst” drugs
in a cocktail. In particular, for the combination
3TC+NFV+D4T, we predicted that replacing NFV
or D4T with better-penetrating drugs would decrease
the rate of resistance to 3TC and the rate of acquired
resistance in general. As it happens, replacement of
the low-penetration drug NFV is exactly what oc-
curred historically. In 2000, the first generation of PIs
(including NFV) was replaced by a second generation
of PIs “boosted” by ritonavir (Tseng et al., 2015).
These boosted PIs featured better penetration and
longer half-lives (Capparelli et al., 2005) For exam-
ple, ritonavir-boosted lopinavir (LPV/r) consistently
reaches a level above the 50% inhibitory concentra-
tion in cerebrospinal fluid (CSF) (Capparelli et al.,

2005), thereby likely shrinking the size or number of
compartments in which 3TC exists alone. The effect
of replacing NFV with LPV/r is clear in the clinical
trial we described previously (Figure 1A and Kempf
et al. (2004)). In the NFV arm of the study, 79 of
327 patients developed some type of drug resistance
(24%) within 2 years, whereas in the LPV/r arm,
only 19 of 326 did (6%) (Figure 1); this represents a
reduction in treatment resistance of 76%. The four-
fold lower rate of drug resistance evolution among pa-
tients on the LPV/r regimen suggests that the com-
partments of the body that were only reached by 3TC
became four times smaller when physicians replaced
NFV with LPV/r in their patients’ drug cocktails.

NRTI drugs also significantly improved over time.
Before 1995, NRTIs were the only drug class we had
for treating HIV. Now, in 2019, most people in high-
income countries start treatment with regimens based
on integrase inhibitors, but NRTIs are still a part
of those regimens. While we argued earlier that the
long half-lives of NNRTIs probably don’t contribute
much to the risk of drug resistance evolution, drugs
with very short half-lives likely pose a risk for resis-
tance evolution to their companion drugs when they
don’t reach high enough levels to suppress the virus.
The initial NRTIs had short half-lives (AZT, 1987,
0.5-3 hrs (Retrovir FDA factsheet, Revised: 2008);
didanosine (DDI), 1991, 1.5 hrs (Videx FDA Fact-
sheet, 1999); D4T, 1994, 0.8-1.5 hrs (Stavudine FDA
factsheet, 2008)). Newer NRTIs had longer half-lives
(3TC, 1995, 5-7 hrs (Empivir FDA factsheet, Re-
vised: 2017); TDF, 2001, 17 hrs (Viread FDA fact-
sheet, 2012b); FTC, 2003, 10 hrs (Emtriva FDA fact-
sheet, 2012a)). Other improvements followed. In
2004, the FDA approved Truvada, a pill that com-
bined FTC and TDF, two of the long half-life NRTIs,
which made it possible for patients to take a single
NRTI pill once a day. Then, in 2006, the FDA ap-
proved Atripla, which combines FTC and TDF with
efavirenz (EFV), an NNRTI with an even longer half-
life (40 hours). Atripla was the first pill that con-
tained all three drugs that traditionally make up a
HAART regimen in a single pill that can be taken just
once a day. Simpler and less frequent dosing makes it
easier for patients to adhere to treatment regimens,
and the longer half-lives of NRTIs mean that miss-
ing a dose becomes less problematic with regard to
resistance. Combined, these improvements led to a
12-fold reduction of the risk of acquired HIV drug
resistance per month from 1.7% in 1997 to 0.13% in
2008 (Gill et al., 2010).
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Conclusion

HIV was once the poster child for the rapid evolution
of drug resistance. While HIV drug resistance evolu-
tion remains an enduring problem in many parts of
the world, it has become rare in high-income coun-
tries. In this paper, we answer some questions about
how this transition happened, thereby expanding the
lessons the medical world can take away from the ex-
ample of HIV. Although multiple simultaneous drugs
were necessary for the successful treatment of HIV in
the 90s and 2000s, we show how these triple-drug
therapies still allowed the evolution of drug resis-
tance. In theory, the reasoning behind why combina-
tion therapy should work is correct, but in practice,
single drug compartments may occur inside the body,
allowing step-wise evolution of drug resistance.

One thing is clear: in numerous and diverse health
problems (cancer, malaria, bacteria, viruses), drug
resistance is an evolutionary problem. In some cases
(cancer, HIV, hepatitis C virus), resistance evolves
again and again within individual patients. In other
cases (malaria, TB), resistance evolves de novo a
limited number of times and then spreads from pa-
tient to patient. For antibiotic resistant bacteria
other than Mycobacterium tuberculosis, the situation
is even more complex, because plasmids, transposons,
and individual resistance genes can be transferred
within and between bacterial species. Mutation, re-
combination, and horizontal gene transfer create vari-
ants that selection can than work on.

Perhaps the most obvious lesson that we can learn
from HIV is that, in all of these systems, the stories
of how resistance evolves are unlikely to be simple. In
particular, spatial or temporal heterogeneity, whether
within the patient or at the level of a patient popula-
tion, probably makes each of these cases much more
complex than the common textbook explanations of
resistance evolution would imply (as illustrated by
recent work on spatial structure in the lungs of TB
patients Strydom et al. (2019)). In addition, the en-
vironments in which these systems evolve are tempo-
rally heterogeneous because of drug half-lives, dosing
schedules, and imperfect adherence. For these rea-
sons, we believe that the fight against drug resistance
can best proceed with evolutionary biologists on the
team. While there is excellent work being done on
the theory of drug resistance and experimental evo-
lution is being investigated in lab settings, there is
also tremendous opportunity and need for evolution-
ary biologists to work in the messy world of cohort
and clinical trial data.

Population genetics has a rich ensemble of tools
that can be put to use on complete genetic data, to

understand how and why drug resistance evolves. For
example, population genetic models of evolutionary
rescue from standing genetic variation could be fit to
explain treatment outcome differences among tumors
of different volumes (Shiao et al., 2017). Studies of ge-
netic variation among resistant and susceptible bac-
terial strains may be used to better understand the
role of de novo evolution and transmission in drug re-
sistance across medically relevant bacteria (Croucher
et al., 2014).

In conclusion, the problem of drug resistance is a
persistent one across many diseases. It only makes
sense to learn from our rare successes, and the study
of ever-more-effective HIV regimens constitutes just
such a success. Although much remains to be learned
about the evolution of drug resistance in HIV, what
we do know reminds us to be skeptical of simple
stories and enthusiastic about incremental improve-
ments in drugs.
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Methods

To determine the first mutation for a variety of ther-
apies, we analyzed data taken from Feder et al.
(2016) representing Sanger-sequenced HIV popula-
tions treated with a broad range of regimens be-
tween 1989 and 2013. Each patient was treated with
exactly one regimen to select against patients with
pre-existing resistance before the onset of therapy.
Ambiguous underlying nucleotide calls (i.e., non-
A/T/C/G calls) were interpreted as population poly-
morphisms among all possible resulting amino acids.
For example, an AAS residue (AAC/AAG) was
recorded as an asparagine/lysine polymorphism, but
an AAY (AAC/AAT) was recorded as asparagine.
When multiple sequences were available for the same
patient at the same time point, polymorphisms were
also recorded.

We then determined the number of drug re-
sistance mutations by comparing sequences to the
WHO list of surveillance drug resistance mutations
(DRMs). DRMs were only counted if HIV sequences
contained residues conferring resistance to the ther-
apy with which they were treated. Two classes
of DRMs were recorded: 1) polymorphic DRMs in
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which some calls supported the DRM and some sup-
ported a non-DRM and 2) non-polymorphic DRMs,
in which all calls supported the DRM.

To determine the first DRM, we retained only pa-
tients with exactly one polymorphic DRM or exactly
one non-polymorphic DRM and any number of poly-
morphic DRMs (under the assumption that fixed mu-
tations occurred before polymorphic mutations). For
patients with sequences taken at multiple time points,
we retained the first sample meeting the conditions
above.

Calculating target size and total muta-
tion rate per drug

We based our calculations on the consensus sub-
type B sequence provided by the Los Alamos HIV
Database (https://www.hiv.lanl.gov/content/index),
the WHO list of resistance mutations, and mutation
rates estimated in Abram et al. (2010). For each rele-
vant amino acid position in protease and reverse tran-
scriptase proteins, we determined all possible one-
step mutations. For all one-step mutations, we deter-
mined whether they led to resistance to the relevant
drugs according to the WHO list. We then summed
the mutation probability for all possible one-step mu-
tations that lead to resistance to a certain drug. The
resulting total mutation probabilities ranged from
4 · 10−5 for TDF to 2 · 10−4 for LPV.
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