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Neuroscience needs behavior, and behavioral experiments require
the coordination of large numbers of heterogeneous hardware com-
ponents and data streams. Currently available tools strongly limit the
complexity and reproducibility of experiments. Here we introduce
Autopilot, a complete, open-source Python framework for behavioral
neuroscience that distributes experiments over networked swarms of
Raspberry Pis. Autopilot enables qualitatively greater experimental
flexibility by allowing arbitrary numbers of hardware components
to be combined in arbitrary experimental designs. Research is made
reproducible by documenting all data and task design parameters in
a human-readable and publishable format at the time of collection.
Autopilot provides an order-of-magnitude performance improve-
ment over existing tools while also being an order of magnitude
less costly to implement. Autopilot’s flexible, scalable architecture
allows neuroscientists to design the next generation of experiments
to investigate the behaving brain.
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1
Introduction

Animal behavior experiments require precision and repetition, which
can best be achieved by computer automation. The complexity of con-
temporary behavioral experiments, however, presents a stiff method-
ological challenge. For example, researchers might wish to measure
pupil dilation[28, 28], respiration[25], and running speed[24], while
tracking the positions of body parts in 3 dimensions[23] and record-
ing the activity of large ensembles of neurons[17], as subjects perform
tasks with custom input devices such as a steering wheel[4] while
immersed in virtual reality environments using stimuli synthesized in
real time[34, 7]. Coordinating the array of necessary hardware into a
coherent experimental design—with the millisecond precision required
to study the brain—can be daunting.

Historically, researchers have developed software to automate be-
havior experiments as-needed within their lab or relied on purchasing
proprietary software (eg. [11]). Open-source alternatives have emerged
recently, often developed in tandem with hardware peripherals avail-
able for purchase [13, 30]. However, the diverse hardware and soft-
ware requirements for behavioral experiments often lead researchers
to cobble together multiple tools to perform even moderately complex
experiments. Indeed, most software packages do not attempt to simul-
taneously support custom hardware operation, behavioral task logic,
stimulus generation, and data acquisition. Idiosyncratic systems can
hinder reproducibility, especially if the level of detail reported in a
methods section is sparse[37]. Additionally, development time and pro-
prietary software are expensive, as are the custom hardware peripherals
that are required to use most available open-source behavior software.

Here we present Autopilot, a complete open-source software and
hardware framework for behavioral experiments. We leverage the
power of distributed computing using the surprisingly capable Rasp-
berry Pi 4

1 to allow researchers to coordinate arbitrary numbers of 1 See Table 3.2

heterogeneous hardware components in arbitrary experimental designs.
Autopilot takes a different approach than existing systems to over-

come the technical challenges of behavioral research: just use more
computers. Specifically, the advent of inexpensive single-board comput-
ers (ie. the Raspberry Pi) that are powerful enough to run a full Linux
operating system allows a unified platform to run on every Pi or other
computer in the system so that they can work together seamlessly. At
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4 autopilot automating behavioral experiments with lots of raspberry pis

the core of its architecture is a networking protocol (Section 3.5) that is
fast enough to stream electrophysiological or imaging data and flexible
enough to make the mutual coordination of hardware straightforward.

This distributed design also makes Autopilot extremely scalable,
as the Raspberry Pi’s $35 price tag makes it an order of magnitude
less costly than comparable systems (Section 2.3). Its low cost doesn’t
come at the expense of performance or useability: Autopilot also has
an order of magnitude greater measurement precision and an order of
magnitude lower latency than comparable systems (Sections 2.1 and 4).

Autopilot balances experimental flexibility with support. Its task
design infrastructure is flexible enough to perform arbitrary experi-
ments, but also provides support for data management, plotting task
progress, and custom training regimens. We provide a set of modular
tools for users to easily build common tasks (such as the two-alternative
forced choice task described in Section 3.1), and have also written com-
plete low-level API documentation to facilitate any tinkering needed to
make Autopilot do whatever is needed. Rather than relying on costly
proprietary hardware modules, users can take advantage of the wide
array of peripherals and extensive community support available for the
Raspberry Pi.

Finally, we have designed Autopilot to do reproducible research. Ex-
periments are not written as scripts that are reliant on the particularities
of each researcher’s hardware configuration. Instead, we have designed
the system to encourage users to write reusable, portable experiments
that are incorporated into a public central library. Every parameter
that defines an experiment is automatically saved in publication-ready
format, removing ambiguity in reported methods and facilitating exact
replication with a single file.

We begin by defining the requirements of a complete behavioral We would like to acknowledge and
thank Lucas Ott for doing much of
the behavioral training, Brynna Paros
and Nick Sattler for their help with
constructing our behavioral boxes,
Matt Smear and Reese Findley for
loaning us their Bpod for far longer
than they intended to, Erik Flister
whose Ratrix software inspired some
of the design features of Autopilot
[22], several artists on flaticon.com

(Freepik, Nikita Golubev, Those Icons)
whose work served as stems for many
of the figures, and the Janet Smith
House for the endless support and
relentless criticism of the figures. This
material is based on work supported
by NIH NIDCD R01 DC-015828, NSF
Graduate Research Fellowship No.
1309047, and a University of Oregon
Incubating Interdisciplinary Initiatives
award.

system and evaluating two current examples (Sections 1.1 and 1.2). We
then describe Autopilot’s design principles (Section 2) and how they
are implemented in the program’s structure (Section 3). We close with a
demonstration of its current capabilities and our plans to expand them
(Sections 4 and 5).
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introduction 5

1.1 Existing Systems for Behavioral Experiments

A complete system to automate behavioral experiments has 6 require-
ments:

1. Hardware to interact with the experimental subject, including sen-
Hardware

sors (eg. photodiodes, cameras, rotary encoders) to receive input
and actuators (eg. lights, motors, solenoids) to provide feedback.

2. Some capability to synthesize and present sensory stimuli. Ideally
Stimuli

both discrete stimuli, like individual tone pips or grating patches,
and continuous stimuli, like those used in virtual reality experiments,
should be possible.

3. A framework to coordinate hardware and stimuli as a task. Task def-
Tasks

inition should be flexible such that it facilitates rather than constrains
experimental design.

4. A data management system that allows fine control of data collection
Data

and format. Data should be human readable and include complete
metadata that allows independent analysis and reproduction.

5. Some means of visualizing data as it is collected in order to observe
Visualization

task status. It should be possible to customize visualization to the
needs and structure of the task.

6. Finally, a user interface to control task operation. The UI should
UI

make it possible for someone who does not program to operate the
system.

We will briefly describe two other systems that are “complete” as

Included Partial/Limited
described above: pyControl and Bpod.

pyControl

pyControl is a behavioral framework built in Python by the Champali- pyControl

hardware

stimuli

tasks

data
viz

UI

maud Foundation. It uses the micropython microcontroller (“pyboard”)
as its primary hardware device along with several extension boards
sold by openephys. The pyboard has four I/O ports, or eight with a
multiplexing expander board. Schematics are available for many other
hardware components like solenoid valve drivers and rotary encoders.
Multiple pyboards can be connected to a computer via USB and run
independent tasks simultaneously with a GUI.

There is limited support for some parametrically defined sound
stimuli, presented from a separate amplifier connected using the I2C
protocol. Visual stimuli are unsupported.

Like most behavioral software, pyControl uses a finite-state machine
formalism to define its tasks. A task is a set of discrete states, each
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6 autopilot automating behavioral experiments with lots of raspberry pis

of which has a set of events that transition the task from one state to
another. pyControl also allows timed transitions between states, and
one function that is called on every event for a rough sort of parallelism.

D 0 2

D 8976 3

D 8976 1

P 8976 Print Statement

D 10162 3

D 10163 2

Figure 1.1: pyControl data is stored as
plain text, each line having a type (Data
or Print), timestamp, and state

The facility for data management is limited. All events and states are
stored alongside timestamps as a plain text log file, one file per subject
per session (Figure 1.1).

There is only one plot type available in the GUI, a raster plot of
events, and no facility for varying the plot by task type. The GUI is
otherwise quite capable, including the ability to batch run subjects,
redefine task variables, and configure hardware.

Bpod

Bpod is primarily a collection of hardware designs and an assembly Bpod

hardware

stimuli

tasks

data
viz

UI

service run by Sanworks LLC. Similar to pyControl, each Bpod behavior
box is based on a finite-state machine microcontroller with four I/O
ports. Additional hardware modules provide extended functionality.

The software that runs Bpod is a sparsely documented MATLAB
package. A task is implemented as a MATLAB script that constructs
a new state machine for each trial, uploads it to the Bpod, and waits
for the trial to finish. As a result, only one Bpod can be used per host
computer, or at least per MATLAB session. Data are stored as trial-split
events in a MATLAB structure.

There are a few basic plots for two-alternative forced choice tasks, but
any plotting is done in the main loop so the MATLAB graphics engine
blocks the program between trials. Bpod has a reasonably complete
GUI for managing the hardware and running tasks, but it is error-prone
and highly technical (Figure 1.2).

Figure 1.2: A Bpod event plot (above)
showing the results of individual
behavioral trials, and the Bpod GUI
(below).

For brevity we have omitted many other excellent tools that perform
some subset of the operations of a complete behavioral system.2

2 Other tools:
- Expyriment[20] - site, git
- PsychoPy[27] - site, git
- OpenSesame[21] - site, git
- SMiLE - docs
- ArControl[8] - git
- and see OpenBehavior

1.2 Limitations of Existing Systems

We see several limitations with these and other behavioral systems:

• Hardware - Both Pycontrol and Bpod strongly encourage users to
purchase a limited set of hardware modules and add-ons from their
particular hardware ecosystem. If a required part is not available for
purchase, neither system provides a clear means of interacting with
custom hardware, requiring the user to ’tack on’ loosely-integrated
components—we found one such lab using a Raspberry Pi to deliver
sounds in their Bpod task. There is also a hard limit on the number
of hardware peripherals that can be used in any given task, as there
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is no ability to use additional pyboards or Bpod state machines. The
microcontrollers used in these systems also impose strong limits on
their software: neither run a full, high-level programming language3. 3 Bpod runs custom firmware written

in C++ on a Teensy 3.6 microcontroller.
pyControl’s pyboard implements
micropython, a subset of Python
that excludes canonical libraries like
numpy[35] or scipy[16]

We will discuss this further in section 2.2. A broader limitation of
existing systems is the difficulty of flexibly integrating the diverse
hardware and analytical tools necessary to perform the next genera-
tion of behavioral neuroscience experiments that study “naturalistic,
unrestrained, and minimally shaped behavior”[10].

• Stimuli - Stimuli are not tightly integrated into either of these sys-
tems, requiring the user to write custom routines for their synthesis,
presentation, and description in the resulting data. Neither are ca-
pable of delivering visual stimuli. Bpod only supports raw audio
waveforms presented with either a proprietary analog output hard-
ware module or using PsychToolbox from the host computer. Some
parametric audio stimuli are included in the pyControl source code
but we were unable to find any documentation or examples of their
use.

for currentTrial = 1:MaxTrials

% new state matrix every trial

sma = NewStateMatrix();

% add states and transitions

sma = AddState(sma,

'Name', 'Wait', ...

'Timer', 0,...

'StateChangeConditions', ...

{'Port2In', 'Delay'}, ...

'OutputActions', ...

{'AudioPlayer1','*'});

% add more states...

% upload and run task

SendStateMatrix(sma);

RawEvents = RunStateMatrix;

% manually gather data and params

BpodSystem.Data = AddTrialEvents(

BpodSystem.Data, RawEvents);

% plotting in the main loop

UpdateSideOutcomePlot(...);

UpdateTotalRewardDisplay(...);

% manually save data

SaveBpodSessionData;

end

Figure 1.3: Bpod’s general task
structure.

• Tasks - Tasks in both systems require a large amount of code and
effort duplication. Neither system has a notion of reusable tasks
or task ’templates,’ so every user needs to rewrite every task from
scratch. Bpod’s structure in particular tends to encourage users to
write long task scripts that are difficult to read (Figure 1.3) because
much of its codebase is ’backend’ code for compiling and communi-
cating with the state machine, so users have to write basic routines
like stimulus creation themselves. Another factor that contributes
to the difficulty of task design in these systems is the need to work
around the limitations of finite state machines, which we discuss
further in section 3.1.

• Data - Data storage and formatting is basic, requiring extensive
additional processing to make it human readable. For example, to
determine whether a subject got a trial correct in an example Bpod
experiment, one would use the following code:

SessionData.RawEvents.Trial{1,1}.States.Punish(1) ~= NaN

As a result, data format is idiosyncratic to each user, making data
sharing dependent on manual annotation and metadata curation
from investigators. Additionally, since the parameters of experi-
ments are not saved by default—and the GUIs of both systems allow
parameters to be changed at will—critical data could be lost and
experiments could be made unreproducible unless the user writes
custom code to save them.
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8 autopilot automating behavioral experiments with lots of raspberry pis

• Visualization & GUI - The GUIs of each of these systems are
highly technical, and are not designed to be easily used by non-
programmers. Visualization of task progress is quite rigid in both
systems, either a timeseries of task states or plots specific to two-
alternative forced choice tasks. There is no obvious way to adapt
plots to specific tasks.

In short, existing systems for behavioral experiments are limited by
the hardware they can use, the tasks they can implement, and the ease
with which they can be implemented. Some of these limitations are
cosmetic—fixable with additional code or hardware—but several of the
most crucial are intrinsic to the design of these systems.

These systems, among others, have pioneered the development of
modern behavioral hardware and software, and are to be commended
for being open-source and highly functional. One need look no further
for evidence of their usefulness than to their adoption by many labs
worldwide. At the time that these systems were developed, a general-
purpose single-board computer with performance like the Raspberry
Pi 4 was not widely available. The above two systems are not unique in
their limitations, but are reflective of broader constraints of developing
experimental tools. We are only able to articulate the design principles
that differentiate Autopilot by building on their work.
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2
Design

Autopilot distributes experiments across a network of Raspberry
Pis,1 a type of inexpensive single-board computer. 1 Raspberry Pi model 4B, see Table 3.2

Autopilot has three primary design principles:

1. Efficiency - Autopilot should minimize computational overhead and
maximize use of hardware resources.

2. Flexibility - Autopilot should be transparent in all its operations so
that users can expand it to fit their use-case.

3. Reproducibility - Autopilot should maximize standardization and
minimize the potential for the black-box of local reprogramming. Au-
topilot should maximize the information it stores about its operation
as part of normal data collection.

2.1 Efficiency

Though it is a single board, the Raspberry Pi operates more like a
computer than an integrated circuit. It most commonly runs a custom
Linux distribution, Raspbian, allowing Autopilot to use Python across
the whole system. Using an interpreted language like Python running
on Linux has inherent performance drawbacks compared to compiled
languages running on embedded microprocessors. While Python’s
overhead is negligible on modern processors, Autopilot is nevertheless
designed to maximize computational efficiency.

Concurrency

time

cpu0

wait for poke

deliver water

plot result

Figure 2.1: A single-threaded program
executes all operations sequentially,
using a single process and cpu core.

Most behavioral software is single-threaded (Figure 2.1), meaning the
program will only perform a single operation at a time. If the program
is busy or waiting for an input, other operations are blocked until it is
finished.

Autopilot distributes computation across multiple processes and
threads to take advantage of the Raspberry Pi’s four CPU cores. Ev-
ery object in Autopilot does its work in separate threads. Specifically,
Autopilot spawns separate threads to process messages and events, an
architecture described more fully in section 3.5. Threading does not
offer true concurrency2, but does allow Python to distribute compu- 2 See David Beazley’s ’Understanding

the Global Interpreter Lock’ and
associated visualizations.

tational time between operations so that, for example, waiting for an
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10 autopilot automating behavioral experiments with lots of raspberry pis

event does not block the rest of the program, and events are not missed
because the program is busy (Figure 2.2).

time

cpu0

wait for poke

plot result

compute next stage

deliver water

waiting

Figure 2.2: A multi-threaded program
divides computation time of a single
process and cpu core across multiple
operations so that, for example, waiting
for input doesn’t block other
operations.

Critical operations that are computationally intensive or cannot be
interrupted are given their own dedicated processes. Linux allows
individual cores of a processor to be reserved for single processes, so
individual Raspberry Pis are capable of running four truly parallel
processing streams. For example, all Raspberry Pis in an Autopilot
swarm create a messaging client to handle communication between
devices which runs on its own processor core so no messages are
missed. Similarly, if an experiment requires sound delivery, a realtime
sound engine in a separate process (Figure 2.3) also runs on its own
core.

time

cpu1 play sound

cpu2 process messages

Figure 2.3: A multi-process program is
truly concurrent, allowing multiple cpu
cores to operate in parallel.

Leveraging Low-Level Libraries

Autopilot uses Python as a “glue” language, where it wraps and coor-
dinates faster low-level compiled code[36]. Performance-critical com-
ponents of Autopilot are thin wrappers around fast C libraries (Table
2.1).

Table 2.1: A few libraries Autopilot
uses

jack realtime audio
pigpio GPIO control

ZeroMQ networking
Qt GUI

Since Autopilot coordinates its low-level components in parallel
rather putting everything inside one “main loop,” Autopilot actually
has better temporal resolution than single-threaded systems like Bpod
or pyControl, despite the realtime nature of their dedicated processors
(Table 2.2).

Table 2.2: Using pigpio as a dedicated
I/O process gives autopilot greater
measurement precision

Precision

Autopilot (pigpio) 5µs
Bpod 100µs

pyControl 1000µs

Caching

Finite-state machines are only aware of the current state and the events
that transition it to future states. They are thus incapable of exploiting
the often predictable structure of behavioral tasks to precompute future
states and precache stimuli. Further, to change task parameters between
trials (eg. changing the rewarded side in a two-alternative forced-choice
task), state machines need to be fully reconstructed and reuploaded to
the device that runs them each time.

Autopilot precomputes and caches as much as possible. Rather
than wait “inside” a state, Autopilot prepares each of the next possible
events and saves them for immediate execution when the appropriate
trigger is received. Static stimuli are prepared once at the beginning of
a behavioral session and stored in memory. Before their presentation,
they are buffered to minimize latency.

Autopilot’s efficient design lets it access the best of both worlds—the
speed and responsiveness of compiled code on dedicated microproces-
sors and the accessibility and flexibility of interpreted code.
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2.2 Flexibility

Single-language

Behavior software that uses dedicated microprocessors like Bpod must
have some routine for compiling the high-level abstraction of the ex-
periment into machine code. This gives those systems a theoretical
advantage in processing speed, but the compiler becomes the bottle-
neck of complexity: only those things that can be compiled can be
included in the experiment. This may in part contribute to the ubiquity
of state-machine formalisms in behavior software.

Because Python is used throughout the system, extending Autopi-
lot’s functionality is straightforward. Task design (see section 3.1) is
effectively arbitrary—anything that can be expressed in Python is a
valid task. Hardware can also be implemented arbitrarily, including
hardware that makes use of external libraries (eg. ACQ4[6] and our
planned integration with OpenEphys).

Modularity

Although Autopilot deeply integrates with the Raspberry Pi’s hardware,
we have also worked to make its components modular. Modularity has
3 primary advantages:

1. Modularity makes code more flexible by reducing the constraints
._.imposed by unstructured code interdependencies

2. Modularity makes code more intelligible by logically distributing
._. *-* ^ ^ =.=tasks to discrete classes

3. Modularity reduces effort-duplication by allowing multiple, simi-
._. ._. ._. ._.lar classes to be created with inheritance rather than copying and

pasting.

There is no such thing as “incompatible hardware” with Autopilot
because the classes that control hardware are independent from the
code that provides other core functionality. In systems without modular
design, hardware implementation is spread across the codebase; for
example to add a new type of hardware output to a Bpod system, one
would need to write new firmware for it in C, modify Bpod’s existing
firmware, hunt through the code to modify how states are added and
state machines are assembled, add its controls explicitly to the GUI,
and so on.

Tasks specify what type of hardware is needed to run them, but
are agnostic about the way the hardware is implemented, making
their descriptions more portable. Tasks that have the same structure
but differ in hardware (eg. a freely moving two-alternative forced
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choice task in which a mouse visits several IR sensors, or a head-fixed
two-alternative forced choice task in which a mouse runs on a wheel
to indicate its choice) can be implemented by a trivial subclass that
modifies the hardware description rather than completely rewriting the
task.

Structured Expansion & Code Transparency

We call Autopilot a software framework because in addition to pro-
viding classes and methods to run experiments out of the box, it also
provides explicit structure that scaffolds any additional code that is
needed by the user. Our goal is to clearly articulate in the documenta-
tion how modules should interact so that anyone can write code that
works on any apparatus.

Autopilot is designed for users with a range of programming ex-
pertise, from those who only want to interact with a GUI, to those
who wish to fundamentally rewrite core operations for their partic-
ular experiment. As such, it is extensively documented: this paper
provides a high-level introduction to its design and structure, its user
guide describes how to use the program and provides examples, and its
API-level documentation describes in granular detail how the program
actually works3. Nothing is “off-limits” to the user—there isn’t any 3 The user guide and API doc-

umentation are available at
docs.auto-pi-lot.com

hidden, undocumented hardware code behind the curtain. We want
users to be able to understand how and why everything works the way
it does so that Autopilot can be adapted and expanded to any use-case.

A broader goal of Autopilot is to build a library of flexible task
prototypes that can be tweaked and adapted, hopefully reducing the
number of times the wheel is reinvented. We have attempted to nudge
users to write reusable tasks by designing Autopilot such that rather
than writing separate task scripts that are loaded and run by the
program, tasks are written into a fork4 of the library itself. When 4 Autopilot is version controlled using

git. Users develop tasks in a copy, or
’fork’ of the library that keeps track of
their changes so that they can later be
re-integrated, or ’pulled’, into the main
library.

publishing research that uses a particular task, users are incentivized
to pull the changes they have made in their fork back into the central
library because doing so makes that task available to anyone using
Autopilot. Autopilot’s documentation is automatically generated from
structured comments5, which naturally establishes a minimal level of 5 using Sphinx

documentation that we will require to have a task accepted into the
main library. We hope the combination of these design nudges and
explicit development instructions in the user guide encourages users to
make contributing well-documented, reusable tasks a normal part of
using Autopilot.
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Message Handling

Modular software needs a well-defined protocol to communicate be-
tween modules, and Autopilot’s is heavily influenced by the concur-
rency philosophy6 of ZeroMQ[15]. All communication between com- 6 “ZeroMQ [...] has a subversive effect

on how you develop network-capable
applications. [...] message processing
rapidly becomes the central loop, and
your application soon breaks down into
a set of message processing tasks.”

“If there’s one lesson we’ve learned
from 30+ years of concurrent program-
ming, it is: just don’t share state.”

-The ZeroMQ Guide

puters and modules happens with ZeroMQ messages, and handling
those messages is the main way that Autopilot handles events. A
key design principle is that Autopilot components should not “share
state”—they can communicate, but they are not dependent on one an-
other. While this may seem like a trivial detail, having networking and
message-handling at its core has three advantages that make Autopilot
a fundamental departure from previous behavioral software.

First, new software modules can be added to any system by sim-
ply dropping in a standalone networking object. There is no need to
dramatically reorganize existing code to make room for new function-
ality. Instead new modules can receive, process, and send information
by just connecting to a parent module in the swarm. For example,
each plot opens a network connection to stream incoming task data
independently from the stream that is saving the data.

Second, Autopilot can be made to interact with other software li-
braries that use ZeroMQ. For example, The OpenEphys GUI for elec-
trophysiology can send and receive ZMQ messages to execute actions
such as starting or stopping recordings. Interaction with other software
is also useful in the case that some expensive computation needs to
happen mid-task. For example, one could send frames captured from
a video camera on a Raspberry Pi to a GPU computing cluster for
tracking the position of the animal. Since ZeroMQ messages are just
TCP packets it is also possible to communicate over the internet for
remote control or to communicate with a data server.

Third, making every component network-capable allows tasks to
be distributed over multiple Raspberry Pis. Chaining multiple Pis
distributes the computational load, allowing, for example, one Rasp-
berry Pi to record and process video while another runs a sound server
and delivers rewards. Autopilot expands with the complexity of your
task, simultaneously eliminating limitations on quantity of hardware
peripherals while ensuring latency is minimal. More interestingly,
distributing tasks allows the arbitrary construction of what we call
“behavioral topologies,” which we describe in section 3.4.
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2.3 Reproducibility

Standardized task descriptions
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Figure 2.4: “Minor” details have major
effects. Proportion of mice (each point,
n=4) that were successful learning the
first stage of the speech task described
in [31] across 10 behavior boxes with
variable reward sizes. A 2µL difference
in reward size had a surprisingly large
effect on success rate.

The implementation and fine details of a behavioral experiment matter.
Seemingly trivial details like milliseconds of delay between trial phases
and microliters of reward volume can be the difference between a
successful and unsuccessful task (Figure 2.4). Reporting those details
can thus be the difference between a reproducible and unreproducible
result. Researchers also often use “auxiliary” logic in tasks—such as
methods for correcting response bias—that are never completely neutral
to the interpretation of results. These too can be easily omitted due
to brevity or memory in plain-English descriptions of a task, such as
those found in Methods sections. Even if all details of an experiment
were faithfully reported, the balkanization of behavioral software into
systems peculiar to each lab (or even to individuals within a lab) makes
actually performing a replication of a behavior result expensive and
technically challenging. Widespread use of experimental tools that
are not explicitly designed to preserve every detail of their operation
presents a formidable barrier to rigorous and reproducible science[37].

{

"step_name" : "tone_discrim",

"task_type" : "2AFC",

"bias_mode" : 0,

"punish_sound" : false,

"stim" : {

"sounds" : {

"L": {

"duration" : 100,

"frequency" : 10000,

"type" : "tone",

"amplitude" : 0.01},

"R": {"...":"..."}}},

"reward": {

"type" : "volume",

"volume" : 20},

"graduation" : {

"type" : "accuracy",

"threshold" : 0.75,

"window" : 400},

}

Figure 2.5: Task parameters are stored
as portable JSON, formatting has been
abbreviated for clarity.

Autopilot splits experiments into a) the code that runs the exper-
iment, which is intended to be standardized and shared across im-
plementations, and b) the parameters (Figure 2.5) that define your
particular experiment. For example, two-alternative forced choice tasks
have a shared structure regardless of the stimulus modality, but only
your task plays pitch-shifted national anthems. Critically, this division
of labor enables the possibility of developing a shared library of tasks
as described in section 2.2

The practice of reporting exactly the parameter description used
by the software to run the experiment removes any chance for incom-
pleteness in reporting. Because all task parameters are included in the
produced data files, tasks are fully portable and can be reimplemented
exactly by anyone that has comparable hardware to yours.

Self-Documenting Data

A major goal of the open science movement is to normalize publish-
ing well-documented and clearly-formatted data alongside every pa-
per. Typically, data are acquired and stored in formats that are lab-
idiosyncratic or ad-hoc. Making data publishable then requires a
laborious cleaning process. In the worst-case scenario, this cleaning
process unearths some critically missing information about the exper-
iment, requiring awkward caveats in the Methods section. Moreover,
without careful version control, any changes made to the task code or
parameters can be lost, making it difficult to compare last week’s data
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to last month’s.
root
    current_task
    data
        task_name
            S00_free_water
                trial_data
            S01_tone_discrim
                trial_data
    history
        git_hashes
        parameter_history
        past_protocols
            old_task
        weights
    info
        animal_id
        birth_date
        genotype
        etc_additional_info

Figure 2.6: Example data structure. All
information necessary to reconstruct an
experiment is automatically stored in a
human-readable HDF5 file.

The best way to make data publishable is to avoid cleaning data
altogether and design good data hygiene practices into the data acquisition
process. Autopilot automatically stores all the information required to
fully reconstruct an experiment, including any changes in task param-
eters or code version that happen throughout training as the task is
refined.

Autopilot data is stored in HDF5 files, a hierarchical, high-performance
file format. HDF5 files support metadata throughout the file hierarchy,
allowing annotations to natively accompany data. Because HDF5 files
can store nearly all commonly used data types, data from all collection
modalities—trialwise behavioral data, continuous electrophysiological
data, imaging data, etc.—can be stored together from the time of its
acquisition. Data is always stored with the conditions of its collection,
and is ready to analyze and publish immediately (Figure 2.6). No
Autopilot-specific scripts are needed to import data into your analysis
tool of choice—anything that can read HDF5 files can read Autopilot
data.

In future versions we will implement the Neurodata Without Bor-
ders standard[29], further enabling Autopilot data to be immediately
incorporated into existing processing pipelines (see section 5).

Expense
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Figure 2.7: When comparing a value
across groups, eg. a genetic knockout
vs. wildtype, even a modest
intra-animal (or, more generally,
intra-cluster) correlation (ICC) causes
the false positive rate to be far above
the nominal α = 0.05. Shown are false
positive rates for simulated data with
various numbers of “cells” recorded for
comparisons between two groups of 5

animals each with a real effect size of 0.
We note that 741 simultaneously
recorded cells were reported in [17] and
a mean ICC of 0.19 across 18

neuroscientific datasets was reported in
[1]

Autopilot is an order of magnitude less expensive than comparable
behavioral systems (Table 2.3). We think the expense of a system is
important for two reasons: scientific equity and statistical power.

The distribution of scientific funding is highly skewed, with a large
proportion of research funding concentrated in relatively few labs[18].
Lower research costs benefit all scientists, but lower instrumentation
costs directly increase the accessibility of state-of-the-art experiments
to labs with less funding. Since well-funded labs also tend to be con-
centrated at a few (well-funded) institutions, lower research costs also
broaden the base of scientists outside traditional research institutions
that can stay at the cutting edge[2, 9, 26].

Neuroscience also stands to benefit from the lessons learned from
the replication crisis in Psychology[32]. In neuroscience, underpow-
ered experiments are the rule, rather than the exception[5]. Statistical
power in neuroscience is arguably even worse than it appears, because
large numbers of observations (eg. neural recordings) from a small
number of animals are typically pooled, ignoring the nested structure
of observations collected within individual animals. Increasing the
number of cells recorded from a small number of animals dramatically
increases the likelihood of Type I errors (Figure 2.7)—indeed, for val-
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ues of within-animal correlation typical of neuroscientific data, high
numbers of observations make Type I errors more likely than not[1].
For this reason, perhaps paradoxically, recent technical advances in
multiphoton imaging and silicon-probe recordings will actually make
statistical rigor in neuroscience worse if we don’t use analyses that
account for the multilevel structure of the data and correspondingly
record from the increased number of animals that they require.

Although the expense of multi-photon imaging and high-density
electrophysiology will always impose an experimental bottleneck, be-
havioral training time is often the greater determinant of study sample
size. Typical behavioral experiments require daily training sessions
often carried out over weeks and months, while far fewer imaging or
electrophysiology sessions are carried out per animal. Training large co-
horts of animals in parallel is thus the necessary basis of a well-powered
imaging or electrophysiology experiment.

Autopilot pyControl Bpod

Behavior CPU $35 $284 $745

Nosepoke (3x) $216 $579 $735

Total for One $251 $920 $1480

Five Systems $1255 $4600 $7400

Host CPU(s) $1000 $5000 $5000

Total for Five $2255 $9600 $12400

Total for Ten $3510 $19200 $24800

Table 2.3: Cost for Basic 2AFC System
“Nosepoke” includes a solenoid valve, IR
sensor, water tube, LED, housing, and
any necessary driver PCBs.
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3
Program Structure

Hardware Stimuli

Tasks

Data

Data
Visualization

Pilot Terminal

Networking

UI

Children

Figure 3.1: Overview of major Autopilot
components

Autopilot consists of software and hardware modules that
are configured to create a behavioral topology. Independent agents
linked by flexible networking objects fill different roles within a topol-
ogy, such as hosting the user interface, controlling hardware, or deliv-
ering stimuli. This infrastructure is ultimately organized to perform a
behavioral task.

3.1 Tasks

task_0

stages

protocol

g
r
a
d
u
a
t
i
o
n

task_1

Figure 3.2: Protocols consist of one or
multiple tasks, tasks consist of one or
multiple stages. Completion of all of a
task’s stages constitutes a trial, and
meeting some graduation criterion like
accuracy progresses a subject between
tasks.

Behavioral experiments in Autopilot are centered around tasks. Tasks
are Python classes that describe the parameters, coordinate the hard-
ware, and perform the logic of the experiment. Tasks may consist of one
or multiple stages, completion of which constitutes a trial (Figure 3.2).
Stages are analogous to states in the finite state machine formalism.

Multiple tasks are combined to make protocols, in which animals
move between tasks according to “graduation” criteria like accuracy or
number of trials. Training an animal to perform a task typically requires
some period of shaping where they are familiarized to the apparatus
and the structure of the task. For example, to teach animals about the
availability of water from “nosepoke” sensors, we typically begin with
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a “free water” task that simply gives them water for poking their nose
in them. Having a structured protocol system prevents shaping from
relying on intuition or ad hoc criteria.

Task Components

The following is a basic two-alternative choice (2AFC) task—a sound is
played and an animal is rewarded for poking its nose in a designated
target nosepoke. While simple, it is included here in full to show
how one can program a task, including an explicit data and plotting
structure, in roughly 60 lines of generously spaced Python.

Every task begins by describing four elements:
1) the task’s parameters, 2) the data that will be collected, 3) how to

plot the data, and 4) the hardware that is needed to run the task.

task - parameters
1 class Nafc(Task):

2 PARAMS = {}

3 PARAMS['stim'] = {'tag' : 'Sound Stimuli',

4 'type' : 'sounds'}

5 PARAMS['reward'] = {'tag' : 'Reward Duration (ms)',

6 'type' : 'int'}

7

8 class TrialData(tables.IsDescription):

9 target = tables.StringCol(1)

10 correct = tables.BoolCol()

11

12 PLOT = {}

13 PLOT['data'] = {'target' : 'point',

14 'correct' : 'rollmean'},

15 # n trials to roll window over

16 PLOT['params'] = {'roll_window' : 50}

17

18 HARDWARE = {

19 'POKES':{

20 'L': hardware.Beambreak,

21 'R': hardware.Beambreak

22 },

23 'PORTS':{

24 'C': hardware.Solenoid,

25 }

26 }

1) A PARAMS dictionary defines what
parameters are needed to run the task.

A human readable tag and a data
type describe each parameter.

2) A (PyTables[14]) Data descriptor
defines what data will be returned
from the task.

3) A PLOT dictionary that maps the
data output to graphical elements in
the GUI.

4) A HARDWARE dictionary that de-
scribes what hardware will be needed
to run the task.

The specific implementation of the
hardware (eg. where it is connected,
how to interact with it) is indepen-
dent of the task. The task just knows
about a PORT named C that is a
Solenoid.
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Created tasks receive some common methods, like input/trigger han-
dling and networking, from an inherited metaclass. Python inheritance
can also be used to make small alterations to existing tasks1 rather than 1 An example of subclassing a generic

’Task’ class is included in Autopilot’s
user guide

rewriting the whole thing.

Stage Methods

The logic of tasks is described in one or a series of methods (stages).
The order of stages can be cyclical, as in this example, or can have
arbitrary logic governing the transition between stages.

task - methods
27 def __init__(self, stim, reward=10):

28 self.stim_mgr = Stim_Manager(stim)

29 self.reward = Reward_Manager(reward)

30

31 stage_list = [self.discrim, self.reinforcement]

32 self.stages = itertools.cycle(stage_list)

33

34 self.init_hardware()

35 self.stages.next()()

36

37 def discrim(self):

38 target, wrong, stim = self.stim_mgr.next()

39 self.target = target

40

41 self.triggers[target] = [

42 self.hardware['PORTS']['C'].open,

43 self.stages.next()]

44 self.triggers[wrong] = self.stages.next()

45

46 self.node.send('DATA', {'target':target})

47

48 stim.play()

49

50 def reinforcement(self, response):

51 if response == self.target:

52 self.node.send('DATA', {'correct':True})

53 else:

54 self.node.send('DATA', {'correct':False})

55

56 self.stages.next()()

In Python, def defines new methods.
The __init__ method is called when
a new object is initialized

Managers control stimulus and re-
ward delivery, so users can, for exam-
ple, continually synthesize new stim-
uli or implement adaptive rewards

Stages are combined into an object
that (in this case) continually cy-
cles through them when its next()

method is called.

This starts the task by retrieving the
first stage and then calling it.

The stimulus manager returns which
port will be the target and the sound
to be played.

A sequence of triggers is set: if the
target port is poked, a reward will be
delivered and the next stage will be
called.

The task has a networking object that
asynchronously streams data back to
the user-facing terminal

In this example, the response port
is passed from the trigger handling
function. If it matches the stored tar-
get variable, the animal answered
correctly.

Finally, the task is repeated by calling
the next stage.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807693doi: bioRxiv preprint 

http://docs.auto-pi-lot.com/guide.task.html
https://doi.org/10.1101/807693
http://creativecommons.org/licenses/by-nc/4.0/


20 autopilot automating behavioral experiments with lots of raspberry pis

Autopilot is not prescriptive about how tasks are written. The same
task could have two separate methods for correct and incorrect answers
rather than a single reinforcement method, or only a single stage that
blocks the program while it waits for a response.

Publishing data from this task requires no additional effort: a hash
that uniquely identifies the code version (as well as any local changes)
is automatically stored at the time of collection, as is the parameter
dictionary (Figure 3.3). If this task was incorporated into the central
task library, anyone using Autopilot would be able to exactly replicate
the experiment from the published data.

{

"step_name": "Simple 2AFC",

"stim" : {

"sounds" : {

"L": {

"type" : "tone",

"frequency" : 4000},

"R": {

"type" : "tone",

"frequency" : 8000}

}

},

"reward": 10

}

Figure 3.3: Example parameters for the
above task

The limitations of finite state machines

The 2AFC task described above could be easily implemented in a finite-
state machine. However, the difficulty of programming a finite-state
machine is subject to combinatoric explosion with more complex tasks.
Specifically, finite-state machines can’t handle any task that requires
any notion of “state history.”

As an example, consider a maze-based task. In this task, the animal
has to learn a particular route through a maze—it is not enough to
reach the endpoint, but the animal has to follow a specific path to reach
it (Figure 3.4). The arena is equipped with an actimeter that detects
when the animal enters each area.

a b c

d e f

g h i

good! reward!

bad. no reward :(

Figure 3.4: The subject must reach point
i but only via the correct (green) path.

In Autopilot, we would define a hardware object that logs positions
from the actimeter with a store_position() method. If the animal has
entered the target position (“i” in this example), a task_trigger() that
advances the task stage is called. The following code is incomplete, but
illustrates the principle.

maze - hardware
1 class Actimeter(Hardware):

2 def __init__(self):

3 # ... some code to access the hardware ...

4 self.positions = []

5 self.target_position = "i"

6

7 def store_position(self, position):

8 self.positions.append(position)

9

10 if position == self.target_position:

11 self.finished_cb(self.positions)

12 self.positions = []

See line 18 below

The task follows, with parameters and network methods for sending
data omitted for clarity.
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maze - task
13 class Maze(Task):

14 def __init__(self):

15 self.target_path = ['a', 'b', 'e', 'f', 'i']

16

17 self.actimeter = Actimeter()

18 self.actimeter.finished_cb = self.finished

19

20 def finished(self, positions):

21 if positions == self.target_path:

22 self.reward()

The actimeter is given a reference to
the Maze task’s finished() method,
which it calls when the target position
is reached

The sequence of positions is com-
pared to the target_path with ==. If
they match, the subject is rewarded!

How would such a task be programmed in a finite-state machine
formalism? Since the path matters, each “state” needs to consist of the
current position and all the positions before it. But, since the animal can
double back and have arbitrarily many state transitions before reaching
the target corner, this task is impossible to represent with a finite-state
machine, as a full representation would necessitate infinitely many
states (this is one example of the pumping lemma, see [19]).

Even if we dramatically simplify the task by 1) assuming the animal
never turns back and visits a space twice, and 2) only considering paths
that are less than or equal to the length of the correct path, the finite
state machine would be as complex as figure 3.5.

While finite-state machines are relatively easy to implement and
work well for simple tasks, they quickly become an impediment to
even moderately complex tasks. Even for 2AFC tasks, many desirable
features are difficult to implement with a finite state machine, such
as: (1) graduation to a more difficult task depending on performance
history, (2) adjusting reward volume based on learning rate, (3) selecting
or synthesizing upcoming stimuli based on patterns of errors[3], etc.
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Figure 3.5: State transition tree for a
simplified maze task.
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22 autopilot automating behavioral experiments with lots of raspberry pis

3.2 Hardware

The Raspberry Pi can interface with nearly all common hardware, and
has an extensive collection of guides, tutorials, and an active forum
to support users implementing new hardware. There is also an enor-
mous amount of existing hardware for the Raspberry Pi, including
sound cards, motor controllers, sensor arrays, ADC/DACs, and touch-
screen displays, largely eliminating the need for expensive proprietary
hardware (Table 3.1).

Table 3.1: Cost of common
peripherals. The native hardware of the
Raspberry Pi and low-level hardware
control of Autopilot make most
custom-built peripherals unnecessary.
While Bpod requires an additional
module to decode rotary encoder
signals, for example, Autopilot can
directly decode them via its GPIO pins
with minimal effort by using existing
open-source libraries. Inexpensive
off-the-shelf hardware is also available
to supplement the Pi’s native hardware.

Device Raspi Bpod

ADC/DAC $30 $475/$475

I2C $0 $165

Ethernet $0 $235

Rotary
Encoder

$0 $135

nosepoke

tripoke mount

Figure 3.6: We have designed a basic set
of easily-assembled hardware available
on Autopilot’s website.

Autopilot uses pigpio to interact with its GPIO pins, giving Autopilot
5µs measurement precision and enabling protocols that require high
precision (such as Serial, PWM, and I2C) for nearly all of the pins.
Hardware devices in Autopilot are independent Python objects, so
their implementation and logic is flexible across installations and tasks.
Hardware logic is also reusable, so it doesn’t need to be reimplemented
for every task, and is intended to be built into a library of hardware
objects analogously to tasks.

All hardware objects can be given callback functions to trigger task
events, and can be given their own networking object to directly send
data and receive configuration input. Time-consuming or continuous
operations are run in separate threads and don’t block task operation.
This makes complex hardware logic easy to implement—for example,
if one were using flashing LEDs as an aversive stimulus, the flashes
could be delivered with a single method call while the next stage in the
task is being computed and other hardware input is still being taken.

Though we expect most users will want to make their own or use
existing hardware, we have designed a set of 3D-printable components
(Figure 3.6), and include them along with assembly instructions and
parts lists on Autopilot’s website.

Table 3.2: Specifications of reviewed
behavior hardware

Raspberry Pi 4B Bpod (Teensy 3.6) pyControl (pyboard)

CPU Clock 1.5GHz 180MHz 168MHz
CPU Cores 4 1 1

CPU Architecture ARMv8-A, 64-bit ARMv7E-M 32-bit ARMv7E-M 32-bit
RAM Size 1, 2, or 4GB 256KB 192KB

Storage MicroSD (any size) 1024KB 1024KB
GPU Broadcom VideoCore VI N/A N/A

GPIO Pins 40 58 29

USB Ports 2x USB 2.0, 2x USB 3.0 2x USB 2.0 1x USB 2.0
Ethernet 1Gbps 100Mbps N/A

WiFi 2.4/5 GHz 802.11 b/g/n/ac N/A N/A
Camera Input 15-pin Serial Interface N/A N/A

Bluetooth N/A N/A
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System Adaptability

{

"AGENT": "pilot",

"AUDIOSERVER": "jack",

"DATADIR": "/some/data/dir",

"NAME": "example_pilot",

"PINS": {

"LEDS": {

"C": [22,18,16],

"L": [11,13,15],

"R": [19,21,23]}

},

"MSGPORT": 5565,

"TERMINALIP": "192.168.0.100"

}

Figure 3.7: The prefs.json file stores
durable system configuration options.

Rather than attempting to enforce a uniform hardware ecosystem,
Autopilot adapts to the radically divergent hardware of different re-
searchers by keeping hardware logic independent from the way it is set
up in a particular system. A systemwide prefs.json file contains all
durable configuration information for your setup (Figure 3.7). Hard-
ware is then accessed by its type and name, so if a task needs an LED
named “C” (for “Center”), it would connect to the pins defined in
prefs['PINS']['LEDS']['C'] no matter how the LED was connected
or configured in the system. This layer of abstraction allows the task
classes to be general enough to maintain a shared task library while
also allowing researchers to retain total control over their system.

Autopilot also allows the hardware in your particular setup to be
used for multiple tasks that may have differing hardware demands. We
think a common use-case will be a series of mostly-static behavioral
boxes that can be reconfigured without being wholly rebuilt. The
hardware schematics we release are modular, so that one could, for
example, change a behavior box from a freely-moving two-alternative
forced choice task to a head-fixed version by replacing a panel and
installing a running wheel. We are working to implement support for
multiple hardware configurations that can be kept in the prefs.json

file and automatically swapped depending on the task being run.

3.3 Stimuli

An Autopilot Tone
my_tone = sounds.Tone(

frequency = 500,

duration = 200)

my_tone.play()

A Bpod Tone
tone = GenerateSineWave(...

samplingrate, freq, dur);

% load to audio server

server = BPodAudioPlayer;

server.loadSound(1,tone);

% buffer sound after poke

sma = AddState(sma, ...,

'OutputActions',

{'AudioPlayer1', '*'});

% play sound by number

sma = AddState(sma, ...,

'OutputActions',

{'AudioPlayer1', 1});

Figure 3.8: Autopilot stimuli are
parametrically defined and inherit all
the playback logic that makes them easy
to integrate in tasks

A hardware object would control a speaker, whereas stimulus objects
are the individual sounds that the speaker would play. Like tasks and
hardware, Autopilot makes stimulus generation portable between users,
and is released with a family of common sounds like tones, noises, and
sounds from files. The logic of sound presentation is contained in an
inherited metaclass, so to program a new stimulus a user only needs
to describe how to generate it from its parameters (Figure 3.8). Sound
stimuli are better developed than visual stimuli in the current version of
Autopilot, but we present a proof-of-concept visual experiment (Section
4.3) using psychopy[27].

Autopilot controls the realtime audio server jack from an indepen-
dent Python process that dumps samples directly into jack’s buffer
(Figure 3.9), giving it the lowest trigger-to-playback latency of any
of the systems we have tested or found benchmarks for (Section 4.1).
Sounds can be buffered in system memory or synthesized on demand,
and the only limit on the number of stimuli that can be simultaneously
buffered is the Pi’s generous 4GB of memory. Because the realtime
server is independent from the logic of sound synthesis and storage,
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stimuli can be controlled independently from different threads without
interrupting audio or dropping frames.

We use the Hifiberry Amp 2, a combined sound card and amplifier,
which is capable of 192kHz/24Bit audio playback. Jack can output
to any sound hardware, however, including the builtin audio of the
Raspberry Pi if fidelity isn’t important. There are no external video
cards for the Raspberry Pi, but its embedded video card is capable of
presenting video and visual stimuli (Section 4.3) especially if the other
computationally demanding parts of the task are distributed to other
Raspberry Pis (Section 3.4).

sound
server

autopilot
task sound.play()

pigpio

operating
system

trigger
callback

trigger
playback

jack
audio

IR sensor Speaker

buffered
samples

dump to
soundcard

Figure 3.9: Our sound server keeps
audio samples buffered until a .play()

method is called, and then dumps them
directly into the jack audio daemon.

Stimulus and Reward Managers

In many tasks, the structure of the stimulus presentation is as important
as the structure of the task. Stimulus structure can become complicated
quickly—in addition to whatever order is necessitated by the task de-
sign, it is common to also include shaping routines like bias correction
in the presentation logic. Different types of stimuli also require different
degrees of coordination: unitary stimuli that are presented once per
trial can be handled independently without fear of them overlapping
or interrupting one another, but continuous stimuli that change in
response to task performance need to be mutually coordinated.

We separate stimulus presentation logic from task structure by using
stimulus managers. Stimulus managers have different ’base’ presenta-
tion types—eg. random presentation, blocked presentation, etc.—and
a set of configurable transformations like bias correction that can be
chained together. The stimulus manager can yield prebuffered stimulus
objects, synthesize new stimuli according to some task-related rule, and
manage a continuous stimulus stream.

Reward managers behave similarly2. Reward managers can imple- 2 Reward managers are not yet imple-
mented as independent classes in the
current version (0.2) of Autopilot, but
are a planned feature of Autopilot v0.3.
Different modes of reward delivery are
currently implemented by the Solenoid

class.

ment different calibration schemes—eg. for gravity-fed water delivery,
reward can be configured to be delivered for a constant time, constant
volume, or use the animal’s mass and performance to adaptively deliver
a total volume over a period of time.

3.4 Agents - Terminal, Pilot, and Child

All of the above components—tasks, hardware, and stimuli—are or-

ChildPilotTerminal

Three Agents:
ganized into a single system as an “agent,” the central executable
component of Autopilot which a) manages the core operations of the
system and b) defines how it interacts with the rest of the agents it is
connected to. Specifically, agents are built around an action vocabulary
that maps different types of messages to callback methods.
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Currently, we have implemented three Agent types:

• Terminal - The user-facing control agent.

• Pilot - A Raspberry Pi that runs tasks, coordinates hardware, and
optionally coordinates a set of child Pis.

• Child - Subordinate Pis to a pilot that carry out different parts of a
task

Terminal agents serve as a root node (see Section 3.5) in an Autopilot

Terminal

swarm. The terminal is the only agent with a GUI, which is used to
control its connected pilots and visualize incoming task data. The ter-
minal also manages data and keeps a registry of all active experimental
subjects. The terminal is intended to make the day-to-day use of an
Autopilot swarm manageable, even for those without programming
experience. The terminal GUI is described further in Section 3.6.

Pilot agents are the workhorses of Autopilot—the agents that run

Pilot

the experiments. Pilots are intended to operate as always-on, continu-
ously running system services. Pilots make a network connection to a
terminal and wait for further instructions. They maintain the system-
level software used for interfacing with the hardware connected to the
Raspberry Pi, receive and execute tasks, and continually return data to
the terminal for storage.

Each pilot is capable of coordinating one or many child agents. The

Child

pilot maintains a network connection to its children, and if a task
specifies that some of its functionality is to be split between Raspberry
Pis, the pilot notifies its children and sends them a specialized subtask
description. The pilot serves as the only point of contact between its
children and the terminal, so the terminal only needs to keep track of
its pilots, and doesn’t need separate methods for communicating with
all their children, their hardware, etc.

Behavioral topologies

We think one of the most transformative features of Autopilot’s dis-
tributed structure is the control that users have over what we call
“behavioral topology.” The logic of hardware and task operation within
an agent, the distribution of labor between agents performing a task,
and the pattern of connectivity and command within a swarm of agents
constitute a topology.

Below we illustrate this idea with a few examples:
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• Pilot Swarm - The first and most obvious topological departure Pilot Swarm
from traditional behavioral instrumentation is the use of a single
computer to independently coordinate tasks in parallel. Our primary
installation of Autopilot is a cluster of 10 behavior boxes that can
independently run tasks dispatched from a central terminal which
manages data and visualization. This topology highlights the ex-
pandability of an Autopilot system: adding new pilots is inexpensive,
and the single central terminal makes controlling experiments and
managing data simple.

• Shared Task - Tasks can be shared across pilots and their (potentially Shared Task
multiple) children to handle tasks with computationally intensive
operations. For example, in an open-field navigation task, one
pilot can deliver position-dependent sounds while one of its children
records and analyzes video of the arena to track the animal’s position.
The terminal only needs to be configured to connect to the parent
pilot, but since networking is handled in an independent process the
raw video data can pass through the parent from the child such that
sound delivery remains responsive.

• Distributed Task - Many pilots with overlapping responsibilities Distributed Task
can cooperate to perform distributed tasks. We anticipate this will be
useful when the experimental arenas can’t be fully contained (such
as natural environments), or when experiments require simultaneous
input and output from multiple subjects. Distributed tasks can take
advantage of the Pi’s wireless communication, enabling, for example,
experiments that require many networked cameras to observe an
area, or experiments that use the Pis themselves as an interface in a
multisubject augmented reality experiment.

• Multi-Agent Task - Neuroscientific research often consists of multi- Multi-Agent Task

home cage 
monitoring

multiple
tasks

ple mutually interdependent experiments, each with radically differ-
ent instrumentation. Autopilot provides a framework to unify these
experiments by allowing users to rewrite core functionality of the
program while maintaining integration between its components. For
example, a neuroethologist could build a new “Observer” agent that
continually monitors an animal’s natural behavior in its home cage
to calibrate a parameter in a task run by a pilot. If they wanted to
manipulate the behavior, they could build a “Compute” agent that
processes Calcium imaging data taken while the animal performs
the task to generate and administer patterns of optogenetic stimu-
lation. We think that unifying diverse experimental data streams
and hardware into a single framework is the best way to perform
experiments that measure natural behavior and its hierarchical or-
ganization across multiple timescales in order to understand the
naturally behaving brain[10].
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3.5 Networking

terminal

pilot

child

independent station
objects

Child Node

Pilot Node

Wheel

Terminal Node

Plot

Data

Task

raw velocity

task event

task data

network nodes
Figure 3.10: Autopilot segregates data
streams efficiently—eg. raw velocity
(red) can be plotted and saved by the
terminal while only the task-relevant
events (blue) are sent to the pilot. The
pilot then sends trial-summarized data
to the terminal (green).

Agents use two types of object to communicate with one another: core
station objects and peripheral node objects (Figure 3.10). Each agent
creates one station in a separate process that handles all communication
between agents. Stations are capable of forwarding data and maintaining
agent state so the agent process is not unnecessarily interrupted. Nodes
are created by individual modules run within an agent—eg. tasks, plots,
hardware—that allow them to send and receive messages within an
agent or between agents through the station object. Messages are TCP
packets3, so there is no distinction between sending messages within a

3 Autopilot uses ZeroMQ[15] and
tornado to send and process messages

computer, a local network, or over the internet.
Both types of networking objects are tailored to their hosts by a set

of callback functions—listens—that define how to handle each type
of message. Messages have a uniform key-value structure, where the
key indicates the listen used to process the message and the value is
the message payload. This system makes adding new network-enabled
components trivial:

A new networked LED
1 class LED_RGB(Hardware):

2 def __init__(self):

3 # call self.color for a 'COLOR' message

4 self.listens = {'COLOR': self.color}

5 self.node = networking.Node(

6 id = 'BEST_LED',

7 listens = self.listens)

8

9 def color(msg):

10 self.set_color(msg.value)

11

12 # elsewhere in the code, we change the color to red!

13 node.send(to='BEST_LED', key='COLOR', value=[255,0,0])

A

B

C

D

E

to:B

to:C to:A

to:A

Figure 3.11: Treelike network
structure—downstream messages are
addressed by successive nodes, but
upstream messages can always be
pushed until the target is found.

Network connectivity is treelike (Figure 3.11)—each independent
networking object can have many children but at most one parent.
This structure makes an implicit assumption about the anisotropy of
information flow: ’higher’ nodes don’t need to send messages to the
’lowest’ nodes, and the ’lowest’ nodes send all their messages to one or a
few ’higher’ nodes. It enforces simplified delegation of responsibilities
in both directions: a terminal shouldn’t need to know about every
hardware object connected to all of its connected pilots, it just sends
messages to the pilots, who handle it from there. A far-downstream
node shouldn’t need to know exactly how to send its data back to the
terminal, so it pushes it upstream until it reaches a node that does.
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3.6 GUI & Plots

The terminal’s GUI controls day-to-day system operation4. It is in- 4 Autopilot uses PySide, a wrapper
around Qt, to build its GUI.tended to be a nontechnical frontend that can be used by those without

programming experience.
For each pilot, the terminal creates a control panel that manages

subjects, task operation, and plots incoming data. Subjects can be
managed through the GUI, including creation, protocol assignment,
and metadata editing. Protocols can also be created from within the
GUI. The PARAMS dictionary from a task is used to programmatically
generate a series of fields that the user can fill to describe their particular
version of the task. The standardized description of tasks not only
allows them to be reused between researchers, but also take advantage
of the rest of the infrastructure of Autopilot.

The GUI also has a set of basic maintenance and informational
routines in its menus, like calibrating water ports or viewing a history of
subject weights. The simple callback design and network infrastructure
makes adding new GUI functionality straightforward.

Plotting

Trial Plot
{"data": {

"target" : "point",

"response" : "segment",

"correct" : "rollmean"

},

"roll_window" : 50}

Continuous Plot
{"data": {

"target" : "point",

"response" : "segment",

"velocity" : "shaded"

},

"continuous": true}

Figure 3.12: PLOT parameters for Figure
3.13. In both, “target” and “response”
data are mapped to “point” and
“segment” graphical primitives, but
timestamps rather than trial numbers
are used for the x-axis in the
“continuous” plot (Figure 3.13, bottom).
Additional parameters can be specified,
eg. the trial plot (Figure 3.13, top)
computes rolling accuracy over the past
50 trials

Realtime data visualization is critical for monitoring training progress
and ensuring that the task is working correctly, but each task has dif-
ferent requirements for visualization. A task that has a subject con-
tinuously running on a ball requires a continuous readout of running
velocity, whereas a trial-based task only needs to show correct/incorrect
responses as they happen. Autopilot solves this problem by assigning
the data returned by the task to graphical primitives like points, lines, or
shaded areas as specified in a task’s PLOT dictionary (taking inspiration
from Wilkinson’s grammar of graphics[39]).

Figure 3.13: Screenshot from a terminal
GUI running two different tasks with
different plots concurrently. pilot_1
runs 2 subjects: (tones and tones_2).
See Figure 3.12 for plot description
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4
Tests

We have been testing and refining Autopilot since we built our
swarm of 10 training boxes 10 months ago. In that time 115 mice1 have 1 All procedures were performed in

accordance with National Institutes
of Health guidelines, as approved by
the University of Oregon Institutional
Animal Care and Use Committee.

performed over 1.9 million trials on auditory two-alternative forced
choice tasks. Our terminal has sent and received more than 42 million
messages. While Autopilot is (by definition) immature at release, it is
by no means untested.

4.1 Latency

Table 4.1: Latency Test Materials

Autopilot Raspberry Pi 4

Soundcard Hifiberry Amp2

IR Break Sensor TT Electronics
OPB901L55

Speaker HiVi RT1.3WE

Bpod State Machine R2

Computer See Table 4.2
Soundcard ASUS Xonar

Essence STX II
Stimulator Grass S88

Oscilloscope Tektronix TDS
2004B

Neurons compute at millisecond timescales, so any task that links
neural computation to behavior needs to have near-millisecond latency.
We measured Autopilot’s end-to-end, hardware input to hardware
output latency by measuring the delay between a poke in a nosepoke
sensor and the onset of a 10kHz pure tone (Table 4.1).

We also measured the latency of a Bpod state machine configured
according to the provided instructions and running an example task
from their repository. Sound playback was triggered with a 1ms TTL
pulse to the state machine’s BNC input port. We note that for the Bpod
test we used a more recent soundcard from the same manufacturer and
Ubuntu 16.04 (running the lowlatency kernel) since the recommended
Asus Xonar DX is no longer available for purchase and Ubuntu 14.04 is
no longer supported.

Autopilot’s jack audio backend was configured with a 192kHz sam-
pling rate and a total buffer size of 128 samples, and Bpod’s Psych-
toolbox server was configured with a 192kHz sampling rate with a 32

sample buffer for theoretical minimum latencies of 0.67 and 0.17ms,
respectively.

For both systems we directly measured the input logic and output
sound voltage with an oscilloscope and estimated latency with its
measurement cursors.

Bpod
pyControl

Bpod
Autopilot

0 10 20 30
latency (ms)

Measured Latency
Reported Latency

1.75(±0.3)  

18.4(±1.4)15

7.5

Figure 4.1: For the two systems we
measured (blue), mean latency is
presented ± standard deviation of all
individual measurements (black dots,
n=200 for each). Reported latencies (red)
of Bpod and pyControl were found
online.
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Autopilot’s 1.75ms± 0.3 latency—less than 3x the theoretical minimum—
improves upon the measured latency of Bpod and reported latency of
pyControl by an order of magnitude (Figure 4.1, 18.4ms ± 1.4, 15ms
respectively). This suggests that Autopilot eliminates most perceptible
end-to-end latency, which is necessary for tasks that require realtime
feedback.

While we did not deeply investigate the reason why Bpod exceeded
its theoretical minimum latency by more than 100x, potential sources
of latency include a costly serial reading method, or the MATLAB
graphics engine being continuously called in the main loop of the
program, which are intrinsic to its single-threaded design.

Since Autopilot’s event handling infrastructure is shared across tasks
and hardware classes, latency for all events should be roughly similar
to that of audio playback. One future direction is to improve upon
Autopilot’s already-low latency by compiling its sound server and event
handling methods using Cython.

4.2 Bandwidth

Table 4.2: Terminal Specs

CPU AMD FX-4300

CPU Speed 3.8GHz
Memory 8GB
Ethernet 1Gbit/s

Switch NETGEAR GSS116E

# Pilots 1 2 4 6 8 10
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Figure 4.2: Network latency (top) and
throughput (bottom) tests. Each point
in the latency test represents the mean
rate and delay of 5,000 255 Byte
messages. Throughput (bottom) was
calculated as the product of message
rate and message size, and is displayed
for a test that requested different
numbers of pilots (colors) to send
messages of different size to the
terminal.

To support data-intensive tasks like those that require online processing
of video or electrophysiological data, the networking modules at the
core of Autopilot need high bandwidth and low latency.

We tested network capacity using Autopilot’s Bandwidth_Test wid-
get. This test requests that a set of selected pilots send messages at a
range of selected frequencies and payload sizes back to the terminal.
The messages pass through four networking objects en route: the sta-
tions and network nodes running the test for both the terminal and
pilots (See Figure 3.10). Delay is measured as the duration between the
creation of the message at the sender and the processing of the message
at the receiver. The Pis and terminal were synchronized on common
NTP servers to align timestamps.

First we tested the limits of our terminal’s ability to receive messages
from the 10 pilots that it controls. Our terminal is a modest desktop
(complete with a vintage 2012 CPU, see Table 4.2) with ethernet con-
nections to 10 Raspberry Pi 3b’s through a network switch. We first
tested the rate at which the Pi 3b’s and our terminal could send and
process typical (255 Byte) messages without a data payload (Figure 4.2,
top). A single Pi was capable of sending at a maximum rate of 707 Hz

without exceeding its nominal mean delay of 4.9 (± 0.47) ms. Adding
additional Pis did not cause increased delay until the total sending rate
surpassed roughly 2000 Hz. These are the rate limits of sending and
receiving messages, respectively.

As we increased the size of each individual message by including
payloads of generated data (Figure 4.2, bottom), the rate of messag-
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ing decreased, but the total throughput (message rate (Hz) * size

(Bytes)) saturated linearly as a multiple of the number of sending Pis.
The Raspberry Pi 3b has a shared USB/Ethernet Bus, and thus appears
to have a relatively limited 11.8MB/s throughput.

delay
(mean)

jitter
(sd)

rate
(max)

throughput
(max)

Pi 3B+Pi 4B

4.9ms

41MB/s

11MB/s

1,919Hz

770Hz

6.9ms

0.6ms

5.7ms

Figure 4.3: The Raspberry Pi 4’s gigabit
ethernet bus markedly improves
network performance.

Fortunately, the Raspberry Pi 4 has an independent gigabit ethernet
bus. On a Raspberry Pi 4, Autopilot has a 41MB/s maximum throughput
and a 1,919Hz maximum messaging rate (Figure 4.3). We observed
a slightly higher messaging delay with the Raspberry Pi 4 (6.9ms
vs. 4.9ms Raspberry Pi 3B+). We note that the NTP synchronization
method we used to measure delays has a margin of error on the order
of milliseconds.

Autopilot’s networking modules are capable of supporting the in-
frastructure of next-generation behavioral neuroscience experiments.
Our humble terminal was capable of receiving the full 114.6MB/s of
10 Pis without sign of saturation, and a Raspberry Pi 4 is capable of
sending data at 41MB/s. This bandwidth makes Autopilot capable of
streaming raw Calcium imaging2 and electrophysiological data from 2

2-Photon: 5.9MB/s
(12 bits * 512x512 resolution * 15Hz)modern high-density probes3. The delay between sending and process-
3 Neuropixels: 14.4MB/s[17]
(10 bits * 30kHz * 384 channels)ing messages over 4 hops in a network (4.9ms) is less than the latency

with which comparable systems (Figure 4.1) process triggers when
connected directly via serial.

Finally, while Autopilot typically operates in a “TCP-like” protocol—
resending messages until they have been confirmed as received—these
tests were run with an optional “UDP-like” protocol which does not
check for confirmation. Across the approximately 2.5 million mes-
sages sent during these tests only 537 were dropped (and only during
tests which saturated rate or bandwidth capacity), giving Autopilot
a delivery rate of 99.98% in “UDP” mode. By design, delivery rate is
guaranteed to be 100% in “TCP” mode.

4.3 Distributed Go/No-go Task

We designed a visual go/no-go task as a proof of concept for distribut-
ing task elements across multiple Pis, and also for the presentation of
visual stimuli (Figure 4.4). The code for this task is described in greater
detail in the user guide.

Wheel

?

LED

Monitor

Lick
Sensor

Solenoid
Valve

+ +

Velocity
Trigger

Figure 4.4: Hardware distribution for
the distributed go/no-go task

In this task, a head-fixed subject would4 be running on a wheel

4 No mice were trained on this task

in front of a display with a lick-detecting water port able to deliver
reward. Above the port is an LED. Whenever the LED is green, if the
subject drops below a threshold velocity for a fixation period, a grating
stimulus at a random orientation is presented on the monitor. After a
random delay, there is a chance that the grating changes orientation
by a random amount. If the subject licks the port in trials when the
orientation is changed, or refrains from licking when it is not, the
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subject is rewarded.
One “parent” pilot controlled the operation of the task, including the

coordination of its child5. The parent was connected to the LED and 5 Both Raspberry Pi 4s

solenoid valve for reward delivery, as well as a monitor6 to display the 6 Acer S230HL - (1920x1080px, 60Hz)

gratings7. The child continuously streamed velocity data (measured 7 Visual stimuli were presented with
Psychopy (v3.1.5) using the glfw (v1.8.3)
backend while Autopilot was run in a
dedicated X11 display server.

with a USB optical mouse against the surface of the wheel) back to the
terminal for storage (see also Figure 3.10, which depicts the network
topology for this task). The child waited for a message from the parent
to initiate measuring velocity, and when a rolling average of recent
velocities fell below a given threshold the child sent a TTL trigger back
to the parent to start displaying the grating. This split-pilot topology
allows us to poll the subject velocity continuously (at 125Hz in this
example) without competing for resources with psychopy’s rendering
engine.

We measured trigger (TTL pulse from the child) to visual stimulus
onset latency using the measurement cursors of our oscilloscope as
before. To detect the onset of the visual stimulus, we used a high-speed
optical power meter8 attached to the top-left corner of our display 8 Thorlabs PM100D

monitor. The stimulus was a drifting Gabor grating drawn to fill half
the horizontal and vertical width of the screen (960 x 540px), with a
spatial frequency of 4cyc/960px and temporal (drift) frequency of 1Hz.

20 25 30 35 40 45
Trigger-Stimulus Latency (ms)

Figure 4.5: Stacked dots are a histogram
of individual observations (n=50)
underneath the probability density
(black line), red lines indicate quartiles.

We observed a bimodal distribution of latencies (Quartiles: 28, 30,

36ms, n=50, Figure 4.5), presumably because onsets of visual stimuli
are quantized to the refresh rate (60Hz, 16.67ms) of the monitor. This
range of latencies corresponds to the second and third frame after
the trigger is sent (2/3 of observations fall in the 2nd frame, 1/3 of
observations in the 3rd frame). We observed a median framerate of
36.2 FPS (IQR: 0.7) across 50 trials (8863 frames, Figure 4.6).

We further tested the Pi’s framerate by using Psychopy’s timeByFrames
test—a script that draws stimuli without any Autopilot components
running—to see if the framerate limits were imposed by the hardware
of the Raspberry Pi or overhead from Autopilot (Table 4.3). We tested a
series of Gabor filters and random dot stimuli (dots travel in random
directions with equal velocity, default parameters) at different screen
resolutions and stimulus complexities. The Raspberry Pi was capable
of moderately high framerates (>60 FPS) for smaller, lower resolution
stimuli, but struggled (<30 FPS) for full HD, fullscreen stimuli.

30 32 34 36
Frames/s

Figure 4.6: Probability density of
framerates for 960 x 540px grating
rendered at 1080p. Red lines indicate
quartiles

Autopilot is appropriate for realtime rendering of simple stimuli,
and the proof-of-concept API we built around Psychopy doesn’t impose
discernible overhead (Mean framerate for a 960 x 540px grating at
1080p in Autopilot: 36.2 fps, vs. timeByFrames: 35.0 fps). In the
future we will investigate prerendering and caching complex stimuli
in order to increase performance. A straightforward option for higher-
performance video would be to deploy an Autopilot agent running
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on a desktop computer with a high-performance GPU, or to use a
single-board computer with a GPU like the NVIDIA Jetson ($99).

Stimulus Resolution Size / # Dots Mean FPS σ FPS

Gabor Filter 1280 x 720 300 x 300px 106.4 5.5
Gabor Filter 1920 x 1080 300 x 300px 75.2 3.5
Gabor Filter 1280 x 720 640 x 360px 53.5 2.2
Gabor Filter 1920 x 1080 960 x 540px 35.0 1.0
Gabor Filter 1280 x 720 720 x 720px 41.5 2.2
Gabor Filter 1920 x 1080 1080 x 1080px 20.1 0.7

Random Dots 1280 x 720 100 dots 98.0 3.8
Random Dots 1920 x 1080 100 dots 67.6 3.0
Random Dots 1280 x 720 1000 dots 20.9 0.25

Random Dots 1920 x 1080 1000 dots 19.5 0.36

Table 4.3: Tests performed over 1000

frames with PsychoPy’s timeByFrames

test.
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5
Limitations and Future Directions

While we believe that Autopilot’s order of magnitude increase of performance and decrease in
expense, and its qualitative improvements in task design flexibility due to its distributed architecture are
already useful contributions to behavioral neuroscience, we do not view Autopilot as “finished.” We view
Autopilot—like all open-source software—as an evolving project. We are invested in its development, and
will be continually working to fix bugs, make its use more elegant, and add new features in collaboration
with its users.

We expect that as the codebase matures and other researchers use Autopilot in new, unexpected
ways that some fundamental elements of its structure may evolve. We have built version logging into
the structure of the system so that changes will not compromise the replicability of experiments (see
Versioning and Containerization below). While there will inevitably be changes between versions, these
will be both transparently documented and announced in release notes in order to alert users and describe
how to adapt as needed. Accordingly, potential users should not let the limitations and future directions
described below cause them to worry about early adoption or to wait for a stable version—the cost to
start using Autopilot is low, and in our experience implementing experiments is already easier and more
straightforward than comparable behavior systems.

We see several limitations in the launch version of Autopilot that we will improve on in future versions:

• Python 3 - We began developing Autopilot while there was still a case to be made for using Python
2. Now, given Python 2’s impending end of life in 2020, we will transition Autopilot to Python 3 by
the end of 2019. We have already started transitioning with the Subject data class and don’t see the
transition as a great obstacle.

• Synchronization - Currently, there is no synchronization engine built into Autopilot. To ensure time-
sensitive operations distributed over multiple Raspberry Pis are synchronized (ie. generate near-identical
timestamps), we will add the ability for agents to generate and follow a clock signal with pigpio. This
synchronization engine will also allow alignment of Autopilot data with external software, such as the
proprietary software often used for imaging data acquisition.

• Integration with Other Software - We will make Autopilot capable of natively recording electrophysi-
ological data by integrating with Open Ephys[33]. We also are interested in tightly integrating other
recent tools like DeepLabCut[23] and MoSeq[40] to make Autopilot a unified platform for complex and
naturalistic behavioral experiments.

• Transformations - To enable the use of computer vision and other analytical tools within tasks we
have begun building a data transformation module. This module will provide a framework to perform
high-level data transformations—eg. images from a camera to positions of tracked objects—that convert
raw data from hardware objects to processed data useful for designing complex tasks.

• Agents - The Agent infrastructure is still immature—the terminal, pilot, and child agents are written as
independent classes, rather than with a shared inheritance structure. We will be designing a common
Agent class schema so that they are easier to design and deploy. We also plan to expand the available
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agents, specifically by introducing Observer and Compute agents. Observers will be designed for passive
observation without supervision from a terminal, eg. for monitoring animals continuously in their home
cages. Compute agents will run on high-performance computers in order to facilitate computationally
intensive operations like GPU-dependent image analysis, online spike-sorting, etc. A mature agent
framework will provide a much more streamlined path to the complex multi-agent experiments alluded
to in Section 3.4.

• Data - We plan on transitioning our data model to implementing the Neurodata Without Borders[29]
standard. Since the Neurodata Without Borders standard is implemented in HDF5 and structurally
similar to our data model, this transition should be straightforward. We also plan on adding support
for a NoSQL mongoDB database backend to improve reliability, scalability, and performance of data
storage and retrieval. Since our data model is standardized, we will ensure all data storage backends
are mutually compatible so data stored in a database can be exported to HDF5 files and vice versa.
Currently Autopilot only automatically logs changes in task parameters and code version, but in the
future we will expand our logging facility to include detailed data on systemwide preferences and
connected hardware.

• Versioning and Containerization - While Autopilot version and local changes are logged in collected
data by default, there is no way to specify that a task should be run using a particular version
automatically (ie. the user has to manually check out the specific git commit before running Autopilot).
We intend on supporting task parameterizations that specify particular versions of Autopilot. We also
will expand Autopilot’s version logging system to include the versions of all the other packages in the
environment. In our view, the best way to support reproducible software environments is to use a
container system like Docker, so we will be building infrastructure to generate containers from task
parameterizations.

• Tasks - We look forward to collaborating with other researchers to expand the available library of
tasks. While the two-alternative forced choice and go/no-go tasks we have implemented are common,
we designed Autopilot to be capable of performing any behavioral experiment. For example: we
have already started a collaboration to build a freely-moving, jumping-based behavior that relies on
16 hardware components and data streams, and have future plans to build hardware and stimulus
management extensions for human psychophysical tasks performed in an fMRI.

• Mesh Networking - The tree structure of Autopilot’s networking was built to enforce simplicity of its
messaging protocol, but it limits the ability for data to be shared efficiently between a large number of
pilots because communication has to be routed through a hub terminal. We will implement a true mesh
network architecture by implementing a distributed hash table, allowing agents to directly communicate
with one another without explicit configuration. We also will implement a peer-to-peer data protocol
akin to Bittorrent to allow efficient distribution of data across a swarm of agents.

• Web Interface - We would like to make a web-compatible UI that allows tasks to be administered and
monitored from any computer. A web interface would make continuous experiments much easier to
manage—we specifically intend this improvement (along with the Observer agent) to facilitate active
sensory enrichment[38, 12] and developmental experiments.

• Platform Independence - We have not rigorously tested Autopilot on operating systems other than
Raspbian and Ubuntu Linux, though we know the terminal agent and its GUI works on macOS.

• Unit Tests - At release, Autopilot has no unit tests. To make the codebase easier to maintain, we aim to
reach 100% coverage by the first stable release of the program (v1.0).
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Glossary

Agent 3.4 The executable part of Autopilot. A set of startup routines (eg. opening a GUI or
starting an audio server), runtime behavior (eg. opening as a window or running
as a background system process), and event handling methods (ie. listens) that
constitute the role of the particular Autopilot instance in the swarm.

Child 3.4 An agent that performs some auxiliary, supporting role in a task—primarily used
for offloading some hardware responsibilities from a pilot.

Graduation 3.1 Moving between successive tasks in a protocol when some criterion is met.

Listen 3.5 A method belonging to the station or node of a particular agent that defines how
to process a particular type of message (ie. a message with a particular key).

Node 3.5 A networking object that some module (eg. hardware, tasks, GUI routines) or
method (eg. a listen) uses to communicate with other nodes. Messages to other
agents in the swarm are relayed through their Station

Pilot 3.4 An agent that runs on a Raspberry Pi, the primary experimental agent of Autopilot.
Typically runs as a system service, receives tasks from a terminal and runs them.
Can organize a group of children if requested by the task.

Protocol 3.1 A (.json) file that contains a list of task parameters and the graduation criteria to
move between them. The tasks in a protocol are also known as its levels.

Stage 3.1 Stages are methods that implement the logic of a task. They can be used analogously
to states in a finite-state machine (eg. wait for trial initiation, play stimulus, etc.) or
asynchronously (whenever x input is received, rotate stimulus by y degrees).

Station 3.5 Each agent has a single station, a networking object that is run in its own process
and is responsible for communication between agents. The station also routes
messages from children or other nodes.

Swarm Informally, a group of connected agents.

Task 3.1 A formalized description of an experiment: the parameters it takes, the data that
it collects, the hardware it needs, and a collection of stages that describe what
happens during the experiment.

Terminal 3.4 A user-facing agent that provides a GUI for operating and maintaining a swarm.

Topology 3.4 A particular combination of agents, their designated responsibilities, and the net-
working connections between them invoked by a task (eg. task requires one pilot to
record video, one to process the video, and one to administer reward) or by usage
(eg. 10 pilots are connected to a single terminal and are typically used to run 10

independent tasks, though they could run shared tasks together).

Trial 3.1 If a task is structured such that its stages form a repeating series, a trial is a single
completion of that series.
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