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Abstract. Kinetic models of metabolism (kMMs) provide not only a more accurate method for 22 
designing novel biological systems but also characterization of system regulations; however, the 23 
multi-‘omics’ data required is prohibitive to their development and widespread use. Here, we 24 
introduce a new approach named Kinetic OPTimization using Integer Conditions (KOPTIC), 25 
which can circumvent the ‘omics’ data requirement and semi-automate kMM construction using 26 
in silico reaction flux data and metabolite concentration estimates derived from a metabolic 27 
network model to return plausible reaction mechanisms, regulations, and kinetic parameters 28 
(defined as ‘reactomics’) using an optimization-based approach. As a benchmark for the 29 
performance of KOPTIC, a previously published, four-tissue (leaf, root, seed, and stem) metabolic 30 
model of Arabidopsis thaliana was used, consisting of major primary carbon metabolism 31 
pathways, named p-ath780 (1015 reactions, 901 metabolites, and 780 genes). Data required for 32 
KOPTIC was derived from an Arabidopsis’ lifecycle of 61 days. Nine separate regulator restriction 33 
sets (allowing multiple solutions) defining KOPTIC runs hypothesized 3577 total regulatory 34 
interactions involving metabolic, allosteric, and transcriptional regulatory mechanisms (with 35 
nearly 40 verified by existing literature) with a median fit error of 13.44%. Flux rates of most 36 
KOPTIC fits were found to be significantly correlated with (93.6% with 𝑝𝑝 < 0.05) and 37 
approximately 1:1 (𝑟𝑟 = 0.775, 𝑝𝑝 ≪ 0.001) to the input time-series data. Thus, KOPTIC can 38 
hypothesize maps the regulatory landscape for a specific reaction, out of which the most relevant 39 
regulatory interaction(s) can be defined by the desired growth/stress conditions or the desired 40 
genetic interventions for use in the creation of kMMs. 41 
 42 
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The use of synthetic biology for the engineering of uni- and multi-cellular organisms to enhance 44 
desirable phenotypes in microbe, plant, and animal systems, is well established and is capable of 45 
affecting the lives of millions of individuals, such as in the case of artemisinin production in yeast 46 
or enhancing nutritional value of agricultural products [1][2]. Synthetic biology techniques have 47 
been applied to many plant systems such as tomatoes [3], rice [4], and maize [5] to produce 48 
enhanced phenotypes often with application to human nutrition [2], pest resistance [5], and 49 
resilience to abiotic stresses [6]. Many of these efforts focus on a genetic understanding and 50 
manipulation of the plant system (or plant tissue) in question, relying on intuitive interventions 51 
such as changes in regulation, insertion of new gene(s), and deletion of gene(s) from competing 52 
pathway(s) [2][5][6]. Alternatively, computational approaches based on stoichiometric genome-53 
scale models (GSMs) of metabolism can be used to predict non-intuitive genetic interventions [7] 54 
by accounting for gene-protein-reaction (GPR) links, but also understand how a gene knockout, or 55 
a change in gene regulation, can affect the entire system through tools such as Flux Balance 56 
Analysis (FBA) [8], OptKnock [9], and OptForce [10]. Hence, these tools were reported to lead to 57 
enhanced mechanistic understanding for exploring the system-wide effects of genetic interventions 58 
especially in a microbial or a fungal system, such as E. coli [10], cyanobacteria [11], and yeast 59 
[12] as well as various plant species such as Arabidopsis [13][14], maize [15], sorghum [16], 60 
sugarcane [16], rapeseed [16], and rice [17]. 61 
 62 
Stoichiometric models are simpler (compared to kinetic models) steady-state representations of 63 
cellular metabolism and are widely used, since microbial cellular factories are often operated 64 
assuming a pseudo-steady state. This is a reasonable assumption since the time scale of metabolic 65 
reactions (fractions of seconds) is much quicker than other biological processes (such as 66 
transcription and translation which are on the order of minutes) [18]. Genetic interventions gained 67 
from stoichiometric modeling, while successful in many microbial applications, sometimes fail 68 
due to limitations of not incorporating reaction mechanisms, associated regulation, and enzyme 69 
metabolite concentrations [8][19]. Kinetic models of metabolism (kMMs) make up for the 70 
shortcomings of stoichiometric models at the expense of increased computational cost and ‘omics’ 71 
knowledge/data requirements. While kMMs should generate the same steady-state reaction fluxes 72 
as stoichiometric models, they are also able to model unsteady-state operation [18]. The ‘omics’ 73 
knowledge requirement includes transcriptomics, proteomics, and metabolomics to create accurate 74 
kMMs. If sufficient ‘omics’ data is available, deterministic or simulation-based kinetic modeling 75 
methods may be used, which while potentially accurate, form a system of stiff ordinary differential 76 
equations and require reasonable in vivo-relevant estimates for all kinetic parameters [7]. Another 77 
approach is Jacobian-based modeling, which makes local linear approximations of the kinetic 78 
system and can be used to calculate the time-scale of reactions and model stability from the 79 
eigenvalues of the Jacobian matrix. However, Jacobian-based modeling is more computationally 80 
complex than deterministic and simulation-based models and relies on some, if not all, in vivo 81 
kinetic parameters being known, in addition to knowledge of reaction mechanisms [7]. Since in 82 
vivo kinetic parameters are difficult to measure, Monte Carlo simulation-based modeling 83 
(particularly ensemble modeling), which estimates kinetic parameters, has become popular for the 84 
development of kMMs for prokaryotic organisms [7][18][19][20][21]. In this method, each 85 
reaction is decomposed to its elementary mass action steps, and then Monte Carlo simulation is 86 
used to produce a large number (ensemble) of kinetic parameter sets. These sets are pruned by 87 
training data sets until the best kinetic parameter estimate set is selected. Furthermore, no in vivo 88 
kinetic parameters are required a priori [19][20]. Despite this advantage, Monte Carlo methods 89 
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are limited since the reaction mechanisms including the modes of regulations must be known [7] 90 
or in vivo mutant flux data must be available to verify hypothesized regulation [22].  91 
 92 
It is this limitation (a priori knowledge or in vivo reaction flux data) which this current work seeks 93 
to address with an optimization-based tool capable of addressing the lack of in vivo knowledge of 94 
reaction mechanisms, regulations, and kinetic parameters, collectively hereafter defined as 95 
‘reactomics’, which serve as a barrier to kMMs development for many species. This tool 96 
introduces a new approach for developing kMMs which is based on the use of stoichiometric 97 
models of metabolism, called Kinetic OPTimization using Integer Conditions, KOPTIC. As proof 98 
of validity of the underlying concept, KOPTIC is applied to a stoichiometric model of Arabidopsis 99 
thaliana, hereafter Arabidopsis, which was reconstructed in our recent study [23] as a model plant 100 
[13] and a higher order biological system. Although Arabidopsis has the necessary ‘omics’ data to 101 
create a small core-metabolism kinetic model, this biological system is chosen because its 102 
metabolic regulation is well-studied, allowing ‘reactomic’ predictions made by KOPTIC to be 103 
verified. The KOPTIC approach, illustrated in Figure 1, uses Mixed Integer Non-Linear 104 
Programming (MINLP) and the data from the 61 time-points (described previously) to predict 105 
Arabidopsis ‘reactomics’. By circumventing the in vivo data requirements and automating kinetic 106 
model generation, KOPTIC can be used for rapid development of kMMs for poorly-studied 107 
organisms (those organisms with annotated genomes but little or no ‘reactomics’ data), thus 108 
broadening the usefulness of kMMs.  109 
 110 
In the current work, a core stoichiometric metabolic model of Arabidopsis which was 111 
reconstructed in our recent study [23], consisting of major primary carbon metabolism pathways 112 
was used as the basis for the application of KOPTIC. This multi-tissue Arabidopsis stoichiometric 113 
model, referred to as p-ath780 has 1033 total (and 633 unique) reactions (R), 157 total (and 325 114 
unique) metabolites (M), and 780 genes (G). The model p-ath780 consists of four tissue-level 115 
models of metabolism: leaf (R: 537, M: 479, and G: 703), root (R: 130, M: 126, and G: 250), seed 116 
(R: 428, M: 411, and G: 529), and stem (R: 160, M: 140, and G: 250) [23]. The tissues were linked 117 
and their respective environmental interactions described by a Flux Balance Analysis (FBA)-based 118 
[8][23] optimization framework [24][23]. These four tissues represent the core plant system with 119 
their essential metabolic roles: the root for nutrient uptake; the leaf for photosynthesis; the seed 120 
for metabolite storage and high metabolic investment; and the stem for metabolic transport, thus 121 
logically connecting these tissues. The optimization framework makes use of biologically relevant 122 
constraints on respiration, growth, photosynthesis, maintenance, senescence, and tissue ratios 123 
[25][26][27][28][29][30] in order to simulate flux values at each hour across the selected 61 day 124 
Arabidopsis lifecycle by using the p-ath780 model. 125 
 126 
KOPTIC predicts ‘reactomics’ of each reaction using reaction type information from the 127 
stoichiometric model, such as specific number of substrates (single or dual) and reversibility 128 
(reversible or irreversible) and assumes three possible metabolite regulatory mechanisms for each 129 
reaction type: activation, inhibition, or no regulation. Kinetic equations derived for each reaction 130 
type combined with each metabolite regulatory mechanism, a total of 12 kinetic equation forms 131 
(see Supplemental File 1 for derivation of these equation forms), were then used by KOPTIC to 132 
fit each reaction from p-ath780 to a single kinetic equation form. This was done by minimizing 133 
the error between previously described time-point data and reaction flux predicted for that time 134 
point by a single kinetic equation form. The optimal solution for each reaction includes a 135 
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‘reactomic’ prediction as a mechanism, regulation, and kinetic parameters. To study various 136 
regulation mechanisms in silico, nine different regulatory restriction sets were devised and applied 137 
in nine separate KOPTIC runs. Each restriction set is a combination of one location and one 138 
identity restriction (see Table 1). These restrictions applied to metabolic regulators in separate 139 
KOPTIC runs allow for multiple ‘reactomic’ predictions for some reactions. Thus, the nine 140 
KOPTIC runs returned 3577 ‘reactomic’ predictions for the 594 reactions for which at least one 141 
solution was found. These solutions are hereafter referred as ‘fits’. 142 
 143 
KOPTIC fits had a median error of 13.44% and particularly had low error when the regulating 144 
metabolite was limited to the same tissue as the reaction it acted upon (see Methods for details). 145 
To verify the qualitative accuracy of KOPTIC regulatory predictions, several predictions were 146 
compared to regulatory mechanisms reported in literature. We verified metabolic regulation 147 
predictions which include the ferredoxin/thioredoxin mechanism (fit errors ranging from near 0% 148 
to 37%), inhibition of ribose-5-phosphate isomerase by water-rich conditions (fit errors of 0.11% 149 
and 2.24%), and transcriptional regulation by nutrients such as sucrose, ammonia, and phosphate 150 
(fit errors ranging from 0.7% to 20.4%). These comparisons to experimental evidences 151 
demonstrate KOPTIC’s ability to predict correct metabolic regulations in response to abiotic stress 152 
and nutrient availability. In summary, this work shows how the KOPTIC approach can be used to 153 
semi-automatically (largely automated workflow), accurately (low fitting error), and correctly 154 
(correct regulatory mechanism) predict a variety of in vivo ‘reactomics’ through an in silico 155 
workflow that requires no foreknowledge of an organism’s in vivo ‘reactomics’ or ‘omics’ data.  156 
 157 
Kinetic OPTimization using Integer Conditions (KOPTIC). KOPTIC’s first fit criteria for 158 
determining the ‘reactomics’ of each reaction was the reaction type as specified by the p-ath780 159 
model based on the number of substrates (single- or dual-substrate) and reversibility of the reaction 160 
(irreversible or reversible). For each of these four reaction types, three possible metabolite 161 
regulatory mechanisms were assumed plausible: activation, competitive inhibition, or no 162 
regulation. Kinetic equations were then derived for each reaction type combined with each 163 
metabolite regulatory mechanism to yield 12 unique kinetic equation forms (see Supplemental File 164 
1 for derivation of these equation forms). KOPTIC then uses MINLP optimization to attempt to fit 165 
each reaction from p-ath780 to a single kinetic equation form by minimizing the sum of squared 166 
error between the previously described time-point data and reaction flux predicted for that time-167 
point by a single kinetic equation form of the 12 possible. The optimal solution includes 168 
‘reactomic’ predictions as a reaction mechanism, regulation, and kinetic parameters are returned 169 
for each reaction for which at least one optimal solution was found. For each equation form, the in 170 
silico concentration of the regulator metabolite is multiplied by one or more 𝐾𝐾𝑚𝑚(𝑗𝑗) terms, which 171 
can take values ranging from 1𝑒𝑒−7 to 1𝑒𝑒5, such that the magnitude of a metabolite’s in silico 172 
concentration is of little or no importance in determining an optimal regulator for a given reaction. 173 
Instead, the pattern of a metabolite’s in silico concentration compared to a given reaction’s flux 174 
rate is of importance in determining whether a metabolite is an optimal regulator. More details on 175 
the formulation and creation of KOPTIC can be found in the Methods section and in Supplemental 176 
File 1.  177 
 178 
To study various reaction mechanisms in silico, nine different regulatory restriction sets were 179 
devised and applied in nine separate KOPTIC runs. Each restriction set is a combination of one 180 
location and one identity restriction type (see Table 1). The location restriction types were same 181 
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compartment (‘sc’), same tissue (‘st’), and any tissue (‘at’), while the identity restriction types 182 
were no restriction (‘nr’), no proton or water regulation (‘npw’), and no proton, water, or energy 183 
molecule regulation (‘npwe’). These restriction sets were applied to metabolic regulators in 184 
separate KOPTIC runs in order to allow multiple ‘reactomic’ prediction for some reactions, to 185 
explore how regulation changes by conditions, and to study multiple regulatory mechanisms for a 186 
single reaction. In order to make ‘reactomic’ predictions for as many model reactions as possible 187 
in a reasonable time, each of the nine separate KOPTIC runs (distinguished by its regulatory 188 
restriction set) had ten parallel instances, each starting with a reaction 10% of the way further 189 
through the model than the previous instance (so that each instance only predicts ‘reactomics’ for 190 
10% of the model reactions for full coverage). The results of the ten parallel instances for each 191 
reaction set were concatenated into summaries of results for each of the nine reaction sets 192 
(Supplemental File 1) after a runtime of 168 hours (or 7 days) for each instance.  193 
 194 
There were three KOPTIC results possible for each reaction: i) a ‘reactomics’ prediction, ii) no fit 195 
found, and iii) no fit attempted. The no fit found category occurs if the solver was unable to find a 196 
solution due to no solution space existing or the inability to find the solution space or heuristic 197 
termination with no suitable solution. The no fit attempted category is due to KOPTIC being unable 198 
to fit the reaction in question when the reaction has more than two reactants (53 reactions) or has 199 
no flux during the lifecycle of Arabidopsis (61 reactions serve as in-model documentation and are 200 
intentionally blocked). Therefore, KOPTIC could fit at most 891 reactions. From all the results 201 
obtained from all the restriction sets, there are 3577 unique kinetic equation fits for 594 of 891 202 
total reactions (66.7%). To be defined as a unique kinetic equation fit, at least one of kinetic 203 
parameters, metabolic regulator, and kinetic mechanism needs to be unique. The complete set of 204 
these results are included in Supplemental File 2. 205 
 206 
Figure 2B shows the average number of KOPTIC results (any output for a reaction) and number 207 
of ‘reactomic’ predictions for runs containing the same location or identity restriction type. As 208 
shown in Figure 2B, the ‘any tissues’ (‘at’) restriction type returned on average 100 fewer kinetic 209 
equation fits, even though it had approximately the same number of total reactions returned. This 210 
is likely because the binary solution space is significantly restricted by the latter two restriction 211 
types, specifically activator (Γij) and inhibitor (Ω𝑖𝑖𝑖𝑖) variables (see Supplemental File 1 for details). 212 
Binary variables Γ𝑖𝑖𝑖𝑖 and Ω𝑖𝑖𝑖𝑖 corresponding to regulators that are not allowed are fixed to 0 and 213 
treated as parameters, resulting in a quicker solution and more iterations before heuristic 214 
termination.  215 
 216 
Figure 2C shows the error of the fits returned by KOPTIC, which is the ratio of sum of squared 217 
differences of the kinetic mechanism fits to the maximum sum of squared differences (see Methods 218 
for finding how the sum of squared differences was utilized as an error measure). Full error 219 
statistics can be found in Supplemental File 2. The ‘same tissue’ (‘st’) restriction type was more 220 
accurate than the ‘any tissues’ (‘at’) restriction type, likely because of the increased number of 221 
fixed binary variables (as previously described, see Supplemental File 1). The ‘same compartment’ 222 
(‘sc’) restriction type had a standard deviation too high to show significant mean differences from 223 
either ‘at’ or ‘st’ restriction type. The ‘no proton or water’ (‘npw’) restriction type was the least 224 
accurate, and no significant difference was found between ‘no restriction’ (‘nr’) and ‘no proton, 225 
water, or energy molecule’ (‘npwe’) restriction types. Lower error for the ‘nr’ restriction type 226 
(compared to the ‘npw’ restriction type) might be due to capturing important abiotic stress 227 
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regulations (e.g. osmotic and pH stress), while the lower error for the ‘npwe’ restriction type might 228 
be due to the restricted binary solution space (more fixed inhibitor and activator variables), 229 
allowing for more iterations. As many reaction fittings were heuristically terminated due to time, 230 
the accuracy of ‘npw’ was lower when compared to ‘npwe’ because the latter had more iterations 231 
in the time period allowed for solution. 232 
 233 
The ‘sc’ restriction type had many reactions with very poor fits (more than 50 reactions with 90% 234 
fitting error or greater). Ignoring the poorest fits and considering the error of the best 75% of fits 235 
for each reaction type, shown in Figure 2D, the ‘sc’ restriction type had a significantly lower mean 236 
error than the ‘at’ restriction type, and had a lower standard deviation and a smaller interquartile 237 
range than any other restriction type. This suggests a bimodal distribution, with reactions being 238 
either well or poorly fit by the ‘sc’ restriction type. From Figures 2C and 2D, it is evident that the 239 
KOPTIC fitting error was positively skewed, with all 3577 KOPTIC predictions having a median 240 
error of 13.44% and a mean error of 24.10%, as shown in Figure 2E. Using Pearson’s correlation, 241 
it was found that the correlation between the flux rates predicted by KOPTIC ‘reactomics’ and the 242 
flux rate given by the Arabidopsis timeline was 𝑟𝑟 = 0.775 (𝑝𝑝 ≪ 0.001). Additionally, 93.6% for 243 
KOPTIC ‘reactomic’ flux predictions had a significant correlation with their Arabidopsis timeline 244 
flux counterparts (e.g. same reaction, same timepoint, 𝑝𝑝 ≤ 0.05). As noted in Figure 2A, the 245 
regression between Arabidopsis timeline fluxes (denoted 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, 𝑡𝑡)) and KOPTIC ‘reactomic’ flux 246 
predictions (denoted 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡)) was a straight line with a slope of 1 (e.g. generally 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, 𝑡𝑡) =247 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡)).  248 
 249 
To determine which types of reactions (low- or high-flux) were best fit by different restriction sets 250 
applied to KOPTIC, we determined the weighted mean sum of squared differences (as a measure 251 
of error) for each of the nine restriction sets and compared that value to the unweighted mean error. 252 
The weighted error used is 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆, and using this, we can say that low-flux reactions had better 253 
‘reactomic’ predictions if 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 > 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒, high-flux reactions had better ‘reactomic’ predictions if 254 
𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 < 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒, and no significant difference in ‘reactomic’ predictions if 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒. 255 
 256 

𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 =
∑ 𝑆𝑆𝑆𝑆𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒,𝑖𝑖𝑖𝑖

∑ 𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑒𝑒,𝑖𝑖𝑖𝑖
∗ 100% 

  
(1) 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 =
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𝑆𝑆𝑆𝑆𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑒𝑒,𝑖𝑖

�𝑖𝑖

∑ 1𝑖𝑖
∗ 100% 
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 257 
The location restriction type had a strong effect on what reactions were fit well by KOPTIC. For 258 
‘at’ restriction type, low flux reactions were fit well and high flux reactions were fit poorly. This 259 
is elucidated by the values of 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 for the three restriction sets including this restriction type being 260 
much higher, than the raw mean errors (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 86.44% and μerror = 27.58% for ‘nr’/’at’, 261 
𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 84.26% and μerror = 26.52% for ‘npw’/’at’, and 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 71.94% and μerror =262 
26.68% for ‘npwe’/’at’). This conclusion also applied to the ‘nr’/’st’ restriction set which had 263 
better ‘reactomic’ prediction for low-flux reactions (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 55.62% 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 = 21.28%). 264 
There appeared to be no significant difference in goodness of ‘reactomic’ predictions for low- and 265 
high-flux reactions in the ‘npw’/’sc’ restriction set (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 26.30% and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 = 27.78%). High-266 
flux reactions had better ‘reactomic’ predictions for the restriction sets ‘nr’/’sc’(𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 =267 
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2.70%; 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 = 25.32%), ‘npw’/’st’ (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 12.78% and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 = 20.52%), ‘npwe’/’sc’ 268 
(𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 11.12% and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 = 25.25%), ‘npwe’/’st’ (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 = 16.25% and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 = 21.19%). 269 
 270 
KOPTIC Predicted Regulations  271 
The Thioredoxin Regulatory Mechanism. The Thioredoxin (Trx) regulatory mechanism 272 
reversibly reduces disulfide bonds in target enzymes, changing the enzyme structure and 273 
increasing the level of activity of the desired enzyme. The first step in the mechanism is the 274 
reduction of thioredoxin by either NADPH or Ferredoxin. This is followed by the reduction of 275 
disulfide bond in the regulated enzyme through either a short-lived activation (Trx reduces the 276 
disulfide bond), or a longer-term activation (Trx reduces the disulfide bond by forming a complex 277 
with the target enzyme, see Figure 3A) [31][32][33][34][35][36]. This is a common and reversible 278 
mechanism of allosteric protein regulation in land plants and can help plants respond to oxidative 279 
stress [35][36]. Literature reports that in land plants, the ferredoxin as the initiator is generally 280 
limited to the chloroplast, and the NADPH as the initiator is generally identified in the cytosol and 281 
mitochondria [34][35]. However, Arabidopsis contains ferredoxin and ferredoxin reductase in 282 
mitochondria [37] as well as cytosolic ferredoxin [38], making the ferredoxin regulation 283 
mechanism plausible in mitochondrial, cytosolic or chloroplastic subcellular compartments.  284 
 285 
KOPTIC correctly predicted activation by reduced ferredoxin, inhibition by oxidized ferredoxin, 286 
activation by NADPH, and inhibition by NADP+ for several enzymes, of which selected predicted 287 
thioredoxin-mechanism regulation predictions are shown in Table 2 (complete list of predictions 288 
can be found in Supplemental File 2). KOPTIC’s kinetic equations use single-step regulation 289 
mechanisms (see Figure 3B, C, D, and E); therefore, the fit equations are simplifications of the 290 
actual mechanism, using single-step rather than multi-step regulation. All regulatory mechanisms 291 
were single substrate kinetics with activation (Figure 3B) or inhibition (Figure 3C) except for 292 
ATPase, which was modeled as irreversible dual-substrate kinetics with activation (Figure 3D). 293 
For instance, in Figure 3B we know that the activator (Ac) is reduced ferredoxin, which through 294 
ferredoxin-thioredoxin reductase forms reduced thioredoxin which in-turn activates dihydroxy-295 
acid dehydratase (E) by reducing a disulfide bond. This allows the enzyme to act on 2,3-dihydroxy-296 
3-methylbutanoate (A), to form 3-methyl-2-oxobutanoic acid (P). For this reaction, KOPTIC 297 
lumps the intermediate regulatory steps into a single step, but with low fit error (0.17%), giving 298 
confidence that the derived kinetic parameters returned by KOPTIC capture the net effects of the 299 
intermediate steps for this reaction. Other reactions were fit by low (<10%) or moderate to high 300 
error (27 to 37%), depending on the efficacy of the single model regulation step capturing the 301 
multi-step mechanism. It is likely that the low fit error cases are activated by the transient 302 
activation mechanism (Figure 3A). One enzyme with relatively high error (ATPase, 37%) has high 303 
error because Trx activates ATPase by forming an enzyme complex [39], resulting in significantly 304 
more complex reaction kinetics which are more difficult to fit with a single step. High fit error 305 
cases are likely mechanisms with complex activation. Generally, KOPTIC is more successful in 306 
simplifying regulation mechanisms to a single step when the regulation mechanism is less 307 
complex. Despite KOPTIC’s predictive success in the examples listed in Table 2, KOPTIC made 308 
some incorrect predictions. One is that NAD-glyceraldehyde-3-phosphatase (NAD-G3P) was 309 
predicted by KOPTIC to be inhibited by Ferredoxin2+, where literature data shows that the 310 
competing reaction, NADP-G3P, is instead activated by the Trx mechanism [35][40]. 311 
Additionally, aldehyde dehydrogenase was predicted by KOPTIC to be inhibited by Ferredoxin2+, 312 
when this enzyme was reported to be activated by the Trx mechanism [35].  313 
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 314 
Inhibition of R5PI by High Water Availability. Plant cells are able to respond to drought 315 
conditions via signaling enzymes which regulate the expression or activity of other enzymes in 316 
response. According to literature, osmotic stress (drought) activates sucrose nonfermenting-1-317 
related protein kinase 2 (SnRK2, gene at1G78290) [41] which phosphorylates chloroplastic R5PI 318 
(gene at3G04790), increasing R5PI’s activity [42]. KOPTIC predicted that leaf chloroplastic 319 
ribose 5-phosphate isomerase (R5PI) was inhibited by extracellular water in silico concentration, 320 
with a fitting error of 2.24%. The predicted mechanism is shown in Figure 3C. This inhibition 321 
form was detected by KOPTIC because osmotic-stress signaling is likely the rate-limiting step in 322 
the signaling pathway which increases activity of R5PI. This is because SnRK2 is activated two 323 
minutes after the onset of osmotic stress and reached maximal activity level within 0.5 to 2 hours 324 
after the onset of osmotic stress [41]. This same R5PI gene is also located in non-green plastids 325 
(as part of the pentose phosphate pathway) [43]. KOPTIC predicted that stem plastid water 326 
inhibited leaf plastid R5PI with a fitting error of 0.11% of the maximum SSD, suggesting some 327 
cross-tissue drought signaling. The mechanism of this reaction is also shown in Figure 3C.  328 
 329 
Transcriptional Regulation by (CN)-Signaling. A plant cell has mechanisms for sensing carbon, 330 
nitrogen, and phosphate as signaling molecules, which allows cells to respond appropriately by 331 
increasing or decreasing gene transcription [44][45][46]. KOPTIC was able to capture microarray-332 
verified transcriptional regulation [46] by sucrose, ammonia, and phosphate. Of a total of 11 333 
predictions, a select set of 9 predictions are summarized in Table 3 (the full set can be found in 334 
Supplemental File 3). For these predictions, all kinetic equation fits returned by KOPTIC were 335 
either single-substrate kinetics with activation (Figure 3B, product-producing step is reversible or 336 
irreversible) or inhibition (Figure 3C, product-producing step is reversible or irreversible), with 337 
the exception of 6-phosphofructokinase which used dual-substrate kinetics with inhibition (shown 338 
in Figure 3E). The signaling pathway, transcription, and translation were “black-boxed” by the 339 
binding of the inhibitor (I) or the binding of the activator (Ac) step in the KOPTIC fit mechanisms, 340 
resulting in moderate error (6 to 20%) of fitting. As previously mentioned, it appears that KOPTIC 341 
is better at fitting less complex regulation mechanisms, therefore higher errors likely correspond 342 
to more complex transcriptional regulation. 343 
 344 
The TCA Cycle. KOPTIC predicted some correct regulation predictions (with low and high error), 345 
some close to correct predictions, and some unverifiable or incorrect predictions for the TCA cycle. 346 
Examples of correct predictions are outlined in Table 4. All of these reactions had predicted 347 
inhibitions mechanisms, shown in Figures 3C and 3E. Some predictions were made close to 348 
literature reported regulations, such as leaf succinate dehydrogenase was predicted to be inhibited 349 
by isocitrate (13% error, mechanism in Figures 3C) when succinyl-CoA ligase, the previous step 350 
in the TCA cycle, is inhibited by isocitrate [47]. Additionally, leaf aconitase was predicted to be 351 
inhibited by malate (11% error, Figure 3C), where the enzyme is known to be inhibited by the 352 
structurally similar oxalomalate [47] (as the latter metabolite not present in any tissue model in 353 
this work). Incorrect and/or currently unverifiable (due to no published in vivo evidence) 354 
regulations often predicted fumarate as a regulator for a variety of mitochondrial enzymes 355 
including aconitase, isocitrate dehydrogenase, and malate dehydrogenase (error ranges from 15 to 356 
39%, mechanisms shown in Figures 3B and Figues 3C). 357 
 358 
Discussion  359 
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In this work, a four core metabolic models of Arabidopsis tissues (leaf, root, seed, and stem) [23] 360 
was used to as a base stoichiometric model to which KOPTIC was applied. This model linked all 361 
four tissue models in a comprehensive Flux Balance Analysis (FBA), multi-level optimization 362 
framework, which allowed interactions inside and between of the plant tissues [23]. This 363 
framework then calculated the reaction flux vectors and also estimated in silico metabolite 364 
concentration (based on metabolite pool sizes) at 1464 time points, each separated by one hour, in 365 
the Arabidopsis lifecycle to simulate changes in reaction fluxes at various time points, of which 366 
61 time points, each separated by 24 hours, were selected to apply KOPTIC to due to 367 
computational limitations. We applied our KOPTIC approach to the 61 Arabidopsis time points 368 
from p-ath780. KOPTIC found optimal fit solutions for 594 of a possible 891 (66.7%) reactions. 369 
A relatively low median error of fits (13.44%) suggests that KOPTIC is a viable method for 370 
predicting ‘reactomics’ from accurate stoichiometric models for in silico study of reaction kinetics 371 
and mechanisms, as well as for the development of kMMs. KOPTIC is a particularly promising 372 
method when the model builders have little experience with creating kMMs or when there is little 373 
regulatory information available, such as for understudied metabolic systems, as KOPTIC offers 374 
an in silico workflow for semi-automating the creation of kMMs that enable the discovery and 375 
study of regulatory mechanisms. 376 
 377 
From the error analysis performed, we can see that the ‘sc’ restriction type can produce lower error 378 
(see Figures 2C) for many reactions and can produce superior fits for high-flux reactions (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 <379 
𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒), while producing higher error for others. We hypothesize that when the ‘sc’ restriction type 380 
has low error it is accurately capturing some regulation with a regulatory metabolite acting directly 381 
on the enzyme; however, not all enzymes are directly regulated by a metabolite, resulting in a 382 
number of high-error predictions. Conversely, the ‘nr’ restriction type produces superior 383 
‘reactomics’ for low-flux reactions (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 < 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒). The ‘st’ restriction type produces a balanced 384 
approach to predicting reactomics, generally favoring neither low- nor high-flux reactions.  385 
 386 
From the predicted regulation case studies discussed here, it was shown that the KOPTIC 387 
predictions can correctly predict abiotic stress responses (such as drought), multi-step allosteric 388 
regulation mechanisms (such as the Trx mechanism), and transcriptional regulation (such as (CN)-389 
signaling). Generally, the less complex the regulatory mechanism predicted was, the higher the 390 
was the accuracy of the KOPTIC ‘reactomic’ fit. KOPTIC currently predicted TCA cycle 391 
regulation with mixed accuracy. When close-to-true or incorrect regulatory mechanisms were 392 
predicted by KOPTIC, they were often reasonable. For instance, leaf succinate dehydrogenase was 393 
predicted to be inhibited by isocitrate, but literature showed that succinyl-CoA ligase is inhibited 394 
by isocitrate [47] instead. It is reasonable that the inhibition of the immediately upstream reaction 395 
would result in a lower flux for the reaction catalyzed by succinate dehydrogenase. Furthermore, 396 
it is reasonable for KOPTIC to conclude that malate inhibits aconitase in the absence of 397 
oxalomalate in the model [47] as these metabolites are structurally similar.  398 
 399 
Despite these successes, there is room for improvement in KOPTIC, for instance, the TCA cycle 400 
had many incorrect predictions or correct predictions with high error. A common incorrect (or 401 
unverifiable) prediction was predicting the regulation of TCA cycle reactions by fumarate. We 402 
hypothesize the fumarate was a common prediction because in the mitochondria of the tissue 403 
models, only TCA and oxidative phosphorylation pathways occurred. Therefore, for the ‘sc’ 404 
restriction type, a reaction in these pathways must be regulated by a metabolite in these pathways. 405 
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Fumarate might have been optimal because it is the metabolite in the TCA cycle before malate and 406 
oxaloacetate. Both of these metabolites can be transported into or out of the mitochondria. 407 
Therefore, the in silico concentration of fumarate would be a better indicator of the rate of flux 408 
through the TCA cycle and would yield ‘reactomic’ predictions with lower error.  409 
 410 
Furthermore, some reaction regulation predictions did not make sense and/or were incorrect. These 411 
were often due to limitations of the solver options used, in that the solver terminated when the 412 
absolute solution gap was less than 1𝑒𝑒−5. When the reactions have small fluxes throughout the 413 
lifetime of the plant (∑ 𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑒𝑒,𝑖𝑖 < 0.01𝑖𝑖 ), the solution method would often reach the termination 414 
criteria either in preprocessing or in the first few iterations, accepting one of the first potential 415 
regulators found. Simply reducing the absolute optimality criteria would result in the problem 416 
being mostly addressed for low flux reactions. However, this exacerbates the solution time for 417 
high flux reactions as the optimality criteria will be met only at very low error (≪ 1%) which will 418 
take considerable time to converge, significantly increasing KOPTIC run time as termination will 419 
rely on a time-based heuristic. Instead, a scaling factor will be applied to the KOPTIC objective 420 
function in future versions for heuristic termination at a fixed SSD error percentage. This will 421 
ideally not only fix the problem of high error associated with low flux reactions but also increase 422 
KOPTIC solution speed for high flux reactions and will allow user-defined error thresholds.  423 
 424 
In addition, we will seek to sophisticate KOPTIC in order to increase its predictive capabilities 425 
and the number of reactions fit, as well as the optimize goodness of fit. One promising direction is 426 
to solve first by restricting possible regulators to the same compartment, then widen the location 427 
restriction on the regulator if a poor fit is achieved. Additionally, we will consider the likelihood 428 
of a metabolite being a regulator and use that information to point KOPTIC toward a more 429 
reasonable regulator earlier in the solution process. Further, we will expand the set of kinetic 430 
equations from which KOPTIC has to choose in order to make ‘reactomic’ predictions for 431 
reactions with more than two substrates. Moreover, effectively fixing 𝑉𝑉𝑚𝑚𝑚𝑚𝑒𝑒 in the Michealis-432 
Menten equation, we assume constant (or near constant) enzyme level. This assumption may be 433 
driving fit error, and therefore in future iterations of KOPTIC we will allow the in silico enzyme 434 
concentration to vary across time or condition. In addition, we will seek to decrease the 435 
computational cost of KOPTIC so that more data may be used and that KOPTIC solutions might 436 
be more quickly achieved.  437 
 438 
KOPTIC will be used in future to develop condition-specific kinetic models of metabolism. By 439 
analyzing the ‘reactomic’ predictions for each reaction, we can choose to accept, reject, or seek 440 
validation for each. The set of ‘best reactomics’ (as defined by the model curator) for each reaction 441 
can be concatenated into a kinetic model of metabolism. The ‘best reactomics’ may be defined by 442 
literature validation of reaction mechanism or kinetic parameters. Alternatively, the ‘best 443 
reactomics’ may be defined as those corresponding to the restriction set which is most relevant for 444 
an organism, the desired growth conditions, or the desired genetic inetrventions. For instance, the 445 
‘nr’ restriction type would be preferable when studying metabolic response to drought or pH stress 446 
conditions.  447 
 448 
Methods 449 
Development and Use of the P-ath780 Model. The p-ath780 model was developed in detail in 450 
our recent study [23]. In summary, this Arabidopsis model was developed in order to address the 451 
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limitations of current stoichiometric models of metabolism which only take a single “snapshot” of 452 
organism metabolism which may not be suitable for organisms whose growth cannot be held at 453 
some steady state condition (such as multi-cellular organisms). By taking a series of “snapshots” 454 
of organisms metabolism across its lifecycle, using a Flux Balance Analysis (FBA) based 455 
approach, a more accurate and holistic picture of organism metabolism can be obtained. As with 456 
the KOPTIC tool, Arabidopsis was chosen for this work as a model organism [13]. The p-ath780 457 
model focuses on the core-carbon metabolism of Arabidopsis and models seven distinct growth 458 
stages across 61 days of growth, taking “snapshots” of metabolism at one-hour intervals. The  p-459 
ath780 model agreed well with published literature data including mass yield, maintenance costs, 460 
senescence costs, and whole-plant growth checkpoints [23]. In this current work, the reaction flux 461 
rates at each “snapshot” was used in part as data input to KOPTIC as the target reaction rate fluxes 462 
of the fit kinetic equations. Specifically, due to the computational cost of the KOPTIC method at 463 
present, only 61 of the ”snapshots” were used, one representing each day of the Arabidopsis 464 
lifecycle. 465 
 466 
Calculation of in silico Metabolite Concentration. In order to estimate in silico metabolite 467 
concentration, in a specific tissue, we first calculated the metabolic pool size [48] for each of the 468 
metabolites from the corresponding tissue models. In silico metabolite concentration represents an 469 
estimate of the concentration of a given metabolite in a given tissue or compartment, based on the 470 
summation of flux of reactions through that metabolite that is converted to concentration unit. The 471 
conversion was done using tissue growth rate (as a dilution factor) and tissue density (as a volume 472 
estimate from in silico plant mass). This follows from the assumptions that the flux through a 473 
metabolite will be greater in a metabolite with higher in vivo concentration, and that this estimate 474 
can be used in place of an in vivo concentration measurements in reaction kinetics. We further 475 
assumed that each sub-cellular compartment grows at the same rate as the tissue, that metabolite 476 
concentration is uniform in a subcellular compartment, and that each subcellular compartment is 477 
of the same density as the tissue. While these assumptions are oversimplifications of an in vivo 478 
system, they were necessary for in silico representation as quantitative in vivo data necessary to 479 
drop these assumptions is not available.  480 
 481 
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 482 
Equation (2) provides an estimate of the availability of the metabolite in a given tissue system in 483 
units of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑔𝑔𝐷𝐷𝑔𝑔 ∗ ℎ. Here, pi is the metabolite pool size of metabolite i, 𝑆𝑆𝑖𝑖𝑖𝑖 is the 484 
stoichiometric coefficient of metabolite 𝑖𝑖 in reaction 𝑗𝑗, and vj is the flux of reaction j in which i 485 
participates as a reactant or product. We converted this pool size value to an estimate of in silico 486 
metabolite concentration by using in silico biomass growth rate of the specific tissue 487 
(𝑣𝑣𝑏𝑏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏,𝑡𝑡𝑖𝑖𝑏𝑏𝑏𝑏𝑡𝑡𝑒𝑒) and the tissue density (𝜌𝜌𝑡𝑡𝑖𝑖𝑏𝑏𝑏𝑏𝑡𝑡𝑒𝑒) [25][26][49][50][51][52]. To this end, the 488 
following conversion was used: 489 
 490 

𝑐𝑐𝑖𝑖 =
𝑝𝑝𝑖𝑖 𝜌𝜌𝑡𝑡𝑖𝑖𝑏𝑏𝑏𝑏𝑡𝑡𝑒𝑒

𝑣𝑣𝑏𝑏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏,𝑡𝑡𝑖𝑖𝑏𝑏𝑏𝑏𝑡𝑡𝑒𝑒
    

(4) 
 491 
This conversion provided the estimate for all in silico metabolite concentration estimates used by 492 
KOPTIC.  493 
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 494 
Development of KOPTIC. The KOPTIC method development, logic, derivation, symbol 495 
definition, and equations used can be found in Supplemental File 1, and the KOPTIC workflow is 496 
shown in Figure 1. In summary, we developed KOPTIC to study and predict kinetics of any 497 
biological system and to eventually develop kinetic models based on computational (such as FBA) 498 
or experimental (such as MFA) datasets. As previously discussed, KOPTIC uses twelve kinetic 499 
equation forms, from four reaction types with three possible types of regulation each, to find an 500 
optimal fit of the experimental data by one of these equation forms. KOPTIC returns ‘reactomic’ 501 
data of kinetic equation, kinetic parameters, and regulatory information. This is accomplished 502 
through an objective function that minimizes the sum of squared differences between the flux of 503 
reaction j as derived from the kinetic model 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡), and the corresponding known (i.e., MFA) 504 
or calculated (i.e., FBA) reaction flux input into KOPTIC, assigned to parameter set 𝑣𝑣exp(j, t). 505 
Variable 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡) and parameter 𝑣𝑣exp(j, t) are calculated for each time point or condition 𝑡𝑡 in 506 
the set of time points or conditions 𝑇𝑇. KOPTIC is parallelizable in that the optimization 507 
formulation is solved for each input reaction independently (as solving all reactions at the same 508 
time is impractical as of yet due to computational time and cost), with the following objective 509 
function: 510 
 511 

𝑚𝑚𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝑚𝑚 = ��𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, 𝑡𝑡) − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡)�
2

𝑡𝑡∈𝑇𝑇

+ 𝜖𝜖 � 𝐾𝐾𝑚𝑚(𝑗𝑗)
6
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   ∀𝑗𝑗 ∈ 𝐽𝐽 
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 512 
Where 𝐾𝐾𝑚𝑚,𝑚𝑚 = [1,6],𝑚𝑚 ∈ ℤ is the set of kinetic parameters which are optimized to improve the 513 
fit of 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡). There are at most six 𝐾𝐾𝑚𝑚 parameters used to improve the fit of 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡) (see 514 
Supplementary File 2). The modeled flux is defined as: 515 
 516 

vmodel(j, t) = β1,j�b1,j�vSIN(j, t)� + b2,j�vSII(j, t)� + b3,j�vSIA(j, t)�� 
+β2,j�b1,j�vSRN(j, t)� + b2,j�vSRI(j, t)� + b3,j�vSRA(j, t)�� 
+β3,j�b1,j�vDIN(j, t)� + b2,j�vDII(j, t)� + b3,j�vDIA(j, t)�� 

+β4,j�b1,j�vDRN(j, t)� + b2,j�vDRI(j, t)� + b3,j�vDRA(j, t)�� 

  
  
(6) 

 517 
Where 𝛽𝛽𝑡𝑡,𝑖𝑖 are binary parameters defined by the stoichiometric model, in this case p-ath780, and 518 
restricted to β1,j + β2,j + β3,j + β4,j = 1. Parameter β1,j = 1 corresponds to a single-substrate 519 
irreversible (SI) reaction, β2,j = 1 corresponds to a single-substrate reversible reaction, β3,j = 1 520 
corresponds to a dual-substrate irreversible (DI) reaction, and β4,j = 1 corresponds to a dual-521 
substrate reversible (DR) reaction. Parameters 𝛽𝛽 were set as parameters, rather than being 522 
combined with 𝑏𝑏 variables in a single variable, to reduce the number of binary variables used in 523 
the formulation, which decreases solution time. Binary variables b𝑦𝑦,𝑖𝑖 are defined by optimization, 524 
as KOPTIC chooses the optimal regulatory mechanism. As with 𝛽𝛽𝑡𝑡,𝑖𝑖 parameters, b1,j + b1,j +525 
b1,j = 1, limiting KOPTIC to selecting a single regulatory mechanism. While often enzymes have 526 
multiple regulators, only a single regulator is allowed in the current formulation because of the 527 
form of the 12 kinetic equations derived (a new equation must be derived for each additional 528 
regulator). A single regulator equation form, with restriction sets being used to identify multiple 529 
possible regulators acting independently, allows identification of multiple regulators of a single 530 
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enzyme. Variable 𝑏𝑏1,𝑖𝑖 = 1 corresponds to no (N) regulation, 𝑏𝑏2,𝑖𝑖 = 1 corresponds to inhibition (I) 531 
regulation, and 𝑏𝑏3,𝑖𝑖 = 1 corresponds to activation (A) regulation. This forces vmodel(j, t) to equal 532 
exactly one of the kinetic forms. For simplicity, reactions with more than two substrates were not 533 
included due to the complexity of the kinetic equation forms and other regulation scenarios were 534 
not considered.  535 
 536 
To understand how the ‘reactomics’ are predicted, consider if the optimal ‘reactomics’ of a 537 
reaction is single-substrate irreversible kinetics with no regulation (SIN, 𝛽𝛽1,𝑖𝑖 = 𝑏𝑏1,𝑖𝑖 = 1), then 538 
vmodel(j, t) is defined as below. 539 
 540 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡) = 𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆(𝑗𝑗, 𝑡𝑡) =
𝐾𝐾1�𝐴𝐴𝑇𝑇 ∙ 𝐶𝐶𝑡𝑡�

�𝐴𝐴𝑇𝑇 ∙ 𝐶𝐶𝑡𝑡� + 𝐾𝐾2 + 𝜂𝜂
 

  
(7) 

 541 
Where 𝐶𝐶𝑡𝑡 is a concentration vector from the Arabidopsis lifecycle FBA or from the MFA 542 
measurements, 𝐴𝐴𝑇𝑇 is a vector of unit magnitude which points at the substrate, 𝐾𝐾1 (akin to 𝑉𝑉𝑚𝑚𝑚𝑚𝑒𝑒, 543 
the maximum reaction flux in the Michaelis-Menten equation) and 𝐾𝐾2 (akin to 𝐾𝐾𝑀𝑀, the Michealis-544 
Menten constant) are fitting parameters, and 𝜂𝜂 is a very small number (here 𝜂𝜂 = 1e−7) used to 545 
prevent errors when �𝐴𝐴𝑇𝑇 ∙ 𝐶𝐶𝑡𝑡� + 𝐾𝐾2 = 0. The objective function term involving Km(j) is used to 546 
prevent non-unique solutions resulting from multiple sets of Km(j) values yielding the same sum 547 
of squared differences. This term has minimal effect on the optimal solution in that 𝜖𝜖 is an arbitrary 548 
small number 𝜖𝜖 = 1e−7. Further constraints applied to the optimization problem include twelve 549 
constraints to define each of the twelve kinetic equation forms, six constraints to ensure that 𝑀𝑀 ≥550 
𝐾𝐾𝑚𝑚(𝑗𝑗) ≥ 𝜂𝜂, where 𝑀𝑀 = 1𝑒𝑒5, when used in the optimal kinetic equation form, four constraints to 551 
fix 𝐾𝐾𝑚𝑚(𝑗𝑗) = 0 when not used in the optimal kinetic equation form, and three constraints to ensure 552 
that a single kinetic equation form is selected and that only one metabolite is chosen as the optimal 553 
regulator. Because of the large range of possible values which 𝐾𝐾𝑚𝑚(𝑗𝑗) may take (spanning 12 order 554 
of magnitude), and also regulation forms having terms in which the in silico concentration of the 555 
regulator metabolite is modulated by one or more 𝐾𝐾𝑚𝑚(𝑗𝑗) values, the magnitude of the in silico 556 
concentration of any metabolite relative to that of the reaction is largely immaterial. The pattern 557 
of in silico concentration of the metabolite to the pattern of reaction flux is more important in 558 
determining an optimal metabolic regulator. 559 
 560 
KOPTIC Workflow. We used the 61 time point FBA-derived reaction fluxes and in silico 561 
metabolite concentration estimates from p-ath780 as input data for KOPTIC, as shown in Figure 562 
1. The KOPTIC formulation and symbols used in Figure 1 is discussed in the previous section and 563 
full details can be found in Supplemental File 1. Each KOPTIC run is restricted by one of the nine 564 
restriction sets (each set is a unique combination of identity and location restriction type, see Table 565 
1) in order to identify multiple feasible combinations of regulating a metabolite and its location. 566 
This is advantageous as from the results we can choose the most plausible or best fitting kinetic 567 
equation form (as explained earlier). Each of the nine runs had 10 parallel instances starting at 568 
staggered model reactions to increase solution speed. This staggering is necessary as KOPTIC 569 
does not find solutions for most reactions in the model in a seven-day timeframe. Therefore, we 570 
can take these parallel instances and concatenate the results to get full coverage of the model (so 571 
that KOPTIC returned something for every reaction). The KOPTIC formulation was solved using 572 
BARON, an MINLP solver on the Generic Algebraic Modeling System (GAMS) [53], and each 573 
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reaction solution yielded ‘reactomic’ predictions and model error (as a percentage of maximum 574 
SSD). We allowed 168 hours of runtime for each parallel instance, and when finished we 575 
concatenated the results of the appropriate instances into the results for each run.  576 
 577 
Error of Kinetic Fits by KOPTIC. Errors in kinetic equation fittings made by KOPTIC were 578 
described as a percentage of the maximum sum of squared differences. Equations used to describe 579 
error are shown below, where 𝑇𝑇 is the set of 61 time points in the Arabidopsis lifecycle: 580 
 581 

𝑆𝑆𝑆𝑆𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 = ��𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, 𝑡𝑡) − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚(𝑗𝑗, 𝑡𝑡)�
2

𝑡𝑡∈𝑇𝑇

   
(8) 

𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑒𝑒,𝑖𝑖 = ��𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, 𝑡𝑡)�
2

𝑡𝑡∈𝑇𝑇

   
(9) 

𝐹𝐹𝑖𝑖𝑡𝑡 𝐸𝐸𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑖𝑖 =
𝑆𝑆𝑆𝑆𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑒𝑒,𝑖𝑖
∗ 100% 

  
(10) 

 582 
This 𝐹𝐹𝑖𝑖𝑡𝑡 𝐸𝐸𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑖𝑖 was used in the statistical analysis of this work to determine how well KOPTIC 583 
fit the 61 timepoint data given with the predicted ‘reactomics’.  584 
 585 
Statistical Analysis of Error. All statistical tests were performed using a between-group ANOVA 586 
analysis with a significance cutoff of 𝛼𝛼 = 0.05. See Supplementary Text S3 for test statistic values 587 
and p-values of the statistical tests done.  588 
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TABLES 
Table 1: Restriction types used to create the nine KOPTIC restriction sets.  

Lo
ca

tio
n 

R
es

tri
ct

io
n 

Ty
pe

s  
 ‘at’ 

The regulating metabolite may 
be in any compartment of 
any tissue.  

 
 ‘st’ 

 

The regulating metabolite 
must be in the same tissue as 
the reaction, but can be in any 
subcellular compartment.  

 
 ‘sc’ 

The regulating metabolite 
must be in the same tissue and 
subcellular compartment as 
the reaction.  

Id
en

tit
y 

R
es

tri
ct

io
n 

Ty
pe

s 

 ‘nr’ 

No restrictions are placed on 
the identity of the regulating 
metabolite, any metabolite 
including excess metabolites 
such as water are allowed. 

 
‘npw’ 

No regulation by protons or 
water is allowed.  

 
‘npwe’ 

No regulation by protons, 
water, or energy molecules is 
allowed. 
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Table 2: Selected KOPTIC predictions agreeing with literature data on the thioredoxin enzyme 
regulation mechanism.  

Tissue Enzyme Enzyme 
Compartment 

Regulator Regulation Regulator 
Compartment 

Error  
(% of 

maximum 
SSD) 

Source(s) 

Stem Pyruvate 
dehydrogenase 
E2 component 

Cytosol Ferredoxin3+ Inhibition Cytosol 2.28𝑥𝑥10−5% [35] 

Leaf Dihydroxy-acid 
dehydratase 

Cytosol Ferredoxin2+ Activation Cytosol 0.17% [35] 

Leaf Ketol-acid 
reductoisomerase 

Cytosol Ferredoxin2+ Activation Cytosol 0.17% [35] 

Stem Dihydrolipoamide 
Dehydrogenase 

Cytosol Ferredoxin3+ Inhibition Cytosol 3.51% [35] 

Seed Glucose-6-
phosphate 
isomerase 

Plastid NADPH Activation Cytosol 3.66% [35] 

Stem UDP-glucose 
phosphorylase 

Cytosol Ferredoxin3+ Inhibition Cytosol 5.92% [35] 

Stem Phosphogluco- 
mutase 

Cytosol Ferredoxin3+ Inhibition Cytosol 5.96% [35] 

Stem Glucose-6-
phosphate 
isomerase 

Cytosol NADP+ Inhibition Cytosol 7.74% [35] 

Seed Pyruvate  
decarboxylase 

Cytosol NADPH Activation Cytosol 27.02% [35] 

Seed Triosephosphate 
iosmerase 

Cytosol NADPH Activation Cytosol 30.63% [35] 

Seed ATPase Mitochondria Ferredoxin2+ Activation Mitochondria 37.00% [34][54][40]  
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Table 3: Selected KOPTIC regulatory predictions corresponding to transcriptional regulation of 
enzymes by nitrogen or carbon signaling.  

Tissue Enzyme (Gene) Enzyme 
Compartment 

Regulator Regulation Regulator 
Compartment 

Error  
(% of 

maximum 
SSD) 

Source(s) 

Seed Ribose-5-phosphate 
isomerase 

Cytosol Phosphate Inhibition Cytosol 0.70% [55] 

Seed 1,4-alpha-glucan 
branching enzyme 

Plastid Phosphate Inhibition Plastid 6.06% [55] 

Stem Glucose-6-phosphate 
isomerase 
(at4G24620) 

Cytosol Sucrose Activation Cytosol 6.61% [46] 

Seed Fructose-bisphoshate 
aldose (at4G26530) 

Plastid Sucrose Inhibition Extracellular 7.92% [46] 

Leaf Fructose-1,6-
bisphosphatase 

Chloroplast Phosphate Inhibition Chloroplast 10.94% [55] 

Seed Trehalose 6-
phosphate 
phosphatase 
(at4G22590) 

Cytosol Sucrose Activation Cytosol 12.34% [46] 

Stem Phosphogulco-
mutase 
(at1G23190) 

Cytosol Sucrose Activation Extracellular 15.47% [46] 

Seed 6-
phosphofructokinase 

Plastid Phosphate Inhibition Cytosol 15.92% [55] 

Root 2,3-
bisphosphoglycerate-
independent 
phosphoglycerate 
mutase (at1G09780) 

Cytosol Sucrose Activation Cytosol 20.40% [46] 

 
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807628doi: bioRxiv preprint 

https://doi.org/10.1101/807628
http://creativecommons.org/licenses/by-nc/4.0/


Table 4: Correct predictions of citric acid cycle regulation enzyme regulation made by KOPTIC.  
Tissue Enzyme (Gene) Enzyme 

Compartment 
Regulator Regulation Regulator 

Compartment 
Error  
(% of 

maximum 
SSD) 

Source(s) 

Stem 2-Oxoglutarate 
dehydrogenase 

Inner 
Mitochondria 

NADH Inhibition Inner 
Mitochondria 

5.14% [56] 

Seed Succinate 
dehydrogenase 

Inner 
Mitochondria 

Oxaloacetate Inhibition Outer 
Mitochondria 

24.89% [47] 

Seed Fumarase Inner 
Mitochondria 

Pyruvate Inhibition Inner 
Mitochondria 

37.79% [56] 

Root Isocitrate 
dehdrogenase 

Inner 
Mitochondria 

ATP Inhibition Outer 
Mitochondria 

38.63% [47] 

Leaf Fumarase Inner 
Mitochondria 

Pyruvate Inhibition Inner 
Mitochondria 

78.72% [47] 
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FIG. LEGENDS 
Figure 1: Workflow of the KOPTIC method. Much of this workflow is done by coding scripts. 
The brown boxes represent input data to KOPTIC, the green box represents the mixed integer non-
linear programming (MINLP) optimization problem, and the pink boxes are the results obtained 
from solving the optimization problem. This workflow is repeated for each reaction (as KOPTIC 
solves on a per reaction basis). The collection of kinetic equations forms the basis a kinetic model 
of metabolism (kMM). Symbol definitions can be found in Supplemental File 1. 
 
Figure 2: Statistical Analysis Graphs. A) Linear relationship between arabidopsis timeline fluxes 
and KOPTIC ‘reactomic’ flux predictions, including the squared Pearson’s correlation coefficient. 
B) Number of reactions returned by KOPTIC (number of reactions with any output) and number 
of fit kinetic equations returned by KOPTIC. Brackets and asterisks indicate statistically 
significant mean differences by the between-group ANOVA test. C) Shows the fit error of all 
KOPTIC predictions for each scenario type in terms of percent of maximum SSD. D) Shows the 
fit error of the best 75% of KOPTIC predictions, determined by percent of maximum SSD. E) 
Histogram of fit errors for all reactions fit by KOPTIC (counting multiple fits independently), 
along with the median and mean of all reactions fit. For A, B, and C, no comparison is made 
between location restriction scenarios (left) and identity restriction scenarios (right). * Represents 
p < 0.05, ** represents p < 0.01, *** represents p < 0.001.
 
Figure 3: Kinetic Mechanisms. A) Mechanism of the thioredoxin enzyme regulation in 
Arabidopsis. The activation by reduced ferredoxin is reversible, and can activate the target enzyme 
by forming a complex with it or by reducing the disulfide bridges [31][35]. Figures B, C, D, and 
E are mechanisms used by KOPTIC for ‘reactomic’ predictions. B) A single-substrate irreversible 
enzyme reaction with activation. C) A reversible single-substrate irreversible enzyme reaction with 
inhibition. D) A dual-substrate reversible reaction with activation. E) A dual-substrate reversible 
reaction with inhibition
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